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Giant Shapiro steps for two-dimensional Josephson-junction arrays
with time-dependent Ginzburg-Landau dynamics
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Two-dimensional Josephson junction arrays at zero temperature are investigated numerically within the
resistively shunted junction~RSJ! model and the time-dependent Ginzburg-Landau~TDGL! model with global
conservation of current implemented through the fluctuating twist boundary condition~FTBC!. Fractional giant
Shapiro steps are found forboth the RSJ and TDGL cases. This implies that the local current conservation, on
which the RSJ model is based, can be relaxed to the TDGL dynamics with only global current conservation,
without changing the sequence of Shapiro steps. However, when the maximum widths of the steps are com-
pared for the two models some qualitative differences are found at higher frequencies. The critical current is
also calculated and comparisons with earlier results are made. It is found that the FTBC is a more adequate
boundary condition than the conventional uniform current injection method because it minimizes the influence
of the boundary.@S0163-1829~99!00625-6#
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Two-dimensional~2D! Josephson junction arrays~JJA’s!
have been the subject of much current interest becaus
their phase transitions and nonequilibrium transp
properties.1 In the presence of an external uniform magne
field, the frustrationf, defined by the number of flux quant
per plaquette, plays an important role reflected, e.g., in
value of the critical current.2 Furthermore, when anL3L
square array withf 5p/q (p,q are integers! is driven by
combined direct and alternating currentsI ext(t)5I d
1I asinvt, fractional giant Shapiro steps at voltages

^V&5nS \v

2e D S L

qD , ~1!

where ^•••& is the time average andn is an integer, have
been observed both in experiments3 and in computer
simulations.4–7 Qualitative arguments have been proposed
explain these fractional steps in terms of vortex motion4,5

and topological invariance.8,9 In addition to the fractional
steps, a series of small subharmonic steps has been fou10

Two slightly different models have been used to catch
essential properties of a JJA: the resistively -shunted junc
~RSJ! model and the time-dependent Ginzburg-Land
~TDGL! model.11 The RSJ model is based on the assumpt
that all the current goes through the array and that the cur
is conserved locally at each instant. The TDGL model in
absence of an external current describes either a situa
where all the current goes through the array, but where
local current conservation is relaxed, or a situation where
all the current goes through the array~leakage to the ground!
and the current is conserved at each instant. The former v
means that the TDGL model can be regarded as a simpl
version of the RSJ model and at the same time as a
restrictive model of a JJA. The latter view has led to t
suggestion that a JJA with local damping is a possible r
ization of the TDGL model.12,13 In the presence of an exte
nal current the physics of the TDGL model depends on
choice of the boundary condition. We use here a bound
condition corresponding to the case when the normal cur
flow is through the array just as in the RSJ case. Howe
current is only conserved globally and not locally. In th
PRB 600163-1829/99/60~1!/588~4!/$15.00
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way, we can compare the effects caused by the differenc
local current conserved dynamics as in the RSJ case with
TDGL dynamics which only has global curren
conservation.14

Both dynamic models are equivalent as far as static e
librium properties are concerned, since they have the s
equilibrium Boltzmann distribution.15 On the other hand, for
dynamic quantities such as the dynamic dielect
function,15,16 flux-noise spectrum,13,17 and current-voltage
(I -V) characteristics,15,18 the equivalence is not guarantee
It has recently been suggested that the TDGL model co
describe the flux-noise experiment for a JJA better than
RSJ model.13 However, a somewhat different conclusion w
reached in Ref. 15 where properties like the linear respo
and nonlinearI -V characteristics were found to be the sam
for the two models.

