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Weak localization of biexcitons in quantum wells
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Recent experimental studies have demonstrated localization of biexcitons in quantum wells, providing even
optical gain up to elevated temperatures. We present a theoretical treatment of exciton and biexciton states in
the weak localization limit using a center-of-mass separation ansatz. An advanced approach based on an
extensive numerical solution is compared with a more simple model for the quantum well biexciton wave
function. Our explicit results, derived for parameters of the ternary quantum well material~Zn,Cd!Se, yield that
the localization of the biexciton is—despite its larger spatial extension—stronger than that of the single exciton
state.@S0163-1829~99!07031-9#
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I. INTRODUCTION

Localization of excitons induced by disorder~interface
roughness, alloy fluctuations, etc.! is an inherent feature o
quantum wells ~QWs!.1 Recently, various experimenta
groups2–4 have reported on the observation of localized bie
citons, providing even optical gain up to elevat
temperatures.4 A common feature of these investigations
that the biexciton binding energy, taken from the separa
of the biexciton and exciton photoluminescence~PL! lines, is
substantially increased through the localization.5 It is tempt-
ing to relate this finding with calculations for strictly zero
dimensional biexcitons in quantum dots with infini
barriers.6 In the present case, however, the potential fluct
tions are on the same scale as the biexciton binding ene
making a straightforward prediction about the change of
biexciton state under localization impossible. A first calcu
tion in the framework of the density functional theory
local-density approximation indicated that the localized bi
citon is approximately twice as stable as the localiz
exciton.3,7 A general uncertainty of the local-density approx
mation is that it produces an artificial self-localization ev
when the external potential is removed. In the present pa
we present therefore a more elaborated treatment of the b
citon in the limit of weak localization avoiding this artifac

Our approach is based on the assumption that localiza
of both the exciton and biexciton can be treated in terms
the center-of-mass~c.m.! motion. This ansatz, so far used fo
the exciton only,8 requires knowledge of the biexciton inte
nal wave function for the ideal QW, for which we develop
two models. The more precise approach is made by discr
ing the Schro¨dinger equation in real space and solving it w
a combination of the inverse iteration technique and a mo
fication of the Gauss-Seidel method.9 To have an alternative
with clearly less numerical expenditure, we make
adiabatic-like hole-hole separation ansatz based on the
dimensional~2D! hydrogen molecule,10 extended towards
finite hole masses and a finite well width. In the num
ical calculations we use parameters appropriate
~Zn,Cd!Se/ZnSe QW structures, characterized by large b
PRB 600163-1829/99/60~8!/5582~8!/$15.00
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citon binding energies of the order of 10 meV.
The paper is organized as follows. Section II introduc

the formalism of the c.m. separation ansatz for the biexci
wave function and the general procedure used in the su
quent sections. The models for the QW biexciton relat
wave function and the corresponding treatments of the e
ton are the subject of Sec. III. The results are presented
discussed in Sec. IV, where a comparison and an assess
of the two models is made.

II. GENERAL TREATMENT

In the QWs under consideration, the subband ene
separation is much larger than both binding and localizat
energy of the respective complex, justifying a separation
the single-particle motion in growth direction~in the follow-
ing denoted asz direction!:

C3D5C2D)
a

wa~za!, ~1!

where a runs over all particles (e,h for the exciton and
e1,e2,h1,h2 for the biexciton! and wa(za) are the single-
particle subband functions. The resulting in-plane effect
mass Schro¨dinger equation for the exciton and biexcito
reads as

(
a

F2
\

2ma
D ra

1Va~ra!1 (
bÞa

ŨabGC2D

5S E2(
a

Ea
zDC2D , ~2!

which includes the single-particle localization potentialsVa
and the effective 2D QW Coulomb interaction potentials
5582 ©1999 The American Physical Society
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Ũab~ra2rb!5E dzadzbwa
2~za!wb

2~zb!

