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Excitonic artificial atoms: Engineering optical properties of quantum dots

Pawel Hawrylak
Technische Physik, Universitat Wurzburg, Am Hubland, D-97074 Wurzburg, Germany

and Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Canada K1A OR6
~Received 2 February 1999!

We investigate factors which control the optical properties of quantum dots filled withN excitons. Detailed
calculation of the electronic structure of these excitonic artificial atoms is carried out for up to six excitons in
a semianalytical fashion. The principle underlying the electronic structure of excitonic artificial atoms, the
‘‘hidden symmetry,’’ is discussed. The role of ‘‘hidden symmetry’’ in the emission spectrum as a fingerprint
of the number of excitons in a quantum dot is analyzed in detail.@S0163-1829~99!14327-3#
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I. INTRODUCTION

The many applications of artificially structured materia
result from the controlled modification of their density
states. This modification has been consciously carried ou
the one particle level by reducing the dimension of structu
from three to zero. For electronic and optoelectronic ap
cations, these nanostructures have to be filled with carr
Reduced dimension implies an increase in interact
strength, and the density of states of a many-particle sys
need not resemble the one-particle density of states. Hen
is necessary to engineer not only one-particle levels bu
carry this concept a step further, and engineer many-par
systems. The tools are now the number and structure
bound single-particle levels, the form of Coulomb interacti
among carriers, and many-particle configurations which
pend strongly on the number of carriers.

In the case of electronic devices such as quantum
~QD! single-electron transistors,1 the finite electrostatic en
ergy of adding an electron charge to the dot leads to a c
fingerprint of electron addition spectra in the form of Co
lomb blockade.2–4 Optical devices, such as QD single
exciton lasers~QSXL!,5,6 involve addition/subtraction of ex
citons. In contrast to electrons, excitons are charge neu
and their ‘‘removal/addition’’ spectra are less obvious. Bay
et al.7 carried out a detailed spectroscopy of a single etc
quantum dot as a function of the excitation power~number
of excitons! and the shape and size of a quantum dot, a c
first experimental attempt at engineering optical propertie
zero-dimensional~0D! systems. Unfortunately, the estimate
quantization of single-particle energies, smaller than the
excitonic binding energy, precludes a reliable many-exci
calculation. Nevertheless, experimental emission spectra
reveal sensitivity to the number of excitons in the dot, w
qualitative features which could be interpreted in terms o
strongly quantized system. The authors of Refs. 8, 9, and
has successfully manipulated shapes and sizes of
assembled quantum dots~SAD! showing promising optica
properties.

For these reasons a detailed fingerprint of the exciton
moval ~emission! spectrum as a function of the numberN of
excitons is needed. Calculations of many-exciton states h
been carried out in Refs. 11–13 using exact diagonaliza
techniques. In Ref. 11 a model asymetric quantum box
PRB 600163-1829/99/60~8!/5597~12!/$15.00
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investigated. The box allowed two nondegerate orbital lev
per electron and hole, and could accommodate up to f
excitons. In Refs. 12 and 13, quantum dots with degene
electronic shells were investigated for up to twenty excito
The key physics was found to be associated with excit
occupying degenerate electronic orbitals. The results of R
12 and 13 revealed an underlying principle of single-exci
devices, the ‘‘hidden symmetry.’’ Hidden symmetries i
volve both single-particle levels and interparticle intera
tions. Engineering both leads to a complete control of opti
spectra of excitonic artificial atoms as a function of the nu
ber of excitonsN. In order to achieve such control a goo
and if possible analytical, understanding of what determi
these spectra is needed. We carry out such a program he
calculating the few exciton states in a parabolic quantum d
These semianalytical calculations clarify the ‘‘hidden sy
metry’’ principle underlying the emission/addition spectra
QSXL in terms of more familiar direct, exchange, and co
relation effects.

At present most single-dot recombination expe
ments7,14–16have been carried on dots with up to four exc
tons. We therefore limit our work here to spectra of not mo
than six excitons in quantum dots with large confinem
energy and few confined states. The model is sufficien
general to apply to all dots with large quantization of kine
energy and cylindrical symmetry.

II. SINGLE-PARTICLE STATES

As a representative example we start with the sing
particle states of self-assembled indium-based quantum d
These states are determined by many factors, such as s
indium-concentration profile, conduction- and valence-ba
offsets, strain, deviation from equilibrium, and degree
faceting, none of them known independently. To complic
matters, InAs is a narrow gap material with coupling
valence- and conduction-band states. Hence, while calc
tions of single-particle levels are very involved,17,18 they
must in the end lead to a small number of bound states.

High excitation photoluminescence,13 capacitance, far-
infrared absorption measurements,19,20 and numerical
calculations21 indicate that in lens-shaped quasi-tw
dimensional SAD’s the bound states of both electrons
valence-band holes can be understood assuming an effe
5597 ©1999 The American Physical Society
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5598 PRB 60PAWEL HAWRYLAK
parabolic potential. The single particle levels then cor
spond to the levels of two harmonic oscillators.1,22 The elec-
tronic energiesEmn

e 5V1
e (n1 1

2 )1V2
e (m1 1

2 ), eigenstates
umn& and angular momentaLmn

e 5m2n are those of two
harmonic oscillators tunable with the magnetic fieldB ap-
plied normal to the plane of the dot. The frequenciesV1/2

5 1
2 (Avc

214v0
26vc), where vc5eB/mc* is the cyclotron

energy,m* is the effective mass, ande is the charge of an
electron. The magnetic lengthl 0 is given by l 051/Am* vc,
and the effective lengthl eff51/@11(4v0

2/vc
2)#1/4. The split-

ting of different spins energy levels~Zeeman energy! is
very small compared to other energies.

