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Level anticrossing effect on electron properties of coupled quantum wells under an in-plane
magnetic field

A. Hernández-Cabrera* and P. Aceituno
Departamento de Fı´sica Básica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain

F. T. Vasko
Institute of Semiconductor Physics, NAS Ukraine, Pr. Nauki 45, Kiev, 252650, Ukraine

~Received 22 March 1999!

The influence of an in-plane magnetic field on the energy spectrum and zero-temperature equilibrium
properties of tunnel-coupled double and triple quantum wells is studied. Both the appearance of the gap due to
anticrossing of two energy branches and the peculiarities of the third-order crossing point~for symmetric triple
quantum well case! are discussed. As results, magnetization of two-dimensional electrons in double and triple
quantum wells is modified essentially if the Fermi level is localized near such peculiarities. Another effect
under consideration is the interlevel charge redistribution between quantum wells and the transverse voltage
induced by the in-plane magnetic field. Self-consistent numerical calculations for double and triple quantum
wells, which take into account the modifications of energy spectra under gate voltage, are presented.
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I. INTRODUCTION

Currently noticeable interest is focused on the electro
properties of double and triple quantum wells~DQW’s and
TQW’s! and on the transport~or optical! phenomena in such
semiconductor structures. Such tunnel-coupled tw
dimensional~2D! electron systems, when subjected to a p
pendicular or parallel~in-plane! magnetic field, exhibit a se
of new physical phenomena. While the effect of a perp
dicular magnetic field is due to Landau quantization, the
fluence of an in-plane magnetic field appears due to diffe
displacements of the energy dispersion parabolas of the
ferent quantum wells~QW’s!. The sketches of the energ
spectrum modifications under an in-plane magnetic field
shown in Fig. 1. It is clear that different types of cross poi
between dispersion parabolas~which are independent fo
tunnel-uncoupled wells! are possible for DQW’s and TQW’s
the type of peculiarity is determined both by the strength
the magnetic fieldH and by the parameters of the tunne
coupled structure.

Such in-plane magnetic-field-induced modifications of
energy spectra in DQW’s and TQW’s change the in-pla
conductivity of these systems~see experimental data fo
DQW’s in Refs. 1–6 and first measurements for TQW’s
Ref. 7; theoretical results for DQW’s are discussed in Ref!
and the photoluminescence spectra.9 Two reasons for con-
ductivity changes were found: the modification of the res
tance resonance peak~these results are reviewed in Ref. 1!
and the formation of density of states singularity11 due to the
anticrossing effect presented in Figs. 1~b! and 1~d!. The pho-
toluminescence line shape depends on the modificatio
hole states and is due to the many-particle interaction.12 In
the recent years, a weak perpendicular magnetic field
been employed as a probe in order to study the effect
in-plane field on tunnel-coupled states of electro
~Shubnikov—de Haas oscillations5 and cyclotron resonanc
absorption13 have been measured!. Note that all aforemen-
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tioned papers deal with the transport properties when
peculiarities of the energy spectra together with other fac
~scattering processes, transformation of the hole states! are
essentials. The aim of this paper is the description of
equilibrium electron properties of tunnel coupled structur
when collisions do not determine the character of the
sponse. Both the magnetization of tunnel-coupled QW’s
der in-plane field and magnetoinduced transverse voltage
low the direct ~collisionless! investigation of the energy
spectrum peculiarities.

Our calculations are based on the one-electron Ham
tonian for the usual effective mass approximation

H̄5
@p2eA~z!/c#2

2m
2

\2

2m

d2

dz2 1UCQW~z!1Usc~z! ~1!

