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lonization degree of the electron-hole plasma in semiconductor quantum wells

M. E. Portnof and I. Galbraith
Physics Department, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
(Received 7 January 1999

The degree of ionization of a nondegenerate two-dimensional electron-hole plasma is calculated using the
modified law of mass action, which takes into accoalhtoound and unbound states in a screened Coulomb
potential. Application of the variable phase method to this potential allows us to treat scattering and bound
states on the same footing. Inclusion of the scattering states leads to a strong deviation from the standard law
of mass action. A qualitative difference between midgap and wide-gap semiconductors is demonstrated. For
wide-gap semiconductors at room temperature, when the bare exciton binding energy is of the kgder of
the equilibrium consists of an almost equal mixture of correlated electron-hole pairs and uncorrelated free
carriers.[S0163-18209)03532-9

[. INTRODUCTION acting electron-hole plasma, and in this paper we calculate
this for a two-dimensional2D) plasma. We focus on two
The drive for ever higher storage capacity has led to thelimensious for two reasons. First, most modern semiconduc-
development of semiconductor lasers operating in the blutor lasers are fabricated in quantum-well heterostructures.
spectral region, based on Zn®Ref. 1) and GaN? Along  Second, the presence of at least one bound state in the attrac-
with the large energy gap of these materials comes a largéve 2D potential requires a nonperturbative treatment of the
exciton binding energy, of the same orderlad at room  screened Coulomb interaction.
temperature. As has been well known since the 1§%s, We will be mostly interested in the plasma properties in-
citonic gain processes are important in wide-gap semiconduced by the pair Coulomb interaction between charged par-
ductors, and their importance is further enhanced irficles, neglecting band-gap renormalization and phase-space
quantum-we” structures where the b|nd|ng energy may bél”lng EffeCtS, which have been extenSively studied in both
considerably larger thankgT (e.g., ~35 meV in three-dimensional3D) and 2D case&® These effects can be
Zn,Cd,_,Se/ZnSe quantum wells neglected only in the low-densitynondegenerajelimit,
Theoretical treatments of GaAs- and InP-based lasers aMhich is defined in 2D by the inequality
well established using a microscopic many-body approach
based on Iir]ear—response theérﬁcreening a_nd band—gap m\fﬂ/g<1, (1)
renormalization effects are included, assuming that the in-
jected carriers form a completely ionized electron-hole ) ) L ,
plasma. Such treatments have been successful in explainir‘fg"ere” is the 2D carrier densityg IS the sp degeneracy
many of the observed features of mid-infrared laser dioded@ctor of 2D particles, anly, = (27#°/MkgT)“is the ther-
Complex valence-band effects and strain effects as well a&@l wavelength. For the two-component plasma the lighter

carrier thermalization effects have all been included at varicarrier (usually electrop effective mass must be used to
ous levels of complexity. In this way, a relatively complete €valuate the thermal wavelength to ensure that conditipn

understanding exists for the basic operation of these laserdS valid for both types of carriers. Inequality) provides that

In wide-gap semiconductors, however, the strong Cou:‘he motion of excitons can also be considered as classical.

lomb interaction leads to the existence of bound-excitorf 0" GaAs at room temperatura,y ~1.66<10°° cm,
states, which persist even at elevated densities and tempelectron-spin degeneragy= 2, and conditior(1) is satisfied
tures. As such, the conventional assumption that the invefor n=7.2x10" cm 2. The electron effective mass in
sion is in the form of an electron-hole plasma with no exci-wide-gap semiconductors is usually at least two times larger
tons present deserves closer examination. A self-consistetitan in midgap semiconductors; therefore, conditith is
description where both bound and unbound states are treat&dlid over a wider range of carrier densit{esg., for ZnSe at

on an equal footing is required. Unfortunately, as far as weoom temperature, inequalityl) is satisfied forn<1.7

are aware no comprehensive theoretical treatment of thix 10*? cm™?]. Thus the nondegeneratBoltzmann limit is
problem exists. Treatments based on bosonic exciton operaot only a convenient approximation, in which the Coulomb
tors have been proposédyut this approach breaks down at interaction is not hidden by the band-filling effects, but it
high injection when the screening of the Coulomb potentialalso gives a realistic picture of the electron-hole plasma in
weakens the binding and produces a population of unboundide-gap semiconductors at room temperature and moderate
scattering states, which clearly do not exhibit bosonic charearrier densities. Lasing at anomalously low densiirsow
acter. On the other hand, a treatment based around fermionibe Mott density has been reported in Z8d,_,Se/ZnSe
electron and hole operators is complex when higher-ordeguantum wells?

excitonic correlations are importahf.A natural concept in Following an approach applied in three dimensions to
considering this issue is the degree of ionization in the internuclear mattet! an ionic plasmad? and the electron-hole
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system in excited semiconductdrsye divide the total elec- The scatteringiintegra) term on the right-hand side of
tron (hole) density between two terms: Eq. (5) gives the contribution toZ,,, of the continuum part
o _cor of the energy spectrum. This term is usually neglected in
Na=Na+tNng . 2 calculations of the ionization degree of the electron-hole

,14-16 . .
The first termn? is the density of uncorrelated quasiparticlesplasma?: In what follows we will show that at high

with renormalized energies. This term is that part of the tota nough :etmperature(;[h.e;caétiﬂpg tterm r']s cc;mpt))ar?bLe to.trt]e
density which is independent of the interparticle interaction ounad-state sum and indee IS term has 1o be taken into
(see Appendix B All correlation effects both in the bound account to ensure continuity of the partition function when-

and continuum states are incorporated into the second terfn/€! bound states disappear with increasing screéﬂmg._ .
corr The electron-electron and hole-hole parts of the partition

n;°"", which is called the correlated density. The lower index . . .

