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We analyze the properties of two-dimensionally periodic dielectric structures that have a band gap for
propagation in a plane and that use index guiding to confine light in the third dimension. Such structures are
more amenable to fabrication than photonic crystals with full three-dimensional band gaps, but retain or
approximate many of the latter’'s desirable properties. We show how traditional band-structure analysis can be
adapted to slab systems in the context of several representative structures, and describe the unique features that
arise in this framework compared to ordinary photonic crysf&6163-18209)00832-2

[. INTRODUCTION dimensional calculations. New issues such as slab thickness,
index contrast with the substrate, and mirror symmetry as-
The discovery of photonic crystals, periodic dielectric ma-sume a prominent role in determining the properties of pho-
terials with a photonic band gap, has opened up new methodsenic crystal slabs.
for controlling light, leading to proposals for many novel ~ The paper is structured as follows. We first outline the
devices! Straightforward application of these results to threenumerical methods that were used in our calculations. We
dimensions requires a structure with a three-dimensiondhen introduce slab band structures for two charact'erist.ic Sys-
band gap. Fabricating such structures, however, has beent@Ms, the slab analogues of Fig. 1, suspended in air. The
challenge because they tend to have complex threeselecn_on of an appropriate slab thlckness_ is dls_cusseo_l, and
dimensional connectivity  and strict  alignment @n estimate for the optlmal slab thickness is d_enved using a
requirement$-® Such designs have been the subject of many/arlatlonal apprqach. Finally, the effects of different bac.k—
recent developmenfs1© An alternative system, the photonic grounds, the regions above and below the slab, are examined
crystal slab, has been propo&kd®that promises easier fab- N the_ context of t_he two example structures. Band_structures
rication using existing techniques. This is a dielectric struc-aré given for solid, periodic, and symmetry-breaking back-
ture that has only two-dimensional periodicity and uses in-grounds.
dex guiding to confine light in the third dimension. Photonic
crystal _slabs retain or a_pproximate many of the de_sirable Il. COMPUTATIONAL METHOD
properties of true photonic crystals, but at the same time are
much more easily realized at submicron lengthscales. We The computation of a slab band structure is performed in
present in this paper a novel band-structure analysis of phdwo stages. First, the states of a slab are computed in a peri-
tonic crystal slabs, providing a systematic understanding o@dic cell. Then, the light cone is calculated and overlaid as
many important features of these systems. an opaque region on the band diagram. The resulting nonob-
In many ways, photonic crystal slabs are analogous tecured bands are the guided modes of the system, as de-
two-dimensional photonic crystals, such as those depicted ifcribed in the following section.
Fig. 1, and this analogy aids greatly in the visualization and The eigenstates of the slab are computed using precondi-
analysis of slab systems. Two-dimensional calculationstioned conjugate-gradient minimization of the Rayleigh quo-
however, cannot be applied directly to three-dimensional
slab structures. In particular, the band structure computed for
a two-dimensional structure, as shown in Fig. 2, applies in
three dimensions only to a structure that is infinitely “ex-
truded” in the third dimension. Moreover, these two-
dimensional bands correspond only to states that have no
wave-vector component in the vertical directigerpendicu-
lar to the plane of periodiciy The inclusion of vertical
wave vectors produces a continuum of states depicted by the
shaded region in Fig. 2, destroying the band gap of the two- FiG. 1. Two-dimensional photonic crystals) Square lattice of
dimensional structure. The restriction of a slab to finitedielectric rods in air, with lattice constaatand radius 0.2. (b)
height recreates the band gap in the guided modes of a slabriangular lattice of air holes in dielectric, with lattice constant
but also forces a new analysis of the system that is fundaand radius 0.4&. In both cases, the dielectric constant of the high-
mentally three-dimensional and distinct from the two-index material is 12.