3
qa qb

4p«o«A~ra2rb!21~za2zb!2
, ~3!

with the in-plane coordinater i and the chargeqi of particle
i 5e,h and the dielectric constant«. The total energy and the
single-particle QW confinement energies are denoted aE
andEa

z , respectively.
In the limit of weak localization, the internal motion o

the complex is almost not affected. Therefore, we can so
the problem of the internal motion and the c.m. proble
separately by making the ansatz

C2D5c~R!f~$q%!, ~4!

wheref is the wave function of the internal motion, depen
ing on an appropriate set of relative in-plane coordinates$q%,
and solving

FTrel1(
a,b

ŨabGf~$q%!5Erelf~$q%!, ~5!

with Trel the kinetic energy operator andErel the energy de-
fining the binding energy of the complex in the ideal QW.c
and R are the c.m. wave function and coordinate, resp
tively. Inserting ansatz~4! into the Schro¨dinger equation~2!,
multiplying with f* and integrating with respect to the rel
tive coordinates yields the c.m. Schro¨dinger equation

@Tc.m.1Vc.m.~R!#c~R!52Elocc~R!, ~6!

whereTc.m. andEloc5(aEa
z1Erel2E denote the kinetic en

ergy operator and the localization energy of the c.m. moti
respectively. The c.m. potential

Vc.m.~R!5(
a
E d2sFa~s!Va~R1s! ~7!

can be expressed as a sum over convolution integrals o
single-particle localization potentialVa with a weight func-
tion

Fa~s!5E d$q%f2~$q%!d„ra~R,$q%!2R2s… ~8!

for each particlea. They are normalized by the normalizatio
of the wave functionf. Here,ra(R,$q%) are the individual
coordinates of the particlea in terms of the c.m. and relativ
coordinates. Concluding so far, the localization energyEloc
can be calculated directly from the simple effective sing
particle equation~6!, if the weight functionsFa(s)—which
are functions of only one variables, the distance from the
c.m.—for the electrons and holes in the free excitonic co
plex in the QW are known.

In case of the single exciton, the relative wave functionf
has the only coordinateq5re2rh , so that ra5R
6(m/ma)q with the reduced exciton massm5memh /(me
1mh). Consequently, the weight functions are simply8,11

Fa~s!5f2S ma

m
sD ~a5e,h!. ~9!
e

-

-

,
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-

-

In the next section, we introduce two models for the bie
citon relative wave function in the ideal QW.

III. THE QUANTUM WELL BIEXCITON WEIGHT
FUNCTION

A. Numerical solution of the finite-difference biexciton
Schrödinger equation

Schweigertet al.9 have developed a numerical method f
calculating the ground state of an interacting many-part
system. Instead of solving the Schro¨dinger equation by a
diagonalization of the Hamiltonian using an expansion of
wave function in a basis consisting of product eigenfunctio
of the single-particle Hamiltonian, the method of Ref.
solves directly the Hamiltonian of a finite system of intera
ing particles confined by a given potential. In the many-bo
Schrödinger equation we use a finite-difference represen
tion of the Laplacian fork degrees of freedom on a spac
grid with n points. This leads to a largenk3nk sparse matrix.
The number of nonzero elements of the matrix is prop
tional to nk. The present procedure requiresnk operations to
find the ground state, which allow us to consider syste
with k54 –6 degrees of freedom on non-parallel machin
It should be noted, that recently considerable attention
been paid to construct effective algorithms to solve
many-body Schro¨dinger equation using mean field theore
cal approximations for the exchange correlation energy~see,
e.g., Ref. 12 for a brief review!. In particular the finite-
difference technique was considered for an effect
one-particle problem.13 To solve the problem of the biexci
ton in an ideal QW,9 the finite-difference technique was ex
tended in order to solve the many-particle Schro¨dinger equa-
tion. The effective 2D Coulomb potential is approximat
by14,15

Ũab~ra2rb!'
qaqb

4peo«A~ra2rb!21~adQW!2
, ~10!

avoiding the logarithmic singularities of the rigorous expre
sion~3!. a is a fitting parameter, which is equal to 0.2 in ca
of infinitely high QW barriers and which depends on t
width dQW of the QW in case of finite barrier height. Choo
ing a such that the resulting QW exciton relative wave fun
tion approaches the one obtained by using the effective
QW Coulomb potential~3! as close as possible, we finda
50.26 for a 18 monolayer Zn0.8Cd0.2Se/ZnSe QW

@me50.15m0 , mh50.5m0 ~isotropic!, e58.8,

Ry520.3 meV, aB54.0 nm, DEg5260 meV,

xc5DEc /DEg50.75, dQW55.2 nm].

