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Weak localization of biexcitons in quantum wells
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Recent experimental studies have demonstrated localization of biexcitons in quantum wells, providing even
optical gain up to elevated temperatures. We present a theoretical treatment of exciton and biexciton states in
the weak localization limit using a center-of-mass separation ansatz. An advanced approach based on an
extensive numerical solution is compared with a more simple model for the quantum well biexciton wave
function. Our explicit results, derived for parameters of the ternary quantum well ma#rj&ld Se, yield that
the localization of the biexciton is—despite its larger spatial extension—stronger than that of the single exciton
state.[S0163-18209)07031-9

I. INTRODUCTION citon binding energies of the order of 10 meV.
The paper is organized as follows. Section Il introduces

Localization of excitons induced by disordénterface  the formalism of the c.m. separation ansatz for the biexciton
roughness, alloy fluctuations, etés an inherent feature of wave function and the general procedure used in the subse-
quantum wells (QWS)]' Recenﬂy’ various experimenta| quent sections. The models for the QW biexciton relative
group€~“*have reported on the observation of localized biex-Wave function and the corresponding treatments of the exci-
citons, providing even optical gain up to elevatedton are the subject of Sec. Ill. The results are presented and
temperature8.A common feature of these investigations is discussed in Sec. IV, where a comparison and an assessment
that the biexciton binding energy, taken from the separatiof the two models is made.
of the biexciton and exciton photoluminesceiieg) lines, is
substantially increased through the localizafidhis tempt-
ing to relate this finding with calculations for strictly zero- Il. GENERAL TREATMENT
dimensional biexcitons in quantum dots with infinite

barriers® In the present case, however, the potential fluctua- In the QWSs under consideration, the subband energy
. ) P ’ f, the potentl separation is much larger than both binding and localization
tions are on the same scale as the biexciton binding energ

making a straightforward prediction about the change of th ghergy of the respective complex, justifying a separation of

S T . X She single-particle motion in growth directigm the follow-
biexciton state under localization impossible. A first calcula-ing denoted ag direction:

tion in the framework of the density functional theory in

local-density approximation indicated that the localized biex-

citon is approximately twice as stable as the localized

exciton®’ A general uncertainty of the local-density approxi- Vo=Vl ¢a(z0), 1)

mation is that it produces an atrtificial self-localization even a

when the external potential is removed. In the present paper,

we present therefore a more elaborated treatment of the biex- ) ]

citon in the limit of weak localization avoiding this artifact. Where a runs over all particlesgh for the exciton and
Our approach is based on the assumption that localizatiofil.€2h1h2 for the biexcitop and ¢,(z,) are the single-

of both the exciton and biexciton can be treated in terms oParticle subband functions. The resulting in-plane effective

the center-of-mas&.m) motion. This ansatz, so far used for Mass Schrdinger equation for the exciton and biexciton

the exciton only? requires knowledge of the biexciton inter- reads as

nal wave function for the ideal QW, for which we developed

two models. The more precise approach is made by discretiz-

ing the Schrdinger equation in real space and solving it with h ~

a combination of the inverse iteration technique and a modi- ; [_ 2_rnaAra+Va(ra)+t§a Uap| Wap

fication of the Gauss-Seidel methdd@o have an alternative

with clearly less numerical expenditure, we make an e E E2 |y @
adiabatic-like hole-hole separation ansatz based on the two- =~ —al] ¥ 2D

dimensional (2D) hydrogen moleculé’ extended towards

finite hole masses and a finite well width. In the numer-

ical calculations we use parameters appropriate tavhich includes the single-particle localization potentdls
(Zn,CdSe/ZnSe QW structures, characterized by large biexand the effective 2D QW Coulomb interaction potentials
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_ 5 5 In the next section, we introduce two models for the biex-
Uab(ra_rb):f dz,dz,05(Z5) 1(Zp) citon relative wave function in the ideal QW.
Ja Qb &) Ill. THE QUANTUM WELL BIEXCITON WEIGHT
4me e \(1a=1p)%+ (20— 2% FUNCTION

with the in-plane coordinate and the charge; of particle A. Numerical solution of the finite-difference biexciton
i =e,h and the dielectric constanat The total energy and the Schrodinger equation
single-particle QW confinement energies are denote@ as  Schweigeret al® have developed a numerical method for
andEZ, respectively. calculating the ground state of an interacting many-particle