FIG. 1. Sketches of the energy spectra of symmetric tunn
coupled QW showing the types of cross-points:~a! ‘‘vertical’’
crossing in DQW’s;~b! ‘‘horizontal’’ crossing in DQW’s;~c! two
‘‘vertical’’ cross points for TQW’s;~d! triple-cross point in TQW’s.
The anticrossing effect is shown by the dashed lines.
5698 ©1999 The American Physical Society
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Here, p is the 2D momentum,A(z) is the vector potentia
corresponding to the in-plane magnetic fieldH ~below
HiOY!, UCQW(z) is the confinement potential of the heter
structure along thez direction, which includes the transvers
electric field,F' , and Usc(z) is the self-consistent Hartre
potential, which is determined from the Poisson equation
Sec. II, we use the tunneling approximation~which takes into
account two or three tunnel-coupled levels only! for the con-
sideration of the energy spectrum peculiarities; then we c
pare these results with the self-consistent numerical solut
of the eigenstate problem for the energy spectra of DQW
and TQW’s. In the Sec. III, we present the analysis of
magnetizationM and of the magnetoinduced transverse vo
age dU; also, self-consistent results for the equilibriu
quantitiesM and dU are presented. Discussion of our a
sumptions and concluding remarks are given in the last
tion.

II. ELECTRON ENERGY SPECTRUM

To consider the electron properties of tunnel-coup
DQW’s and TQW’s under in-plane magnetic field, we d
scribe in this section the energy spectrum for these syst
using both the simple analytic and the self-consistent
merical procedure. For the analytical consideration below
employ a basis of the electron ground states, which are
scribed by the single well orbitalswkz for left ~l-! and right
~r-! wells of DQW’s or l-, r-, and central~c-! wells for
TQW’s. In the framework of such approximation we w
search for the solution of the eigenstate problemĤC5EC
in the form

C~p,z!5(
k

ck~p!wkz , ~2!

wherek5 l ,r for DQW’s or k5 l ,c,r for TQW’s. In the in-
troduced basis, the columnsck(p) are determined from the
eigenstate problem with the matrix Hamiltonian~we write
here 333 matrix for the TQW’s case!

U« l~p! Tl 0

Tl «c~p! Tr

0 Tr « r~p!
U , ~3!

whereTl andTr are the tunneling-matrix elements forl and
r barriers,«k(p) are the electronic dispersion laws for sing
kth QW under in-plane magnetic field:

«k~p!5«kH1
~px1mvk!

21py
2

2m
, vk5

ueuH
mc

~zk2z0!,

~4!

and the characteristic velocities,vk , contain an arbitrary co-
ordinatez0 due to the gauge invariance. Thekth level energy
«kH is introduced here as

«kH5«k1
~eH/c!2

2m E dzwkz
2 ~z22zk

2!, ~5!

where the proportional toH2 intrawell corrections are usu
ally negligible8 and we use«kH;«k below. The correspond
ing 232 matrix for DQW’s contains single tunnel-matri
n

-
ns
’s
e
-

-
c-

d
-

s
-
e
e-

elementT and was presented in Ref. 8. Thus, simple anal
cal consideration of the second or third order dispersion
gebraic equations~for the DQW’s or TQW’s cases, corre
spondingly! permits us to analyze the energy spec
peculiarities.

The explicit expressions for6 branches of energy spectr
in the DQW’s structure case take the form

E6~p!5
p2

2m
6

DT~px!

2
,

DT~px!5A~D2vHpx!
21~2T!2, ~6!

where v r52v l[vH and D5« l2« r is the level splitting
without tunneling. The equation]E6(p)/]px50 gives us
both the minimum energies for6 branches of spectra an
the condition for transformation of the anticrossing structu
from the ‘‘vertical’’ case@Fig. 1~a!# to the ‘‘horizontal’’ case
with two additional extrema@Fig. 1~b!#. The last case cause
the logarithmically divergent density of states,11 which leads
to the peculiarities of thermodynamic characteristics wh
the Fermi level intersects the horizontal anticrossing regi
For the tunnel-uncoupled DQW’s~with T˜0! the minimal
energies6D/2 correspond to the momentum6mvH and the
cross point is realized atp̄x5D/vH ~there are no anticrossin
effect or logarithmic peculiarity of the density of states und
such simplification!.

