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Acoustic vibrations of semiconductor nanocrystals in doped glasses
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Polarization-dependent low-frequency off-resonant Raman scattering has been studied from various com-
mercially available filter glass samples, which contain (35 , nanoparticles embedded in a glass matrix. In
order to distinguish the confined acoustic phonons from the glass background, the spectra have been compared
with those obtained from the base material, which does not contain nanoparticles. Polarized and depolarized
scattering from confined acoustic phonons was distinctly resolved near the laser line and overtones of the
polarized modes were observed. A theoretical treatment, which establishes a relation between the particle size,
the frequencies, and the widths of various phonons, taking into account the matrix influence on the vibrational
spectrum and on its damping, is presented. The material-dependent generalized form of this model enables one
to use it for any given combination of particle and matrix materials. A good agreement between the experi-
mental and the theoretical results is found. The nanoparticle sizes obtained from Raman scattering agree well
with those obtained from transmission electron microscope and anomalous small angle x-ray scattering experi-
ments.[S0163-18209)07231-9

[. INTRODUCTION to their diameter. A peak in the low-frequency range was
observed in Raman scattering from symmetric and quadru-
In recent times, the optical properties of quantum con-polar acoustic vibrations of these spherical particles, and the
fined electronic systems such as quantum wells, quanturmparticle size was deduced from the energy of this peak. Fol-
wires, and quantum dots have attracted considerable attefowing the treatment of LantB from the end of the 1800s,
tion, because they differ strongly from those of the corre-these vibrations are usually described as the eigenfrequencies
sponding bulk crystal. Especially, the electronic and opticabf a homogeneous elastic sphere under stress-free boundary
properties of semiconductor nanocrystals embedded in solidonditions, and are classified into two categories, torsional
matrices such as CuCl in NaCRefs. 1 and Rand CuCl, and spheroidal, the torsional modes being Raman inactive.
CdS, CdSe, CdSe _,, and Ge in glass®have been stud- These modes can be classified according to the symmetry
ied in the past decade. Specific attention has beeifgdid  group of the sphere by the angular quantum number
silicate glasses in which CdS or Cd® _, nanoparticles are (=0,1,2,...), which measures the number of wavelengths
grown by special thermal treatment. These glasses are tl@ong a circle on the surface of the particle. TheO sphe-
basis for commercially available sets of yellow to red sharpgroidal modes are purely radial with spherical symmetry, and
cut filters, which are very attractive from a fundamentalat higher values of an angular corrugation appears. Another
point of view as well as for their potential use in the field of index p (=1,2,3,...) distinguishes the lowest-order mode
the nonlinear optics, where it is critical to have an accuratdp=1) from its overtones §=2) in the Raman spectra.
knowledge of the size distribution of the particles. In a smallDuvaf* has shown that the spheroidal modes with0 and
nanocrystal with size in the range of a few nanometers to &=2 are the only Raman active modes. However, Ithd
few tens of nanometers, spatial confinement effects on thenode also becomes Raman active under resonant
electron-hole system and on the propagation of phonon besonditions?* Thel =0 mode is completely polarized and the
come significant. Due to this confinement, nanoparticles ex-=2 mode is depolarized for a perfect sphere. After Duval,
hibit distinct physical properties which have been studied irthis problem has been studied by some other authtitor
the recent pa8t'® both experimentally and theoretically. semiconducting nanoparticles embedded in glass. In most
However, at present the information on the fundamentatases,**~**only one structure in the low-frequency range
physical properties of such a system is insufficient, and muckvas observed and no specific polarization properties were
more information and knowledge is required in order to usegreported, however. Tanaka, Onari, and Atsiave discussed
them as optical processing devices. A deeper knowledge gfolarization properties, but for most of their samples they
the vibrational properties is necessary and it is indispensableould observe only one structure, which they identified as a
to consider the confinement effects on the vibrational propcombination of polarized IE0,p=1) and depolarized(
erties of such a system. =2,p=1) modes. They could observe a trace of the depo-
Raman scattering, which is sufficiently influenced by sur-larized (=2,p=1) mode in the cross-geometry configura-
face conditions, particle sizes, and size distribution of aion only for the smallest particle in the form of a shoulder
nanoparticle system, is one of the most important and nonen the Rayleigh background. Overtones of the confined
destructive techniques to obtain information about the vibraphonons p>1) were not reported in the past.
tional and electronic states in a confined system. In previous The frequency positions of elastic vibrations are inversely
studies’™° special attention has been paid to the low-proportional to the particle sizend, therefore, they are very
frequency Raman scattering from elastic spherical nanopaclose to the laser line for samples with larger particles. A set
ticles, which vibrate with frequencies inversely proportionalof very careful experiments is needed to observe and to re-
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solve distinctly the polarized and depolarized modes. In thisvere measured in near-resonance condition with the 488 nm
paper, we present a systematic study of the low-frequenclne of an Ar-ion laser. The heat conduction from the isolated
Raman scattering from C¢Se _, nanocrystals embedded in nanoparticles to the surrounding matrix is low and, hence,
a glass matrix. In our experiments, we have been able tthe sample temperature can increase considerablye to
measure Raman spectra down to about 3 tim both the the local heat produced by the probing laser. Therefore, ex-
Stokes and the anti-Stokes spectral ranges from a set gkriments were performed at low laser power in a perpen-
samples. We have observed both polarized and depolarizedicular scattering geometry, so that no changes in the optical
phonon modes for all samples and have been able to resolygoperties due to laser heating could be observed. Raman
them distinctly in polarization-dependent experiments. Furmeasurements were performed in both parallel and perpen-
ther, we have observed some of the overtones of the poladicular polarization geometries.