The valence hole states are Luttinger spinors. The sp
nature leads to interesting and nontrivial effects involvi
hole-hole interactions.23 However, in strained structures th
splitting of heavy and light holes is expected to remove so
of these complications and justify the use of the one-b
effective-mass approximation. Hence a valence-band ho
treated in the effective-mass approximation as a positiv
charged particle with angular momentumLmn

h 5n2m, oppo-
site to the electron, and energiesEmn

h 5V1
h (n1 1

2 )1V2
h (m

1 1
2 ) ~ignoring the semiconductor gapEG).
An example of the single particle spectrum of a two-sh

quantum dot is shown in Fig. 1. The two lowest shells are
same for all quantum dots with cylindrical symmetry.

III. HAMILTONIAN AND COULOMB
MATRIX ELEMENTS

With a composite indexj 5@m,n,s#, the Hamiltonian of
the interacting electron-hole system may be written in a co
pact form as

FIG. 1. Lowest-kinetic-energy configurations of from zero to s
excitons.
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Ei
eci

1ci1(
i

Ei
hhi

1hi2(
i jkl

^ i j uVehukl&ci
1hj

1hkcl

1 1
2 (

i jkl
^ i j uVeeukl&ci

1cj
1ckcl

1 1
2 (

i jkl
^ i j uVhhukl&hi

1hj
1hkhl . ~1!

The operatorsci
1(ci) and hi

1(hi) create~annihilate! the
electron or valence-band hole in the stateu i & with the single-
particle energyEi . The two-body Coulomb matrix element
are ^ i j uVukl& for electron-electron~ee!, hole-hole~hh!, and
electron-hole~eh! scattering, respectively.24,25 Coulomb ma-
trix elements are measured here in units ofV0

5RyApaB / l eff , where Ry is the effective Rydberg andaB
is the effective Bohr radius. At zero magnetic field the effe
tive length l eff51/A2v0m* and V05RyApaBA2v0m* .
Hence a typically smaller confining potential for holes can
compensated for by their heavy mass, and the strengt
electron-electron and hole-hole interactions can be eq
The scaling of interaction with single particle spacing im
plies that for spacingv0 /Ry.p kinetic energy dominates
and effects of interactions involving intershell transitions c
be treated perturbatively. For states forming degene
shells, Coulomb interactions completely determine the sp
trum.

The Coulomb matrix elements depend on the form
single-particle states and the form of interaction. The int
action can be controlled independently of single-parti
states. For example, an application of perpendicular elec
field may either separate or bring together electrons
holes, and weaken or strengthen the electron-hole interac
in comparison with the electron-electron interactions. The
fore one can achieve a situation where all direct ee, hh,
eh matrix elementŝ i ; j uVu j ; i & are equal. Morever, the
electron-hole scattering matrix elements^ i ; i uVehu j ; j & can be
made equal in magnitude to ee and hh exchange matrix

FIG. 2. Contributions to energy levels and oscillator strength
the three exciton complex.
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ments ^ i ; j uVeeu i ; j &. This ‘‘symmetrical’’ case will be our
starting point, with possible departures treated perturbativ
for particular structures.

We restrict our attention to the two lowest shellss andp,
and symmetric interactions. Below we list relevant Coulom
matrix elements in units of their respectiveV0 :
^00;00uVu00,00&51.0000, ^10;00uVu00,10&50.7500, and
^10;10uVu10,10&50.6875. To elucidate the physics, we sh
refer to the matrix elements by also specifying which type
carrier, which shell, and whether direct or exchange sca
ing is involved. For example,Vee

pp,x denotes electron-electro
exchange scattering involving two electrons on ap shell. The
p-shell electron hole scattering matrix elementsVeh

pp are
equal to equivalent ee exchange matrix elementsVee

pp,x ,
^10;10uVehu01,01&50.18755^10;01uVeeu10,01&. The p- to
s-shell electron-hole scattering matrix elementsVeh

ps are equal
to equivalent ee exchange matrix elementsVee

ps,x ,
^10;10uVehu00,00&50.25005^10;00uVeeu10,00&. This list of
Coulomb matrix elements illustrates the relative importan
of different processes.

We must now construct states of the electron-hole syst
We can classify states by the total angular momentumL
5Le1Lh and by thez component of the total spinSz

e1Sz
h .

Morever, since electron-hole scattering does not change
total spin of the electron or hole system, we can classify
states by the total spinS of each component. We label a
possible electronic~hole! states in a Hilbert space with
given total spin,zth component, and angular momentu
The wave function of the system of electrons and holes
spanned by a set ofl 3k basis states belonging to Hilbe
spaces labeled byL,Sz ,Se , Sh :

uLe ,Sz
e ,Se ,k&uLh ,Sz

h ,Sh ,l &. ~2!

The interband optical processes in a quantum dot are
scribed by the set of interband polarization operat
Ps

1 (Ps
2) which create~annihilate! electron-hole pairs with

definite spin configuration Ps
15( icis

1 hi ,2s
1 (P1

2

5( ihi ,2scis) by annihilating~creating! photons with defi-
nite circular polarization.12 The remaining electron-hole pa
spin configurations (s,s) correspond to dark excitons. Th
third componentPz5

1
2 (Ns

e1Ns
h2Ntot) measures population

inversion, i.e., a number of excitonsNs5Ns
e5Ns

h with defi-
nite spin s in Ntot of the single-particle levels.P satisfies
commutation relations of a 3D angular momentu
@P1,P2#52Pz , @Pz ,P6#56P6. The total polarization
P25 1

2 (P1P21P2P1)1Pz
2 commutes withP1.

The dynamics of the polarization operator~neglecting the
spin degrees of freedom! is given by the commutator ofP1

with the Hamiltonian:12

@H,P1#5(
i

~Ei
e1Ei

h!ci
1hi

12(
i jk

^ i j uVehukk&ci
1hj

1

1 1
2 (

i jkl
~^ i j uVeeukl&2^ ikuVehu j l &!~ci

1hl
1cj

1ck

2ci
1hk

1cj
1cl !1 1

2 (
i jkl

~^ i j uVhhukl&2^ ikuVehu j l &!
ly

b

l
f
r-

e

.

he
r

.
is

e-
s

3~cl
1hi

1hj
1hk2ck

1hi
1hj

1hl !. ~3!