In the limit of weak localization, the internal motion of system. Instead of solving the ScHioger equation by a
the complex is almost not affected. Therefore, we can solveliagonalization of the Hamiltonian using an expansion of the
the problem of the internal motion and the c.m. problemwave function in a basis consisting of product eigenfunctions

separately by making the ansatz of the single-particle Hamiltonian, the method of Ref. 9
solves directly the Hamiltonian of a finite system of interact-
Vap=¥(R)p({a}), (4 ing particles confined by a given potential. In the many-body

whered is the wave function of the internal motion, depend- Schralinger equation we use a finite-difference representa-

ing on an appropriate set of relative in-plane coordingggs 0N of the Laplacian fok degrees of freedom on a space
and solving grid with n points. This leads to a largé’x n* sparse matrix.

The number of nonzero elements of the matrix is propor-
- tional tonk. The present procedure requirgsoperations to
Tre|+2b Uab}d’({q}):EreI(ﬁ({Q})a (®  find the ground state, which allow us to consider systems
* with k=4—-6 degrees of freedom on non-parallel machines.
with T, the kinetic energy operator arttl, the energy de- It should be noted, that recently considerable attention has
fining the binding energy of the complex in the ideal QW. been paid to construct effective algorithms to solve the
and R are the c.m. wave function and coordinate, respecmany-body Schidinger equation using mean field theoreti-
tively. Inserting ansat#4) into the Schrdinger equatior{2), cal approximations for the exchange correlation enésgg,
multiplying with ¢* and integrating with respect to the rela- e.g., Ref. 12 for a brief review In particular the finite-

tive coordinates yields the c.m. Scdinger equation difference technique was considered for an effective
one-particle probler®® To solve the problem of the biexci-
[Temt Vem(R)#W(R)=—Epc(R), (6)  ton in an ideal QW?, the finite-difference technique was ex-

tended in order to solve the many-particle Schnger equa-

B 2 _ N i
whereTe,n, and E'OC_EaEajL. Efe.' E denote the kinetic €""  tion. The effective 2D Coulomb potential is approximated
ergy operator and the localization energy of the c.m. mot|onby14,15

respectively. The c.m. potential

~ Qa0
_ 2 Uap(rag—rp) = ’ 10
Ven(RI=S [ PSFu(sVa(R+9 @ e Va0 (adg?

can be expressed as a sum over convolution integrals of thgoiding the logarithmic singularities of the rigorous expres-

single-particle localization potentiad, with a weight func-  sjon(3). « is a fitting parameter, which is equal to 0.2 in case

tion of infinitely high QW barriers and which depends on the
width dg\ of the QW in case of finite barrier height. Choos-

Fa(s)= f d{at 2({q}) 8 a(R Q) —R—9) (8)  ing « such that the resulting QW exciton relative wave func-

tion approaches the one obtained by using the effective 2D

for each particle. They are normalized by the normalization QW Coulomb potentia(3) as close as possible, we fird

of the wave functiong. Here,r,(R,{q}) are the individual = 0-26 for a 18 monolayer ZpCd, ;Se/ZnSe QW

coordinates of the particlein terms of the c.m. and relative

coordinates. Concluding so far, the localization enefgy [Mme=0.18my, my=0.5m, (isotropig, €=8.8,
can be calculated directly from the simple effective single-

particle equation(6), if the weight functionsF,(s)—which Ry=20.3 meV, ag=4.0 nm, AE =260 meV,
are functions of only one variable the distance from the

c.m.—for the electrons and holes in the free excitonic com- Xc=AE//AE;=0.75, dow=5.2 nm].

plex in the QW are known.