ized mode. These observations, to the best of our knowledge, In order to estimate the particle size, shape, and size dis-
have been reported here for the first time. The overtones dfibution in an independent way, the samples were character-
the depolarized modes overlap with the lower-order polarized using TEM and ASAXS measurements. It was observed
ized modes, which prevents us from observing them in oufrom the TEM photographs that the particle shapes deviate
experiments. Further, a theoretical description is presented wnly slightly from perfect spherical ones and do not show
discuss the vibrational spectra of a spherical nanoparticlerge fluctuation of the particle size within a sample. From
embedded in a matrix, taking into account appropriatehe results obtained in ASAXS measurements, size distribu-
boundary conditions. The resulting complex nature of thetion within each sample could be best fitted with a distribu-
eigenvalues due to radiation decay enables us to estimati®on width of about 1 nm, which varies slightly from sample
both vibrational frequencies and their dampings. This generto sample?* The volume fraction of nanoparticles was esti-
alized calculation, compared to previously reportedmated to be about 0.2% in both TEM and ASAXS measure-
work, 12292 can be used to estimate the vibrational spectranents.

along with damping for any given set of materials. We have

estimated the average size of the nanoparticles for various Ill. THEORETICAL CONSIDERATIONS

samples from our theoretical considerations using the experi-

mental values of the vibrational frequencies of the first-order An acoustic phonon of large wavelength propagating
polarized mode. Using these results, the vibrational frequerthrough a bulk crystal can be described by the classical
cies of the overtones and of the depolarized mode, and thi&eory of vibrations of a continuous elastic body. In the case
phonon width of all vibrations are calculated and are foundf a confined acoustic phonon within the small volume of a
in good agreement with the corresponding experimental valnanoparticle, appropriate boundary conditions on the surface
ues. The compositiox in the mixed Cd$Se_, crystal, Of the particle have to be taken into account. Supported by
which is needed in the calculation, was estimated from optiLamb’s result8’ for the free vibrations of a homogeneous
cal phonons in near-resonant Raman scattering experimengherical elastic body, the theory was extended by many
In order to have an independent estimate, the results obtain@dithor§*9?%for the case of the confined acoustic phonon
from Raman scattering were compared with those obtaineth nanoparticles with special emphasis on the matrix influ-
from transmission electron microscogeEM) and anoma- €nce, on surface relaxation, and on shape anisotropy effects.

lous small angle x-ray scatterifdSAXS) measurements in Such _calculati_ons start with the equation of motion for a
an independent study. spherical elastic body under stress-free boundary conditions,

which can be solved by introducing proper scalar and vector
potentials, and then the energy spectrum for confined vibra-
Il. EXPERIMENTAL DETAILS tions is obtained. These vibrations are classified into spheroi-

