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Level anticrossing effect on electron properties of coupled quantum wells under an in-plane
magnetic field
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The influence of an in-plane magnetic field on the energy spectrum and zero-temperature equilibrium
properties of tunnel-coupled double and triple quantum wells is studied. Both the appearance of the gap due to
anticrossing of two energy branches and the peculiarities of the third-order crossingf@ogymmetric triple
guantum well cageare discussed. As results, magnetization of two-dimensional electrons in double and triple
quantum wells is modified essentially if the Fermi level is localized near such peculiarities. Another effect
under consideration is the interlevel charge redistribution between quantum wells and the transverse voltage
induced by the in-plane magnetic field. Self-consistent numerical calculations for double and triple quantum
wells, which take into account the modifications of energy spectra under gate voltage, are presented.
[S0163-18209)09431-X]

[. INTRODUCTION tioned papers deal with the transport properties when the
peculiarities of the energy spectra together with other factors
Currently noticeable interest is focused on the electronidscattering processes, transformation of the hole states
properties of double and triple quantum welBQW’s and ~ essentials. The aim of this paper is the description of the
TQW’s) and on the transpotbr optica) phenomena in such equilibrium electron properties of tunnel coupled structures
semiconductor  structures. Such tunnel-coupled twowhen collisions do not determine the character of the re-
dimensional2D) electron systems, when subjected to a perSponse. Both the magnetization of tunnel-coupled QW’s un-
pendicular or parallelin-plane magnetic field, exhibit a set der in-plane field and magnetoinduced transverse voltage al-
of new physical phenomena. While the effect of a perpenlow the direct (collisionles$ investigation of the energy
dicular magnetic field is due to Landau quantization, the in-Spectrum peculiarities.
fluence of an in-plane magnetic field appears due to different Our calculations are based on the one-electron Hamil-
displacements of the energy dispersion parabolas of the difonian for the usual effective mass approximation
ferent quantum wellfQW'’s). The sketches of the energy 2 2 2
Y . . — [p—€A(z)/c]®* h° d
spectrum modifications under an in-plane magnetic field are py=-"_~"""""1 +Ucow(2)+Ug2) (D)
shown in Fi i i i 2m 2mdZ " 0 °
g. 1. It is clear that different types of cross points
between dispersion paraboléshich are independent for
tunnel-uncoupled weljsare possible for DQW’s and TQW's
the type of peculiarity is determined both by the strength of
the magnetic fieldH and by the parameters of the tunnel-
coupled structure.
Such in-plane magnetic-field-induced modifications of the
energy spectra in DQW’s and TQW's change the in-plane a) b)
conductivity of these system&ee experimental data for
DQW's in Refs. 1-6 and first measurements for TQW'’s in
Ref. 7; theoretical results for DQW'’s are discussed in Rgf. 8
and the photoluminescence spectfBwo reasons for con-
ductivity changes were found: the modification of the resis-
tance resonance pedthese results are reviewed in Ref) 10
and the formation of density of states singuldrigue to the
anticrossing effect presented in Figgbjland Xd). The pho- \
toluminescence line shape depends on the maodification of c) d) -
hole states and is due to the many-particle interacfidn.
the recent years, a weak perpendicular magnetic field has FiG. 1. Sketches of the energy spectra of symmetric tunnel-
been employed as a probe in order to study the effects djoupled QW showing the types of cross-pointa) “vertical”
in-plane field on tunnel-coupled states of electronscrossing in DQW's;(b) “horizontal” crossing in DQW's;(c) two
(Shubnikov—de Haas oscillatiohand cyclotron resonance “vertical” cross points for TQW's;(d) triple-cross point in TQW's.
absorptioh® have been measured\ote that all aforemen- The anticrossing effect is shown by the dashed lines.