In case of the single exciton, the relative wave funcigon  Standard enumeration of the single exciton equation yields
has the only coordinateq=r.—r,, so that r,=R  an exciton binding energy of 32.7 meV, being in very good
*(u/my)q with the reduced exciton mags=mem,/(m.  agreement with the value of 32.3 meV for the more accurate
+m). Consequently, the weight functions are sinfgfy potential (3). Both potentials as well as exciton wave func-

tions are plotted for comparison in Fig. 1. Solving next the
(a=e,h) ) biexciton equatiqn within the apovg mentioned numerical
T scheme, we obtain a biexciton binding energy of 3.81 meV

Fa<s>=¢2(%s
M
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@ _ kinetic energy compared to the electrons. The maximum of
[ e calculated with U_ the electron probability density lies between the holes in the
\ approximation with #=0.26 c.m., screening the hole-hole repulsion and making the bind-

ing of the complex possible.

B. Hole-hole separation ansatz

To have an alternative approach with clearly less numeri-
cal expenditure, we tried to find a supplementary, more
simple model for the QW biexciton relative wave function.
An effective one-degree-of-freedom mod@lhich ignores
relevant kinetic energy terms, yielded very poor results, even
qualitatively different from those of the previous section.
Therefore, we developed another approximation for the QW
biexciton wave function which is based on an adiabaticlike
hole-hole separation ansatz, outlined in the following.

In the limit of large hole masso{=m,/my<<1), a decou-

exciton relative
wave-function [arb. units]

.
-
(=
o

electron-hole interaction [meV]

h pling
200 ff _
: . ¢({ah) = ga{a})- @ (h) 11
.- U
a;;,ox,-ma,,o,, with @ < 0.26 is well suited for constructing an in-plane biexciton relative
300 . . . ) . wave function, wherér denotes the hole-hole distance. An
0 1 2 3 appropriate choice for the internal wave function is the varia-

exciton relative coordinate r [a 5 ] tional ansatz

FIG. 1. Exciton relative wave functions and probability densities

(@), and effective 2D QW Coulomb potentials) in an 18 mono- ba= (VT ern1) Px( Y e2n2) + Su( VT etnz) Px YT e2n1) ,
layer (5.2 nm Zn, {Cd, ,Se/ZnSe QW. Dotted line: potentifl,,, V2(1+5%)
given by Eq.(3). Solid line: approximation fol ,, given by Eq. (12)

(10) with a=0.26. whereg, is the exciton relative wave function, depending on

. . _ _ the electron-hole distance,, (a=ele2; b=h1h2),
for the ideal QW. Th|s4value is about three times smallers is the overlap integral, ang is a variational parameter
than experimental daf} emphasizing the role of localiza- accounting for a compression of the exciton within the

tion in real QW structures. biexciton. This provides the Schiimger equation
The respective weight functiors,(s) for electrons and

holes in the exciton and the biexciton are shown in Fig. 2. K2 2 1

For the exciton, the hole weight function is stronger located w2t g TV @) =Ex®(h) (13
: : oh?2 hoh

at the c.m. compared to the electron weight function because

of the larger hole mass. As known for the protons in thegor the factord(h), whereM =m,+m, is the exciton total
hydrogen molecule, the hole weight function in the biexcitonass For the sake of simplicity, instead of calculating the

displays instead a local minimum at the c.m., caused by thggtective exciton-exciton potentia(h) with the aid of Eg.
Coulomb repulsion of the holes together with their smaller(lz) by extensive numerical efforts, we approximate this po-
tential by

V(h)=Vy(h)+ e—Z‘e—h’b (14)
M 4reyeh '

with the Morse potentidl Vy(h)=D-[(1—e 3N~N))?
—1]. The second term ensures the correct asymptotic behav-
ior for h—0, which consists of a screened Coulomb repul-
sion of the holes. For finding the parametBrsh,, a, andb
in a QW, an interpolation between the potentials of the hy-
drogen molecule in 20Ref. 10 and 3D(Ref. 18 is made.
Since the masM may be considered as infinite in this case,
binding energy and hole-hole separation are directly given
by the minimum of the potential curve. The respective pa-