The samples investigated are orange and red shar —ca?l and torsional modes with angular quantum number
P g g P-Clllith only =0 andl=2 modes being Raman actiteFor

filter glasges procured from Schott Glass Inc., Germany. Thd%articles embedded in a matrix, the basic relation for the

Coogr)?gr%%sg%msz 6?’:0 tgeG gjg] pR|>eG366a5rear%GR5 éngO\?vE:engontin_uity of the displacement and of the stress vectors at a

the nun’1bers inéicate th,e cutoff \,Navelen(i;ths in nano}netersgphe”caI surfac@ee the _Appendhxresults na ge_nerahzed

and OG and RG stand for orange and red glasses respeéc'-ge.nval.ue equation, which was discussed e.arhe_r for a free

tively. These filters contain CgSe, nanocrystallite’s of article in Re_f. 20 gnd f_or an embedded particle in Ref. 23.

dimeﬁsions of the order of nanome';e)(rs embedded in a borclJ:-Or the polarized vibrationsl £0) of a spherical isotropic
- : ' . ~""‘elastic particle with free boundary conditions, it is giveR®as

silicate glass matrix. The cutoff wavelength for various

glasses depends both on the compositicand the particle ; —An2:

size. A sharp cutoff in the band edge was observed both in Sin(§)=4n"j.(8), @)

absorption  spectra and in  photoluminescencenherej,(¢) is the spherical Bessel function of the first kind

measurements. of order 1, with the dimensionless argument
Low-frequency Raman scattering experiments were per-

formed at room temperature using an argon-ion-laser- ®

pumped Ti-sapphire laser, a triple-stage Jobin Yvon mono- §=RV—I, )

chromator, a liquid-nitrogen cooled CCD detector, and usual

electronics. In order to avoid a strong luminescence backwhereR is the particle radius and is the vibrational fre-
ground, the samples were excited well below the band gaguency. The parameter, an internal acoustic index, is the
with a probing wavelength of 836 nm. The optical phononsratio of the transverse and longitudinal sound velocities
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gies and their dampings due to sound radiation into the sur-
rounding matrix, respectively. Witlfi=0, one recovers the
p=3 case of a free particle. Therefoffecan be considered as the
0.8 p=2 coupling constant between the particle and the matrix. This
coupling constant, determined essentially from the compres-
sion moduli ratio of the two materials, gives a measure for
the influence of the matrix on the vibrational spectrum of the
nanoparticle.

0.4 Replacingn by ng in Eq. (1), one finds a significant
difference compared to the case of a free sphere in the
asymptotic behavior for large values of the argumg&nthe

0.2 right-hand side of the eigenvalue equation no longer van-
ishes but oscillates with the termif x cosg). This results in

1.0 4

0.6
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0.0 i a constant imaginary shift of the large eigenvalues by
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FIG. 1. Then dependence of the first three eigenvalues in Eq. k y

(3). In order to compare the relative behavior of the three modes,

the curves forp=2 andp=3 are shifted by—1 and—2, respec- is the sound reflection coefficient of longitudinal waves at

tively. normal incidence, and,,= pvm andZs=pgvg are sound
impedances of the matrix and of the sphere, respectively. We

v /v, in the particle. Since the transverse sound velocity in avould like to mention here that these asymptotic imaginary

liquid is zero, the index gives a measure for the deviation parts of the vibrational spectra give upper limits to the damp-

from the vibrational behavior of a liquid drop and its dimen- ing.

sionless spectrurﬁ}f’)= pm with non-negative integers. If the matrix impedance is larger than the sphere imped-
Equation(1) can be solved by iteration, ance fx=2,/Zs>1), the large eigenvalueg, undergo an
additional shift by a real amount of/2. For largep, the
sin(& ") =4n?j,(&)). (3)  asymptotic spectra become
Starting with the spectrum of a liquid drop, the iteration pro- i
cedure converges quite fast and for 3, the first approxi- Ep~pm+ Zln(Rk)r (7)
mation
) for a hard sphere in a soft matrix, and
4n
(G B in —
gP=px arcsn’( pw), 4 _2p+1

i
5 T+ ZIn(Rk), (8)
gives a reasonably good solution. The dependence of the first
three eigenvalues on the indexis calculated numerically for a soft sphere in a hard matrix.
and shown in Fig. 1. Though the indexs limited to \2/2, The lower-order eigenvalues, which are of greater interest
the curves in Fig. 1 are shown up to=/3/2, because the in our case, deviate only slightly from the asymptotic spec-
frequency of the first modep(= 1) vanishes at this point. For tra. Thus one can calculate them again by iteration starting

all other eigenvaluesp=2) the asymptotic limit is given by ~ from the asymptotic values of Eq&Z) and (8).

