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Order formation and superfluidity of excitons in type-II semiconductor quantum wells

T. Iida and M. Tsubota
Department of Physics, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan

~Received 4 January 1999!

The condensed state and superfluidity of excitons in type-II semiconductor quantum wells~QW’s! are
investigated theoretically. Since the excitons in type-II QW’s have translational motion along the layer, the
assembly of them is regarded as an interacting dilute quasi-two-dimensional Bose gas. This system is advan-
tageous for our purpose because those excitons have a long lifetime of the order of 1026 s, and their transport
mechanism can be directly studied in experiments by observing electric current since the excitons consist of
spatially separated electron-hole pairs. Using the exciton wave functions obtained by the variational method,
the exciton-exciton interaction is calculated and found to be repulsive when the thickness of the QW is thinner
than a critical value. To illustrate the situation, we carry out the numerical computation adopting a model
system with material constants appropriate to GaAs/AlAs type-II QW’s. The basic equation for the phase of the
condensate wave function is derived when the exciton system is irradiated by a weak laser light at zero
temperature. Solving the equation in the presence of the external currentJex, we study the stationary spatial
pattern of the phase of the condensate wave function. It is shown that there appears a vortex lattice with a net
supercurrent whenJex is larger than a critical value; the period of the lattice is determined as a function ofJex.
We calculate the magnetic field induced by the current in the vortex lattice, and discuss a possibility of an
experimental observation of the critical current. Such a direct observation of the exciton transport will provide
unambiguous experimental evidence for the superfluidity of excitons.@S0163-1829~99!15931-9#
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I. INTRODUCTION

There has been a growing interest in many-body effect
the optically excited electron-hole system in semiconduc
because the system is expected to exhibit macroscopic q
tum coherent phenomena.1,2 In the high-density regime, the
electron-hole system is regarded as a two-component F
liquid in which the cooperative pairing of electrons and ho
arises in momentum space at low temperatures, quite sim
to the BCS state in superconductors,1–5 while, in the low-
density regime, the electron-hole pairs are regarded as w
defined excitons which are the bound states in the real sp
In a dense gas of excitons where the excitons are still
garded as bosons, their Bose-Einsten condensation~BEC! is
expected.1

Superfluidity in liquid 4He is intimately connected with
BEC. However, in liquid4He, the quantum-statistical fea
tures associated with BEC are masked by the effects du
the strong particle-particle interactions. More dilute syste
have been required to study the connection between B
Einstein statistics and superfluidity. The recent succes
observations of BEC in dilute alkali atoms have opened
door to study weakly interacting Bose gas experimental6

In addition to the assemblies of alkali atoms, many can
dates for BEC can be listed, as shown in Ref. 7. A signific
place in this list is occupied by excitons. The reasons
favor of searching the superfluid transition in exciton s
tems are as follows:~1! A light effective mass allows con
densation at a low critical density, so that the system can
regarded as a dilute Bose gas even in the condensed
For example, in the case of excitons in Cu2O with a Bohr
radiusax.7 Å, the critical densitync is ;1017cm23 at T
;3 K and thenncax

3!1, in contrast withnc;1022 in the
liquid 4He with an average interparticle distance;4.4 A. ~2!
PRB 600163-1829/99/60~8!/5802~9!/$15.00
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The system can be monitored by convenient optical meas
ments.~3! There will be a possibility of realizing crossove
from the momentum space pairing to the real-space pai
because the exciton density can be controlled over a w
range.

In the recent study by Snoke and Wolfe8 of the time-
resolved luminescence of excitons in Cu2O, they observed a
gradual evolution of exciton distribution from a classical to
Bose quantum degenerate regime, which likely represe
the experimental signature of the BEC of excitons. In a s
sequent experiment, Fortin and co-workers9,10 investigated
the exciton system in Cu2O by measuring the time- an
space-resolved spectroscopies. They found supersonic b
tic exciton propagation over a macroscopic distance. T
ballistic propagation has been interpreted from two differ
standpoints. One interpretation is based on the BEC and
transition of exciton gas to a superfluid state.11–13 Another
interpretation is based on the phonon wind model, in wh
excitons are dragged in the crystal by a flow of nonequil
rium ballistic phonons.14,15 So far, conclusive experimenta
evidence verifying the transport mechanism of excitons
not yet been obtained. The charge neutrality of excitons p
vents us from studying the exciton transport directly by t
observation of electric current.

