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Two-dimensional Josephson junction arrays at zero temperature are investigated numerically within the
resistively shunted junctiofRSJ model and the time-dependent Ginzburg-LanBDGL) model with global
conservation of current implemented through the fluctuating twist boundary con@fl@&<T). Fractional giant
Shapiro steps are found fooththe RSJ and TDGL cases. This implies that the local current conservation, on
which the RSJ model is based, can be relaxed to the TDGL dynamics with only global current conservation,
without changing the sequence of Shapiro steps. However, when the maximum widths of the steps are com-
pared for the two models some qualitative differences are found at higher frequencies. The critical current is
also calculated and comparisons with earlier results are made. It is found that the FTBC is a more adequate
boundary condition than the conventional uniform current injection method because it minimizes the influence
of the boundary[S0163-18289)00625-9

Two-dimensional2D) Josephson junction arraydJA’s)  way, we can compare the effects caused by the difference in
have been the subject of much current interest because #fcal current conserved dynamics as in the RSJ case with the
their phase transitions and nonequilibrium transportTDGL dynamics which only has global current
properties- In the presence of an external uniform magneticconservatiort*
field, the frustratiorf, defined by the number of flux quanta  Both dynamic models are equivalent as far as static equi-
per plaquette, plays an important role reflected, e.g., in th@prium properties are concerned, since they have the same
value of the critical currertt.Furthermore, when ab XL equilibrium Boltzmann distributiof On the other hand, for
square array withf=p/q (p,q are integersis driven by  gynamic quantities such as the dynamic dielectric
combined direct and alternating currentb,(t)=lq  function25® flux-noise spectrur®!” and current-voltage
+1gsinat, fractional giant Shapiro steps at voltages (1-V) characteristics®>*® the equivalence is not guaranteed.

Fol (L It has. recently beeq suggestgd that the TDGL model could
(V)zn(—) (_ , (1)  describe the flux-noise experiment for a JJA better than the
2e/\q RSJ modet® However, a somewhat different conclusion was
where(---) is the time average and is an integer, have
been observed both in experimehtand in computer

reached in Ref. 15 where properties like the linear response

and nonlineat -V characteristics were found to be the same
simulationg~’ Qualitative arguments have been proposed td°" the two models. N _
explain these fractional steps in terms of vortex mdtfon N Ref. 15 a novel boundary conditidithe fluctuating
and topological invarianc®® In addition to the fractional tWist boundary conditio{FTBC)] based on global current
steps, a series of small subharmonic steps has been fbundconservation was introducéd.We show in this work that

Two slightly different models have been used to catch théhe very same Shapiro steps are found in the TDGL and RSJ

essential properties of a JJA: the resistively -shunted junctiomodels when we employ the FTBC as the boundary
(RS) model and the time-dependent Ginzburg-Landawcondition’* This suggests that the existence of the steps does
(TDGL) model!! The RSJ model is based on the assumptiomot depend on the details of the dynamic models: This ro-
that all the current goes through the array and that the curreftustness can be explained by the topological nature of steps
is conserved locally at each instant. The TDGL model in thewhere the ground state degenergogth models are equiva-
absence of an external current describes either a situatidant in this respegthas been shown to play an important
where all the current goes through the array, but where theole® The widths of Shapiro steps as a functionl gfand »
local current conservation is relaxed, or a situation where ndeave also been a subject of much interest. For example, the
all the current goes through the arrédgakage to the ground maximum width of the integer and the fractional steps have
and the current is conserved at each instant. The former vielween shown to have a different frequency dependence for
means that the TDGL model can be regarded as a simplifieérger frequencie$?°?*We find that the maximum width of
version of the RSJ model and at the same time as a ledbe half-integer step for the TDGL dynamics has a different
restrictive model of a JJA. The latter view has led to thefrequency dependence than for the RSJ case. This offers an
suggestion that a JJA with local damping is a possible realexperimental possibilitysimilar to the experiment on ah
ization of the TDGL modet?*3In the presence of an exter- =0 array in Ref. 22 to investigate whether a JJA could
nal current the physics of the TDGL model depends on thesometimes be better described by the TDGL dynamics.
choice of the boundary condition. We use here a boundary In the presence of applied direct currents, the critical cur-
condition corresponding to the case when the normal currenentsl (f), beyond which the voltage takes nonzero values,
flow is through the array just as in the RSJ case. Howevehave been measured in experiméhnd simulationg:?3 Al-
current is only conserved globally and not locally. In thisthough theoretical predictiofi$® and experiments for f
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=1/2 give the result(f=1/2)=2—1~0.414 in units of 25 - -

I.(f=0), computer simulations with the conventional 2 1
method of uniform current injection gives the value 0.35 15 .
+0.0147"?*|n Ref. 5 it has been argued that this discrep- vy |
ancy is due to the boundary condition and that the conven- 05 (a) i

tional method destroys the translational symmetry of the
ground state. On the other hand, we find in this work that the
FTBC gives the value 0.414P) for both the RSJ and TDGL
models, which suggests that the FTBC is a more adequate
boundary condition since it conserves translational symme-
try.