the zeros of the spherical Bessel functig¢) representing The qualitative behavior of the first eigenyalues, h_owever,
the spectrum of a sphere with the radius fixedRatith zero ~ can be deduced directly from the effective indey. Since
displacement. the eigenvalueg, lie near the real axis, the real part i

Next, we discuss the influence of a surrounding matrix oris approximately equal ta?—f(n?—1/4) . As a result, the
the polarized vibrational spectrum of a spherical particlereal parts of the eigenvalues are shifted with respect to Fig. 1
The eigenvalue equation in this case is similar to B9,  to higher values in a hard matrix withf,>1/4 and to lower
with the only difference that the indexmust be replaced by values in a soft matrix. It is interesting to mention that the
an effective complex value; given as(see the Appendix  matrix properties are alone responsible for the direction of

5 the frequency shift and the relative properties of the sphere
2ot (k9 and the matrix have no influence.
M 4 1-i(ké) After calculating the eigenvalug, a relation betweem

) andR can be established from E@). Sinceé is of complex
where ng=vg /v and ny=vp /vy are the ratios of the i .0 0 can be expressed as

transverse to the longitudinal sound velocities in the sphere

and in the matrix, respectivelyx=vg/vy, and f V|

=pmValpsvZ,, with p,, and ps being the mass densities of w=o'tide'= 2§, 9

the matrix and the sphere, respectivatyy; being complex,

the solutions of the eigenvalue equation are complex, too, thehere the real and the imaginary parts give the phonon fre-
real and imaginary parts of which give the vibrational ener-quencies and half-widths, respectively. It is interesting to

: ©)

nZ;=n2—f
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IV. RESULTS AND DISCUSSION
LO2 0G550 :
A. Optical phonons
In order to estimate the sound velocity in the nanopar-
ticles, we estimated the compositiarfrom the positions of
the optical phonons in the near-resonance Raman spectra of
various samples. A mixed CdSe , crystal shows a two-
mode behavior with two LO phonons, one corresponding to
CdSe and the other corresponding to CdS. The near-
resonance Raman spectra of one of the samples in the optical
range is presented in Fig. 2, where LO1 represents the CdSe-
like and LO2 the CdS-like mode. In addition, some higher-
order phonons are also seen. The LO phonons in these
samples are shifted in energy with respect to the LO phonons
in pure CdSe and CdS bulk materials due to the mixed crys-
: . : . : tal behavior and due to the spatial confinement in small par-
300 500 700 ticles. The shift due to confinement originates from the re-
] B laxation of the q vector selection rulé’ as the spatial
Raman shift (cm ) correlation function becomes finite. However, this shift is
malf’ (2 cm ! or less for nanoparticles of diameter above
nm. We roughly assumed a shift due to confinement of 1
cm ! for all samples. This assumption is reasonable because

mention that the phonon widths also show the same depeﬁhe variation in this shift from one Sample to the other is
dence on the particle size x(/R) as the phonon much smaller compared to the shift due to the change of

