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Acoustic vibrations of semiconductor nanocrystals in doped glasses
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Institute of Theoretical Physics, Freiberg University of Mining and Technology, Bernhard-von-Cotta-Strasse 4, 09596 Freiberg, G
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Polarization-dependent low-frequency off-resonant Raman scattering has been studied from various com-
mercially available filter glass samples, which contain CdSxSe12x nanoparticles embedded in a glass matrix. In
order to distinguish the confined acoustic phonons from the glass background, the spectra have been compared
with those obtained from the base material, which does not contain nanoparticles. Polarized and depolarized
scattering from confined acoustic phonons was distinctly resolved near the laser line and overtones of the
polarized modes were observed. A theoretical treatment, which establishes a relation between the particle size,
the frequencies, and the widths of various phonons, taking into account the matrix influence on the vibrational
spectrum and on its damping, is presented. The material-dependent generalized form of this model enables one
to use it for any given combination of particle and matrix materials. A good agreement between the experi-
mental and the theoretical results is found. The nanoparticle sizes obtained from Raman scattering agree well
with those obtained from transmission electron microscope and anomalous small angle x-ray scattering experi-
ments.@S0163-1829~99!07231-8#
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I. INTRODUCTION

In recent times, the optical properties of quantum co
fined electronic systems such as quantum wells, quan
wires, and quantum dots have attracted considerable a
tion, because they differ strongly from those of the cor
sponding bulk crystal. Especially, the electronic and opti
properties of semiconductor nanocrystals embedded in s
matrices such as CuCl in NaCl~Refs. 1 and 2! and CuCl,
CdS, CdSe, CdSxSe12x , and Ge in glass3–13 have been stud
ied in the past decade. Specific attention has been paid8–13 to
silicate glasses in which CdS or CdSxSe12x nanoparticles are
grown by special thermal treatment. These glasses are
basis for commercially available sets of yellow to red sh
cut filters, which are very attractive from a fundamen
point of view as well as for their potential use in the field
the nonlinear optics, where it is critical to have an accur
knowledge of the size distribution of the particles. In a sm
nanocrystal with size in the range of a few nanometers
few tens of nanometers, spatial confinement effects on
electron-hole system and on the propagation of phonon
come significant. Due to this confinement, nanoparticles
hibit distinct physical properties which have been studied
the recent past8–19 both experimentally and theoretically
However, at present the information on the fundamen
physical properties of such a system is insufficient, and m
more information and knowledge is required in order to u
them as optical processing devices. A deeper knowledg
the vibrational properties is necessary and it is indispens
to consider the confinement effects on the vibrational pr
erties of such a system.

Raman scattering, which is sufficiently influenced by s
face conditions, particle sizes, and size distribution o
nanoparticle system, is one of the most important and n
destructive techniques to obtain information about the vib
tional and electronic states in a confined system. In previ
studies,9–19 special attention has been paid to the lo
frequency Raman scattering from elastic spherical nano
ticles, which vibrate with frequencies inversely proportion
PRB 600163-1829/99/60~8!/5778~8!/$15.00
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to their diameter. A peak in the low-frequency range w
observed in Raman scattering from symmetric and quad
polar acoustic vibrations of these spherical particles, and
particle size was deduced from the energy of this peak. F
lowing the treatment of Lamb20 from the end of the 1800s
these vibrations are usually described as the eigenfrequen
of a homogeneous elastic sphere under stress-free boun
conditions, and are classified into two categories, torsio
and spheroidal, the torsional modes being Raman inac
These modes can be classified according to the symm
group of the sphere by the angular quantum numbel
(50,1,2,. . . ), which measures the number of wavelengt
along a circle on the surface of the particle. Thel 50 sphe-
roidal modes are purely radial with spherical symmetry, a
at higher values ofl an angular corrugation appears. Anoth
index p (51,2,3,. . . ) distinguishes the lowest-order mod
(p51) from its overtones (p>2) in the Raman spectra
Duval21 has shown that the spheroidal modes withl 50 and
l 52 are the only Raman active modes. However, thel 51
mode also becomes Raman active under reson
conditions.22 The l 50 mode is completely polarized and th
l 52 mode is depolarized for a perfect sphere. After Duv
this problem has been studied by some other authors8–13 for
semiconducting nanoparticles embedded in glass. In m
cases,8,11–13 only one structure in the low-frequency rang
was observed and no specific polarization properties w
reported, however. Tanaka, Onari, and Arai10 have discussed
polarization properties, but for most of their samples th
could observe only one structure, which they identified a
combination of polarized (l 50,p51) and depolarized (l
52,p51) modes. They could observe a trace of the de
larized (l 52,p51) mode in the cross-geometry configur
tion only for the smallest particle in the form of a should
on the Rayleigh background. Overtones of the confin
phonons (p.1) were not reported in the past.