The dynamics of the interband polarization requires
knowledge of both two- and four-particle operators, the d
namics of which has to be sought and truncated at some l
of approximation. However, as is clearly evident from E
~3! and demonstrated in Ref. 12, the degeneracy of sin
particle levels (Ei

e1Ei
h) and the symmetry of ee, hh, and e

interactions cause both a remarkable cancellation of the f
particle contribution and lead to a very simple dynamics
the interband polarization operator operating on a degene
shell,@H,P1#5EXP1, whereEX is the exciton energy for a
given shell.

The energy of states on a given shell generated from
vacuum by a multiple application ofP1, uN&5(P1)Nuv&,
depends linearly onN, i.e., on the number of excitons. Henc
the energy of addition/subtraction of excitons from the
states does not depend on the number of excitons. This is
essence of ‘‘hidden symmetry.’’ Therefore, emission fro
degenerate states takes place at the same energy, an
cannot determine the number of excitons in a given shell.
this we need excited states. We shall now discuss how
degeneracy takes place, what is the role of spin, and wha
the excited states by explicit construction of many-excit
states and diagonalization of the Hamiltonian.

IV. EXCITONIC GROUND STATES

We consider the simplest possibleN-excitonic states
(NX), i.e., states built only out of the lowest kinetic ener
states ofN electron-hole pairs. The lowest-kinetic-energ
states are obtained by populating the lowest-kinetic-ene
single-particle levels of each type of carrier according to
Pauli exclusion principle. Because the kinetic energyt5Ve

1Vh is proportional tov0, and the Coulomb energyV0 is
proportional toAv0, the small parameter in our calculation
is the ratio of Coulomb to kinetic energy. Hence the lowe
kinetic-energy states should approach exact states in the
of V0 /t˜`, i.e., large confinement.

A. One- and two-exciton complexes

One exciton corresponds to an electron and a hole oc
pying their lowest-kinetic-energy stateu00,↓&u00↑&, as
shown in Fig. 1. We have adopted a convention in wh
optically allowed electron and hole states have zero totalSz .
The spin has been incorporated in this figure by using
angles, e.g., triangles pointing up correspond to spin-up
ticles. Pairs of particles with total spin, i.e.,u↑&u↑& and
u↓&u↓& form spin-dark excitons.

The exciton energy is simply given by the electron pl
the hole kinetic energy and their mutual attraction:

Es
05Ve1Vh2^00;00uVehu00;00&. ~4!

The exciton state is doubly degenerate due to spin.
For the two-exciton complex there is only one lowe

kinetic-energy configuration, shown in Fig. 1, the single
singlet configurationuXX&5c00↑

1 c00↓
1 h10↑

1 h00↓
1 uv&, where uv&
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5600 PRB 60PAWEL HAWRYLAK
is the vacuum. This configuration corresponds to a prod
of the electron and hole singlet states.

The biexciton energy is twice the single exciton ener
plus a Hartree term due to possible differences in elec
and hole charge distribution:

E2X
0 52Es

012@^00;00uVeeu00;00&2^00;00uVehu00;00&#.

~5!

Hence in the ideal limit of very strong confinement a
symmetric interactions the biexciton energy is exactly tw
the exciton energy, i.e., there is no binding energy. This
simply because binding, or lowering, of energy comes fr
the scattering to available states, and here there are n
Hence we expect the biexciton binding energy to incre
from the 2D value with increasing confinement, but even
ally decrease to zero when the quantization of single-part
energy by far exceeds the exciton binding energy.

In the strong confinement limit, deviations may com
from the asymmetry of interactions, and may be interpre
as either exciton binding or repulsion, depending on whet
the electron-hole attraction is weaker then or equal to
electron-electron repulsion. The second correction will co
from scattering to higher shells. Since there is only one s
glet for electrons and one singlet for holes, the ground s
is not degenerate, and there are no dark biexciton states
to spin.

B. Three excitons

There are two lowest-energy three-exciton configurati
ua& andub&, shown in Fig. 1. The extra electron hole pair c
be in either of the two degeneratep states: ua&
5c10↓

1 h10↑
1 uXX& and ub&5c01↓

1 h01↑
1 uXX&. The energyEp ,

measured from the 2X state 2Es
0 , is a sum of a number o

terms:

Ep5~2t2@Vee
sp,x1Vhh

sp,x#2Veh
pp,d!. ~6!

The first term is the kinetic energy, the second term is
band-gap renormalization due to exchange of thep-shell
electron ~hole! with like-spin electron~hole! in the filled
s-shell. The third term is the direct attraction between
electron and the hole in the same orbital of thep shell.

The electron-hole interactionVeh
pp allows the electron-hole

pair to scatter from the~1,0!~1,0! state to the~0,1!~0,1! state,
and mixes the two configurations. The two solutions can
obtained analytically. We insert values of respective ma
elements to illustrate the strength of different contributio
to the ground- and excited-state energies:

E3X
6 52Es

01~2t20.5V020.6875V0!6~20.1875V0!.
~7!

The ground-state energy isE3X52Es
01(2t21.375V0).

The interaction energy contribution to the energy of the ex
ct
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p electron (21.375V0) is larger than the interaction energ
of the one exciton state (21.00V0) due to exchange with the
filled s shell.

The two eigenstates areu6&5(ua&6ub&)/A2. Since the
ground stateu1& is proportional to the interband polarizatio
operatorP15( i ,scis

1 hi 2s
1 , it is optically active. The second

stateu2& is dark due to parity. It can be made active by
perturbation removing the degeneracy of the twop states,
e.g., loss of circular symmetry, perpendicular magnetic fie
or in-plane electric field. However, the spectrum should s
be dominated by the symmetric state. So starting from
two optically active configurationsua& and ub&, by allowing
for electron-hole scattering we arrived at only one act
configuration. A summary of different mechanisms leadi
to energy levels and oscillator strengths of the bright a
dark three exciton complexes is shown in Fig. 2. The s
structure, degeneracies, and spin-dark excitons are iden
to a single exciton case.