Standard enumeration of the single exciton equation yie
an exciton binding energy of 32.7 meV, being in very go
agreement with the value of 32.3 meV for the more accur
potential~3!. Both potentials as well as exciton wave fun
tions are plotted for comparison in Fig. 1. Solving next t
biexciton equation within the above mentioned numeri
scheme, we obtain a biexciton binding energy of 3.81 m
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5584 PRB 60O. MAYROCK et al.
for the ideal QW. This value is about three times sma
than experimental data,3,4 emphasizing the role of localiza
tion in real QW structures.

The respective weight functionsFa(s) for electrons and
holes in the exciton and the biexciton are shown in Fig.
For the exciton, the hole weight function is stronger loca
at the c.m. compared to the electron weight function beca
of the larger hole mass. As known for the protons in t
hydrogen molecule, the hole weight function in the biexcit
displays instead a local minimum at the c.m., caused by
Coulomb repulsion of the holes together with their sma

FIG. 1. Exciton relative wave functions and probability densit
~a!, and effective 2D QW Coulomb potentials~b! in an 18 mono-

layer ~5.2 nm! Zn0.8Cd0.2Se/ZnSe QW. Dotted line: potentialŨab ,

given by Eq.~3!. Solid line: approximation forŨab , given by Eq.
~10! with a50.26.

FIG. 2. Normalized weight functionsFa(s) (a5e,h) for the
exciton and the biexciton. The results for the biexciton~thick
curves! are obtained by numerically solving the finite-differen
Schrödinger equation. As for the biexciton, the results for the ex
ton ~thin curves! are calculated using Eq.~10! with a50.26.
r

.
d
se
e

e
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kinetic energy compared to the electrons. The maximum
the electron probability density lies between the holes in
c.m., screening the hole-hole repulsion and making the b
ing of the complex possible.

B. Hole-hole separation ansatz

To have an alternative approach with clearly less num
cal expenditure, we tried to find a supplementary, m
simple model for the QW biexciton relative wave functio
An effective one-degree-of-freedom model,16 which ignores
relevant kinetic energy terms, yielded very poor results, e
qualitatively different from those of the previous sectio
Therefore, we developed another approximation for the Q
biexciton wave function which is based on an adiabaticl
hole-hole separation ansatz, outlined in the following.

In the limit of large hole mass (s5me /mh!1), a decou-
pling

f~$q%!5fA~$q%!•F~h! ~11!

is well suited for constructing an in-plane biexciton relati
wave function, whereh denotes the hole-hole distance. A
appropriate choice for the internal wave function is the var
tional ansatz

fA5
fx~gr e1h1!fx~gr e2h2!1fx~gr e1h2!fx~gr e2h1!

A2~11S2!
,

~12!

wherefx is the exciton relative wave function, depending
the electron-hole distancer ab (a5e1,e2; b5h1,h2),
S is the overlap integral, andg is a variational paramete
accounting for a compression of the exciton within t
biexciton. This provides the Schro¨dinger equation

F2
\2

M S ]2

]h2
1

1

h

]

]hD 1V~h!GF~h!5ExxF~h! ~13!

for the factorF(h), whereM5me1mh is the exciton total
mass. For the sake of simplicity, instead of calculating
effective exciton-exciton potentialV(h) with the aid of Eq.
~12! by extensive numerical efforts, we approximate this p
tential by

V~h!5VM~h!1
e2

4p«o«h
e2h/b, ~14!