For the TQW case we have to solve the cubic dispers
equation

~« lpx
2j!~«cpx

2j!~« rpx
2j!2Tr

2~« lpx
2j!2Tl

2~« rpx
2j!

50, ~7!

wherej5E2py
2/(2m) includes the motion along the mag

netic field. For the tunnel-uncoupled TQW’s~with Tr ,l˜0!
the triple-cross point could be realized atp̄x , which is deter-
mined from the conditions« l p̄x

5«cp̄x
5« r p̄x

. Choosingz0

5zc , counting the energy from«c50, and using«cpx

5px
2/(2m) these equations are transformed to« l1v l p̄x5« r

1v r p̄x50. There is no solution for the general case~with
« l /« rÞv l /v r! and peculiarities of the energy spectra and
the density of states appear in the weak tunnel-coup
TQW’s due to the contributions from two double-cro
points between different branches of spectra~see above dis-
cussion for the DQW’s case!.

The triple-cross point occurs for the special case of
tunnel-uncoupled TQW’s with« l /« r5v l /v r . For the
tunnel-coupled TQW’s case withTl.Tr[T ~otherwise
TQW’s transforms to DQW’s with additional uncouple
well! and v l.2v r[vH ~so that« l.2« r[D/2! we obtain
the dispersion equation:

S px
2

2m
2j D F S px

2

2m
2j D 2

2S D

2
1vHpxD 2G22T2S px

2

2m
2j D 50,

~8!

As a result, the triple-cross point is formed as the superp
tion of the horizontal anticrossing solutions, which are d
tinct from the DQW’s case due to the larger tunnel-mat
element&T, and to the simple parabolic branch inside t
anticrossing gap@see Fig. 1~d!#.



ro

n

e

m
tio
o-

s,
r

ity

th
d
s
e

c-

th
o
-
-
he
-

th

s
, a

t
-

n-

he
n-

he

of

d

ws
2

ent

, the

d
ures
is
m-

ctra
nel-
this
neti-

nu-
d
ions
erse

,
the

gle

eld,
W
ef-
ti-

on
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The self-consistent numerical procedure for the Sch¨-
dinger equation with the Hamiltonian~1! involves the Har-
tree potential, which is obtained from the Poisson equatio
the following form:

Usc~z!5
4pe2

« E
2`

z

dz8~z2z8!@nD~z8!2ne~z8!#. ~9!

Here nD(z) is the 3D concentration of donors, which w
assume as ad doping in the center of the heterostructure;« is
the dielectric permittivity, which is supposed to be unifor
across heterostructure, and the 3D electron concentra
ne(z), is introduced in the usual way for the zer
temperature case with the Fermi energy«F :

ne~z!52(
j
E dp

~2p\!2 uC j~pz!u2u@«F2Ej~p!#

5
2r2D

p (
j
E dpxuC jpx

~z!u2A«F2Ejpx

2m
. ~10!

In the right-hand side of this equation we used thej th branch
of the electron dispersion laws for DQW’s or TQW’
Ej (p)5Ejpx

1py
2/(2m), and performed the integration ove

py ; r2D is the 2D density of states. The Fermi energy,«F , in
Eq. ~10!, is expressed through the total 2D electron dens
ne , according to

ne5
2r2D

p (
j
E dpxA«F2Ejpx

2m
, ~11!

and«F depends onH for the case of fixed concentration.
To numerically calculate the dispersion relations, i.e.,

eigenvalues for differentpx values, we assume a flat-ban
approximation for the effective potential of the structure, a
first step of calculation. Then, we divide each quantum w
and barrier potential inNi rectangular pieces with as i width.
WhenNi˜`, s i˜0 and we reproduce the actual QW stru
ture. In this case, we can use plane waves in eachNi part of
the wells and barriers. The next step consists in applying
boundary conditions at each virtual interface, to say the c
tinuity of @1/m(z)c#(]c/]z) @here we use the position
dependent effective massm(z)#. We have done this self
consistently by using the transfer-matrix method toget
with the Hartree potentialUsc(z). The transmission probabil
ity and energy levels are now obtained fromM2250, Mi j
being the matrix elements resulting from the matching of
boundaries between all pairs of virtual layers