0163-1829/99/6(8)/56987)/$15.00 PRB 60 5698 ©1999 The American Physical Society



PRB 60 LEVEL ANTICROSSING EFFECT ON ELECTRON . .. 5699

Here, p is the 2D momentumA(z) is the vector potential elementT and was presented in Ref. 8. Thus, simple analyti-
corresponding to the in-plane magnetic fieldl (below cal consideration of the second or third order dispersion al-
HIOY), Ucouw(2) is the confinement potential of the hetero- gebraic equationgfor the DQW’s or TQW's cases, corre-
structure along the direction, which includes the transverse spondingly permits us to analyze the energy spectra
electric field,F, , andU¢(z) is the self-consistent Hartree peculiarities.

potential, which is determined from the Poisson equation. In  The explicit expressions fat: branches of energy spectra
Sec. II, we use the tunneling approximati@vhich takes into  in the DQW's structure case take the form

account two or three tunnel-coupled levels 9rityr the con-
sideration of the energy spectrum peculiarities; then we com- E.(p)= b Ar(py)

pare these results with the self-consistent numerical solutions * 2m~ 2

of the eigenstate problem for the energy spectra of DQW'’s

and TQW's. In the Sec. Ill, we present the analysis of the A(py) = V(A —vppy,)?+(2T)?, (6)
magnetizatiorM and of the magnetoinduced transverse volt-

age 6U; also, self-consistent results for the equilibrium
guantitiesM and sU are presented. Discussion of our as-

2

wherev,=—v,=vy and A=¢,—¢, is the level splitting
without tunneling. The equatiodE..(p)/Jp,=0 gives us
@oth the minimum energies fat branches of spectra and
the condition for transformation of the anticrossing structure
from the “vertical” caseg[Fig. 1(a)] to the “horizontal” case
with two additional extrem@Fig. 1(b)]. The last case causes
Il. ELECTRON ENERGY SPECTRUM the logarithmically divergent density of statgsyhich leads

To consider the electron properties of tunnel-coupled© the peculiarities of thermodynamic characteristics when
DQW’s and TQW’s under in-plane magnetic field, we de-the Fermi level intersects the horizontal anticrossing region.
scribe in this section the energy spectrum for these systenfor the tunnel-uncoupled DQWsvith T—0) the minimal
using both the simple analytic and the self-consistent nuenergiest A/2 correspond to the momentummvy, and the
merical procedure. For the analytical consideration below w&ross point is realized @, = A/vy, (there are no anticrossing
employ a basis of the electron ground states, which are degffect or logarithmic peculiarity of the density of states under
scribed by the single well orbitaks,, for left (I-) and right ~ such simplification
(r-) wells of DQW's or I-, r-, and central(c-) wells for For the TQW case we have to solve the cubic dispersion
TQW's. In the framework of such approximation we will equation
isne?r:ghf;?r;the solution of the eigenstate probldfr =EW (Slpx_g)(scpx_g)(srpx_f)_Trz(slpx_g)_le(grpx_f)

=0, (7)

~If<p,z)=; U(P) @iz (2)

where§=E—p§/(2m) includes the motion along the mag-
_ , B , , netic field. For the tunnel-uncoupled TQWwith T, |—0)
wherek=1,r for DQW's ork=1,c,r for TQW's. In the in- 4 triple-cross point could be realizedmt, which is deter-

tr_oduced basis, the Co_lumn/ﬁ((p) are determin_ed from_ the  mined from the conditions: 5 =& ¢ =25 Choosingz,
eigenstate problem with the matrix Hamiltoni&awe write X X X

here 3x 3 matrix for the TQW's case =z., counting the energy frome,=0, and usingsch

= p)z(/(2m) these equations are transformedete-v,p,=¢,

g(p) T 0 +v,p,=0. There is no solution for the general casdth

T, edp) T, 3) e le,#v,/v,) and peculiarities of the energy spectra and of
' the density of states appear in the weak tunnel-coupled

0 T &r(p) TQW’'s due to the contributions from two double-cross

whereT, and T, are the tunneling-matrix elements foand points between different branches of spec¢tee above dis-

r barriers,e(p) are the electronic dispersion laws for single cussion for the DQW's cage _
kth QW under in-plane magnetic field: The triple-cross point occurs for the special case of the

tunnel-uncoupled TQW's withg /e, =v,/v,. For the
(Pytmvy)2+ p§ le|H tunnel-coupled TQW'’s case witil|=T,=T (otherwise
ex(P)=exnt — om Vk:m—C(Zk—Zo), TQW's transforms to DQW'’s with additional uncoupled
4) well) andv,=—v,=vy (so thate;=—¢g,=A/2) we obtain
the dispersion equation:
and the characteristic velocities,, contain an arbitrary co-

ordinatez, due to the gauge invariance. Tkih level energy p2 p2  \? (A 2 [ Pk
ey is introduced here as om om ¢ 13t VAbx] | 2T 5 =€) =0,
(eH/c)? s o s
en= et — f dzei(z°—Z), (5)  As aresult, the triple-cross point is formed as the superposi-

