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The condensed state and superfluidity of excitons in type-ll semiconductor quantum(@@lls) are
investigated theoretically. Since the excitons in type-Il QW’s have translational motion along the layer, the
assembly of them is regarded as an interacting dilute quasi-two-dimensional Bose gas. This system is advan-
tageous for our purpose because those excitons have a long lifetime of the ordef ef 48d their transport
mechanism can be directly studied in experiments by observing electric current since the excitons consist of
spatially separated electron-hole pairs. Using the exciton wave functions obtained by the variational method,
the exciton-exciton interaction is calculated and found to be repulsive when the thickness of the QW is thinner
than a critical value. To illustrate the situation, we carry out the numerical computation adopting a model
system with material constants appropriate to GaAs/AlAs type-l1l QW’s. The basic equation for the phase of the
condensate wave function is derived when the exciton system is irradiated by a weak laser light at zero
temperature. Solving the equation in the presence of the external clgrerwe study the stationary spatial
pattern of the phase of the condensate wave function. It is shown that there appears a vortex lattice with a net
supercurrent whed,, is larger than a critical value; the period of the lattice is determined as a functihyy.of
We calculate the magnetic field induced by the current in the vortex lattice, and discuss a possibility of an
experimental observation of the critical current. Such a direct observation of the exciton transport will provide
unambiguous experimental evidence for the superfluidity of exci{@®163-18209)15931-9

I. INTRODUCTION The system can be monitored by convenient optical measure-
ments.(3) There will be a possibility of realizing crossover
There has been a growing interest in many-body effects ifrom the momentum space pairing to the real-space pairing
the optically excited electron-hole system in semiconductorgecause the exciton density can be controlled over a wide
because the system is expected to exhibit macroscopic quarange.
tum coherent phenomena.In the high-density regime, the In the recent study by Snoke and Wélfef the time-
electron-hole system is regarded as a two-component Fermésolved luminescence of excitons in Oy they observed a
liquid in which the cooperative pairing of electrons and holesgradual evolution of exciton distribution from a classical to a
arises in momentum space at low temperatures, quite simil@ose quantum degenerate regime, which likely represents
to the BCS state in superconductorS,while, in the low-  the experimental signature of the BEC of excitons. In a sub-
density regime, the electron-hole pairs are regarded as welsequent experiment, Fortin and co-worRéfsinvestigated
defined excitons which are the bound states in the real spacgie exciton system in G® by measuring the time- and
In a dense gas of excitons where the excitons are still respace-resolved spectroscopies. They found supersonic ballis-
garded as bosons, their Bose-Einsten condensé8BE) is  tic exciton propagation over a macroscopic distance. This
expected. ballistic propagation has been interpreted from two different
Superfluidity in liquid “He is intimately connected with standpoints. One interpretation is based on the BEC and the
BEC. However, in liquid*He, the quantum-statistical fea- transition of exciton gas to a superfluid stite'® Another
tures associated with BEC are masked by the effects due faterpretation is based on the phonon wind model, in which
the strong particle-particle interactions. More dilute systemsxcitons are dragged in the crystal by a flow of nonequilib-
have been required to study the connection between Bos@um ballistic phonons*!® So far, conclusive experimental
Einstein statistics and superfluidity. The recent successfudvidence verifying the transport mechanism of excitons has
observations of BEC in dilute alkali atoms have opened theot yet been obtained. The charge neutrality of excitons pre-

door to study weakly interacting Bose gas experimentally. vents us from studying the exciton transport directly by the
In addition to the assemblies of alkali atoms, many candiobservation of electric current.

dates for BEC can be listed, as shown in Ref. 7. A significant |n the present work, in order to overcome such a diffi-
place in this list is occupied by excitons. The reasons irculty, we propose an exciton system in a type-ll quantum
favor of searching the superfluid transition in exciton sys-well (QW), and investigate the quantum coherent phenom-
tems are as follows(1) A light effective mass allows con- ena of excitongthe very preliminary result was reported in
densation at a low critical density, so that the system can bref. 16. Our system is similar to the electron-hole system in
regarded as a dilute Bose gas even in the condensed stagdupled layered semimetals with electron and hole conduc-
For example, in the case of excitons in Quwith a Bohr  tions separated by a thin insulating layer, which was studied
radiusa,=7 A, the critical densityn, is ~10"cm 3 atT  in Ref. 17.