In Ref. 15 a novel boundary condition@the fluctuating
twist boundary condition~FTBC!# based on global curren
conservation was introduced.19 We show in this work that
the very same Shapiro steps are found in the TDGL and
models when we employ the FTBC as the bound
condition.14 This suggests that the existence of the steps d
not depend on the details of the dynamic models: This
bustness can be explained by the topological nature of s
where the ground state degeneracy~both models are equiva
lent in this respect! has been shown to play an importa
role.9 The widths of Shapiro steps as a function ofI a andv
have also been a subject of much interest. For example
maximum width of the integer and the fractional steps ha
been shown to have a different frequency dependence
larger frequencies.6,20,21We find that the maximum width o
the half-integer step for the TDGL dynamics has a differe
frequency dependence than for the RSJ case. This offer
experimental possibility~similar to the experiment on anf
50 array in Ref. 22! to investigate whether a JJA coul
sometimes be better described by the TDGL dynamics.

In the presence of applied direct currents, the critical c
rentsI c( f ), beyond which the voltage takes nonzero valu
have been measured in experiments23 and simulations.4,23Al-
though theoretical predictions2,23 and experiments23 for f
588 ©1999 The American Physical Society
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51/2 give the resultI c( f 51/2)5A221'0.414 in units of
I c( f 50), computer simulations with the convention
method of uniform current injection gives the value 0.
60.01.4–7,24 In Ref. 5 it has been argued that this discre
ancy is due to the boundary condition and that the conv
tional method destroys the translational symmetry of
ground state. On the other hand, we find in this work that
FTBC gives the value 0.4142~1! for both the RSJ and TDGL
models, which suggests that the FTBC is a more adeq
boundary condition since it conserves translational sym
try.

We start by introducing the equations of motion for t
RSJ and TDGL models with the FTBC~see Ref. 15 for de-
tails!. In the FTBC the twist variableD[(Dx ,Dy) is intro-
duced and the gauge-invariant phase difference is chan
into25

f i j 5u i2u j2Ai j 2r i j •D, ~2!

whereu i is the phase of the superconducting order param
at site i, r i j [r i2r j is a unit vector from sitei to j, andAi j

[(2p/F0)* i
jA•dl with the magnetic vector potentialA and

the flux quantumF0 for Cooper pairs.
In the RSJ model, the equations of motion for phase v

ables are determined by thelocal current conservation a
each site~see, for example, Refs. 4 and 10!:

u̇ i52(
j

Gi j (
k

8 sinf jk , ~3!

where the primed summation is over four nearest neighb
of j, Gi j is the square lattice Green function, and the unit
time is \/2eRIc with shunt resistanceR and critical current
I c of the single junction. In this work we only consider th
array at zero temperature and accordingly the thermal n
terms are disregarded~see Ref. 15 for finite temperatures!.
For the TDGL model the equations of motion are giv
by15,16

u̇ i52(
j

8 sinf i j , ~4!

wheret is in units of 2e/I c .
In the FTBC case, the periodicities of the phase variab

are preserved in both directions, i.e.,u i5u i 1L x̂5u i 1L ŷ , and
thus the voltage drop in each direction across the whole a
is given by

Vx52
\L

2e
Ḋx , Vy52

\L

2e
Ḋy , ~5!

from the Josephson relation. From the condition ofglobal
current conservation in each direction, we obtain the eq
tions of motion for the twist variables of the array driven
an external currentI ext ~in units of I c) in the x direction:15

I ext52
dDx

dt
1

1

L2 (
^ i j &x

sinf i j , ~6!

052
dDy

dt
1

1

L2 (
^ i j &y

sinf i j , ~7!
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where (^ i j &x
((^ i j &y

) is the summation over all neares
neighboring pairs in thex(y) direction.