The frequency positions of elastic vibrations are invers
proportional to the particle size9 and, therefore, they are ver
close to the laser line for samples with larger particles. A
of very careful experiments is needed to observe and to
5778 ©1999 The American Physical Society
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PRB 60 5779ACOUSTIC VIBRATIONS OF SEMICONDUCTOR . . .
solve distinctly the polarized and depolarized modes. In
paper, we present a systematic study of the low-freque
Raman scattering from CdSxSe12x nanocrystals embedded i
a glass matrix. In our experiments, we have been able
measure Raman spectra down to about 3 cm21 in both the
Stokes and the anti-Stokes spectral ranges from a se
samples. We have observed both polarized and depolar
phonon modes for all samples and have been able to res
them distinctly in polarization-dependent experiments. F
ther, we have observed some of the overtones of the po
ized mode. These observations, to the best of our knowle
have been reported here for the first time. The overtone
the depolarized modes overlap with the lower-order po
ized modes, which prevents us from observing them in
experiments. Further, a theoretical description is presente
discuss the vibrational spectra of a spherical nanopar
embedded in a matrix, taking into account appropri
boundary conditions. The resulting complex nature of
eigenvalues due to radiation decay enables us to estim
both vibrational frequencies and their dampings. This gen
alized calculation, compared to previously report
work,10,20,23 can be used to estimate the vibrational spec
along with damping for any given set of materials. We ha
estimated the average size of the nanoparticles for var
samples from our theoretical considerations using the exp
mental values of the vibrational frequencies of the first-or
polarized mode. Using these results, the vibrational frequ
cies of the overtones and of the depolarized mode, and
phonon width of all vibrations are calculated and are fou
in good agreement with the corresponding experimental
ues. The compositionx in the mixed CdSxSe12x crystal,
which is needed in the calculation, was estimated from o
cal phonons in near-resonant Raman scattering experim
In order to have an independent estimate, the results obta
from Raman scattering were compared with those obtai
from transmission electron microscope~TEM! and anoma-
lous small angle x-ray scattering~ASAXS! measurements in
an independent study.24

II. EXPERIMENTAL DETAILS

The samples investigated are orange and red sharp
filter glasses procured from Schott Glass Inc., Germany.
commercial names of the samples are OG515, OG5
OG550, OG590, RG630, RG645, RG665, and RG695, wh
the numbers indicate the cutoff wavelengths in nanomet
and OG and RG stand for orange and red glasses, res
tively. These filters contain CdSxSe12x nanocrystallites of
dimensions of the order of nanometers, embedded in a b
silicate glass matrix. The cutoff wavelength for vario
glasses depends both on the compositionx and the particle
size. A sharp cutoff in the band edge was observed bot
absorption spectra and in photoluminescen
measurements.25

Low-frequency Raman scattering experiments were p
formed at room temperature using an argon-ion-las
pumped Ti-sapphire laser, a triple-stage Jobin Yvon mo
chromator, a liquid-nitrogen cooled CCD detector, and us
electronics. In order to avoid a strong luminescence ba
ground, the samples were excited well below the band
with a probing wavelength of 836 nm. The optical phono
is
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were measured in near-resonance condition with the 488
line of an Ar-ion laser. The heat conduction from the isolat
nanoparticles to the surrounding matrix is low and, hen
the sample temperature can increase considerably25 due to
the local heat produced by the probing laser. Therefore,
periments were performed at low laser power in a perp
dicular scattering geometry, so that no changes in the op
properties due to laser heating could be observed. Ra
measurements were performed in both parallel and perp
dicular polarization geometries.