~3K and thenn.ai<1, in contrast withn,~10? in the In the type-1l QW, the exciton consists of an electron and
liquid “He with an average interparticle distaned.4 A. (2) a hole which are confined separately in two adjacent layers
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will give unambiguous evidence on the superfluidity of ex-
AlAs citons.

Ae¢ II. EXCITONS IN A TYPE-Il QUANTUM WELL

—> We consider a simple model of a type-Il quantum well in
Y which electrons and holes are confined separately within two
I adjacent layers with the same thicknéssThe claddings of

both layers are assumed to be formed by high-barrier mate-
Z rials. The model band scheme is shown in Fig. 1. A GaAs/
GaAs AlAs quantum-well structure with thickness less thaB6 A
is a typical experimentally accessible example in which the
<« L —» spatially separated electron-hole system is realized; in this
case, the lowest electron state originating frénstates of
AlAs is localized within the AlAs layer, while the lowest

hole state built up fronl” states of GaAs is localized within
FIG. 1. The type-Il quantum-well structure. As a model system,the GaAs layel®

a set of parameter values of GaAs/AlAs are assufsed text The exciton wave functions are written as

by confinement potentials. The center of mass of the exciton Wy (ro,ry) =eKlaepetanmm o 7. 7.,

moves along the layer. Therefore the translational motion is

regarded as being quasi-two-dimensio2D), and is ac- 0(p,26,2n) =explikze) F(p,Ze,2p), (1)

companied by currents flowing in the opposite directions in . -
the electron and the hole layers. This fact makes it possibl here thez.aX|s IS taken_ along the grqwth directigfig. 1);

for us to observe the exciton transport by measuring the eled® subscripte andh indicate, respectively, the electron and
tric current. The system offers the additional advantage of’€ Nole; the wave vectoK, the position vectorp, (a
realizing the condensed states of excitons. The spatially &), @nd p=pe—py, are those in thexy plane; and
separated distributions of electrons and holes greatly reduc&Pkc) is the phase factor coming from the conduction-
the probability of electron-hole recombination decay; typi-Pand bottom.a,=mg,y /M and M =Meyy+ My, Mayy be-
cally the lifetime of excitons is-10 ®s. In Sec. I, we cal- N9 the effective mass in they plane.

culate the exciton states in type-ll Q\gee Fig. 1 by a Thg wave functiorf (p,z.,z,) satisfies the effective-mass
variational method based on the effective-mass approximazauation

tion, adopting a model system with parameter values of a 52

GaAs/AlAs QW with each layer of thicknegs On the basis Het+Hp— Vi—V(P,Ze— z0) 1f(p.2e,21)

of the results, we study the exciton-exciton interaction, 2m;
which plays an essential role in obtaining the stable conden- = ef(p,20,21) @)
sate of excitons. The result shows that the exciton-exciton e nl
interaction is repulsive wheh is smaller than a certain criti- Here 1m, = 1/mg,,+ 1/my,, and

cal value. The assembly of excitons in our system can be P

. : . . . B2
considered to be approximately an interacting dilute 2D Bose __ a _

. e a — +W%z,) (a=e,h),

gas as long as the exciton density is small compared to 2my,, 973
a, ?, a, being the exciton radius. The exciton condensed
state is characterized by a finite ensemble average of the field e’
operatory{R), whereR is the position vector in 2D space; V(p.ze—2zp)= eNpPt (Zo—2)2 ©)
Y(R)=(y(R)) is called the condensate wave function. In P e o
Sec. lll, we derive the basic equations for the condensaterhere m,, is the effective mass along thedirection, and

wave function of excitons in a type-Il QW which is irradi- W?(z,)'s are the confinement potentials. Since we need only
ated by a weak laser light at absolute zero temperature; thibe lowest electron and hole states in the following discus-
case of finite temperature will be studied in a future work. Insion, we ignore the cladding effects and approximate the
Sec. IV, we consider a system where the electron and holeonfinement potensitials as