It should be observed that we are here considering
TDGL model @as specified by the dynamical equation~4!#
with globally conserved current@as specified by Eqs.~6! and
~7!#. One can also consider the TDGL model@as specified by
Eq. ~4! # without global current conservation within the plan
@i.e., without Eqs.~6! and ~7!# and interpret it as a mode
with leakage to the ground.12,13 In this case an applied exter
nal current only leads to dissipation to the ground at
boundaries where the current is injected and extracted. C
sequently there exist no giant Shapiro steps for the TD
model without globally conserved current within the plane26

We first consider an array with an external currentI ext
5I d1I asinvt. We use the Euler algorithm with discret
time stepDt50.05 to integrate the equations of motion@Eqs.
~3!, ~6!, and~7! for the RSJ model and Eqs.~4!, ~6!, and~7!
for the TDGL model#, and the time-averaged voltages^V& in
units of L\v/2e are calculated from Eq.~5!. We adopt the
simulated annealing Monte Carlo method to find the grou
states of the array and then use them as initial condition
phase variables together withDx(t50)5Dy(0)50. Figure 1
shows the fractional giant Shapiro steps in theI -V character-
istics for ~a! the RSJ model and~b! the TDGL model. Al-
though we have found quantitative differences in the Shap
steps for the TDGL model~e.g., small step sizes at^V&
51/3 and 1/2 forf 51/3 and 1/4, respectively!, it is clear that
with the FTBC not only the RSJ but also the TDGL mod
generates the integer and fractional steps. We have also
served weak subharmonic steps for both models as in
10.

FIG. 1. Time-averaged voltages^V& in units of L\v/2e versus
direct currentI d for ~a! the RSJ and~b! the TDGL models in an
L3L Josephson junction array in case off 50,1/2,1/3,1/4,1/5, and
2/5 ~from the left to the right!. The sizes of arrays areL54 ~for f
50), 8 (f 51/2 and 1/4), 9(f 51/3), and 10 (f 51/5 and 2/5), and
we have used the fluctuating twist boundary condition together w
the condition of global current conservation and applied exter
currentsI ext5I d1I asinvt with I a5I c and v/2p50.1 in units of
2eRIc /\ for the RSJ model andI c/2e for the TDGL model, respec-
tively. Fractional giant Shapiro steps are clearly shown for
TDGL as well as for the RSJ model. All curves exceptf 50 are
horizontally displaced for clarity.
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Figure 2 displays the maximum widths20,22 of the steps
^V&51/2 and 1 versusv for both models. Although both
show the same qualitative behavior in the low-frequency
gime, it is apparent from the figure that the high-frequen
behaviors of the half-integer steps are different for the t
models. Since the frequency dependence of the maxim
width can be measured for a JJA,22 this offers the possibility
of experimentally distinguishing between the two types
dynamics.

We have also performed computer simulations applyin
constant direct currentI ext(t)5I d for three different cases
and obtained the critical currentsI c( f ): One case is the RS
model with the conventional method of uniform current i
jection which employs the periodic boundary condition~the
free boundary condition! in the direction perpendicular~par-
allel! to the applied currents. The other two are the RSJ
TDGL models with the FTBC. We present in Table I a com-
parison of these three cases, which reveals that the FT
gives correct values for both the RSJ and TDGL models.
the conventional current injection method we obtained d
ferent values, e.g.,I c( f 51/2)50.35(1), as wasalso found in
Ref. 5. We checked the system size dependence foL
54,8, . . .,128 and found no change. Nevertheless, th
smaller values are caused by the boundary condition wh
destroys the translational symmetry of the ground state.5 In
Ref. 5 this problem was circumvented by a nonuniform
jection method which matched the translational symmetry
the ground state and the correct value 0.414 was found

TABLE I. Comparison of critical currents atf 50, 1/2, and 1/3
for the the RSJ model with conventional method (I c

conv), the RSJ
model with the fluctuating twist boundary condition (I c

RSJ), the
TDGL with the FTBC (I c

TDGL), and the analytic results in Ref. 2
(I c

anal). All values are in units ofI c( f 50) and the numbers in pa
rentheses are numerical errors in the last digits.

f I c
conv I c

RSJ I c
TDGL I c

anal

0 1.00~1! 1.0000~1! 1.0000~1! 1
1/2 0.35~1! 0.4142~1! 0.4142~1! 0.41421
1/3 0.14~1! 0.2679~1! 0.2679~1! 0.26789