In order to estimate the particle size, shape, and size
tribution in an independent way, the samples were charac
ized using TEM and ASAXS measurements. It was obser
from the TEM photographs that the particle shapes dev
only slightly from perfect spherical ones and do not sh
large fluctuation of the particle size within a sample. Fro
the results obtained in ASAXS measurements, size distr
tion within each sample could be best fitted with a distrib
tion width of about 1 nm, which varies slightly from samp
to sample.24 The volume fraction of nanoparticles was es
mated to be about 0.2% in both TEM and ASAXS measu
ments.

III. THEORETICAL CONSIDERATIONS

An acoustic phonon of large wavelength propagat
through a bulk crystal can be described by the class
theory of vibrations of a continuous elastic body. In the ca
of a confined acoustic phonon within the small volume o
nanoparticle, appropriate boundary conditions on the surf
of the particle have to be taken into account. Supported
Lamb’s results20 for the free vibrations of a homogeneou
spherical elastic body, the theory was extended by m
authors8–11,19,26for the case of the confined acoustic phon
in nanoparticles with special emphasis on the matrix infl
ence, on surface relaxation, and on shape anisotropy eff
Such calculations start with the equation of motion for
spherical elastic body under stress-free boundary conditi
which can be solved by introducing proper scalar and vec
potentials, and then the energy spectrum for confined vib
tions is obtained. These vibrations are classified into sphe
dal and torsional modes with angular quantum numbel,
with only l 50 and l 52 modes being Raman active.21 For
particles embedded in a matrix, the basic relation for
continuity of the displacement and of the stress vectors
spherical surface~see the Appendix! results in a generalized
eigenvalue equation, which was discussed earlier for a
particle in Ref. 20 and for an embedded particle in Ref.
For the polarized vibrations (l 50) of a spherical isotropic
elastic particle with free boundary conditions, it is given a23

sin~j!54n2 j 1~j!, ~1!

where j 1(j) is the spherical Bessel function of the first kin
of order 1, with the dimensionless argument

j5R
v

v l
, ~2!

whereR is the particle radius andv is the vibrational fre-
quency. The parametern, an internal acoustic index, is th
ratio of the transverse and longitudinal sound velocit
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5780 PRB 60PRABHAT VERMA, W. CORDTS, G. IRMER, AND J. MONECKE
v t /v l in the particle. Since the transverse sound velocity i
liquid is zero, the indexn gives a measure for the deviatio
from the vibrational behavior of a liquid drop and its dime
sionless spectrumjp

(0)5pp with non-negative integersp.
Equation~1! can be solved by iteration,

sin~jp
n11!54n2 j 1~jp

n!. ~3!

Starting with the spectrum of a liquid drop, the iteration pr
cedure converges quite fast and forp>3, the first approxi-
mation

jp
(1)5pp2arcsinS 4n2

pp D , ~4!

gives a reasonably good solution. The dependence of the
three eigenvalues on the indexn is calculated numerically
and shown in Fig. 1. Though the indexn is limited toA2/2,
the curves in Fig. 1 are shown up ton5A3/2, because the
frequency of the first mode (p51) vanishes at this point. Fo
all other eigenvalues (p>2) the asymptotic limit is given by
the zeros of the spherical Bessel functionj 1(j) representing
the spectrum of a sphere with the radius fixed atR with zero
displacement.

Next, we discuss the influence of a surrounding matrix
the polarized vibrational spectrum of a spherical partic
The eigenvalue equation in this case is similar to Eq.~1!,
with the only difference that the indexn must be replaced by
an effective complex valueneff given as~see the Appendix!

neff
2 5ns

22 f Fnm
2 2

1

4

~kj!2

12 i ~kj!G , ~5!

where ns5vst /vsl and nm5vmt /vml are the ratios of the
transverse to the longitudinal sound velocities in the sph
and in the matrix, respectively,k5vsl /vml , and f
5rmvml

2 /rsvsl
2 , with rm andrs being the mass densities o

the matrix and the sphere, respectively.neff being complex,
the solutions of the eigenvalue equation are complex, too,
real and imaginary parts of which give the vibrational en

FIG. 1. Then dependence of the first three eigenvalues in E
~3!. In order to compare the relative behavior of the three mod
the curves forp52 andp53 are shifted by21 and22, respec-
tively.
a

-

rst

n
.

re

e
-

gies and their dampings due to sound radiation into the
rounding matrix, respectively. Withf 50, one recovers the
case of a free particle. Therefore,f can be considered as th
coupling constant between the particle and the matrix. T
coupling constant, determined essentially from the comp
sion moduli ratio of the two materials, gives a measure
the influence of the matrix on the vibrational spectrum of t
nanoparticle.