0163-1829/99/6(8)/5751(8)/$15.00 PRB 60 5751 ©1999 The American Physical Society



5752 STEVEN G. JOHNSONet al. PRB 60

frequency (c/a)
o
'S

0.3
0.2
XX R
2oB9
0.1 2O Ge
X R
o-¢ T | ? . . .
r X M r FIG. 3. Photonic crystal slabs analogous to the two-dimensional
structures from Fig. 1(a) Square lattice of rods in air with height
(b) 0.8 —— 2.0a. (b) Triangular lattice of holes in a dielectric slab with thick-
ness 0.G. (Other parameters are as in Fig) Both slabs are sus-
0.7 pended in air.

method in Ref. 19. In all cases, the light cone is depicted
with a uniform shading that does not reflect the varying den-
sity of states in this region.
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IIl. PHOTONIC CRYSTAL SLAB BAND STRUCTURES

Shown in Fig. 3 are the photonic crystal slab analogues of
the two-dimensional structures from Fig. 1. These two sys-
tems, a square lattice of dielectric rods in air and a triangular
lattice of air holes in a solid dielectric slab, embody the two
basic topologies of two-dimensional crystals, and are charac-
teristic of many possible slab structurf&n air-bridge struc-

, ture similar to Fig. 8) was fabricated in Ref. 18As seen
0¥ T | Y from Fig. 2, in two dimensions the rod structure has a band
r M K r gap in the TM modeg$magnetic field in planeand the hole

FIG. 2. Band diagrams for the photonic crystals fréa Fig. ~ Structure has a band gap in the TE modetectric field in
1(a) and (b) Fig. 1(b). The shaded region indicates the frequenciesPlang. (The hole structure also has a small band gap in the
of states introduced when vertical propagatiae., perpendicular TM modes, but we focus here on the more robust TE gap,
to the plane of periodicityis permitted. which is larger and separates the lowest two TE bands.

The corresponding projected band structures for the three-

tient in a plane-wave bastS.Such a computation requires a dimensional slab structures are shown in Fig. 4. These
periodic cell. The slab is already two-dimensionally periodic,graphs, whose computation was discussed in the previous
and we impose a three-dimensional periodicity by assumingection, illustrate many features that are common to all pho-
a periodic sequence of slabs separated by a sufficient amoutainic crystal-band diagrams.
of background region. Because the guided modes are local- Perhaps the most important feature of the projected band
ized within the slab, the addition of periodic slabs at largediagram, the element that distinguishes slabs from ordinary
intervals does not affect their frequencies noticably. Thephotonic crystals, is the light cone, a continuum of states
nonguided modes are affected, but since they fall inside thndicated by a shaded region in the plot. The light cone con-
light cone their exact frequencies are inconsequential. sists of states, or radiation modes, that are extended infinitely

The light cone is a continuous region indicating all pos-in the region outside the slab; we refer to this region as the
sible frequencies of the bulk background. It is sufficient to“background.” Guided modes, which are states localized to
compute only the lower boundary of the light cone, since allthe plane of the slab, can only exist in the regions of the band
higher frequencies are automatically included. In the case afiagram that are outside the light cone. The primary interest
a uniform background region, the boundary is simply thein the radiation modes lies in how they interact with and
wave vector divided by the index. For a periodic back-constrain these guided modes.
ground, the boundary is the lowest band of the corresponding Any state that lies below the light cone in the band dia-
two-dimensional system, as is discussed in a later sectiogram cannot couple with modes in the bulk background.
and is computed using the two-dimensional version of thelhus, the discrete bands below the light cone are guided—
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FIG. 5. Lowest-frequency states of the rod and hole structures

0.5 from Fig. 3 atM andK, respectively, depicted in the unit cell. The
= shading indicates the components of the electric and magnetic
< fields, respectively, which happen to be positive through the unit
>,0'4 cell for these states. Outlines of the rods/holes are shown in white.
e S onoaleeSess (a) Vertical cross sectior{b) Horizontal cross section. In both cases
%0.3 the cross-sections bisect the holes or rods.
0]

same phenomena that occur in two-dimensional crystals,
such as the ability to confine light in the plane to waveguides
or resonators® (The presence of the radiation modes in the
gap has the consequence that resonant cavity modes will
0 eventually decay into the backgroupd@he fact that light in
T ‘ ! ! the band gap of the slab is forbidden from propagating in the
T M K r L
plane of the slab, and can only radiate into the background,
FIG. 4. Projected band diagrams corresponding to the two slab&as used in Ref. 13 to design an efficient light emitting
in Fig. 3. Whether states are even or odd with respect to the horidiode (LED).
zontal mirror plane of the slab is indicated by open or filled circles, As in two dimensions, one is able to decompose the
respectively. guided modes into two noninteracting classes. The lack of