M5@Sb~z1!#21@Sw~z1!#@Sw~z2!#21@Sb~z2!#..., ~12!

where

Sw,b~z!5S w1
w,b~z! w2

w,b~z!

]

m~z!]z
w1

w,b~z!
]

m~z!]z
w2

w,b~z!D , ~13!

and w1,2
w,b(z) are the plane waves for wells~w! and barriers

~b!, respectively. Subindexes 1 and 2 indicate the two as
ciate solutions of any second-order differential equation
in

n,

,

e

a
ll

e
n-

r

e

o-
s

Eq. ~1! is. Thus, for a givenpx value we obtain the differen
eigenvaluesEjpx

~see reference14 for a more detailed descrip

tion of the method!.
Below, we present results of numerical calculations co

cerning the electron dispersion laws,Ejpx
, in DQW’s and

TQW’s under in-plane magnetic field. We consider t
GaAs/Ga0.65Al0.35As-based structures with a conductio
band offset of 300 meV,mGaAs50.067me , mGa0.65Al0.35As

50.073me . We have used two 70-Å well widths (dl5dr)
for the DQW’s case, separated by a 40-Å barrier width. T
TQW consists on three wells,dl5dr5dc570 Å, with two
40-Å barrier widths. We have used a 2D carrier density
3.1011cm22 for all cases. Fermi level depends onH through
the dispersion relations and on the carrier density@see Eq.
~11!#. We will restrict ourselves to symmetric QW’s with an
without external electric fields.

Results for self-consistent calculations of dispersion la
for symmetric DQW’s and TQW’s are presented in Figs.
and 3, respectively. The magnetic field produces differ
horizontal shifts of parabolas in thepx direction and, then,
they intersect themselves@Figs. 2~a! and 3~a!#. A partial en-
ergy gap results as these parabolas anticross. In addition
electric field causes a disalignment of parabolas@see Figs.
2~b! and 3~b!# due to the additional contribution of the fiel
energy. As a consequence, one can conclude from fig
that vertical cross points only exist when the electric field
present. Also, vertical cross points can be found for asy
metric quantum wells with and without electric field.14

III. MAGNETIZATION AND INDUCED VOLTAGE

The above-described modifications of the energy spe
causes the changing of thermodynamic relations for tun
coupled structures under an in-plane magnetic field; in
section, we present the general expressions for the mag
zationM and the induced voltagedU the discussions for the
simplest case of weak tunnel-coupled structures, and the
merical results for DQW and TQW with the above-liste
parameters. Both experimental and theoretical considerat
of M have been done in the past for the case of transv
magnetic field applied to a single quantum well~QW! ~see
references and last results in Refs. 15 and 16!. In such a case
the effect appears due to Landau quantization while for
case of in-plane magnetic field under study,M is due to the
modifications of energy spectra, which are weak for sin
QW, leading to small values ofM. These modifications lead
also to the small transverse voltage induced by in-plane fi
which have been calculated in Ref. 17 for the single Q
case. However, for tunnel-coupled heterostructures, the
fect of an in-plane magnetic field on thermodynamic quan
ties is significant when\vcZ/lF ~vc is the cyclotron fre-
quency, Z is the interwell distance, andlF is the Fermi
wavelength! is comparable to the level splitting energy@DT
in Eq. ~6!#.