C. Four excitons

The four-exciton complex can be in different total sp
arrangements of the partially filledp shell electrons and
holes, the triplet-triplet, the singlet-singlet configuration, a
the singlet-triplet configurations. There are nine possible
generate triplet-triplet states, only three of them optically
tive.

Let us first discuss the triplet-triplet configuration,ut&
5(c10↓

1 h10↑
1 )(c01↓

1 h01↑
1 )uXX& as shown in Fig. 1. We have

written this state explicitly as a product of two electron-ho
pairs. The energy of each pair is the same as the energyEp of
a single pair in the 3X complex. However, two electrons an
two holes have parallel spins and lower their respective
ergy by exchange. The ground-state energy, measured
the energy 2Es

0 of the filled s shell, is

E4Xt5~2@2t2~Vee
sp,x1Vhh

sp,x!2Veh
pp,d#2~Vee

pp,x1Vhh
pp,x!.

~8!

Because exchange interaction and electron-hole scatte
interactions are equal and attractive,Vee

pp,x5Veh
pp , the energy

of the two additional excitons in ap shell of the four exciton
complex is exactly twice the energy of a single exciton in
three exciton complex,E4Xt52E3X . This is so because th
lowering of energy due to mixing of electron-hole config
rations of the three exciton complex is exactly equal to
exchange energy in a single four-exciton configuratio
Seemingly very different mechanisms lead to a very sim
result, i.e., that the energy to add an electron-hole pair d
not depend on the number of pairs already present. Whi
is perhaps not too difficult to understand why this happe
for a spin-polarized system with only one configuration, w
will show that the same degeneracy happens in a gro
state of the singlet-singlet configuration.

When both electrons and holes are in singlet configu
tions, the total number of possible configurations increas
While there was only one triplet-triplet configuration, the
are three possible singlet-singlet configurations, as show
Fig. 1:
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ua&5~c10↑
1 c10↓

1 !~h10↓
1 h10↑

1 !uXX&,

ub&5
1

A2
~c10↑

1 c01↓
1 1c01↑

1 c10↓
1 !

1

A2
~h10↓

1 h01↑
1 1h01↓

1 h10↑
1 !uXX&,

~9!

uc&5~c01↑
1 c01↓

1 !~h01↓
1 h01↑

1 !uXX&.

By comparing Fig. 1 and Eq.~9!, we see that the singlet
singlet configuration is actually a mixture of four configur
tions, two involving electrons and holes with spin differe
from zero, and hence dark.

It is also clear that electron-hole scattering can move
electron-hole pair from configurationub& to either configura-
tion ua& or uc&. This matrix element̂ auHub& equals the
electron-hole scattering matrix elementVeh

pp times the prod-
uct of the normalization factors of statesua& andub&, equal to
2. Hence the effective scattering froma to b is twice the
single pair scattering. The energy of configurationsua& and
uc& is just the sum of pair energy, i.e., 2Ep . The energy of
configurationub& is increased by repulsive exchange ene
2Ep1(Vee

pp,x1Vhh
pp,x) of singletp-shell electrons and holes

We can now write the Hamiltonian for the singlet-sing
states:

S 2Ep 22Veh
pp 0

22Veh
pp 2Ep12Vee

pp,x 22Veh
pp

0 22Veh
pp 2Ep

D .

We again utilize the fact that exchange interaction, rep
sive here, is equal in magnitude to the attractive electr
hole scattering to obtain the three eigenvalues expre
solely in terms of electron-hole matrix elements:E4Xs(1)
52Ep22Veh

pp , E4Xs(2)52Ep , and E4Xs(3)52Ep14Veh
pp .

The respective eigenvectors areu1&5(1/A3)(ua&1ub&

FIG. 3. Contributions to energy levels and oscillator strength
the singlet-singlet four exciton complex.
t

n

y

l-
-

ed

1uc&), u2&5(1/A2)(2ua&1uc&), and u3&5(1/A6)(ua&
22ub&1uc&). We see thatE4Xs(1)52(E3X), i.e., the energy
of the lowest singlet-singlet state is twice the energy of
single exciton in ap shell. The singlet-singlet and triplet
triplet configurations are degenerate.

We can conclude here that for spin-polarized configu
tions there are few states~one triplet-triplet in this example!.
Their energy is reduced by attractive exchange interac
among like particles. For spin-unpolarized configuratio
there are many more available configurations~three singlet-
singlet configurations in this example!. The energy of these
individual configurations is increased by exchange, but c
relations due to mixing of these states by electron-hole s
tering more then compensate for the repulsive exchange
ergy and reduce the ground-state energy. To unders
different mechanisms leading to this result, a schematic e
lution of the four exciton states as a function of interactio
is shown in Fig. 3.

Let us now see which of the eigenvalues is optically a
tive, i.e., from which an exciton can be removed. Let
define an operator removing ap-shell exciton: Pp

2

5h(0,1),↑c(0,1),↓1h(1,0),↓c(1,0),↑ . The symmetric lowest-
energy 3X configuration, labeled by the spin of an electro
s, can be written asu3X,1,s&5(1/A2)Pp,s

1 uXX&.
Applying Pp

2 to the three eigenstates we findPp
2(ua&

1uc&)5Pp
1uXX& andPp

2ub&5 1
2 Pp

1uXX&. Hence we see tha
removing an exciton from the lowest eigenvalueu1& gives
the two 3X symmetrical statesPp

2u1&5(A3/A2)(su3X,
1,s&. The amplitude of the removal process,A3/A2, is a
ratio of the normalization constant of the initial and the fin
state.