Replacingn by neff in Eq. ~1!, one finds a significant
difference compared to the case of a free sphere in
asymptotic behavior for large values of the argumentj. The
right-hand side of the eigenvalue equation no longer v
ishes but oscillates with the term2 i f k cos(j). This results in
a constant imaginary shift of the large eigenvalues
i /4 ln(Rk), where

Rk5S Zm2Zs

Zm1Zs
D 2

~6!

is the sound reflection coefficient of longitudinal waves
normal incidence, andZm5rmvml and Zs5rsvsl are sound
impedances of the matrix and of the sphere, respectively.
would like to mention here that these asymptotic imagin
parts of the vibrational spectra give upper limits to the dam
ing.

If the matrix impedance is larger than the sphere imp
ance (f k5Zm /Zs.1), the large eigenvaluesjp undergo an
additional shift by a real amount ofp/2. For largep, the
asymptotic spectra become

jp'pp1
i

4
ln~Rk!, ~7!

for a hard sphere in a soft matrix, and

jp'
2p11

2
p1

i

4
ln~Rk!, ~8!

for a soft sphere in a hard matrix.
The lower-order eigenvalues, which are of greater inter

in our case, deviate only slightly from the asymptotic spe
tra. Thus one can calculate them again by iteration star
from the asymptotic values of Eqs.~7! and ~8!.

The qualitative behavior of the first eigenvalues, howev
can be deduced directly from the effective indexneff . Since
the eigenvaluesjp lie near the real axis, the real part ofneff

2

is approximately equal tons
22 f (nm

2 21/4) . As a result, the
real parts of the eigenvalues are shifted with respect to Fi
to higher values in a hard matrix withnm

2 .1/4 and to lower
values in a soft matrix. It is interesting to mention that t
matrix properties are alone responsible for the direction
the frequency shift and the relative properties of the sph
and the matrix have no influence.

After calculating the eigenvaluej, a relation betweenv
andR can be established from Eq.~2!. Sincej is of complex
nature,v can be expressed as

v5v81 iDv85
v l

R
j, ~9!

where the real and the imaginary parts give the phonon
quencies and half-widths, respectively. It is interesting

.
s,
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PRB 60 5781ACOUSTIC VIBRATIONS OF SEMICONDUCTOR . . .
mention that the phonon widths also show the same de
dence on the particle size (}1/R) as the phonon
frequencies.9 Therefore, the phonon lines are sharper
larger nanoparticles.

Unfortunately, an effective procedure for the depolariz
mode withl 52, similar to that discussed for thel 50 mode,
cannot be obtained. The eigenvalue equation, in this c
contains functions with two different periodicities, due to t
two sound velocitiesv l andv t . The eigenvalue spectrum i
very sensitive to the material parameters, and cannot be
tained analytically. However, the qualitative behavior of t
spectrum is, in general, similar to that of the polarized mo
with l 50. The matrix influence shifts the frequency po
tions in the same direction and phonon frequencies
widths also show the same dependence on the particle
i.e., they are proportional to 1/R. The theoretical values fo
the l 52 mode were calculated numerically with the help
the general eigenvalue equation given in the Appendix@Eq.
~A20!#. We will show in the next section that this gives
good quantitative agreement with the experimental meas
ments of the depolarized phonon modes.