layers are connected in series. The basic equations obtained

in Sec. Il are supplemented by the boundary conditions de- We(z) = —Ae OszesL

termined at the boundaries of the system for a given external (Ze) = 0 otherwise,

currentJ,,. Solving the equations, we study the current dis-

tribution pattern caused by the spatial variation of the phase -4A,, —-L=<z,=0
of #/(R), and show that there appears a vortex lattice with net W(z,)= [ 0

supercurrent whed,, is larger than a critical value. We also
calculate the magnetic field induced by the current in thewhere A, are the band discontinuities. In the Coulomb
vortex-lattice state. Furthermore, order estimations are cainteraction between electron and hole in E8), we neglect
ried out for the critical current and the magnetic filed, whichimage-charge effects.

shows that it will be possible to observe them experimen- We consider the situation where the confinement effects
tally. The experimental observation of the critical currentfor the electrons and holes are large enough compared with

4

otherwise,
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the electron-hole Coulomb interaction, and then the lowest #2K?2
exciton state is composed of the lowest states of the confined E(K)=Eq+ 5 Ex:
electron and hole. As a first step, we calculate the lowest

electron and hole states, adopting the trial functions Eg=eg+[Aetea( 7)1+ [An+en(7m)], (13

Un(Zs ﬂa):( 2 2) lMe*(Za*La’Z)z’”i (Le=L,Ly=—L) whe'rea::gJ is the indirect band gap artg, is thg electron-hole
' TN, ' ' excitation energy when the exciton effect is neglected.

(5) By adopting the exciton state¥(re,r,)’s obtained
above as a complete set of one-exciton states, the Hamil-
tonian of the many-exciton system may be derived. The
Hamiltonian describes the translational motion of excitons in

the xy plane, and involves the exciton-exciton interaction
) . () Whose matrix element is given in the fothi®

where thez,’'s are variational parameters used to minimize
the energies

h2
€al 77a)5<ua| Halua> = W_ Ay erf(

a‘'la

27,
where erf) is the error function: WK, P)=Wa(P) + W (I KEP), 19
whereK,K’,P are the wave vectors in the plane,Wy(P)
2 (x is the direct interexcitonic interaction, and/,(K,K’,P)

erf(x) = \/—;fo exp( —t?)dt. () comes from the exchange of the fermions belonging to dif-

ferent excitons. In the case of the low concentratiornrl at

In the next step, using the obtained statg&z, , 7.), we =0, the'interaction_ beftween the low-energy excitons m:?\kes
assume the trial function for the exciton state as the -domlr!ant cor}trlbut-lon. Then we assume that the exciton-
exciton interaction is approximated by, (K,K',P)
f(p,2e,21) = o(P)Ua(Ze, 7e)Un(Zh , 71) ~W,(0,0,0); by using the explicit expression given in Refs.

19 and 20, the matrix elements are calculated to be

e P, €) Wq(0)=0, (15

2
@(P) - \/ﬂax

where the the two-dimensional exciton radiag is intro- W,(0,0,00=— > [VE+ V" o(dy)20(d,—q)2
duced as the variational parameter. By using the Fourier q a a
transforms ofp(p) andV(p,z.—z,),

2 +22 Ve'e(dp)®e(d,—a), (16)
@ 8ma; v( RV - a0z
e(A)= o 2y 0,Ze—2Zp) = Vg€ M T
[1+(axa)?]® ¢ v whereV,p=f,,(q)Vy, fan(q) andV, being given in Egs.
) (12) and(9), respectively; the Coulomb interaction is modi-
_2me fied by the overlap integral of the quantum-well electron and
= (9) ap imegia o' e
o hole wave functions in the direction.

If the overlap integrals,,(q)’'s were unity in Eq.(16),
W, would be of the same form as in a two-dimensional case
where the electrons and holes are distributed in the same
two-dimensional space. In this cas¥, is calculated &2

31572
) o

the exciton energye is calculated to bee(7e,7n,.8y)
=eu(ne) T en(mn) — Ey, WhereE, is the exciton binding en-
ergy defined by

2 +Weh( Ne» Mn vax) .