In the present work, in order to overcome such a di
culty, we propose an exciton system in a type-II quant
well ~QW!, and investigate the quantum coherent pheno
ena of excitons~the very preliminary result was reported
Ref. 16!. Our system is similar to the electron-hole system
coupled layered semimetals with electron and hole cond
tions separated by a thin insulating layer, which was stud
in Ref. 17.

In the type-II QW, the exciton consists of an electron a
a hole which are confined separately in two adjacent lay
5802 ©1999 The American Physical Society
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by confinement potentials. The center of mass of the exc
moves along the layer. Therefore the translational motio
regarded as being quasi-two-dimensional~2D!, and is ac-
companied by currents flowing in the opposite directions
the electron and the hole layers. This fact makes it poss
for us to observe the exciton transport by measuring the e
tric current. The system offers the additional advantage
realizing the condensed states of excitons. The spat
separated distributions of electrons and holes greatly red
the probability of electron-hole recombination decay; ty
cally the lifetime of excitons is;1026 s. In Sec. II, we cal-
culate the exciton states in type-II QW~see Fig. 1! by a
variational method based on the effective-mass approxi
tion, adopting a model system with parameter values o
GaAs/AlAs QW with each layer of thicknessL. On the basis
of the results, we study the exciton-exciton interactio
which plays an essential role in obtaining the stable cond
sate of excitons. The result shows that the exciton-exc
interaction is repulsive whenL is smaller than a certain criti
cal value. The assembly of excitons in our system can
considered to be approximately an interacting dilute 2D B
gas as long as the exciton density is small compared
ax

22, ax being the exciton radius. The exciton condens
state is characterized by a finite ensemble average of the
operatorc~R!, whereR is the position vector in 2D space
c(R)[^c(R)& is called the condensate wave function.
Sec. III, we derive the basic equations for the condens
wave function of excitons in a type-II QW which is irrad
ated by a weak laser light at absolute zero temperature;
case of finite temperature will be studied in a future work.
Sec. IV, we consider a system where the electron and
layers are connected in series. The basic equations obta
in Sec. III are supplemented by the boundary conditions
termined at the boundaries of the system for a given exte
currentJex. Solving the equations, we study the current d
tribution pattern caused by the spatial variation of the ph
of c~R!, and show that there appears a vortex lattice with
supercurrent whenJex is larger than a critical value. We als
calculate the magnetic field induced by the current in
vortex-lattice state. Furthermore, order estimations are
ried out for the critical current and the magnetic filed, whi
shows that it will be possible to observe them experim
tally. The experimental observation of the critical curre

FIG. 1. The type-II quantum-well structure. As a model syste
a set of parameter values of GaAs/AlAs are assumed~see text!.
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will give unambiguous evidence on the superfluidity of e
citons.

II. EXCITONS IN A TYPE-II QUANTUM WELL

We consider a simple model of a type-II quantum well
which electrons and holes are confined separately within
adjacent layers with the same thicknessL. The claddings of
both layers are assumed to be formed by high-barrier m
rials. The model band scheme is shown in Fig. 1. A GaA
AlAs quantum-well structure with thickness less than;36 A
is a typical experimentally accessible example in which
spatially separated electron-hole system is realized; in
case, the lowest electron state originating fromX states of
AlAs is localized within the AlAs layer, while the lowes
hole state built up fromG states of GaAs is localized within
the GaAs layer.18

The exciton wave functions are written as

CK~re ,rh!5eiK ~aere1ahrh!w~r,ze ,zh!,

w~r,ze ,zh!5exp~ ikcze! f ~r,ze ,zh!, ~1!

where thez axis is taken along the growth direction~Fig. 1!;
the subscriptse andh indicate, respectively, the electron an
the hole; the wave vectorK , the position vectorra (a
5e,h), and r5re2rh are those in thexy plane; and
exp(ikcze) is the phase factor coming from the conductio
band bottom.aa5maxy /M and M5mexy1mhxy , maxy be-
ing the effective mass in thexy plane.