FIG. 2. Normalized weight functions,(s) (a=e,h) for the ~ rameters are summarized in Table I. For a better comparison
exciton and the biexciton. The results for the biexcitahick  Of the two potential curves, both plotted in Fig. 3, we rescale
curves are obtained by numerically solving the finite-difference theé space and energy coordinates in 2D and 3D by the re-
Schrainger equation. As for the biexciton, the results for the exci-SPective exciton radiugmost probable electron-hole dis-
ton (thin curves are calculated using E¢10) with «=0.26. tance pqy(d=2D, 3D) and exciton binding energEi’(d) ,

[arb. units]

a

weight function F

0.0 05 1.0 15 20
distance s from c.m. [a 5 ]
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TABLE |. Exciton binding energye2® , exciton radius(most probable electron-hole distange;,
compression parametes, and the fitting parametei3,h, ,a,b for the potential(14) for 2D, 3D and for an
18 monolayer(5.2 nm Zny Cd, ,Se/ZnSe QW.

d EXY Ryl pa [as] y D [Ry] ho ] alag’] blag]
2D 4.0 0.25 1.275 2.45 0.35 2.7 0.09
3D 1.0 1.0 1.166 0.35 1.45 1.15 0.09
Qw 1.57 0.54 1.227 linear combination according to Bd)

also listed in Table I. Though the absolute values are mark=157 Ry, pow=2.2 nm=0.54, y=1.23, and a
edly different, the minima of the resulting rescaled potentialsyiexciton binding energy?, = 2E,— E,,=4.68 meV with
£=0.61.
Ug(h/pg) =V4(h)/EE® (15) The derivation of the weight functior,(s) (labeled as
B in Fig. 4), from the adiabatic-like biexciton wave function
appear nearly at the same positibfpy~1.4 (see inset of (11) is outlined in the appendix. We find very good agree-
Fig. 3), indicating that the size of the molecule scales withment between models A and B, concerning the qualitative
the size of the atoms. Hence, it seems reasonable to assuinehavior of the weight functions as well as the spatial exten-
that the same scaling rule holds for the QW. We use a lineasion of the complex. The hole weight function of the hole-

interpolation between the 2D and 3D potential hole separation ansatz shows a sharper peak at equilibrium
position and a smaller value fer=0 than that of the finite-
Uquw(X) = EUp(X) + (1= &) U3p(x), (16)  difference calculation. The latter might be caused by the dif-

ferent asymptotic behavior of the particle-particle potentials

with x=h/pow and the interpolation parameter=(pow for vanishing di_stance. Eq.ugtiomO). under.estimates the

— pap)/(p2p— p3p), Wherepqy is derived from the exciton hole-hole repuIS|or_1 b_y avoiding a singularity, whereas the
wavefunction solving potential3). The resulting potential ~Screened 1 potential in Eq.(14) diverges stronger than the
Vow(h) is plotted in Fig. 3 together with the probability logarithmic divergency of the true QW Coulomb potential.
density| @ (h)|2, obtained from the solution of the hole-hole Despite of the various simplifications wnf_nn this hoIe-hoIe
Schralinger equatiorf13). It should be noted, that the choice Separation ansatz, the results agree surprisingly well with the
for ¢ is somewhat arbitrary, but other reasonable interpola-
tions yielded only slightly different results in our numerical
examples.

The calculation of the weight functiors,(s) additionally
requires knowledge of the compression parametén Eq.
(12). For this purpose, we interpolate in the same way like
for the potentiall o,y between the two values for 2[Ref.

10) and for 3D(Ref. 19, listed in Table I. Using an expo-
nential trial function for¢,, we find for the 18 monolayer
ZnoCdh,Se/ZznSe QW the valuesE2®")=31.6 meV

[arb.units]

e

exciton

1.0 1.5 2.0

biexciton

weight function F

rescaled potentials
= b ()
Ud(h/pd) Vd(h)/EX

Iy
.............................. S| B -2
~ o ! * A
3 s 7 N
= " ) ' \
> 2 3 4 5 6 7 - K )
o distance h between holes [p 9 ] . N exciton
@ <
c PN T e As] 0.50
q) ------ E
<
2
/ =
. 2 biexciton
2L % 20 L | (v holes
1 1 A 1 A ] L 1
0 1 2 3 4 0 1 2 3
distance h between holes [a 5 ] distance from c.m. [a_]
FIG. 3. Effective exciton-exciton interaction potentialgh). FIG. 4. Normalized weight functionk,(s) (a=e,h) for the