with the Morse potential17 VM(h)5D•@(12e2a(h2ho))2

21#. The second term ensures the correct asymptotic be
ior for h˜0, which consists of a screened Coulomb rep
sion of the holes. For finding the parametersD, ho , a, andb
in a QW, an interpolation between the potentials of the h
drogen molecule in 2D~Ref. 10! and 3D~Ref. 18! is made.
Since the massM may be considered as infinite in this cas
binding energy and hole-hole separation are directly giv
by the minimum of the potential curve. The respective p
rameters are summarized in Table I. For a better compar
of the two potential curves, both plotted in Fig. 3, we resc
the space and energy coordinates in 2D and 3D by the
spective exciton radius~most probable electron-hole dis
tance! rd(d52D, 3D) and exciton binding energyEx

b(d) ,
-
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TABLE I. Exciton binding energyEx
b(d) , exciton radius~most probable electron-hole distance! rd ,

compression parameterg, and the fitting parametersD,ho ,a,b for the potential~14! for 2D, 3D and for an
18 monolayer~5.2 nm! Zn0.8Cd0.2Se/ZnSe QW.

d Ex
b(d) @Ry# rd @aB# g D @Ry# ho@aB# a@aB

21# b@aB#

2D 4.0 0.25 1.275 2.45 0.35 2.7 0.09
3D 1.0 1.0 1.166 0.35 1.45 1.15 0.09
QW 1.57 0.54 1.227 linear combination according to Eq.~16!
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also listed in Table I. Though the absolute values are ma
edly different, the minima of the resulting rescaled potenti

Ud~h/rd!5Vd~h!/Ex
b(d) ~15!

appear nearly at the same positionh/rd'1.4 ~see inset of
Fig. 3!, indicating that the size of the molecule scales w
the size of the atoms. Hence, it seems reasonable to as
that the same scaling rule holds for the QW. We use a lin
interpolation between the 2D and 3D potential

UQW~x!5jU2D~x!1~12j!U3D~x!, ~16!

with x5h/rQW and the interpolation parameterj5(rQW
2r3D)/(r2D2r3D), whererQW is derived from the exciton
wavefunction solving potential~3!. The resulting potentia
VQW(h) is plotted in Fig. 3 together with the probabilit
densityuF(h)u2, obtained from the solution of the hole-ho
Schrödinger equation~13!. It should be noted, that the choic
for j is somewhat arbitrary, but other reasonable interpo
tions yielded only slightly different results in our numeric
examples.

The calculation of the weight functionsFa(s) additionally
requires knowledge of the compression parameterg in Eq.
~12!. For this purpose, we interpolate in the same way l
for the potentialUQW between the two values for 2D~Ref.
10! and for 3D~Ref. 19!, listed in Table I. Using an expo
nential trial function forfx , we find for the 18 monolaye
Zn0.8Cd0.2Se/ZnSe QW the valuesEx

b(QW)531.6 meV

FIG. 3. Effective exciton-exciton interaction potentialsV(h).
Thin dotted line: 3D. Thin dashed line: 2D. Thick solid line: inte
polation for an 18 monolayer (5.2 nm) Zn0.8Cd0.2Se/ZnSe QW.
Thick dashed line: probability distributionuF(h)u2 for the QW
case. Inset: Rescaled potentialsUd(h/rd) for the 2D and 3D cases
k-
s

me
ar

-

e

51.57 Ry, rQW52.2 nm50.54aB , g51.23, and a
biexciton binding energyExx

b 52Ex2Exx54.68 meV with
j50.61.

The derivation of the weight functionsFa(s) ~labeled as
B in Fig. 4!, from the adiabatic-like biexciton wave functio
~11! is outlined in the appendix. We find very good agre
ment between models A and B, concerning the qualitat
behavior of the weight functions as well as the spatial ext
sion of the complex. The hole weight function of the hol
hole separation ansatz shows a sharper peak at equilib
position and a smaller value fors50 than that of the finite-
difference calculation. The latter might be caused by the
ferent asymptotic behavior of the particle-particle potenti
for vanishing distance. Equation~10! underestimates the
hole-hole repulsion by avoiding a singularity, whereas
screened 1/h potential in Eq.~14! diverges stronger than th
logarithmic divergency of the true QW Coulomb potentia
Despite of the various simplifications within this hole-ho
separation ansatz, the results agree surprisingly well with

FIG. 4. Normalized weight functionsFa(s) (a5e,h) for the
two models of the QW biexciton relative wave function.A: Numeri-
cal solution of the finite-difference Schro¨dinger equation.B: Hole-
hole separation ansatz. Insets: Weight functions for the electron
the hole in the respective exciton.
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advanced numerical solution of the finite-difference Sch¨-
dinger equation, introduced in Sec. III A.