The wave functionf (r,ze ,zh) satisfies the effective-mas
equation

FHe1Hh2
\2

2mr
¹r

22V~r,ze2zh!G f ~r,ze ,zh!

5e f ~r,ze ,zh!. ~2!

Here 1/mr51/mexy11/mhxy and

Ha52
\2

2maz

]2

]za
2 1Wa~za! ~a5e,h!,

V~r,ze2zh!5
e2

«Ar21~ze2zh!2
, ~3!

wheremaz is the effective mass along thez direction, and
Wa(za)’s are the confinement potentials. Since we need o
the lowest electron and hole states in the following disc
sion, we ignore the cladding effects and approximate
confinement potensitials as

We~ze!5H 2De, 0<ze<L

0 otherwise,

Wh~zh!5H 2Dh , 2L<zh<0

0 otherwise,
~4!

where De(h) are the band discontinuities. In the Coulom
interaction between electron and hole in Eq.~3!, we neglect
image-charge effects.

We consider the situation where the confinement effe
for the electrons and holes are large enough compared

,
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5804 PRB 60T. IIDA AND M. TSUBOTA
the electron-hole Coulomb interaction, and then the low
exciton state is composed of the lowest states of the confi
electron and hole. As a first step, we calculate the low
electron and hole states, adopting the trial functions

ua~za ,ha!5S 2

pha
2D 1/4

e2~za2La/2!2/ha
2

~Le5L,Lh52L !,

~5!

where theha’s are variational parameters used to minimi
the energies

ea~ha![^uauHauua&5
\2

2maha
22Da erfS L

&ha
D , ~6!

where erf(x) is the error function:

erf~x!5
2

Ap
E

0

x

exp~2t2!dt. ~7!

In the next step, using the obtained statesua(za ,ha), we
assume the trial function for the exciton state as

f ~r,ze ,zh!5w~r!ue~ze ,he!uh~zh ,hh!,

w~r!5
2

A2pax

e2r/ax, ~8!

where the the two-dimensional exciton radiusax is intro-
duced as the variational parameter. By using the Fou
transforms ofw~r! andV(r,ze2zh),

w~q!5
A8pax

2

@11~axq!2#3/2, V~q,ze2zh!5Vqe2quze2zhu,

Vq5
2pe2

«q
, ~9!

the exciton energye is calculated to bee(he ,hh ,ax)
5ee(he)1eh(hh)2Ex , whereEx is the exciton binding en-
ergy defined by

Ex52F \2

2mrax
2 1Weh~he ,hh ,ax!G . ~10!

Here

Weh~he ,hh ,ax!52
1

2p E
0

`

dq qVq

f eh~q!

@11~axq/2!2#3/2

~11!

with

f ab~q!

5E
2`

`

dzaE
2`

`

dzb8e
2quza2zb8uuua~za ,ha!u2uub~zb8 ,hb!u2.

~12!

Minimizing the exciton energye with respect to the exciton
radiusax , we finally obtain the energy for the exciton sta
cK(re ,rh) as follows:
st
ed
st

er

E~K !5Eg1
\2K2

2M
2Ex ,

Eg5«g1@De1ee~he!#1@Dh1eh~hh!#, ~13!

where«g is the indirect band gap andEg is the electron-hole
excitation energy when the exciton effect is neglected.

By adopting the exciton statesCK(re ,rh)’s obtained
above as a complete set of one-exciton states, the Ha
tonian of the many-exciton system may be derived. T
Hamiltonian describes the translational motion of excitons
the xy plane, and involves the exciton-exciton interacti
whose matrix element is given in the form19,20

W~K ,K 8,P!5Wd~P!1Wx~K ,K 8,P!, ~14!

whereK ,K 8,P are the wave vectors in thexy plane,Wd(P)
is the direct interexcitonic interaction, andWx(K ,K 8,P)
comes from the exchange of the fermions belonging to
ferent excitons. In the case of the low concentration aT
50, the interaction between the low-energy excitons ma
the dominant contribution. Then we assume that the excit
exciton interaction is approximated byWx(K,K8,P)
'Wx(0,0,0); by using the explicit expression given in Re
19 and 20, the matrix elements are calculated to be

Wd~0!50, ~15!