frequencie. Therefore, the phonon lines are sharper forcomposition, which was found to be as large as 20 tiior
larger nanoparticles. some samples compared to pure CdSe and CdS bulk mate-
Unfortunately, an effective procedure for the depolarizedial- Assuming a linear shift in the LO-phonon energies with
mode withl =2, similar to that discussed for thhe=0 mode,  respect to the composition the value ofx was calculated
cannot be obtained. The eigenvalue equation, in this casér each sample from the positions of both LO1 and LOZ,
contains functions with two different periodicities, due to theand is listed in Table 1. However, we will see later that the
two sound velocitiey, andv,. The eigenvalue spectrum is influence of the composition on the frequencies of the con-
very sensitive to the material parameters, and cannot be ofined vibrations is weak.
tained analytically. However, the qualitative behavior of the
spectrum is, in general, similar to that of the polarized mode
with 1=0. The matrix influence shifts the frequency posi-
tions in the same direction and phonon frequencies and Low-frequency Raman spectra from the sample OG550
widths also show the same dependence on the particle sizare presented as an example in Fig. 3, where cui@esnd
i.e., they are proportional to R/ The theoretical values for (b) correspond to polarized and depolarized configurations,
thel =2 mode were calculated numerically with the help of respectively. For comparison, an unpolarized Raman spec-
the general eigenvalue equation given in the Appefix.  trum from the base material used for OG550 is presented as
(A20)]. We will show in the next section that this gives a curve(c). The base material is the material before heat treat-
good quantitative agreement with the experimental measuranent, and, therefore, does not contain any semiconducting
ments of the depolarized phonon modes. nanoparticles. This was also confirmed in luminesc&hce

Intensity (arb. units)
LO1
LO1+LO2
2L02

LO2-LO1
2L01

.
o -
o

FIG. 2. Near-resonant Raman spectrum for the sample OG55
showing the optical phonons and their combinations.

B. Confined acoustic phonons

TABLE |. Compositionx, particle radiusR, and experimental and theoretical values of the phonon
frequencies in low-frequency Raman scattering for various filter glass sampleand w,, are the depolar-
ized phonon frequencies for the lowést2 mode and its first-order overtone, respectivaly; , wq,, and
wpz are the polarized phonon frequencies for the lowesd mode and its first and second overtones,
respectively. The experimental valueg, have been used to determiReAll frequencies are given in cit.

Sample X R wWoq wWoo w1 w2 o3
(nm) Expt./Theor. Expt./Theor. Expt. Expt./Theor. Expt./Theor.

0OG515 0.67 2.17 16.0/14.3 —126.8 29.3 —1/60.6 —/91.3
0OG530 0.67 2.22 13.8/13.9 —/26.1 28.6 57.5/59.1 —/89.1
RG630 0.27 3.40 8.8/8.7 —/16.2 17.6 37.0/36.4 —/54.8
0G550 0.67 3.65 8.5/8.5 —/15.9 17.4 39.8/36.0 54.1/54.2
0G590 0.54 4.42 7.3/6.9 —112.9 14.1 31.6/29.1 49.0/43.9
RG695 0.26 5.38 6.1/5.5 —/10.2 111 25.8/23.0 36.7/34.6
RG645 0.32 6.02 5.6/4.9 —/9.2 10.0 23.3/20.7 36.1/31.2

RG665 0.20 7.78 4.5/3.8 —17.0 07.6 17.5/15.7 27.7123.7




5782 PRABHAT VERMA, W. CORDTS, G. IRMER, AND J. MONECKE PRB 60

2 RG665
1

= [
P =
c S
3 .
- g
§ s
= =

= k7] Vv

g g 3

£ (b) E

VH

c)
—r—T 777
T 1 T * T T ° 60 -40 -20 0 20 40 60

T ——
0 20 40 60 80 100 120 140 160 y
Raman shift (cm™)

Raman shift (cm™)
FIG. 4. Low-frequency Raman spectra in polarized and depolar-
FIG. 3. Low-frequency Raman spectra for the sample OG550 inzed configurations for the sample RG665. Phonon modes indicated
(a) polarized and(b) depolarized configurations. Curve) corre- by 3 and 4 are the overtones of the phonon mode 2.
sponds to the base material used for the sample. Inset presents a

deconvolution of various modes seen in the spe@ra tones also appears, but they could not be resolved distinctly
and ASAXS (Ref. 24 measurements. Curve) in Fig. 3 guekto the'(; Wet"’;]k OSC'”TOT strengtl;s_ c_?mparecljt tohthe %Iass
shows a broad structure at about 50 ¢rwhich is known as EC grognf n thls spec rla ran%et.h imifar resu St ‘3\’? Igen
a Boson peak®?°and is attributed to vibrations of the glass g servg bor. other S‘Iam.p eds ar:j q eyl are gresefn € Itn 'gs.
matrix. This structure is also present in cunes and (b). () and 3b) in the polarized and depolarized configurations,