Removing an exciton from the second eigenvalues gi
P2u2&5P2(ua&2uc&)5(su3X,2,s&, which is the sum of

f FIG. 4. Lowest-kinetic-energy excited configurations of one a
two excitons.
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the two dark antisymmetric excited 3X states. Hence an ex
cited 4X state can recombine by emitting a photon to a d
excited 3X final state. The energy of this transistion will tur
out to be degenerate with the energy of the ground-stat
ground-state transition. Removing an exciton from the hi
est eigenvalue givesP2u3&5P2(ua&1uc&)2P2(2ub&)50.
Hence this state cannot recombine via a radiative proces

Let us now discuss singlet-triplet combinations. Sin
triplet states have zero total angular momentum, only z
angular momentum singlet combination is possible, and
can form only one state:

ua&5
1

A2
~c10↑

1 c01↓
1 1c01↑

1 c10↓
1 !~h10↓

1 h01↓
1 !uXX&. ~10!

The energy of this state,Ea52Es
012Ep , equals the en-

ergy of the first excited state of the singlet-singlet config
ration. In this state the repulsive exchange in electronic
glet was canceled by the attractive exchange in a triplet h
configuration.

Removing an exciton from this state leaves a 3X state
which is dark due to spin arrangement and due to pa
~antisymmetric state!. The energy of the final state is th
energy of theu3X2& state. Because both the initial and fin
states have higher energy, the transition energy. i.e. the
ergy to remove an exciton from this state is identical to
energy required to remove an exciton from either sing
singlet or triplet-triplet configuration.
k
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V. FIVE AND SIX EXCITONS

The analysis of the states of five excitons is analogou
the analysis of the 3X state. There are two states, one da
and one bright, with energyE52Es

013E3X . There is only
one six exciton state and its energy is again a linear func
of the number of excitons in ap shell,E52Es

014E3X .

VI. EXCITED STATES AND CORRECTIONS TO
THE GROUND STATE

We now investigate excited states and their effect on
N-exciton ground state. The excited states can be class
by their kinetic energy. The lowest-kinetic-energy excit
states involve promoting only one exciton at a time to
higher shell. Figure 4 shows the lowest excited states ofX
and 2X complexes. Let us first discuss the 1X state.

A. Exciton

The wave function can be written as a linear combinat
of three states: the lowest-kinetic-energy stateu0&
5c00↓

1 h00↑
1 uv& and the two excited statesua&5c10↓

1 h10↑
1 uv&

andub&5c01↓
1 h01↑

1 uv&. Following our analysis of the 3X case
we first form a symmetric~1! and antisymmetric (2) com-
bination of statesua& andub&. Only the symmetric combina
tion u1&, couples to the lowest-kinetic-energy exciton sta
The final Hamiltonian is easily solved analytically, and f
clarity here we write all numerical coefficients explicitly:
Fig. 4.
atically in
S t2V0 2A2~0.25V0! 0

2A2~0.25V0! 2t20.6875V020.1875V0 0

0 0 2t20.6875V010.1875V0
D .

We find that forV0 /t50.5 the change in the exciton ground state is only 6% of the kinetic energyt, while for V0 /t51 it is
10% of t.

B. Two excitons

The ground state of two excitons is a singlet but excited states also include a triplet configuration, as shown in
Corrections to the singlet ground state come only from singlet excited states. There are three states, shown schem
Fig. 4:

u0&5~c00↑
1 c00↓

1 !~h00↓
1 h00↑

1 !uv&,

ua&5
1

A2
~c10↑

1 c00↓
1 1c00↑

1 c10↓
1 !

1

A2
~h10↓

1 h00↑
1 1h00↓

1 h10↑
1 !uv&, ~11!

ub&5
1

A2
~c01↑

1 c00↓
1 1c00↑

1 c01↓
1 !

1

A2
~h01↓

1 h00↑
1 1h00↓

1 h01↑
1 !uv&.
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The energy of configuration~0! is just 2Es
0 , the energy of configurations~a! and~b! is a sum of the electron-hole pair in th

s orbital Es
0 and in thep orbital Ea5Es

01Ep
01(Vee

sp,x1Vhh
sp,x), whereEp

0 is the energy of electron-hole pair in thep orbital but
without exchange interaction with a filleds shell. The last term is the repulsive exchange term coming from the sin
character of the orbital wave function. These configurations are mixed by electron-hole scattering, with coefficients m
by the form of each wave function. We again form first a symmetric~1! and antisymmetric (2) linear combinations of
configurations~a! and ~b!. In this basis, the Hamiltonian

S Es
01Es

0 22A2Veh
sp 0

22A2Veh
sp Es

01Ep
01~Vee

sp,x1Vhh
sp,x!2Veh

pp 0

0 0 Es
01Ep

01~Vee
sp,x1Vhh

sp,x!1Veh
ppD

can be diagonalized exactly.
For completeness we insert all numerical values of coulomb matrix elements to obtain the final form of the 2X Hamiltonian:

S 2~ t2V0! 22A2~0.25V0! 0

22A2~0.25V0! ~ t2V0!1~2t20.1875V0!20.1875V0 0

0 0 ~ t2V0!1~2t20.1875V0!10.1875V0
D .

We find that the scattering to thep shell lowers the energy of the 2X complex by 0.089t for V0 /t50.5, and by 0.264t for
V0 /t51.0. At the same time the exciton also lowers its energy. The 2X complex always has lower energy than the tw
noninteracting excitons, but the gain is very small. AtV0 /t51.0 we find the exciton energy shifted from its noninteracti
value by 1.1t, and the 2X energy by 2.26t. These shifts are very large, i.e., of the order of 50–100 meV. At the same tim
‘‘binding energy’’ EXX22EX50.06t is very small, i.e., 3 meV fort550 meV.

We now turn to the triplet-triplet 2X state. The triplet biexciton involves spin-polarized electron~hole! pairs, one in thes
shell and the second one in thep shell. Thep electron can be in two different states, hence we have two triplet states

ua&5
1

A2
~c10↑

1 c00↓
1 2c00↑

1 c10↓
1 !

1

A2
~h10↓

1 h00↑
1 2h00↓

1 h10↑
1 !,

~12!

ub&5
1

A2
~c01↑

1 c00↓
1 2c00↑

1 c01↓
1 !