Wx~0,0,0!52(
q,q1

@Vq
ee1Vq

hh#w~q1!2w~q12q!2

12(
q,q1

Vq
ehw~q1!3w~q12q!, ~16!

whereVab5 f ab(q)Vq , f ab(q) and Vq being given in Eqs.
~12! and ~9!, respectively; the Coulomb interaction is mod
fied by the overlap integral of the quantum-well electron a
hole wave functions in thez direction.

If the overlap integralsf ab(q)’s were unity in Eq.~16!,
Wx would be of the same form as in a two-dimensional ca
where the electrons and holes are distributed in the s
two-dimensional space. In this case,Wx is calculated as21

Wx~0,0,0!5Ex
2D~ax

2D!2H 8pS 12
315p2

4096 D J , ~17!

with Ex
2D5e2/«ax

2D and ax
2D5\2«/2mre

2, and then Wx

yields the repulsive exciton-exciton interaction. While in o
system, the effects of the spatially separated electron
hole distributions play an essential role; as the thickness
creases, the overlap integralf eh decreases althoughf ee and
f hh are almost unaltered. Then there is a possibility thatWx
gives the attractive interaction when the thickness beco
large. In order to observe such a characteristic behavior,
carry out a numerical computation of the exciton states us
the exciton wave functions given above; our purpose is n
detailed numerical study of quantum-well excitons, but
illustration of the quantitative features of our system.

As a model system, we adopt a set of parameter value
GaAs/AlAs: mez51.1m, mexy50.19m, and mhz5mhxy
50.37m, m being the free-electron mass:«512.53.18 The
values of the band discontinuities areDe50.260 eV, and
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PRB 60 5805ORDER FORMATION AND SUPERFLUIDITY OF . . .
Dh50.548 eV, which are estimated from the relevant ba
parameter values22 using the well-known band-offset ratio
Qv50.34 and Qc50.66 for the valence and conductio
bands, respectively.

The computed thickness dependence of the exciton b
ing energy and the in-plane exciton radius are shown in F
2. The results are easily understood from the effects of
spatial separation of the electron and hole distributions.
computed exciton-exciton interactionWx(0,0,0) is plotted in
Fig. 3 as a function ofL. The essential point is that ther
exists a critical thicknessLc.28 A, and the exciton-exciton
interaction is repulsive whenL is smaller thanLc . This is a
necessary condition for the exciton-condensed state to
stable.

III. BASIC EQUATION OF A CONDENSED EXCITON
SYSTEM

Let us consider the many-exciton system in a type
quantum well which is irradiated by a weak laser light. W
shall confine ourselves to the case at absolute zero temp
ture, where the concentration is assumed to be sufficie

FIG. 2. Thickness,L, dependence of the exciton binding ener
Ex ~dashed curve! and the in-plane exciton radiusax ~solid curve!.

FIG. 3. The exciton-exciton interactionWx(0,0,0) as a function
of thicknessL, which is computed with using the exciton wav
functions obtained by the variational method.
d

d-
g.
e
e

be

I

ra-
ly

low so that an exciton can be regarded as a boson. The
citons are assumed to be in the lowest state of the rela
motion, and the exciton-exciton interaction is approxima
by W(K ,K 8,P)'Wx(0,0,0)([W) as discussed in Sec. II
The Hamiltonian for the translational motion of excitons
given as

H5E dR c†~R!F2
\2

2M
¹R

21~Egx2m!Gc†~R!

1
1

2 E dR1dR2c†~R1!c~R2!V~R12R2!c†~R2!c~R1!

1HL , ~18!

whereEgx5Eg2Ex , c†(R) andc~R! are the field operators
for the excitons,R being the position vector in thexy plane,
andV(R12R2)5Wd(R12R2). The HamiltonianHL is the
interaction with the weak laser light which is treated as
classical monochromatic field with frequencyvL in the
rotating-wave approximation:

HL52E dR@gL* e2 ivLtc†~R!1gLeivLtc~R!#. ~19!