The spectra in Fig. 3 have been normalized to this broa&espe_ctively. _Thes_e spectra are_arranged _in the order of in-
creasing particle size and, thus, in decreasing phonon energy

structure for presentation. Apart from this structure, two dis-

tinct peaks, indicated by the indices 1 and 2, can be seen pm th_e sample OG515 to th_e se_lmple .RG.665' It can be seen
8.5 and 17.5 cm! in curves(a) and(b), which correspond to rom F'.g' 5 that the scattering intensity increases and the
the confined acoustic vibrations of the G&88, _, nanopar- iegr?éaat'%r;ct;ggzznwﬁ’g?:g;i;gg Sgﬁ%g'ég 2 n;gn?léki and
ticles. Peak 1 in Fig. 3 is identified as the depolarized V|bra-2 are found to shift from 4.5 to 16.0 ¢ and from 7.5 to

tion with =2, p=1 and peak 2 as the polarizée-0, p 95 cm tively. f . I | der t
=1 vibration. Weak structures indicated by the indicesSan(? = Cm=, Tespectively, for various samples. In-order 1o

4 at 40 and 54 cm', respectively, are identified as the first

and the second overtones of peak 2 and correspond to the (a) (b)

vibrations| =0, p=2, andp=3, respectively. Besides the

strong peak at 8.5 cit (I1=2, p=1) in the depolarized

spectrum in curveb), a second weak structure is seen at the

calculated position of the first overtone of the depolarized viii viii

mode (=2, p=2). However, the position of this overtone g

overlaps with the position of peak 20, p=1). Although 3 H .. M vii

the latter is forbidden in the depolarized configuration, it g "\A Vl.l vi

could have a slight component due to a possible slight de- = __\/\,f'\/-"—‘ ..ow.\/*\/'\/‘“v

viation of our experimental configuration from the true de- @ v

polarization geometry or due to the fact that the nanopar- ‘E‘) d ‘//\/; /\J/\m

ticles are not perfectly spherical, as indicated in TEM - ""’"\/\«,J\/"]; ""'M\Mml

measurements. Therefore, it is difficult to assign this struc- T~~~ /—\M;?:,

ture either to thé=2, p=2 mode or to thé¢=0, p=1 mode. e e .

The higher-order overtones of the depolarized modes are ,_\/-‘. :—-\\\’Ef

weak and hidden in the boson background. S oS T oo
Figure 4 shows similar spectra from the sample RG665. -50 0 50 -50 0 50

In order to focus attention on the confined phonons and their
overtones, the spectra are presented in a small spectral range.
The polarized and depolarized phonons of this sample are fiG. 5. Low-frequency Raman spectra(@ the polarized and
very close to each other at 4.5 and 7.5 ¢mrespectively.  (b) the depolarized configurations for various samples. The spectra
The first and the second overtones of the polarized vibratiorare arranged in a sequence of increasing particle size from Grve
indicated by the indices 3 and 4 in Fig. 4, can be seen at 1 curve (viii) for the samples 0G515, 0G530, RG630, OG550,
and 27.5 cm?, respectively. A trace of higher-order over- 0G590, RG695, RG645, and RG665.

Raman shift (cm™)
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TABLE II. Experimental and theoretical values of the phonon 70
widths for some of the samples studidt,, represents the phonon
width for the depolarized first mode amg;, represent the phonon 60 -
widths for the polarized first mode and its first order overtone, i
respectively. All widths are given in cn. 50 -
Sample R Iy Tos | P —.’g 40 -
(nm)  Expt./Theor. Expt./Theor. Expt./Theor. S
0G530  2.22 7.5/9.9 9.7/13.1 £ 307
OG550 3.65 6.3/6.1 8.7/8.0 12.5/8.5 < 20 4
0G590 4.42 6.5/4.8 8.2/6.3 £
RG665  7.78 4525 4.8/3.3 6.7/3.6 & .
obtain true values of the phonon widths and positions, a de- 07 g
convolution was performed on each spectrum, an example of 1 o
which is shown for OG550 in the inset of Fig. 3. This was 0.0 0.2 ' 04 ' 0.6