the states are infinitely extended within the plane of the slagiranslational symmetry in the vertical direction, however,
but decay exponentially into the background region. Thignéans that the states are not purely TM or TE polarized.
confinement is analogous to total internal reflection, and ignstead, due to the presence of a horizontal symmetry plane
due to the guided modes seeing a higher effective index iRisecting the slab, the guided bands can be classified accord-
the slab than in the background regiofasr, in this casg  ing to whether they are even or odd with respect to reflec-
When a guided band reaches the edge of the light cone, itons through this plane, and are indicated on the band dia-
becomes a resonant state: it extends, albeit with low ampligram by hollow or filled circles, respectively. As shall be
tude, infinitely far into the background, and cannot be usedeen below, these even and odd states have strong similari-
to permanently confine light within the slab. We restrict ourties with TE and TM states, respectively, in two dimensions.
discussion, and our use of the term “guided modes,” to truly(In fact, in the mirror plane itself, the even and odd states are
localized states, which grow arbitrarily small as the distancepurely TE, and TM, respectivelylt is not surprising, then,
from the slab becomes large. that the slab of rods has a gap in its odd modeg. 4(a)],

The reason we refer to these systems as “photonic crysand the slab of holes has a gap in its even md&es 4(b)].
tal” slabs is that, like their two-dimensional brethren, they In Fig. 5,z-components of the electric and magnetic fields
have a band gap—but not of the traditional sort. A “bandare shown for the lowest-order odd and even guided modes
gap” in this case is a range of frequencies in which nofrom the rod and hole slabs at tandK symmetry points,
guidedmodes exist. It is not a true band gap because thereespectively. It is apparent from these figures that these states
are still radiation modes at those frequencies. Still, the laclkare strongly guided within the thickness of the slab. More-
of guided modes in the band gap gives rise to many of th@ver, within the slab they are TM- and TE-like, and closely
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FIG. 6. (Colon (a) Vertical cross section d, for the first odd FIG. 7. Gap sizdas a percentage of midgap frequenegrsus

(TM-like) excited state a in the rod structure from Fig.(d). (b)  slab thickness for the two slabs from Fig. 3.
Vertical cross section dfi, for the first TE-like (but odd excited
state aiK in the hole structure shown in Fig(h). order of half the two-dimensional gap-bottom wavelength.
The justification for this is based on the fact that the wave-
resemble the corresponding states in the two-dimensiondéngth is the lengthscale for variations in field amplitude at a
system. given frequency(We use the gap-bottom frequency instead
Higher-order states in the slabs are formed in two waysof, say, midgap, because the state at the bottom of the gap is
First, they can gain additional nodes or other structure in thé¢he basis for both the state at the lower edge of the slab gap
horizontal plane, corresponding to higher-order states in thand the excited states at upper egldgkthe slab thickness is
two-dimensional system. Second, they can be formed by wavelength or more, then there will be little energy barrier
adding vertical structure such as horizontal nodal planes. Ito creating a higher-order state via a nodal plane. If the slab
the case of the rods, the lowest higher-order odd state is dhickness is less than half a wavelength, on the other hand,
the first type, and is depicted in Fig(eh. The second odd then the mode cannot be strongly confined within the slab.
mode at theM point in the holes slab, as shown in Figbg Only the frequency, rather than the wavelength, of the gap
is of the second type—it corresponds to the lowest-ordebottom is known, however. An effective dielectric constant
even mode modified by the addition of a single horizontalmust be determined in order to compute the corresponding
nodal plane. Note that adding a nodal plane bisecting the slavavelength. We accomplish this by constructing an estimate
transforms a state from odd to even and vice versa, so evdor the slab gap-bottom state using the two-dimensional
and odd higher-order modes are not necessarily TE-like andave function, and evaluating the dependence of its fre-
TM-like, respectively. guency expectation value on the vertical wavelength. The
Higher-order modes of the second type do not correspondiave function can be approximated by:
to excitations in the two-dimensional system, and are respon-
sible for destroying the gap if the slab becomes too thick, as 5 N _
is discussed in the following section. |H>=f H o(x,y)e'*2a(k)dk. (1)