By the unitary transformationH5U21(t)HU(t) with

U~ t !5expF2 ivLtE dR c†~R!c~R!G , ~20!

we can eliminate the time dependence ofHL , and have

H5E dR c†~R!F2
\2

2M
¹R

22m* Gc~R!

1
1

2 E dR1dR2c†~R1!c~R2!V~R12R2!c†~R2!c~R1!

2E dR@gL* c†~R!1gLc~R!#, ~21!

wherem* [m2(Egx2\vL), which may be regarded as th
effective chemical potential.

To describe the condensed state, let us introduce the
erage C(R)[^c(R)& and the deviation operatorw(R)
[c(R)2C(R). Since we consider a stationary assembly
excitons atT50, it is reasonable to assume that almost
the excitons are condensed and the operatorw may be con-
sidered a small correction toC. Substitutingc(R)5C(R)
1w(R) into Eq. ~21! and expandingH in powers ofw and
w†, we obtain

H5H01H11H2 , ~22!

where

H05E dR C* ~R!H 2
\2

2M
¹R

22m* 1
1

2
WuC~R!u2J C~R!

2gL* E dR C* ~R!2gLE dR C~R!, ~23!
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5806 PRB 60T. IIDA AND M. TSUBOTA
H15E dR w†~R!H F2
\2

2M
¹R

22m*

1WuC~R!u2GC~R!2gL* J 1E dRH F2
\2

2M
¹R

22m*

1WuC~R!u2GC* ~R!2gLJ w~R!, ~24!

and H2 contains the quadratic and other higher-order ter
of w~R! andw(R)†. We require the functionC~R! to satisfy
the equation

F2
\2

2M
¹R

22m* 1WuC~R!u2GC~R!2gL* 50. ~25!

Then the linear termH1 vanishes identically, and the Hami
tonian is reduced to beH5H01H2 . We call the nonlinear
equation~25! the Gross-Pitaevskii~GP! equation, although
the original GP-equation does not includegL* ~or gL!. Equa-
tion ~25! has a form identical to the equation which is o
tained by minimizing the energyH0 with respect toC* (R).

The condensate wave function is written asC(R)
5uC(R)uexp@iu(R)#. From Eq.~25!, we have coupled equa
tions for the amplitude and the phase:

2
\2

2M
$¹R

2 uCu2uCu~¹Ru!2%2m* uCu1WuCu3

2ugLucos~u1x!50, ~26!

2
\2

2M
$uCu¹R

2u12¹RuCu¹Ru%1ugLusin~u1x!50,

~27!

where we putgL5ugLuexp(ix).
The presence of a finite amplitude ofuCu.0 serves the

criterion for the condensed state, and the phaseu is the ve-
locity potential of the superflow of the condensed excito
In the absence of interaction with the laser light, the unifo
condensed stateC(R)5An0 is a solution of the coupled
equations, and the effective chemical potential is given
m* 5m2Egx5n0W. This means thatW must be repulsive;
otherwise the system is to be unstable. In the presenc
interaction with light, it is reasonable to assume that the c
densate wave function has a formC(R)5An0 exp@iu(R)#
and the effective chemical potential is approximated bym*
5m2(Egx2\vL).n0W when the conditiongL /n0

2/3W!1
is satisfied.

IV. VORTEX-LATTICE FORMATION
AND SUPERFLUIDITY

Under the assumption given in Sec. III, the phase of
condensate of excitons obeys the equation

2
\2An0

2M
¹R

2u1ugLusin~u1x!50. ~28!

The superflow of the condensed excitons is given by

j ~R!5
\

2iM
@C* ¹RC2~¹RC!* C#5n0vs~R!,
s

.

y

of
-

e

vs~R![
\

M
¹Ru. ~29!