Thin dotted line: 3D. Thin dashed line: 2D. Thick solid line: inter- two models of the QW biexciton relative wave functidn.Numeri-
polation for an 18 monolayer (5.2 nm) Zgd,,Se/ZnSe QW. cal solution of the finite-difference Schtimger equationB: Hole-
Thick dashed line: probability distributiof®(h)|? for the QW  hole separation ansatz. Insets: Weight functions for the electron and
case. Inset: Rescaled potentiblg(h/py) for the 2D and 3D cases. the hole in the respective exciton.
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v.u j 10 0 ‘ =
'\é rbox=0.25 aB i / 8
Q 4] A i F »
% 0.1 ,
8 -
= N
8 A , 26r
. B“ ) v ) =
E T 0B //E"W §’4 [
exciton biexciton ol
15 10 05 00 05 10 15
distance [a_ ] -
0.0 B ol . .
= 0 1 2 . 3 4 5 6
0.2} exciton localization energy [meV]
—_ 0
x
I LN FIG. 6. Biexciton localization and binding energe&° andE?®,
> 04} . . o -
3 as a function of the exciton localization enerﬁ&? in a QB, em-
'*q;: 06 A bedded in an 18 monolay€5.2 nm Zn, {Cd, ,Se/ZnSe QW. Dot-
2 B ted line: Fixed radiug{})=0.25, and variable potential depth
; 08} Vpox. Dashed line: Fixed radiusZi=1.0ag and variableVy,.
3 Solid line: Fixed potential depttf,.,=1 Ry and variable,,. The
-1.0f line with E!%=2E!°® marks the case of equal localization strength
exciton biexciton per exciton.
e e R

distance [a,_ ] and

FIG. 5. Center-of-mass potentials ,,, of the exciton(left side 4
and the biexcitoriright side for two QB radiir{L)=0.25g (upper (Ag)o=—2 (1~ tho) (18b)
layen andr{,%)xz 1.0ag (lower layey for the two biexciton models: g

A: Numerical solution of the finite-difference Sckiinger equation. for i #0 andi=0, respectivelyR; is the c.m. coordinate on
B: Hole-hole separation ansatz. Dotted line: The single-particle lo’[he numerical gri,d poini, and5=lR< .—R; is the increment

. . . 1+ 1
calization potentiald/ . of the grid. Our explicit calculations are again carried out for

18 | /ZnSe QW.
advanced numerical solution of the finite-difference Sehroa monolayer ZgeCdy Se/znSe Q

dinger equation, introduced in Sec. Il A. o o
A. Increased biexciton localization

IV. LOCALIZATION ENERGIES _ W<_a start di_scussing the rgsults obtained with t.he QwW
biexciton relative wave function calculated by solving the
The exciton and biexciton localization is considered forfinite-difference Schidinger equationSec. Il A). The re-

cylindrical one-particle potentials spective c.m. potentialg.. ,, for two QB radii r&)xz 0.255
_ andr(2=1.0ag are depicted in Fig. %solid curves, labeled
it ra=rpox with A). While the shape of the potential curve is indepen-
XaVbox dow dow dent of the depth/,, of the g,(i:ngle-pggticle potenti, . the
Va(ra) = and — — << (17 ground-state energy leve8° and E!C as well as their po-
sition relative to each other depend sensitively on this param-
0 else eter.