done by assuming the phonons to have Lorentzian shapes 1/R (nm™)
and by choosing a suitable background, either from the spec-
tra of the base materidbs in Fig. 3c)] when available, or FIG. 6. Phonon positions with respect tdR1for various filter
from a combination of suitable mathematical functions. Theg|aISS samplesw, represent various polarized modes, depolarized
measured values of phonon positions and widths for variougodes, and their overtones observed in low-frequency Raman spec-
samples are listed in Tables | and II, respectively. tra. The experimental values for the corresponding phonons are
The phonon corresponding to the lowest order polarizeGhown by full symbols. The dotted, full, and dashed lines corre-
mode (=0, p=1) is the strongest phonon in Raman spectraspond to the theoretical values calculated with0.8, 0.5, and 0.2,
Using the experimental values of the phonon frequency ofespectively. It can be seen that the influence of the composition
this mode, particle sizes were estimated from H@s.and  on phonon frequencies is small.
(9), and from them the phonon frequencies and the widths

for all polarized modes were calculated. The frequencies angy es of the phonon widths for the sample OG530 in Table
the widths for the depolarized modes were numerically caly| can pe explained in this way.

culated from Eq(A20) using the results obtained from the  The theoretical results show that the influence of the com-

polarized modes. Table'l lists the particle size and the phopositionx on the phonon frequencies is very small compared
non frequencies for various samples for all phonon modesy, the influence of the particle sizes. Figure 6 shows the

The phonon widths for various phonons in some of the.g|ation between the phonon position anR1The three the-
samples are presented in Table II.

oretical curves for each phonon are calculated for three dif-
A good agreement between calculated and measured phRsant values of the composition (=0.8, 0.5, and O It

non frequencies is obtaingd@able ). The measured values can be seen that the influence of the compositios small,

of phonon widths, as seen from Table I, are slightly largeryg giateq before. The circles, the squares, and the triangles in
than the calculated values. Only in the case of the sampl

Big. 6 show the experimental phonon frequencies.
OGb530 are the measured values smaller than the calculated

ones. However, it was not possible to measure the phonon
widths for the sample OG515 within reasonable accuracy
because the phonons have very weak strengths. The mea-
sured widths can be larger than the calculated ones due to Low-frequency Raman scattering has been performed on
two reasons: first, due to experimental errors coming froncommercially available filter glass samples, which contain
the equipment line function and, second, due to the size dis=dSSe _, nanoparticles embedded in a glass matrix. In our
tribution of the nanoparticles within each sample. As men-polarization-dependent experiments, we have been able to
tioned earlier, the ASAXS measurements indicate a size disneasure both polarized and depolarized confined acoustic
tribution of about 1 nm for all samples. Due to this, the phonons and to resolve them experimentally. Likewise, over-
phonon energies are also distributed, which provides #&ones of the polarized mode have been observed. A theoret-
broadening in the measured phonon widths. The difference&al model, based on classical elasticity theory, which takes
between the measured and the calculated values is small aimto account the influence of the matrix on the vibrational
agrees well with a size distribution of about 1 nm. Further,spectra of the nanoparticles, has been presented. This model
the damping of the vibrations is calculated assuming thestablishes a relation between the particle size, the frequen-
nanoparticles to have perfect spherical shape with a completges, and the widths of various confined phonons. It can be
surface contact with the surrounding matrix. Both assumpused for any given combination of particle and matrix mate-
tions may not be valid if the particles are very small and,rials. A good agreement between theoretical and experimen-
hence, the coupling constaritin Eq. (5) is effectively tal results has been found. In addition, the results obtained
smaller. The actual phonon widths are then expected to besom Raman scattering are also found in good agreement
smaller than the calculated ones assuming a perfect spherioglth TEM and ASAXS measurements performed in an inde-
particle with complete surface contact. The smaller measurependent study.