tion of the horizontal anticrossing solutions, which are dis-
where the proportional téi? intrawell corrections are usu- tinct from the DQW’s case due to the larger tunnel-matrix
ally negligiblé and we use:,;~ ¢, below. The correspond- elementv2T, and to the simple parabolic branch inside the
ing 2x2 matrix for DQW'’s contains single tunnel-matrix anticrossing gajpsee Fig. 1d)].
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The self-consistent numerical procedure for the SchroEg. (1) is. Thus, for a givemp, value we obtain the different
dinger equation with the Hamiltoniafl) involves the Har- eigenvaluefjpX (see referencéfor a more detailed descrip-
tree potential, which is obtained from the Poisson equation igiq of the methoil

the following form: Below, we present results of numerical calculations con-

cerning the electron dispersion Iav\Eij, in DQW’s and

2 z
Usc(z):Afze f dz'(z—z')[np(z')—ne(z')]. (99 TQW's under in-plane magnetic field. We consider the
* GaAs/Ga gAlg 3sAs-based structures with a conduction-
Here np(2) is the 3D concentration of donors, which we band offset of 300 meVmgaas=0.06"Me, Mgy Al s
assume as adoping in the center of the heterostructusgs ~ =0.073n,. We have used two 70-A well widthsi(=d,)
the dielectric permittivity, which is supposed to be uniform for the DQW'’s case, separated by a 40-A barrier width. The
across heterostructure, and the 3D electron concentratiolrQW consists on three wellsl,=d,=d.=70A, with two
Ne(z), is introduced in the usual way for the zero- 40-A barrier widths. We have used a 2D carrier density of

temperature case with the Fermi enetgy. 3.10" cm 2 for all cases. Fermi level depends Binthrough
q the dispersion relations and on the carrier dengige Eq.
P 11)]. We will restrict ourselves to symmetric QW'’s with and
Ne(z)=2 f—\lf-zzes—E- (11)]. y
e(2) 2 (27Tﬁ)2| i(P2)I*0Ler —Ei(p)] without external electric fields.

Results for self-consistent calculations of dispersion laws
_ 2p2p E j dp ¥ (7)) lap—EJ'pX (10) for symmetric DQW’s and TQW'’s are presented in Figs. 2
T 4 Pl Fip, 2m and 3, respectively. The magnetic field produces different
horizontal shifts of parabolas in thg, direction and, then,
In the right-hand side of this equation we usedjttiebranch  they intersect themselv¢igs. a) and 3a)]. A partial en-
of the electron dispersion laws for DQW's or TQW'S, grgy gap results as these parabolas anticross. In addition, the
Ej(P)=Ejp +Py/(2m), and performed the integration over glectric field causes a disalignment of parabdlsee Figs.
Py; p2p is the 2D density of states. The Fermi energy, in - 2(b) and 3b)] due to the additional contribution of the field
Eq. (10), is expressed through the total 2D electron densityenergy. As a consequence, one can conclude from figures

Ne, according to that vertical cross points only exist when the electric field is
present. Also, vertical cross points can be found for asym-

2pp er—Ejp, metric quantum wells with and without electric fiftl.
Ne= 2 dpy “om (11

™

andeg depends o for the case of fixed concentration. I1l. MAGNETIZATION AND INDUCED VOLTAGE
To numerically calculate the dispersion relations, i.e., the ) o

approximation for the effective potential of the structure, as &auses the changing of thermodynamic relations for tunnel-
first step of calculation. Then, we divide each quantum welicoupled structures under an in-plane magnetic field; in this
and barrier potential il; rectangular pieces with@, width. ~ section, we present the general expressions for the magneti-
WhenN;—, ¢;—0 and we reproduce the actual QW struc- zationM and the induced voltagéU the discussions for the
ture. In this case, we can use plane waves in éggbart of ~ simplest case of weak tunnel-coupled structures, and the nu-
the wells and barriers. The next step consists in applying thenerical results for DQW and TQW with the above-listed
boundary conditions at each virtual interface, to say the conparameters. Both experimental and theoretical considerations
tinuity of [1/m(z)](d¢ldz) [here we use the position- of M have been done in the past for the case of transverse
dependent effective masn(z)]. We have done this self- magnetic field applied to a single quantum we&Ww) (see
consistently by using the transfer-matrix method togetheteferences and last results in Refs. 15 and It6such a case,
with the Hartree potentidl ;{z). The transmission probabil- the effect appears due to Landau quantization while for the

ity and energy levels are now obtained frdvh,=0, Mj;  case of in-plane magnetic field under stutijs due to the
being the matrix elements resulting from the matching of thenodifications of energy spectra, which are weak for single
boundaries between all pairs of virtual layers QW, leading to small values dfl. These modifications lead