2
X _[zmrax (10)

Wx<o,o,o>=E§D<a§D>2{8w 1- 098

Here with E2P=e?/¢a2® and a2P=#2s/2m,e?, and thenW,

yields the repulsive exciton-exciton interaction. While in our
eh(CI) .
dq 1y 1T (2.0/2) 2752 system, the effects of the spatially separated electron and
(aa/2)7] hole distributions play an essential role; as the thickness in-

Weh( Me» Tn vax) =

1D creases, the overlap integral,, decreases although.. and

with fnn are almost unaltered. Then there is a possibility ivat
gives the attractive interaction when the thickness becomes
fan(q) large. In order to observe such a characteristic behavior, we

. . carry out a numerical computation of the exciton states using

_ 1 A—dlza— 2z 2 / 2 the exciton wave functions given above; our purpose is not a
ﬁ dzafﬂcdzbe " 1Ua(Za, 72) | Un(Z5, 70) | detailed numerical study o? quantum-well e?(cit?)ns, but an
(12 illustration of the quantitative features of our system.
As a model system, we adopt a set of parameter values of

Minimizing the exciton energy with respect to the exciton GaAs/AlAs: mg,=1.1m, mg,,=0.19m, and my,=mMmy,,
radiusa,, we finally obtain the energy for the exciton state =0.37m, m being the free- eIectron mass=12.53% The
Y (re,ry) as follows: values of the band discontinuities ate,=0.260eV, and
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35 71— 100 low so that an exciton can be regarded as a boson. The ex-
i | ] citons are assumed to be in the lowest state of the relative
30 [ 190 motion, and the exciton-exciton interaction is approximated
[ ] by W(K,K',P)~W,(0,0,0)(=W) as discussed in Sec. Il.
- [ E, a, 180 The Hamiltonian for the translational motion of excitons is
0 25 r ] > given as
= I N 170 B
20 T 5 1T h? o
: 160 Hzf dR wT(R){—mVRﬂng—M) y'(R)
15 | ; 1
[ ~ 150 t t
[ e ] +5 | dRidR$1(Ry) $(R2)V(R1 = R2) ¢ (Ro) (Ry)
10_“..|.,.,|lUl..”x..(.L,LJ_L'4O
0 10 20 30 40 50 60 +H,, (18
L (&)

whereEq,=E4—E,, YT (R) and(R) are the field operators
FIG. 2. Thicknessl., dependence of the exciton binding energy for the excitonsR being the position vector in they plane,

E, (dashed curveand the in-plane exciton radiag (solid curve. andV(R;—R,)=W4(R;—R,). The HamiltonianH, is the

interaction with the weak laser light which is treated as a

A,=0.548 eV, which are estimated from the relevant bandf!@ssical monochromatic field with frequenay, in the
parameter valuéd using the well-known band-offset ratios rotating-wave approximation:
Q,=0.34 andQ.=0.66 for the valence and conduction
bands, respectively. _ it Pt

The computed thickness dependence of the exciton bind- Hi= _f dRgfe "y (R)+gre ™ Y(R)]. (19
ing energy and the in-plane exciton radius are shown in Fig.
2. The results are easily understood from the effects of th®y the unitary transformatiohi=U~*(t)HU(t) with
spatial separation of the electron and hole distributions. The
computed exciton-exciton interactidi, (0,0,0) is plotted in .
Fig.% as a function ot.. The essent)igl poir)lt ispthat there U(t)=ex;{—|thJ dR ¢ (R)Y(R)
exists a critical thickness.=28 A, and the exciton-exciton
interaction is repulsive wheh is smaller tharl_;. Thisisa We can eliminate the time dependencetqf, and have
necessary condition for the exciton-condensed state to be

: (20

stable. ; ne o,
H=dew<R> —opp Va1t [ W(R)
Ill. BASIC EQUATION OF A CONDENSED EXCITON 1
SYSTEM + EJ dR;dR, %" (Ry) (R V(R —Ryp) /' (Ry) ¢h(R1)
Let us consider the many-exciton system in a type-II
guantum well which is irradiated by a weak laser light. We ~ | drrgr SR+ 0(R)], (21)

shall confine ourselves to the case at absolute zero tempera-

ture, where the concentration is assumed to be sufficiently _
whereu* = u—(Egx—fhw), which may be regarded as the

effective chemical potential.
To describe the condensed state, let us introduce the av-
erage V(R)=(#(R)) and the deviation operatop(R)

150_'|'|'|'|-|'|-|

~_ 100 : . . .