V. CONCLUSIONS
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APPENDIX The stress vectorS, andS, can be evaluated from the dis-
The equation of motion of an elastic body placement vector as
2 aD
9°D . . a_ 200 | 2z 2 2 o 2 ORND
— =({~v))V(VD)+v{AD, (A1) STP|2VIG HVie X (VXD)F (vim2vi) (VD)e ),
at (A12)

for the displacement vect@® has the well known dilatation- ~ with
free and curl-free solutions in spherical coordinates, which 5, s o
can be deduced from a scalar potenflaland a vector po- Si(hr)=hp[2v{Dy (hr)+(2vi—vi)z(hn)],

tentiall A=r¥ as (AL3)
. I Sin(hr)=hp2vZD},(hr), Al4
Ds=V®+VXVXA=D,;+D,, (A2) an(ND)=hp2viDaa(hr) (A1)
) A Sy (kr)=kp2vZD),(kr), (A15)
D;=kV XA, (A3)
with Son(kr)=kpV{[Dj(kr)=z(kn)].  (AL16)
For a free sphere, the independent stress ve&pmnd S,
1 . have to be combined so that their superposition at the surface
= EZ'(hr)Y'm( 0.¢)exp—iwt), (A4) (r=R) vanishes, and the eigenvalue equation becomes
Sir SZr)
1 . de( =0. Al7
V= Ez,(kr)Y|m(H,d))exp(—lmt), (A5) Sin Sanll,_g (AL7)

) . This equation can be rewritten into the form discussed by
where Y,(6,¢) are the spherical harmonicg, are the  Tamyraet al? and by Tanakat al° For the special case of

spherical Bessel functions,=w/v,, andk=w/v,. The in- B : .. . = .
dicesSandT in the displacement vector indicate the sphe—lfo’ the dilatation-free displacemeBt, does not exist and

roidal and the torsional modes, respectively. It can be easilf?1 has only the radial component. Therefore, the only re-
shown that the spheroidal displacement vectors have two ifhaining stress component &, and the eigenvalue equa-

dependent directions, one along the radial unit veetand tion reduces to
the other with a tangential component alomhn(0,¢) Sirl;=r=0. (A18)

=rVY.|m(0.,¢). The torsional modes, hO\.NeV?rl have only Replacing the spherical Bessel functions by those of the first
one direction, namely, the orthogonal direction,(6,¢) kind, one gets

=ér><ﬁ,m(6, ¢). The same holds for the respective stress

vectors also. Due to this, the spheroidal and torsional modes pvi .

do not mix even due to the boundary conditions. R L€10(6)=4n%1(§)]=0, (A19)
Since all displacement and stress vectors have a common

time dependence, the factor exfit) can be dropped in the With {=hR=(w/v)R andn=v,/v,.

following discussion. The displacement vectdfr§ and 52 For a sphere embedded in a matrix, the stress vector no

. . > longer vanishes at the surface and has the same value ap-
at the surface can be given, using the notatipp(0, 4) proaching the surface from the inner and the outer radial

=Yim(0.¢)e, as directions. The same condition holds for the displacement
vectors. Thus the general eigenvalue equation becomes

D;=V®=DyEm+DiNim, (A6)
Dlr D2r Dlr D2r
D2=VXVXA=Dye€m+Danim, (A7) q Din Don Din D2 0
e = 1
with Sir Sx Sir Sx
Sin S/ S Sa/
=7/ r=R
z(hr) with the material parameters of the sphéréth indexs) in
Din(hr)=——, (A9)  the left two columns and those of the matfixith index m)
in the right two columns. The Bessel functions within the
2,(kr) sphere must be chosen as théunctions of the first kind and
Do (kr)=I(l +1)Ik—’ (A10) within the matrix as Hankel's functions , which fades out
r

into the matrix(outgoing waves

(k) In the case of =0, the remaining displacement and stress
_ 4lkr / vector components arB,, and S;, and, hence, the eigen-

Dan(kr)= kr A (kr). (AL1) value equation takes the simple form
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Dy Dy Replacingho(ém)/h1(&m) by &m/iém—1 we get
de S S =0. (A21)
r/ g 1r /' m r=R
In this case, withD,,=z5=—2,, the eigenvalue equation PmVr2n| gé
can be transformed to Esjo(ée)—anZj1(£)=—— - —4n |j1(&),
Pngl Hem—1
PV N . (A23)
R Lésio(&s) —4ngj1(89)]/]a(€s)
2
_ PmVmi An2 which can be rewritten into the eigenvalue equatibnwith
R Lénholém —anthu(émlna(én.  (A22) 0 qiven by Eq(5)
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