FIG. 2. Near-resonant Raman spectrum for the sample OG
showing the optical phonons and their combinations.
n-

r

d

e,

b-

e

d
ze,

f
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IV. RESULTS AND DISCUSSION

A. Optical phonons

In order to estimate the sound velocity in the nanop
ticles, we estimated the compositionx from the positions of
the optical phonons in the near-resonance Raman spect
various samples. A mixed CdSxSe12x crystal shows a two-
mode behavior with two LO phonons, one corresponding
CdSe and the other corresponding to CdS. The ne
resonance Raman spectra of one of the samples in the op
range is presented in Fig. 2, where LO1 represents the C
like and LO2 the CdS-like mode. In addition, some high
order phonons are also seen. The LO phonons in th
samples are shifted in energy with respect to the LO phon
in pure CdSe and CdS bulk materials due to the mixed c
tal behavior and due to the spatial confinement in small p
ticles. The shift due to confinement originates from the
laxation of the q vector selection rule,27 as the spatial
correlation function becomes finite. However, this shift
small27 ~2 cm21 or less! for nanoparticles of diameter abov
5 nm. We roughly assumed a shift due to confinement o
cm21 for all samples. This assumption is reasonable beca
the variation in this shift from one sample to the other
much smaller compared to the shift due to the change
composition, which was found to be as large as 20 cm21 for
some samples compared to pure CdSe and CdS bulk m
rial. Assuming a linear shift in the LO-phonon energies w
respect to the compositionx, the value ofx was calculated
for each sample from the positions of both LO1 and LO
and is listed in Table I. However, we will see later that t
influence of the composition on the frequencies of the c
fined vibrations is weak.

B. Confined acoustic phonons

Low-frequency Raman spectra from the sample OG5
are presented as an example in Fig. 3, where curves~a! and
~b! correspond to polarized and depolarized configuratio
respectively. For comparison, an unpolarized Raman sp
trum from the base material used for OG550 is presente
curve~c!. The base material is the material before heat tre
ment, and, therefore, does not contain any semiconduc
nanoparticles. This was also confirmed in luminescenc25

0,
on

s,

.

TABLE I. Composition x, particle radiusR, and experimental and theoretical values of the phon
frequencies in low-frequency Raman scattering for various filter glass samples.v21 andv22 are the depolar-
ized phonon frequencies for the lowestl 52 mode and its first-order overtone, respectively,v01, v02, and
v03 are the polarized phonon frequencies for the lowestl 50 mode and its first and second overtone
respectively. The experimental valuesv01 have been used to determineR. All frequencies are given in cm21.

Sample x R v21 v22 v01 v02 v03

~nm! Expt./Theor. Expt./Theor. Expt. Expt./Theor. Expt./Theor

OG515 0.67 2.17 16.0/14.3 2/26.8 29.3 2/60.6 2/91.3
OG530 0.67 2.22 13.8/13.9 2/26.1 28.6 57.5/59.1 2/89.1
RG630 0.27 3.40 8.8/8.7 2/16.2 17.6 37.0/36.4 2/54.8
OG550 0.67 3.65 8.5/8.5 2/15.9 17.4 39.8/36.0 54.1/54.2
OG590 0.54 4.42 7.3/6.9 2/12.9 14.1 31.6/29.1 49.0/43.9
RG695 0.26 5.38 6.1/5.5 2/10.2 11.1 25.8/23.0 36.7/34.6
RG645 0.32 6.02 5.6/4.9 2/9.2 10.0 23.3/20.7 36.1/31.2
RG665 0.20 7.78 4.5/3.8 2/7.0 07.6 17.5/15.7 27.7/23.7
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and ASAXS ~Ref. 24! measurements. Curve~c! in Fig. 3
shows a broad structure at about 50 cm21, which is known as
a Boson peak,28,29 and is attributed to vibrations of the glas
matrix. This structure is also present in curves~a! and ~b!.
The spectra in Fig. 3 have been normalized to this br
structure for presentation. Apart from this structure, two d
tinct peaks, indicated by the indices 1 and 2, can be see
8.5 and 17.5 cm21 in curves~a! and~b!, which correspond to
the confined acoustic vibrations of the CdSxSe12x nanopar-
ticles. Peak 1 in Fig. 3 is identified as the depolarized vib
tion with l 52, p51 and peak 2 as the polarizedl 50, p
51 vibration. Weak structures indicated by the indices 3 a
4 at 40 and 54 cm21, respectively, are identified as the fir
and the second overtones of peak 2 and correspond to
vibrations l 50, p52, and p53, respectively. Besides th
strong peak at 8.5 cm21 ( l 52, p51) in the depolarized
spectrum in curve~b!, a second weak structure is seen at
calculated position of the first overtone of the depolariz
mode (l 52, p52). However, the position of this overton
overlaps with the position of peak 2 (l 50, p51). Although
the latter is forbidden in the depolarized configuration,
could have a slight component due to a possible slight
viation of our experimental configuration from the true d
polarization geometry or due to the fact that the nanop
ticles are not perfectly spherical, as indicated in TE
measurements. Therefore, it is difficult to assign this str
ture either to thel 52, p52 mode or to thel 50, p51 mode.
The higher-order overtones of the depolarized modes
weak and hidden in the boson background.