Conversely to the model parametets, and Vi, the
exciton localization energEL"C is a quantity directly observ-
able experimentally. Therefore, we chose this energy, calcu-
Lated at the respective level of approximations, as reference

. 2° or measuring the degree of the biexciton localization. In Fig.
with larger band gap. The coefficiep=AE,/AE, denotes o ot o ‘=loc b
the relative conduction and valence band offset?l respectively6_.’ Zbée)icgon Iocallzat.|0n| and bmld g denerg&;ﬁﬁ’é and Exe
As the localization potentidll7) is axial-symmetric, the c.m. < ™ respective y, are p otte vers : varying
Schralinger equation(6) is reduced to a one-dimensional the parameters of t_Qf)QB m(tz\;vo ways. First, Va”at'ONQJ_X
problem, which is solved numerically. For the discretization2t the selected radik,, andry,, demonstrates how the biex-
of the radial part of the 2D Laplacian, we use the secong¢iton Iocall_ze_s when its spatial extension is gpprox!mately
order representatih equal or distinctly smaller than the characteristic width of
V. m. (dashed curvgs Second, keeping the potential depth
1R R Vihox=1.0 Ry fixed, the rgdiu_srbo_x was varieo_l (so_lid _
(Ag)=—| =Ly —oy+ =2y | (189 curves. Aslong as the localization is weak, the biexciton is
5\ R Ri found to have a larger localization energy per exciton than

of variable radius ., and potential deptWy,,, covering the
full QW-width dgy in z direction (see inset of Fig. B2
This kind of quantum boxXQB) represents an accumulation
of material with smaller band gap, surrounded by materia
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o

the single exciton, despite its larger spatial extens{@ior
small exciton localization energies, the biexciton localization
energies lie above the line witB%°=2E'® in Fig. 6) In our
definition, the biexciton binding energy represents in fact the
separation of the exciton and biexciton PL features. Decom-
posing the various contributions, it hold&®2 =E® '@

(o2 [e o
T
.
.
.
.
.
w*

»
T
>
»

rbox=0.25 ag

biexciton localization energy [meV]
L\v]

OO
-

+(E%—2E"9), whereEP,'®®¥ is the binding energy of the
ideal QW. The increased line separation in the experiment is
hence a consequence of the stronger biexciton localization,
—_—r =10a
box B
cally unchanged.
. . . . 2 3 4 5 [
This fact can also be understood as an increased biexciton exciton localization energy [meV]
which the solution of the finite-difference Sclinger equa- FIG. 7. Biexciton localization energi o aS(lf)UnCtionS of the
oc —
. . (2 iexci ion i
The asymptotic behavior fdj—il)?c_)o can be shown to be 'bo™ 1.0ap for the two biexciton model#\ and B (see caption in
universal and independent of the details of the potential anfi9- 4-
localized in a weak 2D p_oteptiqp(r)[|u|§h2/ (Ma?)  hole separation ansatz reproduces the solution of the finite-
wherea? is the area wherd is significantly different from  difference Schidinger equation very well. This is also true
in Fig. 7. A qualitative deviation consists in a nonmonotonic
h? ) ) behavior of the potential curve for the narrower QB, caused
|E|%mex —hel\M dr|U|
a > )
approximation. Folr<<1, V., is controlled by the shape
Since the weight functions,(s) are normalized, the integral of F,. If the radius of the QB is now smaller than the dis-
the exciton, so that the biexciton has not only twice the masshe peak ofF,,, the complex localizes with one hole inside
but sees twice the potential strength compared to the excitorand the other hole outside the QB. While this is indeed the
oc loci 1/4 demonstrates that the peak®f is less pronounced for the
|Exx] ~ [EXTH (20) actual o, and thus compensated by the contribution of the
are directly related to the respective weight functions. For a
. . . . . V. NCLUSION
given E')?C, the larger width of the biexciton function causes CONCLUSIO
Viox at fixed rpgy, El)?; crosses the IindE!?szEl?c at  tons. In the limit of weak localization, the localization energy
Vpox= 150 meV (E!?CZS.O meV) forr{l)=0.25a5 and at IS more than twice as large as for the single exciton because
_ loc_ (2) — -
Vbo=26 meV (=85 meV) forry,=1.0ag, respec Therefore, with increasing temperature, first the excitons are
disappears. On the other hand, for relatively shallow QB removed _from their Iocahzatlo_n sites, while localized p|ex_C|-
. . . ons survive up to markedly higher levels. Weak localization
with Vo, =1.0 Ry, no crossover is found in the range of
ization requires a particle size smaller than the characteristig. \ 9>’ given by the separation of the exciton and biexciton
| Teq a partic PL features, without altering the exciton-exciton interaction
potential extension, is incorrect.