IV. LOCALIZATION ENERGIES

The exciton and biexciton localization is considered
cylindrical one-particle potentials

Va~ra!5H xaVbox H if r a<r box

and 2
dQW

2
,z,

dQW

2

0 else

~17!

of variable radiusr box and potential depthVbox, covering the
full QW-width dQW in z direction ~see inset of Fig. 5!.20,21

This kind of quantum box~QB! represents an accumulatio
of material with smaller band gap, surrounded by mate
with larger band gap. The coefficientxa5DEa /DEg denotes
the relative conduction and valence band offset, respectiv
As the localization potential~17! is axial-symmetric, the c.m
Schrödinger equation~6! is reduced to a one-dimension
problem, which is solved numerically. For the discretizati
of the radial part of the 2D Laplacian, we use the seco
order representation22

~Dc! i5
1

d2 S Ri 21/2

Ri
c i 2122c i1

Ri 11/2

Ri
c i 11D ~18a!

FIG. 5. Center-of-mass potentialsVc.m. of the exciton~left side!
and the biexciton~right side! for two QB radii r box

(1)50.25aB ~upper
layer! and r box

(2)51.0aB ~lower layer! for the two biexciton models:
A: Numerical solution of the finite-difference Schro¨dinger equation.
B: Hole-hole separation ansatz. Dotted line: The single-particle
calization potentialsVa .
r

l

ly.

-

and

~Dc!05
4

d2
~c12c0! ~18b!

for iÞ0 andi 50, respectively.Ri is the c.m. coordinate on
the numerical grid pointi, andd5Ri 112Ri is the increment
of the grid. Our explicit calculations are again carried out
a 18 monolayer Zn0.8Cd0.2Se/ZnSe QW.

A. Increased biexciton localization

We start discussing the results obtained with the Q
biexciton relative wave function calculated by solving t
finite-difference Schro¨dinger equation~Sec. III A!. The re-
spective c.m. potentialsVc.m. for two QB radii r box

(1)50.25aB

andr box
(2)51.0aB are depicted in Fig. 5~solid curves, labeled

with A!. While the shape of the potential curve is indepe
dent of the depthVbox of the single-particle potentialVa , the
ground-state energy levelsEx

loc andExx
loc as well as their po-

sition relative to each other depend sensitively on this par
eter.

Conversely to the model parametersr box and Vbox, the
exciton localization energyEx

loc is a quantity directly observ-
able experimentally. Therefore, we chose this energy, ca
lated at the respective level of approximations, as refere
for measuring the degree of the biexciton localization. In F
6, biexciton localization and binding energiesExx

loc and Exx
b

52Ex2Exx , respectively, are plotted versusEx
loc , varying

the parameters of the QB in two ways. First, variation ofVbox

at the selected radiir box
(1) andr box

(2) demonstrates how the biex
citon localizes when its spatial extension is approximat
equal or distinctly smaller than the characteristic width
Vc.m. ~dashed curves!. Second, keeping the potential dep
Vbox51.0 Ry fixed, the radiusr box was varied ~solid
curves!. As long as the localization is weak, the biexciton
found to have a larger localization energy per exciton th

-

FIG. 6. Biexciton localization and binding energiesExx
loc andExx

b

as a function of the exciton localization energyEx
loc in a QB, em-

bedded in an 18 monolayer~5.2 nm! Zn0.8Cd0.2Se/ZnSe QW. Dot-
ted line: Fixed radiusr box