IV. EFFECTS OF SLAB THICKNESS — . . . .
Here,H g is the eigenfunction of the two-dimensional system

The slab thickness plays an important role in determiningat the lower edge of the gap. Tlak) amplitudes are as-
whether a photonic crystal slab has a band gap in its guidesumed to be chosen so that they produce a state strongly
modes. Shown in Fig. 7 is a graph of the band gap size aslacalized within the slab. A Fourier basis is used for the
function of slab thickness for the rod and hole slabs fromdependence so that the vertical wave vector may be an ex-
Fig. 3. The existence of an optimal thickness for each slab iglicit parameter. We have chosen this wave function based
easily understood. If the slab is too thick, then higher-ordeion our experiencge.g., in Fig. 5 that the lowest-order
modes can be created with little energy cost by adding horiguided band in the slab system is similar in appearance to the
zontal nodal planes. Such modes will lie only slightly abovecorresponding two-dimensional state with the addition of
the lowest-order mode, preventing any gap. If the slab is towertical confinemen{.We note that the field in Eq1) is not
thin, then the slab will provide only a weak perturbation ondivergenceless, howevégr.
the background dielectric constant. Guided modes will still We now evaluate the energie., frequencyof this state.
exist, but they will hug the edge of the light cone and be onlySince the state is assumed to be localized within the slab, the
weakly guided; any gap will be miniscule. Below, we pro- frequency should not be much affected if we evaluate it in an
pose a method for estimating slab thicknesses that produc&initely thick slab, which can be done exact{yn the case
large gaps, and explain the sharp distinction seen in Fig. 8hown in Fig. 5, more than 90% of the computed wave func-
between the optimal thicknesses for the rod and hole slabstion’s energy was found to lie within the height of the s)ab.

We postulate that the optimal thickness will be on theln this approximation, the frequency is found to be one of
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where E represents the electric field, ana, is the two-
dimensional frequency. Equatio®) and(3) are equivalent
only for divergenceles@ransversgfields. In the case of Eq.
(1), which is not transverse, we use Ef) for TM fields and
Eq. (3) for TE fields, for simplicity of the resulting expres-
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(a) rods (b) holes

FIG. 8. Side view of the slabs from Fig. 3 with a uniform,
low-index background above and below the sldhbkis the rod slab
and(b) is the hole slab. The background has a dielectric constant of
2.0 and all other parameters are as in Fig. 3.

When applied to the rod and hole systems with the effec-
tive dielectric constants computed above, E§). predicts

sion. In both cases, the vertical wavelength is related to freeptimal thicknesses of 1la6and 0.A, respectively, com-
guency simply by an effective dielectric constant that de{pared to the computed gap maxima ata2&hd 0.& from
pends upon the polarization of the corresponding two+ig. 7. The estimates come close enough to the optimal val-

dimensional state, and is given by

— _<Eo|8|Eo>
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In the TE case, the dielectric constant is weighted by th

electric field, which is concentrated in high dielectric for the

lower bandg, and thus one should get @annear to the high

two-dimensional system gives an of 5.06 from Eq.(4).
This value, while greater than the uniform-weight meaof
3.92, is still far from 12(the high dielectrig, as a result of
the structure’s dielectric veins being so thiithis structure

e

ues that large gaps are produdwdhereas there would be no
gap at all if the two estimates were applied to each others’
systems Moreover, this approximation explains how the
sharp difference in optimal thickness between the rod and the
hole systems derives from the polarizations of the modes
exhibiting the gap.

It should be noted that the size of the gap is not necessar-
ily the only consideration in selecting the slab thickness. For
example, when localizing states in a resonant cavity, longer
decay times can sometimes be achieved by using slightly
thicker slabs—this causes the states to be more localized

dielectric constant. For the example of air holes in dielectrictWlthln the slab, and also pulls the frequencies down to where