« r ] =y(R)—WY(R). Since we consider a stationary assembly of

> ] excitons atT=0, it is reasonable to assume that almost all

2 ; ] the excitons are condensed and the operatoray be con-

_ 0 i sidered a small correction t&. Substitutingy/(R) =V (R)

< : + ¢(R) into Eqg.(21) and expandindgd in powers ofe and

o [ t ;

o -sof ] ¢', we obtain

= ook ] H=Hgo+H+H,, (22)

; : where
_150 PRI ST WO NSS! ESUP NN SN SR N SR R S
10 15 20 25 30 35 40 45 50
A h? 2 . 2
L (&) Hozf dRW*(R)| = 507 Ve—u* + 5 W (R)|? | W(R)
FIG. 3. The exciton-exciton interactiof¥,(0,0,0) as a function

of thicknessL, which is computed with using the exciton wave ok * _
functions obtained by the variational method. gLf dR¥*(R) gLf dRY(R), 23
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H1=de<pT<R>H—mVé—u*
ﬁZ
+W|\If(R)|2}\If(R)—g’L‘ +JdRH—mV§—M*
+W|‘I'(R)|2}‘If*(R)—gL ¢(R), (24)
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(a)

—_—

andH, contains the quadratic and other higher-order terms

of ¢(R) and <p(R)T. We require the functio’(R) to satisfy
the equation

ﬁ2
— oy Ve~ #* TWIW(R)[?

Y(R)—g;=0. (25

Then the linear terni ; vanishes identically, and the Hamil-
tonian is reduced to bel=Hy+H,. We call the nonlinear
equation(25) the Gross-PitaevskiiGP) equation, although
the original GP-equation does not inclugg (or g, ). Equa-
tion (25) has a form identical to the equation which is ob-
tained by minimizing the energyl, with respect to¥V* (R).

The condensate wave function is written a8(R)
=|¥(R)|exdi®(R)]. From Eq.(25), we have coupled equa-
tions for the amplitude and the phase:

ﬁ2
o VA W] (VR0)% [+ W

—|gi|cog 6+ x)=0, (26)

2
— (W[ V30+ 25 W[V} + gL |sin 0+ x) =0,
(27)

where we pug, =g, |exp(y).
The presence of a finite amplitude pF|>0 serves the
criterion for the condensed state, and the phagethe ve-

locity potential of the superflow of the condensed excitons.

(b)

@
~
*

o

L

(A)

FIG. 4. (a) Schematic illustration of the electric currents which
flow in the electron and hole layers accompanying the exciton trans-
lational motion.(b) The effective charge* in the electron(hole)
layer as a function of thicknets which is computed with using the
exciton wave functions obtained by the variational method.

h
Vo(R)= MVRQ. (29
The translational motion of excitons is accompanied by elec-
tric currents in the hole and the electron layers as depicted in
Fig. 4@). Using the wave function of the exciton, the effec-
tive charge in each layer is given as follows:

e —e | ddlu - |un2)?) (30

In the absence of interaction with the laser light, the uniform
condensed staté? (R)=/n, is a solution of the coupled The computed effective charge in our model system is shown
equations, and the effective chemical potential is given byn Fig. 4b); we observe that the effective charge is spatially

p* =u—Eg,=noW. This means thatv must be repulsive; Separated significantly fdr>10A.

otherwise the system is to be unstable. In the presence of The supercurrents which flow in the electron and hole

interaction with light, it is reasonable to assume that the conlayers are the same in magnitude but in opposite directions
densate wave function has a for(R)=yn,exdi&R)] from each other; in the hole layer, the supercurrent is given
and the effective chemical potential is approximateduy
= 11— (Egx—fiw ) =noW when the conditiorg, /n3*w<1

— ok
is satisfied. J(R)=e"ngv(R).