1

A2
~h01↓

1 h00↑
1 2h00↓

1 h01↑
1 !.
ta
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The energy of configurationsua& and ub& is a sum of the
energy of the electron-hole pair in thes orbital Es

0 and in the
p orbital, Ea5Es1Ep

02(Vee
sp,x1Vhh

sp,x). The last term is the
attractive exchange term coming from the triplet orbi
wave function of electrons and holes. These configurati
are mixed by electron-hole scattering. We again form firs
symmetric~1! and antisymmetric (2) linear combinations
of orbitals ~a! and ~b!. In this basis the Hamiltonian is diag
onal, and the two energies areE2Xt

6 5Es1Ep
02(Vee

sp,x

1Vhh
sp,x)6(2Veh

pp). The lowest energy corresponds to
symmetric configuration, with numerical values of ea
contribution as E2Xt

1 5(t2V0)1(2t20.6875V0)20.5V0

20.1875V0 and a final resultE2Xt
1 53t22.375V0.

C. Three excitons

Three excitons turn out to be the most complicated ca
The two lowest-energy configurations, shown in Fig. 5,
ua&5c10↓

1 h10↑
1 uXX& and ub&5c01↓

1 h01↑
1 uXX&. They consist of
l
s

a

e.
e

singlets ins orbitals and one electron in thep orbital, i.e., the
total angular momentum of electrons is61. This momentum
can be compensated for by only one identical hole confi
ration. The same argument applies to configurations F
5~c! and 5~d!#, where the total angular momentum of ele
trons is 62. However, electron configurations@Figs. 5~e!,
5~f!, and 5~g!# all belong to the zero total electron angul
momentum subspace. These configurations correspond t
motion of the spin-up electron, circulating on a plaquette
three inequivalent sites filled with spin-down electrons22

Each of these electronic configurations can be paired w
any of the identical hole configurations@Figs. 5~e!, 5~f!, and
5~g!# leading to a band of nine degenerate states. The n
states, plus the four singlet states, result in a total of
states. This problem unfortunately has to be solved num
cally but we can obtain insight into the interesting band
spin-related 11 excited states by proceeding with analyt
calculations.

We proceed by diagonalizing the electron part of the H
bert space. Only three states@Figs. 5~e!–5~g!# are coupled by
ee interaction, and the three eigenstates are22
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u1&5
1

A6
~ ue&22u f &1ug&),

u2&5
1

A2
~2ue&1ug&), ~13!

u3&5
1

A3
~ ue&1u f &1ug&).

These states have to be combined with identical h
states into nine productsu1&u18&,u1&u28&, . . . . The six dif-
ferent energies are given by

E1,15Es
012Ep

012Vee
pp,x24Vee

sp,x ,

FIG. 5. Lowest-kinetic-energy excited configurations of thr
excitons.

FIG. 6. Lowest-kinetic-energy excited configurations of four e
citons.
le

E1,25Es
012Ep

022Vee
sp,x ,

E1,35Es
012Ep

012Vee
pp,x2Vee

sp,x , ~14!

E2,25Es
012Ep

022Vee
pp,x ,

E2,35Es
012Ep

01Vee
sp,x ,

E3,35Es
012Ep

012Vee
pp,x14Vee

sp,x .

The total width of the band is 6Vee
sp,x'1.5V0. The nine

states are coupled via electron-hole scattering with the
singlet configurationsuc& and ud&, and with the lowest-
kinetic energy configurations. The final Hamiltonian has
be diagonalized numerically. An example of the spectrum
shown in Fig. 7~a!. The energy of the 3X states is measure
from the energy of the triplet-triplet 4X state, i.e., decreasin
energy corresponds to excited states. There are two stat
a p shell plus a wide band of excited states at higher en
gies. The height of the bar of one state has been artifici
increased. This is a single triplet-triplet 3X state, which we
include here for the future comparison of the emission sp
tra.

To estimate the effect of mixing with the band of excite
states on the ground-state energy, we give the change o
3X ground state energy, from 2.3125t to 2.2201t, for V0
50.5. We see that the effects on the ground-state energy
small.

D. Four-exciton states

Let us start with the singlet-singlet configuration. Th
ground state is a linear combination of three singl

-

FIG. 7. ~a! Density of excited states of three excitons~b! Emis-
sion spectrum from the 4X triplet-triplet ground state to the 3X
ground and excited states.
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configurationsua&, ub&, anduc&, shown in Fig. 6. Each of the
three four-electron~hole! singlet states consists of a singl
in thes shell and a singlet in thep shell. To construct excited
states we must promote an electron and a hole from ths
shell to thep shell. We can do this in two ways, as shown
Fig. 6. The resulting configuration must also be a pair
singlets, as indicated by arrows, to maintain total spin. T
two properly symmetrized excited states are
wo
repulsive

ymmetric

s. It is a

he
of the

e

ymmetric
ud&5
1

A2
~c10↑

1 c00↓
1 1c00↑

1 c10↓
1 !

1

A2
~h10↓

1 h00↑
1 1h00↓

1 h10↑
1 !~c01↑

1 c01↓
1 !~h01↓

1 h01↑
1 !uv&,

ue&5
1

A2
~c01↑

1 c00↓
1 1c00↑

1 c01↓
1 !

1

A2
~h01↓

1 h00↑
1 1h00↓

1 h01↑
1 !~c10↑

1 c10↓
1 !~h10↓

1 h10↑
1 !uv&. ~15!

The energy of these states equalsEd(e)5Es
013Ep

02(Vee
pp,x1Vhh

pp,x). There is only one exchange term between the t
p-shell electrons and holes. The intershell exchange term between the two spin parallel electrons was canceled by the
exchange energy in thes-p singlet. The ground-state energy in the absence ofs-p shell mixing isE052Es

012@Ep
02(Vee

sp,x

1Vhh
sp,x)#22Veh

pp .
The two degenerate excited states are coupled by the electron-hole interaction. We form a symmetric and antis

combinationu6&5(1/A2)(ud&6ue&). This leads to two eigenvaluesE65Es
013Ep

02(Vee
pp,x1Vhh

pp,x)6Veh
pp . Only the symmet-

ric state couples to the ground state and renormalizes its energy:

S 2Es12@Ep
02~Vee

sp,x1Vhh
sp,x!#22Veh

pp 2A6Veh
sp

2A6Veh
sp Es13Ep

02~Vee
pp,x1Vhh

pp,x!2Veh
ppD .