We start by introducing the equations of motion for the
RSJ and TDGL models with the FTBGee Ref. 15 for de- V)
tails). In the FTBC the twist variabld=(A,,A,) is intro-
duczesd and the gauge-invariant phase difference is changed
into

0

&ij=0i— 60— Aij—rij- A, 2 la

whered; is the phase of the superconducting order parameter FIG. 1. Time-averaged voltage¥) in units of LA w/2e versus

at Sitei, rijEri_rj is a unit vector from site to j, andAij direct currentl 4 for (a) the RSJ andb) the TDGL models in an

E(Zw/@o)f{A- dl with the magnetic vector potential and L XL Josephson junction array in casefef0,1/2,1/3,1/4,1/5, and
: 2/5 (from the left to the right The sizes of arrays ale=4 (for f

the flux quantum®, for Cooper pairs. - o . -

In the RSJ model, the equations of motion for phase vari=9), 8 (f=1/2 and 1/4), 9{=1/3), and 10 {=1/5 and 2/5), and

ables are determined by tHecal current conservation at we have used the fluctuating twist boundary condition together with

. the condition of global current conservation and applied external
each site(see, for example, Refs. 4 and)10 currentsl =14+ 1,Sinwt with 1,=1, and w/27=0.1 in units of

2eRI. /A for the RSJ model anti./2e for the TDGL model, respec-
6= _E Gijz’ singjy , (3) tively. Fractional giant Shapiro steps are clearly shown for the
] k TDGL as well as for the RSJ model. All curves excdptO are

. L . horizontally displaced for clarity.
where the primed summation is over four nearest neighbors y disp y

of j, Gjj is the square lattice Green function, and the unit ofwhere = ;;, (E<ii>y) is the summation over all nearest-

time is#i/2eR|; with shunt resistanc® and critical current npeighboring pairs in the(y) direction.

| of the single junction. In this work we only consider the |t should be observed that we are here considering the

array at zero temperature and accordingly the thermal noiSsEDGL model[as specified by the dynamical equatioh]

terms are disregarde@ee Ref. 15 for finite temperatujes with globally conserved currefhas specified by Eq$6) and

For the TDGL model the equations of motion are given(7)]. One can also consider the TDGL moflas specified by

by!°:16 Eq. (4) ] without global current conservation within the plane
[i.e., without Egs.(6) and (7); and interpret it as a model
with leakage to the grount:*°In this case an applied exter-

Hi:_; sing;; , (4)  nal current only leads to dissipation to the ground at the
boundaries where the current is injected and extracted. Con-
wheret is in units of 22/I. sequently there exist no giant Shapiro steps for the TDGL
In the FTBC case, the periodicities of the phase variablesnodel without globally conserved current within the plahe.
are preserved in both directions, i.6,= 6; . 3= 6; .y, and We first consider an array with an external currégy
thus the voltage drop in each direction across the whole array | 4+ 1 ;Sinwt. We use the Euler algorithm with discrete
is given by time stepAt=0.05 to integrate the equations of motidtys.
(3), (6), and(7) for the RSJ model and Eg&}), (6), and(7)
Vo= — h—LA Vo= — ﬁ—LA B for the TDGL mode), and the time-averaged voltag@#$) in
XTo2emX YT 2TV units of LA w/2e are calculated from Eq5). We adopt the

] N simulated annealing Monte Carlo method to find the ground
from the Josephson relation. From the conditiongibal  states of the array and then use them as initial conditions of
current conservation in each direction, we obtain the equaphase variables together withy (t=0)=A,(0)=0. Figure 1
. . . . . y .
tions of motion for the .tWISt _vanableg of the array -dr|\1/5en bY shows the fractional giant Shapiro steps in thé character-
an external currenite, (in units ofI¢) in the x direction: istics for (a) the RSJ model ant) the TDGL model. Al-

though we have found quantitative differences in the Shapiro
oo g8 1 S sing, 6 Steps for the TDGL modele.g., small step sizes 4V)
ext dt 1247, e =1/3 and 1/2 forf = 1/3 and 1/4, respectivelyit is clear that
with the FTBC not only the RSJ but also the TDGL model
dA 1 generates the integer and fractional steps. We have also ob-
=Y, = E sina:: 7 served weak subharmonic steps for both models as in Ref.
av g, S D T
y .
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FIG. 2. Frequency dependence of the maximum widths of the
Shapiro steps V)= 1/2 and 1 for the RSJ and TDGL models with FIG. 3. Energy per siteE= *<E<ij>005¢>.j)/|-2, for anLXL
the FTBC in case of =1/2. Our results for the RSJ model are in array in case of = 1/2 with an app“ed direct Curreh&. The results
good agreement with the analytic resultRef. 20. The high-  from the analytic equationgsolid curve in Ref. 20 are in perfect
frequency behavior of the 1/2 step for the TDGL model is shown toagreement with our results for the RSJ model using the FTBC. The
differ from the RSJ model. The lines are guides to the eye. TDGL model gives the same below the critical current. However,

the RSJ model with the conventional method has a cusp structure at

Figure 2 displays the maximum widf$? of the steps a different value of 4.