(1)50.25aB and variable potential depth
Vbox. Dashed line: Fixed radiusr box

(2)51.0aB and variableVbox.
Solid line: Fixed potential depthVbox51 Ry and variabler box. The
line with Exx

loc52Ex
loc marks the case of equal localization streng

per exciton.
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the single exciton, despite its larger spatial extension.~For
small exciton localization energies, the biexciton localizat
energies lie above the line withExx

loc52Ex
loc in Fig. 6.! In our

definition, the biexciton binding energy represents in fact
separation of the exciton and biexciton PL features. Deco
posing the various contributions, it holdsExx

b 5Exx
b ideal

1(Exx
loc22Ex

loc), whereExx
b ideal is the binding energy of the

ideal QW. The increased line separation in the experimen
hence a consequence of the stronger biexciton localiza
while the exciton-exciton interaction energy remains pra
cally unchanged.

This fact can also be understood as an increased biexc
binding energy compared to the free QW biexciton,
which the solution of the finite-difference Schro¨dinger equa-
tion yieldsExx

b 53.81 meV.
The asymptotic behavior forEx

loc
˜0 can be shown to be

universal and independent of the details of the potential
the relative wave function: For any particle with massM
localized in a weak 2D potentialU(r )@ uUu!\2/(Ma2)
wherea2 is the area whereU is significantly different from
zero#, it holds23

uEu'
\2

Ma2
expF2\2/S ME d2r uUu D G . ~19!

Since the weight functionsFa(s) are normalized, the integra
of the biexciton c.m. potential*d2r uUu is two times that of
the exciton, so that the biexciton has not only twice the ma
but sees twice the potential strength compared to the exc
resulting in

uExx
locu;uEx

locu1/4. ~20!

Beyond this limit, the trends for the biexciton localizatio
are directly related to the respective weight functions. Fo
given Ex

loc , the larger width of the biexciton function caus
a decrease ofExx

loc when r box becomes smaller. Increasin
Vbox at fixed r box, Exx

loc crosses the lineExx
loc52Ex

loc at
Vbox5150 meV (Ex

loc53.0 meV) for r box
(1)50.25aB and at

Vbox526 meV (Ex
loc58.5 meV) for r box

(2)51.0aB , respec-
tively, where the enhancement of the biexciton localizat
disappears. On the other hand, for relatively shallow Q
with Vbox&1.0 Ry, no crossover is found in the range
reasonable values ofr box. Evidently, the assertion that loca
ization requires a particle size smaller than the character
potential extension, is incorrect.

Strictly speaking, the c.m. approach requiresExx
loc!Exx

b . It
can be argued however that even the rangeExx

loc*Exx
b can be

covered in very good approximation. In the latter situatio
the slight compression of the biexciton relative wave fun
tion caused by localization is compensated by the Coulo
repulsion of the equally charged particles so that its
change can be ignored.

B. Comparison of the biexciton models

Now we evaluate the simplified version of the QW bie
citon relative wave function, introduced in Sec. III B, b
comparing it with the more rigorous treatment of the pre
ous section. Figure 5 displays the respective exciton
biexciton c.m. potentialsVc.m. for the QB radiir box

(1) andr box
(2) .
n

e
-

is
n,
i-

on
r

d

s,
n,

a

n
s

tic

,
-
b
t

-
d

As already demonstrated for the weight functions, the ho
hole separation ansatz reproduces the solution of the fin
difference Schro¨dinger equation very well. This is also tru
for the biexciton localization energiesExx

loc plotted versusEx
loc

in Fig. 7. A qualitative deviation consists in a nonmonoton
behavior of the potential curve for the narrower QB, caus
by the sharper peak of the hole weight functionFh of this
approximation. Fors!1, Vc.m. is controlled by the shape
of Fh . If the radius of the QB is now smaller than the di
tance of the hole from the c.m. in the free biexciton, given
the peak ofFh , the complex localizes with one hole insid
and the other hole outside the QB. While this is indeed
correct scenario fors!1, the finite-difference calculation
demonstrates that the peak ofFh is less pronounced for the
actuals, and thus compensated by the contribution of t
electron weight function.