Figure 4 shows similar spectra from the sample RG6
In order to focus attention on the confined phonons and t
overtones, the spectra are presented in a small spectral r
The polarized and depolarized phonons of this sample
very close to each other at 4.5 and 7.5 cm21, respectively.
The first and the second overtones of the polarized vibrat
indicated by the indices 3 and 4 in Fig. 4, can be seen a
and 27.5 cm21, respectively. A trace of higher-order ove

FIG. 3. Low-frequency Raman spectra for the sample OG55
~a! polarized and~b! depolarized configurations. Curve~c! corre-
sponds to the base material used for the sample. Inset prese
deconvolution of various modes seen in the spectra~a!.
d
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tones also appears, but they could not be resolved distin
due to their weak oscillator strengths compared to the g
background in this spectral range. Similar results have b
observed for other samples and they are presented in F
5~a! and 5~b! in the polarized and depolarized configuration
respectively. These spectra are arranged in the order o
creasing particle size and, thus, in decreasing phonon en
from the sample OG515 to the sample RG665. It can be s
from Fig. 5 that the scattering intensity increases and
separation between polarized and depolarized modes~peaks
1 and 2! decreases with increasing particle size. Peaks 1
2 are found to shift from 4.5 to 16.0 cm21 and from 7.5 to
29.5 cm21, respectively, for various samples. In order

in

s a

FIG. 4. Low-frequency Raman spectra in polarized and depo
ized configurations for the sample RG665. Phonon modes indic
by 3 and 4 are the overtones of the phonon mode 2.

FIG. 5. Low-frequency Raman spectra in~a! the polarized and
~b! the depolarized configurations for various samples. The spe
are arranged in a sequence of increasing particle size from curv~i!
to curve ~viii ! for the samples OG515, OG530, RG630, OG55
OG590, RG695, RG645, and RG665.
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obtain true values of the phonon widths and positions, a
convolution was performed on each spectrum, an exampl
which is shown for OG550 in the inset of Fig. 3. This w
done by assuming the phonons to have Lorentzian sh
and by choosing a suitable background, either from the sp
tra of the base material@as in Fig. 3~c!# when available, or
from a combination of suitable mathematical functions. T
measured values of phonon positions and widths for vari
samples are listed in Tables I and II, respectively.

The phonon corresponding to the lowest order polari
mode (l 50, p51) is the strongest phonon in Raman spec
Using the experimental values of the phonon frequency
this mode, particle sizes were estimated from Eqs.~2! and
~9!, and from them the phonon frequencies and the wid
for all polarized modes were calculated. The frequencies
the widths for the depolarized modes were numerically c
culated from Eq.~A20! using the results obtained from th
polarized modes. Table I lists the particle size and the p
non frequencies for various samples for all phonon mod
The phonon widths for various phonons in some of
samples are presented in Table II.