) Cdrew " b also to the small transverse voltage induced by in-plane field,
M=[S(z1)] [S"(z)1[S"(z2)] S (z2)]...., (12 which have been calculated in Ref. 17 for the single QW
case. However, for tunnel-coupled heterostructures, the ef-

where fect of an in-plane magnetic field on thermodynamic quanti-
wh(z) W 7) ties is significant whert w.Z/\¢ (w. is the cyclotron fre-
#1 ®2 quency, Z is the interwell distance, andq is the Fermi
S"P(z)= d wb(z) d whz) | (13 wavelength is comparable to the level splitting enerfyr
m(z)az ¥1 m(z)az ¥2 in Eq. (6)].

The following analysis of the magnetization is based on
and cp‘{f’zb(z) are the plane waves for wellsv) and barriers the general expression fod = —dE./dH as the first deriva-
(b), respectively. Subindexes 1 and 2 indicate the two assdive of the electron energy per unit ardg,. For the zero-
ciate solutions of any second-order differential equation, asemperature case under considerafigrtakes the form
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FIG. 2. Self-consistent dispersion lavis, py for different mag-
netic fieldsH=0, 5, 10, and 15 T. Pandb) shows symmetric
DQW'’s without applied electric field, and par@) shows the same
structure under transverse fidid =5 KV/cm. (ag is the Bohr ra-
dius).

dp
Ee=22, fWEjpa[sF—E,(p)]

szDE fdpx\/

where we performed the integration oygyin analogy with

X (ep+2E (14)
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FIG. 3. The self-consistent dispersion laws for symmetric
TQW'’s under the same magnetic fields as in Fig.(d. F,
=0 KV/cm. (b) F, =5 KV/cm. (ag is the Bohr radius

obtained from the total variation of the Hartree potential
U.{2) across the heterostructure
OU=Ug{(®)—=Usd*)n-0 (15
and 8U is found when solving the self-consistent eigenstate
problem[see above Eqs1),(9)—(11)].
For the limit of weak tunneling, we neglect the anticross-
ing effect on the dispersion laws and the Fermi level remains

Eq. (10). Thus, in order to obtain the magnetization, we havethe same for the overall QW structufdue to very slow

to calculate the derivative d, using the dependence ot

from Eq. (11). Another phenomena is the interwell chargeintegrals with the parabolic dispersion
redistribution due to the modification of the wave function get
(2) under in-plane fields. The magnetoinduced voltage can b%(pzD/Z)E (e2—

interwell tunneling. After simple calculations of the

lawgt) we
PZD2 (8F &in) 0(er—&jn) and Ee
,H)H(SF &ju), Wheree;, takes into ac-
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(0) H(T) TQW'’s case occurs because passes through the two pos-

sible anticrossings at slightly different magnetic-field inten-
sities. As a consequence, dimensionless magnetization
M/(ughe) versusH for TQW exhibits an additional struc-
ture at certain magnetic fieldg.g is the Bohr magnetgn
count the proportional té1? contributions in Eq(5). Then  We represent in Fig. 5 this dimensionless magnetization for
weak dependencyH,— Ee‘H=0)f>cH2 (so thatM«H) takes symmetric DQW and TQW, and for different electric fields.
place for the case of DQW. Similar analysis & shows As expected, the linear behavior bf(H) is broken in the
the dependency o2 also. However, these results are notabove-mentioned region. In spite of the changed (1) are
true for the near anticrossing point regions and more complinot too big because the heterostructures under consideration
cated numerical consideration is necessary. are weakly coupled, the typical values ft/(ugne) are
Thus, in order to perform the self-consistent calculationscomparable with experimental resuts® It should be no-
for M and sU for the magnetic-field range where the Fermiticed that, for TQW'’s case, our calculations do not reach
level intersects of the anticrossing region, we need to solvenagnetic fields high enough to restore electron redistribution
integrals (14) using the dispersion laws angk from the [linear behavior ofM(H)] because the anticrossing energy
solution of the self-consistent eigenstate problem; the transsplitting becomes broader as tlreplane magnetic field in-