[Fig. 1(b)], the topmost state of the bottom TE band in the

he density of radiation modes is lowgsince the density of
states in vacuum goes as’). It is often better to tune pa-
rameters, such as the slab thickness, based upon the actual
phenomenon that is being optimized, rather than indirectly
via the size of the band gap. Nevertheless, the approximation

in Eqg. (6) gives a reasonable starting point for subsequent

has both a TE and a TM gap, but we focus on the TE ga'?ine-tuning

corresponding to the even model Eq. (5), the TM case,
we average the inverse dielectric constant, a mean that favors

lower values. Moreover, the mean is weighted by the mag-V- SLABS WITH SOLID BACKGROUNDS (SANDWICHES)

netic field, which tends to be less in the high dielectric than g, far, we have focused on the idealized system of slabs
the electric field.(The magnetic field must loop around the suspended in air. We now turn to the case where the back-

electric field in the high dielectric, since the relationship Ofground regions above and below the slab are occupied by a
the magnetic and electric fields is the same as that of a CU{jiform dielectric material forming a substrate or “sand-

rent loop and its magnetic fieldTherefore, the TM average \yich” as shown in Fig. 8.(We focus first on having the
dielectric should be closer to the low dielectric constant. INgame dielectric above and below the slab in order to maintain

the case of the dielectric rods in &kig. 1(a)], Eq.(5) for the

mirror symmetry; the effects of symmetry breaking are con-

highest-frequency mode of the bottom TM band in two-gjgered in a later sectioniThe dielectric constant of the sub-

dimensions produces aa of 1.25 (versus the uniform-
weight inverse mean of 1.13

strate is 2, but the holes and the space between the rods
continue to be occupied by air. The resulting band structures

From the above calculations, then, an estimate for there given in Fig. 9. The background index remains lower

optimal slab thickness is given by

1
ngap-bottom\/;—

Here, the frequency is given in units ofa and the thickness
is in units ofa. The effective dielectric constamt can be
estimated from the averages in E¢4). or (5), according to
whether a TE or a TM gap is of interest, and can use as

slab thicknessh~ (6)

than the effective index in the slab, and hence index guiding
is still able to produce the guided banésnd band gap
evident in Fig. 9.

While such a substrate will have a finite thickness in re-
ality, the localization of the guided modes within the slab
means that the substrate can be considered infinite as long as
it is sufficiently thick. (In this case, a substrate thickness of
several wavelengths is sufficient for the guided mode ampli-
tude to be negligible beyond the substrafEhus, the light

weighting factor either the state from a two-dimensional cal-cone states are those of an infinite uniform dielectric, whose

culation or simply a uniform value.

frequencies are reduced from those in vacuum by a factor of
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FIG. 9. Projected band diagrams for the structures shown in Fig. 8. . . .
) g 9 FIG. 11. Projected band diagrams for the structures shown in

Fig. 10.
the index. The increased index above and below the slab also

has the effect of pulling down the frequencies of the guided VI. SLABS WITH PERIODIC BACKGROUNDS
modes, allowing them to remain under the now-lowered light The effective index above and below the slab can be re-

cone. In addition, the guided modes are somewhat les§ .oq from that of a solid background by using an “ex-
localized—for example, 89% of the energy of the lowesty,,jeq » |ow-index version of the slab, as shown in Fig. 10.
band for the hole structure & is within the height of the  £or example, in the case of the hole slab, the holes extend
slab for the solid background, versus 96% for an air backyhrough the low-dielectric substrate as well as through the
ground. slab. The resulting band structures are shown in Fig. 11, and
again demonstrate guided modes and a band gap. Such a
structure has advantages both in ease of fabricatimth

R A R L e L R L
H B Lol e

(a) rods (b) holes slab and substrate can be etched at the same tme in
1818 1R IR IR (a) rods (o) holes
FEE R T
v by b by b} 5 [EEEIN I RN ST St
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FIG. 10. Side view of the slabs shown in Fig. 3 with a periodic ~ FIG. 12. Side view of the slabs shown in Fig. 1€&xtruded
background formed by “extruding” the structures with a low-index backgroundswith the upper background replaced by air. All other
material (dielectric constant 2)0 All other parameters are as in parameters are as in Fig. 10. This background breaks the mirror
Fig. 3. symmetry of the two photonic crystal slabs.
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FIG. 14. A solid substrate may lie below a slab without affect-
ing the band structure by being sufficiently far from the slab,
(b), (c), and (d) depict such solid substrates below the symmetric
and antisymmetric rod and hole structures from Figgajld2(a),
10(b), and 12b), respectively.