FIG. 2. Frequency dependence of the maximum widths of
Shapiro steps at^V&51/2 and 1 for the RSJ and TDGL models wi
the FTBC in case off 51/2. Our results for the RSJ model are
good agreement with the analytic results.~Ref. 20!. The high-
frequency behavior of the 1/2 step for the TDGL model is shown
differ from the RSJ model. The lines are guides to the eye.
-
y
o
m

f

a

d

C
r

-

e
h

-
f
In

the FTBC case the translational symmetry of the ground s
is automatically preserved and consequently this bound
condition directly yields the correct result. We also calc
lated the critical current with the busbar geometry18 and ob-
tained an even smaller value ofI c( f 51/2) than for the con-
ventional uniform injection method, as was already notic
in Refs. 5 and 24. From these comparisons we conclude
the FTBC has an advantage over other commonly u
boundary conditions.

In Fig. 3 we show the average energy defined byE[
2^(^ i j &cosfij(t)&/L

2 as a function ofI d for several cases
Our results for the RSJ model with the FTBC are in perf
agreement with the results from the analytic equations gi
in Ref. 20, which suggests that our results contain no bou
ary or finite-size effects. The TDGL model is found to giv
the sameE for currents less than the critical value. Beyon
the critical current, the TDGL model gives a lower energ
implying that the array is closer to the ground state than

FIG. 3. Energy per site,E[2^(^ i j &cosfij&/L
2, for an L3L

array in case off 51/2 with an applied direct currentI d . The results
from the analytic equations~solid curve! in Ref. 20 are in perfect
agreement with our results for the RSJ model using the FTBC.
TDGL model gives the sameE below the critical current. However
the RSJ model with the conventional method has a cusp structu
a different value ofI d .

FIG. 4. Critical currentsI c( f ) as a function off for the RSJ
~denoted by1) and the TDGL (s) at f 5p/q with q51,2, . . . ,8.
The fluctuating twist boundary condition is used together with
condition of global current conservation. For all values off tested in
this work, the RSJ and TDGL models give the same value ofI c( f )
within numerical accuracy. The line is a guide to the eye.
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RSJ model. We believe that this explains the robustnes
the 1/2 step of the TDGL model at high frequency~see Fig.
2!, since it is expected that the ground state and its vo
superlattice structure plays an important role in creating
half-integer steps.6 We find in all cases thatE(I d) has a cusp
structure at the critical current. One may also note in Fig
that the conventional uniform current injection method lea
to a result which differs from the exact analytical resu
Figure 4 gives the critical currentsI c( f ) at f 5p/q with q
51,2, . . . ,8~for comparisons with previous works, see R
2!. For all values off, we obtain identical values ofI c( f ) for
the TDGL and RSJ models.

In conclusion, we have performed simulations for the R
and TDGL models subject to the FTBC. Fractional gia
Shapiro steps are obtained forboth models, which suggest
that the existence of the steps does not depend cruciall
the condition of instantaneous local current conservat
However, the maximum width of the half-integer step af
51/2 has a qualitatively different high-frequency behav
for the two models. The critical currents of the array w
direct applied currents were also calculated for both the m
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els subject to the FTBC and compared with the results
tained for the RSJ model with the conventional method
uniform current injection. It was concluded that the FTB
for both models gives values in agreement with experime
and analytic calculations, while the conventional meth
fails in this respect.

The present calculation supports the conclusion reac
in Ref. 15 that the TDGL and RSJ models with the FTBC a
qualitatively equivalent for low frequencies~compare Fig. 2!
and small currents~compare Fig. 3! whereas for larger fre-
quencies and larger currents there exist qualitative dif
ences. The fact that both the models have qualitatively si
lar sequences of giant Shapiro steps suggests that
existence of these steps is strongly linked to an equilibri
property like the ground state degeneracy.9
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