The following analysis of the magnetization is based
the general expression forM52dEe /dH as the first deriva-
tive of the electron energy per unit area,Ee . For the zero-
temperature case under considerationEe takes the form
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Ee52(
j
E dp

~2p\!2 Ej pu@«F2Ej~p!#

5
2r2D

3p (
j
E dpxA«F2Ejpx

2m
~«F12Ejpx

!, ~14!

where we performed the integration overpy in analogy with
Eq. ~10!. Thus, in order to obtain the magnetization, we ha
to calculate the derivative ofEe using the dependence of«F
from Eq. ~11!. Another phenomena is the interwell charg
redistribution due to the modification of the wave functio
~2! under in-plane fields. The magnetoinduced voltage can

FIG. 2. Self-consistent dispersion laws,E6px
, for different mag-

netic fields H50, 5, 10, and 15 T. Panel~a! shows symmetric
DQW’s without applied electric field, and panel~b! shows the same
structure under transverse fieldF'55 KV/cm. ~aB is the Bohr ra-
dius!.
e

e

obtained from the total variation of the Hartree potent
Usc(z) across the heterostructure

dU5Usc~`!2Usc~`! uH50 ~15!

anddU is found when solving the self-consistent eigenst
problem@see above Eqs.~1!,~9!–~11!#.

For the limit of weak tunneling, we neglect the anticros
ing effect on the dispersion laws and the Fermi level rema
the same for the overall QW structure~due to very slow
interwell tunneling!. After simple calculations of the
integrals with the parabolic dispersion laws~4! we
get ne.r2D( j («F2« jH)u(«F2« jH) and Ee

.(r2D/2)( j («F
22« jH

2 )u(«F2« jH), where« jH takes into ac-

FIG. 3. The self-consistent dispersion laws for symmet
TQW’s under the same magnetic fields as in Fig. 2.~a! F'

50 KV/cm. ~b! F'55 KV/cm. ~aB is the Bohr radius!.
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count the proportional toH2 contributions in Eq.~5!. Then
weak dependency (Ee2EeuH50)}H2 ~so thatM}H! takes
place for the case of DQW. Similar analysis fordU shows
the dependency onH2 also. However, these results are n
true for the near anticrossing point regions and more com
cated numerical consideration is necessary.

Thus, in order to perform the self-consistent calculatio
for M anddU for the magnetic-field range where the Fer
level intersects of the anticrossing region, we need to so
integrals ~14! using the dispersion laws and«F from the
solution of the self-consistent eigenstate problem; the tra
verse drop of potential give usdU.

Figures 4~a! and 4~b! show the expected parabolic relatio
Ee(H), except for the above mentioned region~where the
Fermi level passes through the small gap of an anticros
point!. In this region, a notable peak appears because of
electron energy increase. This maximum is shifted to hig
magnetic fields when the electric field increases. The dou
hump ~two maxima! observed in theEe(H) shape for

FIG. 4. The energy per electron,Ee /ne , versusH for QW’s
under transverse fieldsF'50, 1, 3 KV/cm, and 5 KV/cm.~a!
DQW’s. ~b! TQW’s.
t
li-

s
i
e

s-

g
he
r
le

TQW’s case occurs because«F passes through the two pos
sible anticrossings at slightly different magnetic-field inte
sities. As a consequence, dimensionless magnetiza
M /(mBne) versusH for TQW exhibits an additional struc
ture at certain magnetic fields~mB is the Bohr magneton!.
We represent in Fig. 5 this dimensionless magnetization
symmetric DQW and TQW, and for different electric field
As expected, the linear behavior ofM (H) is broken in the
above-mentioned region. In spite of the changes inM (H) are
not too big because the heterostructures under consider
are weakly coupled, the typical values forM /(mBne) are
comparable with experimental results.15,16 It should be no-
ticed that, for TQW’s case, our calculations do not rea
magnetic fields high enough to restore electron redistribu
@linear behavior ofM (H)# because the anticrossing ener
splitting becomes broader as thein-planemagnetic field in-
creases. As a consequence, the peculiarities region is di
too.