The translational motion of excitons is accompanied by el
tric currents in the hole and the electron layers as depicte
Fig. 4~a!. Using the wave function of the exciton, the effe
tive charge in each layer is given as follows:

e* 5eE
0

`

dz@ uue~z!u22uuh~z!u2#. ~30!

The computed effective charge in our model system is sho
in Fig. 4~b!; we observe that the effective charge is spatia
separated significantly forL.10 A.

The supercurrents which flow in the electron and h
layers are the same in magnitude but in opposite directi
from each other; in the hole layer, the supercurrent is giv
as

J~R!5e* n0vs~R!. ~31!

The creation and destruction of excitons through the inter
tion HL causes the effective interlayer currentI T . The inter-
layer current which flows from the electron layer to the ho
layer is calculated by a method similar to that in Ref. 17:

I T52 i ~e* /\!^@Nex,H#&52 i ~e* /\!^@Nex,HL#&

5
2e* An0

\
ugLusin~u1x!, ~32!

where Nex(R)5c†(R)c(R). Furthermore, by multiplying
Eq. ~28! by 2e* An0/\ and using Eq.~31!, it is easily shown
that the intralayer currentJ and the interlayer currentI T sat-
isfy the continuity equation17

FIG. 4. ~a! Schematic illustration of the electric currents whic
flow in the electron and hole layers accompanying the exciton tra
lational motion.~b! The effective chargee* in the electron~hole!
layer as a function of thicknessL, which is computed with using the
exciton wave functions obtained by the variational method.
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¹J2I T50. ~33!

Now we set up our system by connecting the hole a
electron layers atx5Lx in series, and suppose that an ext
nal currentJex flows into the hole layer atx50. The current
will be able to flow in the hole and electron layers, a
finally flows out of the electron layer atx50. Since the
system is uniform in they direction and the current depend
only on x, the basic equations~28! and ~31! are reduced to

2l2
d2f~x!

dx2 5sin 2f~x!, l2[
\2An0

2M ugLu
, ~34!

J~x!5e* n0vs~x!, vs~x!5
2\

M

df~x!

dx
, ~35!

where we have defined 2f[u1x.
The sine-Gordon equation~34! has a conserved quantit

ET equivalent to the total energy

ET5l2S df

dx D 2

1
1

2
cos 2f. ~36!

The solutions are classified into two cases according to
value ofET : ~a! ET. 1

2 and ~b! 2 1
2 ,ET, 1

2 .
In case~a!, the solution of Eq.~34! is given by

cosf52snS x

kl
,kD , k22[ET1

1

2
, ~37!

where the function sn refers to the Jacobian elliptic functi
and the parameterk is subject to the condition 0,k2,1. The
phasef at x50 is chosen so thatf5(2n11/2)p with an
integern, and increases monotonically withx. The solution
yields the supercurrent

J~x!5
2e* \n0

Mkl
dnS x

kl
,kD , ~38!

which is always positive in spite of oscillating with the p
riodicity a(k)52lkK(k), and then there exists the net s
percurrent

J̄5
1

a E0

a

J~x!dx5
2pe* \n0

Ma
, ~39!

whereK(k) is the complete elliptic integral of the first kind
From Eq.~32!, the interlayer current is calculated to be

I T~x!522
2e* An0ugLu

\
snS x

kl
,kD cnS x

kl
,kD . ~40!

Then the intralayer and interlayer currentsJ(x) and I T(x)
form the vortex lattice with the lattice constanta(k) as
shown schematically in Fig. 5.

In case~b!, the solution of Eq.~34! is given by

cosf52k snS x

l
,kD , k5AET1 1

2 . ~41!

The resulting supercurrent

J~x!5
2e* \kn0

Ml
cnS x

l
,kD ~42!
d
-

e

,
is a periodic function with the lattice constantb(k)
54lK(k). The interlayer current is given by

I T~x!522
2e* An0ugLu

\
k snS x

l
,kDdnS x

l
,kD . ~43!

In this case, the intralayer and interlayer currents form
vortex-antivortex lattice, as shown in Fig. 6, and there a

FIG. 5. Schematic illustration of the vortex lattice in the case
Jex.Jc . The currentsJ(x) andI T(x) are also shown schematicall
to see how the vortex is constructed by them.