A good agreement between calculated and measured
non frequencies is obtained~Table I!. The measured value
of phonon widths, as seen from Table II, are slightly larg
than the calculated values. Only in the case of the sam
OG530 are the measured values smaller than the calcu
ones. However, it was not possible to measure the pho
widths for the sample OG515 within reasonable accur
because the phonons have very weak strengths. The
sured widths can be larger than the calculated ones du
two reasons: first, due to experimental errors coming fr
the equipment line function and, second, due to the size
tribution of the nanoparticles within each sample. As me
tioned earlier, the ASAXS measurements indicate a size
tribution of about 1 nm for all samples. Due to this, t
phonon energies are also distributed, which provide
broadening in the measured phonon widths. The differe
between the measured and the calculated values is smal
agrees well with a size distribution of about 1 nm. Furth
the damping of the vibrations is calculated assuming
nanoparticles to have perfect spherical shape with a comp
surface contact with the surrounding matrix. Both assum
tions may not be valid if the particles are very small an
hence, the coupling constantf in Eq. ~5! is effectively
smaller. The actual phonon widths are then expected to
smaller than the calculated ones assuming a perfect sphe
particle with complete surface contact. The smaller measu

TABLE II. Experimental and theoretical values of the phon
widths for some of the samples studied.G21 represents the phono
width for the depolarized first mode andG01, represent the phonon
widths for the polarized first mode and its first order overto
respectively. All widths are given in cm21.

Sample R G21 G01 G02

~nm! Expt./Theor. Expt./Theor. Expt./Theor.

OG530 2.22 7.5/9.9 9.7/13.1
OG550 3.65 6.3/6.1 8.7/8.0 12.5/8.5
OG590 4.42 6.5/4.8 8.2/6.3
RG665 7.78 4.5/2.5 4.8/3.3 6.7/3.6
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values of the phonon widths for the sample OG530 in Ta
II can be explained in this way.

The theoretical results show that the influence of the co
positionx on the phonon frequencies is very small compa
to the influence of the particle sizes. Figure 6 shows
relation between the phonon position and 1/R. The three the-
oretical curves for each phonon are calculated for three
ferent values of the compositionx (50.8, 0.5, and 0.2!. It
can be seen that the influence of the compositionx is small,
as stated before. The circles, the squares, and the triangl
Fig. 6 show the experimental phonon frequencies.

V. CONCLUSIONS

Low-frequency Raman scattering has been performed
commercially available filter glass samples, which cont
CdSxSe12x nanoparticles embedded in a glass matrix. In o
polarization-dependent experiments, we have been abl
measure both polarized and depolarized confined acou
phonons and to resolve them experimentally. Likewise, ov
tones of the polarized mode have been observed. A theo
ical model, based on classical elasticity theory, which ta
into account the influence of the matrix on the vibration
spectra of the nanoparticles, has been presented. This m
establishes a relation between the particle size, the freq
cies, and the widths of various confined phonons. It can
used for any given combination of particle and matrix ma
rials. A good agreement between theoretical and experim
tal results has been found. In addition, the results obtai
from Raman scattering are also found in good agreem
with TEM and ASAXS measurements performed in an ind
pendent study.

FIG. 6. Phonon positions with respect to 1/R for various filter
glass samples.v lp represent various polarized modes, depolariz
modes, and their overtones observed in low-frequency Raman s
tra. The experimental values for the corresponding phonons
shown by full symbols. The dotted, full, and dashed lines cor
spond to the theoretical values calculated withx50.8, 0.5, and 0.2,
respectively. It can be seen that the influence of the compositiox
on phonon frequencies is small.
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APPENDIX

The equation of motion of an elastic body

]2DW

]t2
5~v l

22v t
2!¹~¹DW !1v t

2DDW , ~A1!

for the displacement vectorDW has the well known dilatation
free and curl-free solutions in spherical coordinates, wh
can be deduced from a scalar potentialF and a vector po-
tential AW 5rWC as

DW S5¹F1¹3¹3AW 5DW 11DW 2 , ~A2!

DW T5k¹3AW , ~A3!

with

F5
1

h
zl~hr !Ylm~u,f!exp~2 ivt !, ~A4!

C5
1

k
zl~kr !Ylm~u,f!exp~2 ivt !, ~A5!

where Ylm(u,f) are the spherical harmonics,zl are the
spherical Bessel functions,h5v/v l , andk5v/v t . The in-
dicesS and T in the displacement vector indicate the sph
roidal and the torsional modes, respectively. It can be ea
shown that the spheroidal displacement vectors have two
dependent directions, one along the radial unit vectoreW r and
the other with a tangential component alongnW lm(u,f)
5r¹Ylm(u,f). The torsional modes, however, have on
one direction, namely, the orthogonal directionmW lm(u,f)
5eW r3nW lm(u,f). The same holds for the respective stre
vectors also. Due to this, the spheroidal and torsional mo
do not mix even due to the boundary conditions.