FIG. 4. The energy per electrof,/n,, versusH for QW’s
under transverse fields, =0, 1, 3 KV/cm, and 5 KV/cm.(a)
DQW's. (b) TQW's.

verse drop of potential give usU. creases. As a consequence, the peculiarities region is dilated
Figures 4a) and 4b) show the expected parabolic relation too.
E.(H), except for the above mentioned regitmhere the Figures a) and Gb) show the DQW’s magnetoinduced

Fermi level passes through the small gap of an anticrossingoltage sU(H) and 6U(F,) for different electric,F, , and
point). In this region, a notable peak appears because of theagnetic fieldsH, respectively.5U(H) decreases with in-
electron energy increase. This maximum is shifted to highecreasingH to reach a minimum. This minimum nearly coin-
magnetic fields when the electric field increases. The doubleides with the Fermi level entrance into the anticrossing gap,
hump (two maxima observed in theE,(H) shape for marked by an arrow in figures. The other arrow indicates the
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FIG. 6. (3) Magnetoinduced voltage versus magnetic field, FIG.7.(a) dU(H) for TQW's, and for the same fixed transverse
SU(H), for DQW’s and for three different transverse electric fields, electric fields,F, , as in Fig. 6. Arrows show the beginning of the
F, =3, 5, and 10 KV/cm. Arrows indicate the limits of the pecu- Peculiarities region(b) sU(F,) for TQW's, and for fixedH =3, 5,
liarities region.(b) SU(F,) for DQW's and for three different mag- and 10 T.

netic fields,H=3, 5, and 10 T. )
of electron energy spectra in tunnel-coupled structures and

exit of the Fermi level out this region. Then, magnetoinducedhe modifications of their properties under in-plane magnetic

voltage grows to reach a constant value at higher magnetige|d. We have proved that peculiarities of the energy spectra
fields. The case o6U(F,) is very different becauser  near double- and triple-cross point of the dispersion branches
never enters into the anticrossing gap for the fields undemay pe investigated to study collisionless characteristics as
consideration. Once again a minimum occurs. Because peCtse” magnetization and the magnetoinduced transverse volt-
liarities region |s’prodpc_:ed for in-plane magnetic fields be'age. Results show that magnetization under in-plane mag-
yond 1(.) T.(DQW $) minimum positions do not depend on netic fields and induced voltage change essentially for the
magnetic field and are located at a consfantvalue around fields at which the Fermi level intersects the anticrossing

3.5 KV/cm. An analogous behavior occurs for TQWHgs. region in DOW's or TQW’s. To the best of our knowledge,

7(8) and qb)]. In the last case magnetoinduced voltage iSboth theoretical and experimental magnetization for any 2D

gne order .OT magnitude bigger than for the DQ,WS One'system undein-planemagnetic fields are not available at the
SU(F,) minima are close to 2 KV/cm for TQW's case, present

except ford=10T, where a flat magnetoinduced region oc-" o ;s giscuss the approximations used above. The self-

curs bgfor.e electron redistribution. Again, very Stror‘.g'consistent calculations based on the Hamiltoriigrwith the
magnetic flglds are needed to reach the electron red'St”bLb'otential (9) did not take into account the exchange-
tion equilibrium across the structure. correlation corrections, which are essential for structures
with low-sheet densitié& (<10°cm™?) far from the one
used in this paper. We neglect also the scattering effect on
Using both simple analytical considerations and numerithe energy spectra, which leads to the broadening of the near
cal calculations, we have taken into account the peculiaritiesross-point peculiarities. Since these cross points take place

IV. CONCLUDING REMARKS
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at strong-magnetic field@bowe 8 T inFigs. 2 and 3 where In conclusion, in this paper we suggest that the experi-
the level splitting is about 4 meMthis broadening is weak mental study of the modulation of equilibrium properties by
enough. We consider here the case with fixed electron derihe in-plane magnetic field would be a direct method to study
sity n, in the structure; another variant may be realized if thethe level anticrossing phenomena in tunnel-coupled struc-
structure under consideration is coupled with the doped bulkures.
region when the chemical potential is fixed amd is

changed unded andF, variations. For such a casé, and

oU are of the order of the values calculated above but de-
pendencies should be differefin this paper, we did not This work has been supported in part by Gobierno Au-
calculate the magnetocapacitance, which depends on the prtonomo de Canarias, Consegede Educacio, Cultura y De-
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