(31)

The creation and destruction of excitons through the interac-
tion H, causes the effective interlayer currént The inter-
layer current which flows from the electron layer to the hole

) ) ) layer is calculated by a method similar to that in Ref. 17:
Under the assumption given in Sec. lll, the phase of the

condensate of excitons obeys the equation

fi2\ng

2M

IV. VORTEX-LATTICE FORMATION
AND SUPERFLUIDITY

—i(€*/h){[Nex,H])=—1(€*/A)([Nex,HT)

_ 2e* g

fi

where N R)= #'(R) #(R). Furthermore, by multiplying
Eq. (28) by 2e* Jny/#% and using Eq(31), it is easily shown
that the intralayer current and the interlayer current sat-

isfy the continuity equatior

It

V&6+|g.|sin(6+ x)=0. (28) g |sin(6+ x), (32)

The superflow of the condensed excitons is given by

h
(R)= g [V VR —(VR¥)* W] =novg(R),
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VI—-1:=0. (33 J >J
J(x)

Now we set up our system by connecting the hole and
electron layers ax=L, in series, and suppose that an exter-
nal current],, flows into the hole layer at=0. The current
will be able to flow in the hole and electron layers, and
finally flows out of the electron layer at=0. Since the

system is uniform in thg direction and the current depends > X
only onx, the basic equation®8) and(31) are reduced to
d®(x) %o
2 PN 2~ VO
2\ 2 sSin2¢(x), A PVIEAE (34 P y
X
0= v, vex)=ox O (g
~ & NoVs(X), Vs dx - <« €« - €« < «
where we have defined¢?= 0+ y. a(k)

The sine-Gordon equatiof84) has a conserved quantity

E+ equivalent to the total energy (X)

E =>\2(d—¢)2+3cosz¢ (36) /\ /\ /\ > X
T dx) 2 ' \_ N4
The solutions are classified into two cases according to the
value ofE;: (a) E;>3 and(b) —3<E;<3.
In case(a), the solution of Eq(34) is given by FIG. 5. Schematic illustration of the vortex lattice in the case of
Jeox>J. - The currentsl(x) andl(x) are also shown schematically
to see how the vortex is constructed by them.

X 1
CoS¢p= —sr( o k) kK 2=E;+ > (37
is a periodic function with the lattice constarii(k)
where the function sn refers to the Jacobian elliptic function=4)\K (k). The interlayer current is given by
and the parametéris subject to the condition@k?<1. The
phase¢ at x=0 is chosen so thap=(2n+ 1/2)7 with an 2e* \/n—o|9|_| X
integern, and increases monotonically with The solution It(X)=—2———— r(k K
yields the supercurrent

q X

In this case, the intralayer and interlayer currents form the

*
J(x)= 2e"Ang n Rl k (39 vortex-antivortex lattice, as shown in Fig. 6, and there ap-
MKA kn"")’
which is always positive in spite of oscillating with the pe- J ST
riodicity a(k)=2\kK(k), and then there exists the net su- J(x)

percurrent
Jex _____ ~
2mwe*hing 0 > X

_ 1 (a
JZEJ'OJ(X)dXIW’ (39 -J P_v _____

whereK (k) is the complete elliptic integral of the first kind. J
From Eqg.(32), the interlayer current is calculated to be > - - -
H0=-2 0 sl X kfen| k). 40 PAAYAR AN
; - - - - -
Then the intralayer and interlayer currerdt&) and I1(x) J_, - -
form the vortex lattice with the lattice constaa(k) as , b(k)
shown schematically in Fig. 5. I (%)
In case(b), the solution of Eq(34) is given by
X 1 (J - X
cos¢p=—ks X’k , k=+E{+3. (41 ‘

The resulting supercurrent

FIG. 6. Schematic illustration of the vortex-antivortex lattice in
f K (42) the case ofl,,<J.. The currents](x) andl(x) are also shown
N schematically to see how the vortex is constructed by them.