V. CONCLUSION

Our above study has confirmed the localization of biex
tons. In the limit of weak localization, the localization ener
is more than twice as large as for the single exciton beca
of the larger biexciton mass and the stronger c.m. poten
Therefore, with increasing temperature, first the excitons
removed from their localization sites, while localized biexc
tons survive up to markedly higher levels. Weak localizati
of the biexciton significantly increases the biexciton bindi
energy, given by the separation of the exciton and biexci
PL features, without altering the exciton-exciton interacti
energy. Stronger localization, as for instance in intentiona
made quantum dots, does not necessarily mean that the
bility of the biexciton is further enhanced. For th
~Zn,Cd!Se/ZnSe model structure studied here, the Coulo
repulsion of the heavier holes becomes increasingly do
nant in the interparticle interaction, so that the biexcit
binding energy starts to decrease. This case, where the
approach begins to fail, deserves further investigation. T
adiabaticlike hole-hole separation ansatz turned out to p
vide a useful approximation scheme for calculating the Q
biexciton state.

ACKNOWLEDGMENTS

Part of this work was supported by the Flemish Scien
Foundation~FWO-Vl! and the ‘‘Interuniversity Poles of At-

FIG. 7. Biexciton localization energiesExx
loc as functions of the

exciton localization energyEx
loc in QBs with r box

(1)50.25aB and
r box

(2)51.0aB for the two biexciton modelsA and B ~see caption in
Fig. 4!.



e
f-
is
m
A

n
of
d
la-

5588 PRB 60O. MAYROCK et al.
traction Program–Belgian State, Prime Minister’s Offic
Federal Office for Scientific, Technical and Cultural A
fairs.’’ We also acknowledge the financial support of th
work by the Deutsche Forschungsgemeinschaft, and sti
lating discussions with R. Zimmermann, E. Runge, and
Esser.

APPENDIX: WEIGHT FUNCTIONS OF THE
HOLE-HOLE SEPARATION ANSATZ

Here, we outline how to calculate the weight functio
Fa(s) from the biexciton relative wave function in case
the adiabatic-like hole-hole separation ansatz, introduce
Sec. III B. Using exponential functions for the exciton re
tive wave functionfx in ansatz~11!, we obtain for the adia-
batic biexciton relative wave function

f~r1 ,r2 ,h!5
2

pA2~11S2!
g2~e2gr 1e2gr 2

1e2gur12hue2gur21hu!F~h!, ~A1!

where

r15re12rh1 , ~A2a!

r25re22rh2 , ~A2b!

h5rh22rh1 , ~A2c!

is the chosen set of relative coordinates andF (h) is the
solution of the 2D interexciton Schro¨dinger equation~13!.
Inserting Eq.~A1! into Eq. ~8! yields

Fa~s!5
4g4

p22~11S2!
E dr1dr2dhd~ra2R2s!

3~e22gr 1e22gr 21e22gur12hue22gur21hu

12e2gr 1e2gr 2e2gur12hue2gur21hu!F 2~h!

~a5e1,e2,h1,h2!, ~A3!
i

.

ra

ev

.
.

.

i

i,
,

u-
.

in

so that we finally receive for an electron

Fei~s!5NE
0

`

dhhF 2~h!@ I z~s,h!1Jzz~s,h!G~h!#

~ i 51,2!, ~A4!

with

I z~s,h!5E
0

2p

dwhe22gAs21(h/2)21sh cos(wh),

Jzz~s,h!5E
0

2p

dwhe2gAs21(h/2)21sh cos(wh)

3e2gAs21(h/2)22sh cos(wh),

G~h!5
2

p
g2E

0

`

drre2grE
0

2p

dw re
2gAr 21h222rh cos(wr ),

~A5!

and for a hole

Fhi~s!5NF ~2s!@11I zz
2 ~s!# ~ i 51,2!, ~A6!

with

I zz~s!5
2

p
g2E

0

`

drre2grE
0

2p

dw re
2gAr 214s214rs cos(wr ).

~A7!

N is a normalization constant.
a

,

.

.
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