The renormalized electron-hole interaction matrix element reflects the more involved character of scattering state
product of the normalization factor of the ground state,A3, and the normalization factor of the excited state,A2. The
numerical form of the Hamiltonian describing the coupling of the ground and a single relevant excited state is

S 6t24.75V0 2~A6/4!V0

2~A6/4!V0 7t23.625V0D .

Let us now turn to the triplet-triplet configuration. The ground state is a singlet in thes shell and a triplet in thep shell. We
must now promote an electron~hole! from the s shell to thep shell. We can do this in two ways, as shown in Fig. 6. T
resulting configuration must also consist of a singlet and a triplet, the singlet now consisting of two electrons in one
states of thep shell.

The two properly symmetrized excited states are

ua&5~c10↓
1 c00↓

1 !~c01↑
1 c01↓

1 !~h10↑
1 h00↑

1 !~h01↓
1 h01↑

1 !uv&,

ub&5~c01↓
1 c00↓

1 !~c10↑
1 c10↓

1 !~h01↑
1 h00↑

1 !~h10↓
1 h10↑

1 !uv&. ~16!

The energy of these states equalsEa(b)5Es
013Ep

022(Vee
sp,x1Vhh

sp,x)2(Vee
pp,x1Vhh

pp,x). This energy is lowered from the
corresponding excited states in the singlet-singlet configuration by the exchange energy of twos-p electrons. The ground-stat
energy in the absence ofs-p shell mixing isE052Es12@Ep

02(Vee
sp,x1Vhh

sp,x)#22Veh
pp .

The two degenerate excited states are coupled by the electron-hole interaction. We form a symmetric and antis
combinationu6&5(1/A2)(ua&6ub&). This leads to two eigenvaluesE65Es13Ep

022(Vee
sp,x1Vhh

sp,x)2(Vee
pp,x1Vhh

pp,x)6Veh
pp .

Only the symmetric state couples to the ground state and renormalizes its energy:

S 2Es12~Ep
02~Vee

sp,x1Vhh
sp,x!!22Veh

pp 2A2Veh
sp

2A2Veh
sp Es13Ep

022~Vee
sp,x1Vhh

sp,x!2~Vee
pp,x1Vhh

pp,x!2Veh
ppD .



g

e
h
p

s
f

le
e

ng
re
on
om
-
le

er

e

is
w

s
an
e

t
of
in
ity

f

ct
he
ic

gl
-
a
s
ta

.
l
we

by
-

y a
the
.

he

s in
-

ow
e the
he
s
etric
3

is-

th

ura-
n

5606 PRB 60PAWEL HAWRYLAK
The final form of the Hamiltonian describing the couplin
of the ground-state and a single relevant excited state is

S 6t24.75V0 2~A2/4!V0

2~A2/4!V0 7t24.625V0D .

We see that the energy of triplet excited states is low
then the energy of singlet excited states but the strengt
coupling of singlet states is higher. The small energy se
ration of triplet excited states from the ground state lead
stronger level repulsion. This is, however, compensated
by the stronger interaction of levels in the singlet-sing
configuration, and the singlet-singlet configuration becom
the ground state. The splitting is very small. Larger splitti
results from the coupling to higher shells if they a
available.12 The singlet-singlet ground-state configurati
has to be contrasted with the configuration derived fr
Hunds rule,26 which would predict the triplet-triplet configu
ration to be the ground state. It shows that different ru
operate in excitonic atoms than in electronic ones.

VII. EXCITED STATES AND EMISSION SPECTRA

We have shown that for symmetric interactions and v
large confinement the energy to remove an exciton from
partially filled p shell does not depend on the filling of th
shell. Hence the emission spectrum of thep shell does not
depend on the population of this shell. In order to distingu
spectra corresponding to different numbers of excitons
need to investigate removal of excitons from a filleds shell
as a function of the filling of thep shell. These processe
leave the final-state exciton droplet in an excited state,
hidden symmetry no longer applies. The excited states w
already investigated in Sec. VI.

To calculate the emission spectrum we assume that
quantum dot is in a quasiequilibrium with a reservoir
electron-hole pairs in, e.g., the energetically higher wett
layer or 3D continuum. This determines the probabil
P(N,i ) that the dot is occupied withN electrons and is in an
initial stateuN,i &. The emission spectrum is given byE(v)
5(N,i P(N,i )E(v,N,i ).

The emission spectrum of a dot withN electrons in a state
u i &, E(v,N,i ), is given by Fermi’s golden rule in terms o
exact energies and eigenstates of the initialN and final N
21 exciton states:

E~v,N,i !5(
f

z^ f ,~N21!uP2uN,i & z2d~Ei2Ef2v!.

~17!

If we assume fast energy relaxation, only emission spe
from ground states ofN exciton complexes are needed. T
calculated emission spectra are shown in Fig. 8 for a typ
ratio of the Coulomb to kinetic energyV0 /t50.5.12,13 The
1X and 2X recombination spectrum corresponds to a sin
recombination line. The 2X emission is at slightly lower en
ergy, and its amplitude is twice the exciton because there
two final exciton states, with two different spin orientation