FIG. 6. Schematic illustration of the vortex-antivortex lattice
the case ofJex,Jc . The currentsJ(x) and I T(x) are also shown
schematically to see how the vortex is constructed by them.
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pears no net supercurrent.
The lattice constantsa(k) andb(k), which remain unde-

termined in the above calculation, are determined by the
ternal current. In our system, the current is subject to t
boundary condition

J~x50!5J~x5Lx!5Jex. ~44!

If the vortex lattice with the lattice constanta(k)
52lkK(k) is constructed, the condition

Lx5 la~k!52llkK~k! ~45!

should be satisfied, wherel represents the number of the
vortices. The boundary condition~44! is expressed as

Jex5
Jc

k
, Jc[

2e* \n0

Ml
52e* n0

3/4S 2ugLu
M D 1/2

, ~46!

which determines the lattice constanta(k) as a function of
Jex; in Fig. 7~a!, we present the schematic illustration of th
graphical determination ofa(k). Since the upper limit ofk
51 corresponds toJex5Jc , the vortex-lattice solution is
possible only whenJex is larger thanJc . From Eq.~45!, the
number of the vortices is given byl 5(Lx /l)/2kK(k). As
will be shown later in a numerical analysis, in an actu
system with a macroscopic size ofLx , the magnitude of
Lx /l is extremely large, let us say;105, so thatl is prac-
tically regarded as the continuous function ofJex. If we
could construct a mesoscopic system having a sufficien
small size ofLx /l, say;10, we would be able to observe
the vortex entering the system one by one as increasing
external currentj ex.

A similar analysis is applicable to the vortex-antivorte
lattice in case~b!, where the system should satisfy the co
ditions

Lx5 lb~k!, Jex5Jck. ~47!

In Fig. 7~b!, we show schematically howb(k) is determined.
As seen from Fig. 7~b!, the solution is possible only when
Jex,Jc . Thus there exists a critical currentJc defined by Eq.
~46! and, atJex5Jc , the system makes a transition from th
vortex-antivortex lattice state to a vortex lattice state
which the net supercurrent appears.

FIG. 7. Schematic diagrams which show how the periodsa(k)
andb(k) are determined depending onJex when~a! Jex.Jc and~b!
Jex.Jc , respectively.
x-
e

l

ly

he

-

Here, it is worthwhile noting the case of infinite system
In this case, the lattice constant is determined by the co
tion that the free energy should be at a minimum in t
presence of the external current. The free-energy for
phasef is written as16,17

F~f!54ugLuAn0E Fl2S df

dx D 2

1sin2 fGdx

22Jex

\

e* E df

dx
dx. ~48!

The variationdF/df50 yields the sine-Gordon equatio
~34!. When ET. 1

2 , the free energy per unit length for th
vortex-lattice solution~37! is given by

F5
4ugLuAn0

k2 S 2E~k!

K~k!
1k221D2

p\Jex

e* lkK~k!
, ~49!

where E(k) is the complete elliptic integral of the secon
kind. The conditiondF/dk50 leads to

E~k!

k
5

p\Jex

8ugLuAn0e* l
, ~50!

via which the lattice constanta(k)52lkK(k) is given as a
function of Jex. SinceE(k)/k is larger than unit, only when
Jex exceeds the critical current

Jc, inf5
8ugLuAn0e* l

p\
5

4e* n0
3/4

p S 2ugLu
M D 1/2

, ~51!

the free energy of Eq.~49! become negative fork given by
Eq. ~50!, so that the vortex lattice is formed and the n
supercurrent of Eq.~39! appears. It should be noted that th
critical currentJc, inf is smaller thanJc for the finite system
by the factor 2/p. This deference will be interpreted as fo
lows. WhenJex exceedsJc, inf , the vortex-lattice solution be
comes thermodynamically stable. However, a real sys
with a finite size allows the vortex to enter only whenJex
becomes still larger thanJc and the conditions of Eqs.~45!
and ~46! are satisfied. A similar thing also occurs in th
critical magnetic field for the Josephson vortex that appe
in the Josephson junction under an applied magnetic fiel23

although the vortex in our system is free from the norm
core, it is similar to the Josephson vortex.