50 = 2e*fikng
)=—yx—on
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Here, it is worthwhile noting the case of infinite system.
In this case, the lattice constant is determined by the condi-
tion that the free energy should be at a minimum in the
presence of the external current. The free-energy for the
phaseg is written ag®1’

F<¢>:4lgL|JrTof

(a) (b)
a(k)/2 14 b(k)/4 4

2
+sir? ¢ [dx

)\z(d¢

dx

i de
- 2Je>b_* f de (48)
J=Jc/k

I

I

|

|

Jy : The variation 6F/6¢=0 yields the sine-Gordon equation

(34). WhenE;>3, the free energy per unit length for the

FIG. 7. Schematic diagrams which show how the perialg  Vvortex-lattice solutior(37) is given by

andb(k) are determined depending dg, when(a) J.,>J. and(b)

- 4|gL|¢n_o<2E<k> " ) i Jey

Je>J., respectively. _
k? K(k) e*\kK(k)’
pears no net supercurrent. . L
The lattice constanta(k) andb(k), which remain unde- where E(K) is the complete elliptic integral of the second

termined in the above calculation, are determined by the exind- The conditiondF/dk=0 leads to
ternal current. In our system, the current is subject to the
Bk whidey

boundary condition _ ,
K 8/g.|Vnoe* A

via which the lattice constara(k) =2\kK(k) is given as a
If the vortex lattice with the lattice constana(k) function of Je,. SinceE(K)/k is larger than unit, only when

F (49)

(50)
J(x=0)=JI(Xx=Ly) = Jex. (44)

=2NkK(k) is constructed, the condition Jex €xceeds the critical current
L, =la(k)=2I\KkK(K) (45) 8lg.lVnoe*n  4erng”(2|g || 1?
Je,int= h = p M ) (51

should be satisfied, whererepresents the number of the
vortices. The boundary conditiq@d4) is expressed as the free energy of Eq49) become negative fdk given by

Eqg. (50), so that the vortex lattice is formed and the net
J 2e*fing 3/4(2|ng 12
= n —

. (46)

_ supercurrent of Eq(39) appears. It should be noted that the
Jex:?' Je= M\ 01 M critical currentJ. ;¢ is smaller thanl,, for the finite system
by the factor 2fr. This deference will be interpreted as fol-
which determines the lattice constaa(k) as a function of  Jows. WhenJ,, exceeds), i\, the vortex-lattice solution be-
Jex; I Fig. 7(a), we present the schematic illustration of the comes thermodynamically stable. However, a real system
graphical determination cd(k). Since the upper limit ok with a finite size allows the vortex to enter only whég,
=1 corresponds tdle=J;, the vortex-lattice solution is becomes still larger thad, and the conditions of Eq$45)
possible only whed,, is larger thanl.. From Eq.(45), the  and (46) are satisfied. A similar thing also occurs in the
number of the vortices is given bly=(L,/\)/2kK(k). As  critical magnetic field for the Josephson vortex that appears
will be shown later in a numerical analysis, in an actualin the Josephson junction under an applied magnetic fteld;
system with a macroscopic size of, the magnitude of although the vortex in our system is free from the normal
L./\ is extremely large, let us say10°, so thatl is prac-  core, it is similar to the Josephson vortex.
tically regarded as the continuous function &f. If we The current in the vortex-lattice state is accompanied by
could construct a mesoscopic system having a sufficientlyhe magnetic flux, which plays an essential role in experi-
small size ofL,/\, say~10, we would be able to observe ments to obtain evidence of the existence of the vortex lat-
the vortex entering the system one by one as increasing thé&e. The magnetic field is derived from the Maxwell equa-
external currenfey. tion rotB=(4/c)J and the continuity equatio(83),