background state’s magnetic field can be written in the form
0.5

IHy="H (x,y)ekzob), (7)

Such a field is manifestly propagating in the positagirec-

tion (upwards for positivek and downwards for negative
Therefore, the group velocityw/dk, which can be ex-
pressed as the upwards flux divided by the energy density
(using the derivative of the eigenvalue equatjanust have

the same sign ak. It then follows that the minimum fre-
quency occurs at zerk, at which point the solutiofH) is
simply the two-dimensional eigenstate. This argument holds
at each point in the Brillouin zone, and so the light cone is
bounded by the lowest two-dimensional band.

frequency (c/a)
o o
w B

o
o

0.1

o ] T

r M K I VIl. SLABS WITH SYMMETRY-BREAKING

BACKGROUNDS

FIG. 13. Projected band diagrams for the structures shown in

Fig. 12. The bands can no longer be segregated into even and odd Itt IS ?ISO pos&?le to hba\t/e ta kk))atl:kgr;)hundltfl;at '3 n(_)t ng'
modes, and there is no longer a band gap in the guided modes. MErIc, Tor examplé a substrate below the slab and air above

the slab.(Rod and hole slabs with solid substrates have been
confinement of resonant cavity stat@ince localized states studied experimentally, e.g., in Refs. 20-)ZPhe light cone
couple less strongly with a lower-index backgrountihe in this case is the union of the light cones for the back-
periodicity of the background does not, however, producegrounds above and below the slab. Such a structure is de-
useful photonic crystal slab effects by itself. Even if therepicted in Fig. 12, in which the periodic backgrounds from the
were some sort of band gap in the background states, jirevious section here lie only below the slabs. The resulting
would lie at higher frequencies than the band gap of théband diagram is given in Fig. 13.
guided modes and would therefore not provide any addi- The most important consequence of a symmetry-breaking
tional confinement capabilities. background is that the guided modes can no longer be clas-
The light cone in this system consists of all the statessified as even or odd. Thus, there is no longer any band gap
existing in the bulk background, an infinitely extruded two- in the guided modes, and the photonic crystal properties of
dimensional photonic crystal. This is similar to the shadedhe slab are ostensibly lost. If the guided modes are suffi-
regions from Fig. 2, except that the material has a smalleciently localized within the slab, however, so that the back-
index. That is, the lower edge of the light cone is simply theground is only a small perturbation, the wave functions may
lowest band of the two-dimensional system. The fact that thetill be approximated as even or odd and some effects of the
lowest band of the two-dimensional structure forms a lowetand gap will persist.
bound for the frequencies of the extruded structure in three In order to maintain the distinction between even and odd
dimensions may not be immediately apparent, and so wguided modes, it is only necessary to preserve mirror sym-
consider it below. metry where the guided modes have non-negligible ampli-
Because the dielectric function of the bulk backgroundtude. Thus, a solid substrate can be used below the(atab
e(x,y), has translational symmetry in tledirection, any not abové with no effects on the band gap as long as the
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substrate is separated from the slab by a buffer region that isiore, the presence of a band gap in the guided modes is
sufficiently thick. Shown in Fig. 14 are examples of how auseful in its own right. For example, Faat al. have pro-
solid substrate might be used below the structures from thposed using slab band gaps to prevent in-plane losses from
previous two sections without affecting the band structured ED emission:® Perhaps the greatest promise of photonic
significantly. crystal slabs, however, is that they will allow exciting results
from two-dimensional crystals such as waveguide b&hds
VIIl. CONCLUSION and channel-drop filtet to be implemented easily on opti-

. ) i cal and infrared lengthscales.
Photonic crystal slabs are an important system in the prac-

tical application of photonic crystals, and the band-structure
formalism provides a powerful tool in their analysis. Unlike
two- and three-dimensional photonic crystals, the band struc- This work was supported in part by the Materials Re-
tures for slabs are projected and have the unique feature ofsearch Science and Engineering Center program of the Na-
light cone enveloping the states. The presence of the lighional Science Foundation under Grant No. DMR-9400334.
cone means that a complete band gap is impossible—stil5.G.J. would like to thank the National Defense Science and
waveguides and resonant cavities are possibleurther-  Engineering Council for financial support.
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