The current in the vortex-lattice state is accompanied
the magnetic flux, which plays an essential role in expe
ments to obtain evidence of the existence of the vortex
tice. The magnetic field is derived from the Maxwell equ
tion rotB5(4p/c)J and the continuity equation~33!,

By~x!5
4p

c
J~x!5

F0

pdkl
dnS x

kl
,kD ~52!

for Jex.Jc , whereF052p\c/e* is the flux quantum and
d5Mc2/4pe* 2n0 . The present flux quantum is twice th
usual one coming from Cooper pair in superconductors. T
quantitykl represents the effective scale of the length alo
the layer, whiled, which has the dimensions of a length,
presumed to be that of the length along the growth directi
The mean magnetic field accompanying each lattice is gi
by
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B̄5
1

a~k!
E

0

a

By~x!dx5
F0

da~k!
5

F0

dLx
l , ~53!

with l 5(Lx /l)/2kK(k). It is obvious thatB̄50 for Jex
,Jc . Then we can expect that the vortex-lattice formation
verified experimentally by observing the external current
pendence of the mean magnetic field. In order to exam
such a possibility, let us carry out an order estimate of
relevant quantities in our model system.

The interaction constantgL is expressed by the radiativ
decay timet r of the exciton due to the indirect transition an
the intensity of the weak laser lightI 0 ,

gL.F pc2\4

2~\vL!3t rac
2 I 0G1/2

, ~54!

whereac is the lattice constant. Assuming a set of parame
values as\vL'E(K50);1.5 eV, t r;1026 s, ac;1 A,
and I 0;1 W cm22, we havegL;10212erg cm21. Further-
more, as a typical case, we adopt a model system of
type-II quantum well in which the thickness isL515 A
and the exciton densityn0;1011cm22. From our result
calculated in Sec. II, the exciton radius and the excit
exciton interaction are given asax.50 A and W
.90 eV A2.1.4310226erg cm2. In this model system, the
conditions for our approximations to be applicable are sa
fied as follows:n0ax

2;1022!1 and gL /n0
3/2W;1023!1.

Using these values of parameters, we havel.231025 cm
and the critical currentJc;3 mA cm21.

Now let us calculate the mean magnetic field. We co
sider the finite system withLx;1 cm. The external curren
dependence of the mean magnetic field is shown in Fig. 8
the solid line for our system withLx /l;105. We also show
the result for the case ofLx /l;10 by the dotted curve, to
observe how the quantized behavior of the magnetic fi
appears in a hypothetical mesoscopic system.

As seen in Fig. 8, sinceLx /l is very large in our system
the number of vorticesl seems to change its value contin
ously depending onJex. With increasingJex, the sharp ris-
ing of the magnetic field can be observed atJex5Jc . The
d
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e
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e
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y

ld

value of F0 /dLx is estimated to be;1027 G and

B̄/(F0 /dLx);104, as seen in Fig. 8; then the order of th

mean magnetic field is to beB̄;1023 G. From these results
it is concluded that the transition to the vortex-lattice pha
can be verified experimentally by observing the external c
rent dependence of the magnetic field.

Finally it should be examined whether or not the veloc
of the superflowvs corresponding toJc;3 mA is smaller
than the Landau critical velocityvc . The velocityvs is esti-
mated to bevs;23105 cm/s, and the sound velocityus in
the exciton system is to be estimated asus5An0W/M;2
3106 cm/s. Then if we assume that the low-lying excitatio
consist solely of phonons, the conditionvc'us.vs will be
satisfied. To obtain a decisive conclusion, further investi
tion of elementary excitations in our system is needed, wh
will be left to a future study.

FIG. 8. The calculated magnetic field as a function of exter
currentJex. The sharp rising of the magnetic field atJex5Jc indi-
cates the transition to the state where the superflow of exci
occurs in consequence of the vortex-lattice formation. The do
line is for a hypothetical mesoscopic system~see text!.
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