A similar analysis is applicable to the vortex-antivortex

lattice in caseb), where the system should satisfy the con- 4w ®q X
ditions “ Y v By(X)= (X)) = —q & dn(m,k) (52)
L,=1b(K), Je=Jck. (47) for Jo>J., where®,=27xfc/e* is the flux quantum and

d=Mc?/4mwe*?n,. The present flux quantum is twice the
In Fig. 7(b), we show schematically hot(k) is determined. usual one coming from Cooper pair in superconductors. The
As seen from Fig. (b), the solution is possible only when quantityk\ represents the effective scale of the length along
Jex<J.. Thus there exists a critical currehtdefined by Eq. the layer, whiled, which has the dimensions of a length, is
(46) and, atl.,=J., the system makes a transition from the presumed to be that of the length along the growth direction.
vortex-antivortex lattice state to a vortex lattice state inThe mean magnetic field accompanying each lattice is given
which the net supercurrent appears. by
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_ 1 (a K TR
_WJ'O By(X)dX— —da(k) —d—LX|, (53)

with I=(L,/\)/2kK(K). It is obvious thatB=0 for Jg,
<J.. Then we can expect that the vortex-lattice formation is
verified experimentally by observing the external current de-
pendence of the mean magnetic field. In order to examine
such a possibility, let us carry out an order estimate of the
relevant quantities in our model system.

The interaction constarg, is expressed by the radiative
decay timer, of the exciton due to the indirect transition and
the intensity of the weak laser lighg,

il T
w L

~
B/ (®,/dL )

B/ (fI)O/de)

0 1 a i L L Lo | Y xqo
12 0.6 1 1.4 1.8

’ (54) I /3

ekt

-
9= 2(fiw)3ral ®

wherea, is the lattice constant. Assuming a set of parameter

~ = ~ ~ — 6 ~
Val(;JIeSNiS\jiva _E(K ?]) 1'53\:/[’0_7{2 10 ?’1 alg lhA’ currentJe,. The sharp rising of the magnetic field &t=J. indi-
and o cm =, we haveg, ergem - Further- - oieq the transition to the state where the superflow of excitons

more, as a typical case, we adopt a model system of thgccurs in consequence of the vortex-lattice formation. The dotted

type-Ii quant_um well in which the thickness Is=15A  |ineis for a hypothetical mesoscopic systésee text
and the exciton densityng~10tcm 2 From our result

calculated in Sec. Il, the exciton radius and the exciton-

exciton interaction are given as,=50A and W Vvalue of ®q/dL, is estimated to be~10"'G and
=90 eV A’=1.4x10 *°ergcnt. In this model system, the B/(d,/dL,)~10% as seen in Fig. 8; then the order of the

conditions for our approximations to be applicable are satis; aan magnetic field is to tB~ 103 G. From these results,

- . 2__ —2 < K.YV —3 < . o A

lejeq ashfollowsinoax flO <1 andg./ Eg V\/2X110075< L itis concluded that the transition to the vortex-lattice phase
s&n?ht esi V? ues c:mpag:lmiters_,lwe ve €M can be verified experimentally by observing the external cur-

and the critical currénds—s mAcm - rent dependence of the magnetic field.

Now let us calculate the mean magnetic field. We con- ~ _. . - .
. - . Finally it should be examined whether or not the velocity
sider the finite system with,~1 cm. The external current ) .
f the superflowvg corresponding tal,~3 mA is smaller

dependence of the mean magnetic field is shown in Fig. 8 b o . . . .
P 9 g han the Landau critical velocity,. The velocityv, is esti-

the solid line for our system with, /A ~10°. We also show 410 b & e/ d th d velocity. i

the result for the case df,/\~10 by the dotted curve, to Mated to bevy—2x10"cm/s, and the sound velocity; in

observe how the quantized behavior of the magnetic fieldh® €xciton system is to be estimatedas- ynoW/M~2

appears in a hypothetical mesoscopic system. x 10° cm/s. Then if we assume that the low-lying excitations
As seen in Fig. 8, sinck,/\ is very large in our system, consist solely of phonons, the conditiop~us>vs will be

the number of vortice$ seems to change its value continu- satisfied. To obtain a decisive conclusion, further investiga-

ously depending od.,. With increasingl,,, the sharp ris- tion of elementary excitations in our system is needed, which

ing of the magnetic field can be observedJat=J.. The  will be left to a future study.

FIG. 8. The calculated magnetic field as a function of external
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