Since all displacement and stress vectors have a com
time dependence, the factor exp(2ivt) can be dropped in the
following discussion. The displacement vectorsDW 1 and DW 2

at the surface can be given, using the notationeW lm(u,f)
5Ylm(u,f)eW r , as

DW 15¹F5D1reW lm1D1nnW lm , ~A6!

DW 25¹3¹3AW 5D2reW lm1D2nnW lm , ~A7!

with

D1r~hr !5zl8~hr !, ~A8!

D1n~hr !5
zl~hr !

hr
, ~A9!

D2r~kr !5 l ~ l 11!
zl~kr !

kr
, ~A10!

D2n~kr !5
zl~kr !

kr
1zl8~kr !. ~A11!
h

-
ly
n-

s
es
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The stress vectorsSW 1 andSW 2 can be evaluated from the dis
placement vector as

SW 5rS 2v t
2 ]DW

]r
1v t

2eW r3~¹3DW !1~v l
222v t

2!~¹DW !eW r D ,

~A12!

with

S1r~hr !5hr@2v t
2D1r8 ~hr !1~2v t

22v l
2!zl~hr !#,

~A13!

S1n~hr !5hr2v t
2D1n8 ~hr !, ~A14!

S2r~kr !5kr2v t
2D2r8 ~kr !, ~A15!

S2n~kr !5krv t
2@D2n8 ~kr !2zl~kr !#. ~A16!

For a free sphere, the independent stress vectorsSW 1 and SW 2
have to be combined so that their superposition at the sur
(r 5R) vanishes, and the eigenvalue equation becomes

detS S1r S2r

S1n S2n
D U

r 5R

50. ~A17!

This equation can be rewritten into the form discussed
Tamuraet al.23 and by Tanakaet al.10 For the special case o
l 50, the dilatation-free displacementDW 2 does not exist and
DW 1 has only the radial component. Therefore, the only
maining stress component isS1r , and the eigenvalue equa
tion reduces to

S1r ur 5R50. ~A18!

Replacing the spherical Bessel functions by those of the
kind, one gets

rv l
2

R
@j j 0~j!24n2 j 1~j!#50, ~A19!

with j5hR5(v/v l)R andn5v t /v l .
For a sphere embedded in a matrix, the stress vecto

longer vanishes at the surface and has the same value
proaching the surface from the inner and the outer ra
directions. The same condition holds for the displacem
vectors. Thus the general eigenvalue equation becomes

detS S D1r D2r

D1n D2n

S1r S2r

S1n S2n

D
s

S D1r D2r

D1n D2n

S1r S2r

S1n S2n

D
m

DU
r 5R

50,

~A20!

with the material parameters of the sphere~with index s) in
the left two columns and those of the matrix~with indexm)
in the right two columns. The Bessel functions within th
sphere must be chosen as thej l functions of the first kind and
within the matrix as Hankel’s functionshl , which fades out
into the matrix~outgoing waves!.

In the case ofl 50, the remaining displacement and stre
vector components areD1r and S1r and, hence, the eigen
value equation takes the simple form



n
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detF S D1r

S1r
D

s

S D1r

S1r
D

m
GU

r 5R

50. ~A21!

In this case, withD1r5z0852z1, the eigenvalue equatio
can be transformed to

rsvsl
2

R
@jsj 0~js!24ns

2 j 1~js!#/ j 1~js!

5
rmvml

2

R
@jmh0~jm!24nm

2 h1~jm!#/h1~jm!. ~A22!
e

J.

.

ar

r,

s

n

Replacingh0(jm)/h1(jm) by jm / i jm21 we get

jsj 0~js!24ns
2 j 1~js!5

rmvml
2

rsvsl
2 F jm

2

i jm21
24nm

2 G j 1~js!,

~A23!

which can be rewritten into the eigenvalue equation~1! with
n replaced byneff as given by Eq.~5!.
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