Figures 6~a! and 6~b! show the DQW’s magnetoinduce
voltagedU(H) anddU(F') for different electric,F' , and
magnetic fields,H, respectively.dU(H) decreases with in-
creasingH to reach a minimum. This minimum nearly coin
cides with the Fermi level entrance into the anticrossing g
marked by an arrow in figures. The other arrow indicates

FIG. 5. Dimensionless magnetization per electron~mB is the
Bohr magneton! versus magnetic field forF'50, 1, 3 KV/cm, and
5 KV/cm. ~a! DQW’s. ~b! TQW’s.
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exit of the Fermi level out this region. Then, magnetoinduc
voltage grows to reach a constant value at higher magn
fields. The case ofdU(F') is very different because«F
never enters into the anticrossing gap for the fields un
consideration. Once again a minimum occurs. Because p
liarities region is produced for in-plane magnetic fields b
yond 10 T ~DQW’s! minimum positions do not depend o
magnetic field and are located at a constantF' value around
3.5 KV/cm. An analogous behavior occurs for TQW’s@Figs.
7~a! and 7~b!#. In the last case magnetoinduced voltage
one order of magnitude bigger than for the DQW’s on
dU(F') minima are close to 2 KV/cm for TQW’s case
except forH510 T, where a flat magnetoinduced region o
curs before electron redistribution. Again, very stron
magnetic fields are needed to reach the electron redistr
tion equilibrium across the structure.

IV. CONCLUDING REMARKS

Using both simple analytical considerations and num
cal calculations, we have taken into account the peculiari

FIG. 6. ~a! Magnetoinduced voltage versus magnetic fie
dU(H), for DQW’s and for three different transverse electric field
F'53, 5, and 10 KV/cm. Arrows indicate the limits of the pec
liarities region.~b! dU(F') for DQW’s and for three different mag
netic fields,H53, 5, and 10 T.
d
tic

er
u-
-

s
.

-
-
u-

i-
s

of electron energy spectra in tunnel-coupled structures
the modifications of their properties under in-plane magne
field. We have proved that peculiarities of the energy spe
near double- and triple-cross point of the dispersion branc
may be investigated to study collisionless characteristics
the magnetization and the magnetoinduced transverse
age. Results show that magnetization under in-plane m
netic fields and induced voltage change essentially for
fields at which the Fermi level intersects the anticross
region in DQW’s or TQW’s. To the best of our knowledg
both theoretical and experimental magnetization for any
system underin-planemagnetic fields are not available at th
present.

Let us discuss the approximations used above. The s
consistent calculations based on the Hamiltonian~1! with the
potential ~9! did not take into account the exchang
correlation corrections, which are essential for structu
with low-sheet densities18 (,1010cm22) far from the one
used in this paper. We neglect also the scattering effec
the energy spectra, which leads to the broadening of the
cross-point peculiarities. Since these cross points take p

,
,

FIG. 7. ~a! dU(H) for TQW’s, and for the same fixed transvers
electric fields,F' , as in Fig. 6. Arrows show the beginning of th
peculiarities region.~b! dU(F') for TQW’s, and for fixedH53, 5,
and 10 T.
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at strong-magnetic fields~above 8 T in Figs. 2 and 3 where
the level splitting is about 4 meV! this broadening is weak
enough. We consider here the case with fixed electron d
sity ne in the structure; another variant may be realized if
structure under consideration is coupled with the doped b
region when the chemical potential is fixed andne is
changed underH andF' variations. For such a case,M and
dU are of the order of the values calculated above but
pendencies should be different~in this paper, we did not
calculate the magnetocapacitance, which depends on the
file of doping!.
v

.
s

.

.

e

,
-

n-
e
lk

-

ro-

In conclusion, in this paper we suggest that the expe
mental study of the modulation of equilibrium properties b
the in-plane magnetic field would be a direct method to stu
the level anticrossing phenomena in tunnel-coupled str
tures.
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