(V)=1/2 and 1 versusvs for both models. Although both

show the same qualitative behavior in the low-frequency rethe FTBC case the translational symmetry of the ground state

gime, it is apparent from the figure that the high-frequencyis automatically preserved and consequently this boundary

behaviors of the half-integer steps are different for the twacondition directly yields the correct result. We also calcu-

models. Since the frequency dependence of the maximumated the critical current with the busbar geomé&tgnd ob-

width can be measured for a J32this offers the possibility tained an even smaller value kf(f=1/2) than for the con-

of experimentally distinguishing between the two types ofyentional uniform injection method, as was already noticed

dynamics. in Refs. 5 and 24. From these comparisons we conclude that
We have also performed computer simulations applying a3he FTBC has an advantage over other commonly used

constant direct current,,(t) =14 for three different cases poundary conditions.

and obtained the critical currenitg(f): One case is the RSJ In Fig. 3 we show the average energy defined by

model with the conventional method of uniform current in- _<E(IJ)COS¢I](O>/L2 as a function Oﬂd for several cases.

jection which employs the periodic boundary conditide  Our results for the RSJ model with the FTBC are in perfect

free boundary conditionin the direction perpendiculdpar-  agreement with the results from the analytic equations given

allel) to the applied currents. The other two are the RSJ an¢h Ref. 20, which suggests that our results contain no bound-

TDGL models with the FTBC. We present in Tallla com-  ary or finite-size effects. The TDGL model is found to give

parison of these three cases, which reveals that the FTBfhe sameE for currents less than the critical value. Beyond

giVES correct values for both the RSJ and TDGL models. Fothe critical current, the TDGL model gives a lower energy,

the conventional current injection method we obtained dif-implying that the array is closer to the ground state than the

ferent values, e.gl (f=1/2)=0.351), as waslso found in

Ref. 5. We checked the system size dependencelfor

=4,8,...,128 and found no change. Nevertheless, these

smaller values are caused by the boundary condition which

destroys the translational symmetry of the ground state.

Ref. 5 this problem was circumvented by a nonuniform in-

jection method which matched the translational symmetry of /

the ground state and the correct value 0.414 was found. In ¢

TABLE I. Comparison of critical currents d&=0, 1/2, and 1/3
for the the RSJ model with conventional methdd®(¥), the RSJ
model with the fluctuating twist boundary conditiorh?%“), the

TDGL with the FTBC ({P°Y), and the analytic results in Ref. 23 0 o2 o4 o6 o8 1

(12" All values are in units of (f=0) and the numbers in pa-

rentheses are numerical errors in the last digits. f

f j conv |RSI |7PsL | anal FIG. 4. Critical currentd .(f) as a function off for the RSJ
(denoted by+) and the TDGL Q) atf=p/q withgq=1,2,...,8.

0 1.0a1) 1.000qQ1) 1.000q1) 1 The fluctuating twist boundary condition is used together with the

1/2 0.3%1) 0.41421) 0.41421) 0.41421 condition of global current conservation. For all value$ wfsted in

1/3 0.141) 0.26791) 0.26791) 0.26789 this work, the RSJ and TDGL models give the same valuk,(df)

within numerical accuracy. The line is a guide to the eye.
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RSJ model. We believe that this explains the robustness afls subject to the FTBC and compared with the results ob-
the 1/2 step of the TDGL model at high frequer(sge Fig. tained for the RSJ model with the conventional method of
2), since it is expected that the ground state and its vortexiniform current injection. It was concluded that the FTBC
superlattice structure plays an important role in creating thdéor both models gives values in agreement with experiments
half-integer step§ We find in all cases thd(l4) has acusp and analytic calculations, while the conventional method
structure at the critical current. One may also note in Fig. Jails in this respect.

that the conventional uniform current injection method leads The present calculation supports the conclusion reached
to a result which differs from the exact analytical result.in Ref. 15 that the TDGL and RSJ models with the FTBC are
Figure 4 gives the critical currentg(f) at f=p/q with q  qualitatively equivalent for low frequenci¢sompare Fig. P

=1,2,...,8(for comparisons with previous works, see Ref.and small currentscompare Fig. Bwhereas for larger fre-
2). For all values of, we obtain identical values of(f) for quencies and larger currents there exist qualitative differ-
the TDGL and RSJ models. ences. The fact that both the models have qualitatively simi-

In conclusion, we have performed simulations for the RSJar sequences of giant Shapiro steps suggests that the
and TDGL models subject to the FTBC. Fractional giantexistence of these steps is strongly linked to an equilibrium
Shapiro steps are obtained fleoth models, which suggests property like the ground state degeneracy.
that the existence of the steps does not depend crucially on
the condition of instantaneous local current conservation. B.J.K. wishes to acknowledge the financial support of the
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