Let us now discuss emission spectra from the ground s
of the three exciton complex. The final 2X states can be
r
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either triplet or singlet states. The 3X ground state is well
approximated by the symmetrical combinationu1&
5(1/A2)(ua&1ub&). The 2X final states were given in Eq
~11!, and only the biexciton stateu0& and the symmetrica
excited state are coupled. For a singlet-singlet final state
find the matrix element for the transition from the 3X ground
state to the singlet final states to be given
z^(2X), f uP2u3X& z25uA2A0

f 1A1
f /2u2. We see that the con

tribution from the ground state is increased by a factorA2,
and the coefficient of the excited state is decreased b
factor of 2 as a result of overlaps of different states. For
2X ground stateA0@A1 , and both coefficients are positive
This multiplicative factor enhances the contribution from t
2X ground state, i.e., recombination from thep shell. On the
other hand, the excited state, corresponding to vacancie
the s shell, hasA0!,A1 and the two coefficients have op
posite sign. The smaller coefficientA0 is enhanced by the
factorA2, while the larger excited-state coefficientA1 , with
opposite sign, is reduced by a factor of 2. They become n
comparable factors, and tend to cancel each other. Henc
s-shell contribution to the emission spectrum from t
singlet-singlet 2X configuration is very small. What remain
is the emission process where the final state is the symm
combination of the two triplet biexciton states. Hence theX
to 2X emission spectrum has two groups of peaks, the em
sion from thep shell and the emission from thes shell. The
s shell emission is to the final triplet biexciton state, wi
energy very close to the 1X and 2X emission line. This is
because we removed an exciton with such a spin config
tion which did not allow for the exchange with an electro
and a hole in thep shell.

FIG. 8. Emission spectra fromN exciton ground states to (N
21) exciton ground and excited states forV0 /t50.5.
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The emission from the 4X complex to excited states o
the 3X complex consists of two spectra originating from a
most degenerate singlet-singlet and triplet-triplet initial 4X
states. The triplet-triplet recombination spectrum, and
comparison with the final density of states, is shown in F
7. The recombination spectra consists of three groups
states:~a! the recombination from thep shell which is de-
generate with the recombination from the 3X complex,~b!
the recombination to the final 3X triplet-triplet state, which is
close in energy to the recombination from a single excit
and ~c! the lower-energy band of the 3X excited states,
shown in detail in Fig. 7

The emission from the 5X complex to the singlet-single
and triplet-triplet 4X final states shows a very strong em
sion from thep shell and a very weak emission from thes
shell. The weak emission from thes shell is caused by a
similar interference effect to that for the 3X complex. The
matrix element for the recombination from the 5X ground
state to the ground state and one excited singlet-singletX
states is given by z^(4X,ss), f uP2u5X& z25uA3/2A0

f

1A1
f /2u2, where coefficientsAf are eigenvectors of the fou

exciton singlet-singlet Hamiltonian. Hence the recombin
tion to the ground state is enhanced, and that to the exc
state, with a missing exciton in thes shell, is reduced.

There are three triplet-triplet finite 4X states. Only two of
them can be reached from a given initial 5X configuration.
They have the same energy and are coupled to only
excited state but their matrix elements are different. FoS
51 and Sz51, the transition probability is
z^(4X,tt), f uP2u5X& z25uA2A0

f 1A1
f /2u2, where coefficients

Af are eigenvectors of the triplet-triplet four-exciton Ham
tonian.

For S51, Sz50 the transition probability is
u^(4X,tt), f uP2u5X&u25uA0

f /A21A1
f /2u2. TheSz50,1 prob-

abilities have to be added.
The final result, Fig. 8, shows that in the 5X complex the

emission from thes shell is suppressed in comparison wi
the lower density quantum dot, i.e., with either four or thr
excitons, a rather counterintuitive result. The emission fr
thes shell is recovered when our dot is completely filled w
6X. The emission from thes shell corresponds now to th
removal of thes-shell exciton, without mixing with other
configurations. The energy of this quasiexciton is renorm
ized by an exchange interaction of thes-shell electron and a
hole with electrons and holes in ap shell. This lowers the
energy of the emission band by the exchange self-energ
the exciton 2(Vee

sp,x1Vhh
sp,x).

Therefore, we see that the emission spectra as a func
of the number of excitons have several characteristic
tures. For one and two excitons the emission takes p
from the exciton and biexciton state, with electrons and ho
primarily in thes shell. The energy shift between the excito
and biexciton is very small on the scale of the largest ene
in the problem, i.e., the kinetic energyt. When the number of
s
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excitons increases, extra electrons and holes populate ex
states of thep shell. The recombination energy from th
p-shell does not depend on the number of excitons, a re
of hidden symmetry, i.e., cancellation of many process
However, the recombination from thes shell depends on the
population of thep shell. This is a rather complicated pro
cess, involving a number of excited states and peculiar in
ference effects in matrix elements. This interference is
sponsible for promoting the recombination process fr
three- and four-exciton complexes to spin-polarized fi
states. This process involves a removal of an exciton w
electron and hole spins opposite to spins of electrons
holes in a partially filledp shell. Hence the energy of thi
recombination line is not affected by the population of thep
shell, and follows the energy of an exciton. Only when thep
shell begins to fill up with more than two particles, does t
s-shell recombination line shift down in energy. The shift
due to exchange energy of the removeds-shell exciton with
p-shell excitons. The emission to final polarized states m
perhaps explain why high excitation photoluminescen
emission from higher electronic shells is not accompanied
a band-gap renormalization of emission from lower shell

VIII. SUMMARY

We have shown that the emission spectrum from a v
simple and general model of a quantum dot is a sensi
function of the number of excitons in the dot. Hence ‘‘eng
neering’’ optical properties of quantum dots requires n
only engineering of the single-particle levels but of man
particle states and interactions as well.

The detailed calculations of the emission spectra for up
six excitons reveal an interesting interplay of spin and c
relations in the exciton droplet. The spin-polarized comp
nents of the exciton droplet lower their energy due to attr
tive exchange interaction. In the spin-unpolariz
configurations exchange is repulsive, but the number of p
sible configurations increases. The mixing of configuratio
~correlations! due to the electron-hole scattering more th
compensates for the loss of exchange. Because of cor
tions there appears a modulation of matrix elements in
recombination process which leads to, e.g., suppressio
the recombination at low energy in the five-exciton comp
and enhanced emission into spin-polarized states for low
citon numbers. This may perhaps explain the lack of sign
cant band-gap renormalization observed in high excitat
photoluminescence experiments. It is hoped that these ca
lations will serve as a fingerprint of excitonic artificial atom
observed in ‘‘single-dot spectroscopy.’’
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