b made quantum dots, does not necessarily mean that the sta-
can be argued however that even the raiffe=Ey, can be bility of the biexciton is further enhanced. For the
the slight compression of the biexciton relative wave func-renyision of the heavier holes becomes increasingly domi-
tion caused by localization is compensated by the Coulombant in the interparticle interaction, so that the biexciton

XX XX
while the exciton-exciton interaction energy remains practi-
binding energy compared to the free QW biexciton, for
tion yieIdSEgX=3.81 meV. exciton localization energye,™ in QBs with ry;=0.255 and
the relative wave function: For any particle with ma¥s  As already demonstrated for the weight functions, the hole-
zerd, it holds™ for the biexciton localization energi€s-° plotted versus.®
: (19 by the sharper peak of the hole weight functiep of this
of the biexciton c.m. potentiald®r|U| is two times that of  tance of the hole from the c.m. in the free biexciton, given by
resulting in correct scenario fowr<1, the finite-difference calculation
Beyond this limit, the trends for the biexciton localization €l€ctron weight function.
a decrease oFE!% when r,,, becomes smaller. Increasing  Our above study has confirmed the localization of biexci-
box . . .
of the larger biexciton mass and the stronger c.m. potential.
tively, where the enhancement of the biexciton localization
reasonable values of,. Evidently, the assertion that local- of the biexciton significantly increases the biexciton binding
) . . energy. Stronger localization, as for instance in intentionall
Strictly speaking, the c.m. approach requiESS<E®. . It %y 9 y
covered in very good approximation. In the latter Situaﬂonv(Zn,Cd)Se/ZnSe model structure studied here, the Coulomb
repulsion of the equally charged particles so that its nehinging energy starts to decrease. This case, where the c.m.

change can be ignored. approach begins to fail, deserves further investigation. The
adiabaticlike hole-hole separation ansatz turned out to pro-
B. Comparison of the biexciton models vide a useful approximation scheme for calculating the QW

Now we evaluate the simplified version of the QW biex- Di€xciton state.
citon relative wave function, introduced in Sec. IlIB, by
comparing it with the more rigorous treatment of the previ-
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APPENDIX: WEIGHT FUNCTIONS OF THE (i=1,2), (A4)
HOLE-HOLE SEPARATION ANSATZ

Here, we outline how to calculate the weight function with
F.(s) from the biexciton relative wave function in case of
the adiabatic-like hole-hole separation ansatz, introduced in _(? 2y (D) shooser)
Sec. I B. Using exponential functions for the exciton rela- I,(s,h)= fo dene "
tive wave functiong, in ansatz(11), we obtain for the adia-
batic biexciton relative wave function

2
2 , r r Jzz(S,h)Zf dqphe—y\/52+(h/2)2+shcos(goh)
(ry,rp,h)= ————=7y"(e""1e" "2 0
= e

— y/s2+ (h/2)2—sh cos(ep)
+e Mnhlg=vr2thlh g (h), (A1) xe "

where
G(h)—E 2 Dodl,.r.e—'yr Zﬂ-d e—y\/r2+h2—2rh cos(ey)
r=rex1—rn1, (A2a) 7Y 0 0 r '
(AS)
r2=rex~In2, (A2D)
h="rno—"Thi, (A20) and for a hole
is the chosen set of relative coordinates ahd@h) is the 5 .
solution of the 2D interexciton Schiimger equation(13). Fhi(s)=N® (2s)[1+1/s)] (i=12), (A6)
Inserting Eq.(Al) into Eq. (8) yields
4 with
F (s)=4—yf dr,dr,dhé(r,—R—59)
ST mpas) R

2 (T arre=r [ do.e- v At ars coster)
Izz(s):;’)’ Odrre " . dep,e YVritas rs cos(er)

X (e 2"Me 224 e 27Ir1—hlg=2ylrp+h|

+2e "1g Mg MN-hlg =Yl thly g 2(py) (A7)

(a=ele2,hl1h2), (A3) N is a normalization constant.
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