in Eq. (2) is a species indexa= e for electrons ané=h for function Zee and Zyy Coma”? the scattering term_ only. T_o

holes. It is also useful to introduce the degree of ionization mcalcqlatezaa one must take Into account thg Pauli exclusion

the electron-hole plasma principle for identical particles, which modifies the sum over
' m. The electron-electrorthole-holg part of the partition

0 0 function is given by(see Appendix B

e ne
(3) . )a
1 *d Sy (K) hk
which characterizes the deviation of the thermodynamic T m=-o 0 a

properties of the electron-hole plasma from those of the ideal ©
gas (@=1). The knowledge of the degree of ionization is Here we assume that both electron and hole states in quan-
essential in determining the dominant lasing mechanismum wells are two-fold degenerate. The only difference be-
When «a is close to unity, the main lasing mechanism istweenz,, andZ, arises from the difference between elec-
stimulated emission from the free-carrier plasma, for lowerron and hole effective masses.
values of @ several excitonic gain processes have to be Equations(2)—(6) provide a connection between the total
considered* electron-hole densitp and uncorrelated quasiparticle densi-
In the nondegenerate limit there is no need to go beyonglesn? andn?. The quasiparticle densities in turn govern the
two-particle correlations. This allows us to separate clearlyscreenind® and therefore the strength of interaction between
the role of the inter-particle Coulomb interaction from the particles, which uniquely defines the set of binding energies
phase-space filling effects. In this limit, the correlated andgng scattering phase shifts which enter E&s.and (6) for

n

=T o, corr’
e Ngtng

uncorrelated densities are related by the two-body partition functions. These partition functions in
0 B2 turn define the ratio betweenf, andnS®" via Eq. (4). Thus,
nS=">" non? iz (4)  tofind the degree of ionization of the electron-hole plasma,
a a''b ab» .
Mab one must solve the system of equatiof®—(6) self-

consistently, together with a reasonable model of the

where 8=1/(kgT), pap=M Mp/(M,+M,) is the reduced screened interaction.

effective mass, and,, is the two-body interaction part of In Sec. Il we discuss the statically screened Coulomb po-

the partition function. This relationship is derived in Appen- tential which we use to model the interaction between par-

dix B. Note that due to charge neutrality the total electron-_. . .
Lo T T ; ticles in an exciton/electron-hole plasma, and present results
hole densityn,=n,=n is independent of species, whereas

. ~““from the application of the variable phase metffad scat-
Ne#np ar!d ne’'#np>"" if electrons and holes have dif- tering andpgound states in this pc?tential. In Sec. lll we
ferent effective masses. . . . present and discuss the results of calculations of partition

. 1_'he electron-hole p_art of_the_ partition function which ex- functions and the degree of ionization of the electron-hole
hibits bound state¢excitons is given by plasma. In Appendix A we derive the basic equations of the

1= 2 dn(k) variable phase method, which is used for calculation of scat-
Zon=2, exp(— BEm,) + _f ( > (;“k ) tering phase shifts and binding energies. _T_he 2D analog of
m,v TJo \ m=—o the Beth-Uhlenbeck formula and the modified law of mass
52K action are derived in Appendix B.
X exp( -B ) dk, (5
2hen [l. STATICALLY SCREENED COULOMB POTENTIAL

wherem# is the projection of the angular momentum onto  There is an extensive literature dealing with different as-
the axis normal to the plane of 2D motiom&0,+1,  pects of the screened Coulomb interaction in 2D systéms.
+2,...),51%3(2puep) is the energy of the relative motion In this paper we model this interaction by the well-known
of the unboundscattereglelectron and holée/;k is the mag- Thomas-Fermi expression for a statically screened Coulomb
nitude of the relative motion momentumg,,(k) are the potential'’
2D scattering phase shift§!® E,, are the bound-state )
energiedindex v enumerates bound states with givap, _ & (*a%(ap)

; : Vs(p)=+ d
and the double sum in the first term ranges only over bound €Jo q+Qs
states. Equatio(b) is the 2D analog of the Beth-Uhlenbeck 5
formula® and it can be derived in the same fashion as in the € [1

a
3D case, as shown in Appendix B. elp 7 GslHoldsp) =No(@sp)] (. (7)
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potentials[both signs of Eq(7)] with the screening wave-
numbergs=0.2/a* , wherea* = e/ (€?) is the 3D exciton
Bohr radius. The scattering phase shifts are negative for the
repulsive potential and positive for the attractive potential.
For the repulsive potential all zero-energy phase shifts van-
ish, 6,(k=0)=0 for all angular momentan. For the at-
tractive potential,

lim 8,(K) = vy, (8
k—0

wherev,, is the number of bound stat&sEquation(8) is the

2D analog of Levinson'’s theoreth(see also Ref. 34which
connects the zero-energy scattering phase shift with the num-

0.0 0.2 0.4 0.6 0.8 1.0 ber of bound states for nonrelativistic particles in three di-

mensions. This theorem has been known for almost five de-

cades; however, its applicability to the 2D scattering problem
; 6-38

FIG. 1. Scattering phase shifts vs the in-plane wave vector has been considered only recer?ﬁ)?.

2 H 1 H
units of inverse Bohr radius 47) for a 2D particle in a screened W€ recently” used Levinson’s theorem in the form of Eq.
Coulomb potential[Eq. (7)]. The screening wave numbers (8) for.bound-state counting in the attractive .Thomas—Fgrml
=0.2/a*. For the attractive potential all phase shifts are positive,Potential, Eq.(7), and found a remarkably simple relation
and for the repulsive potential they are negative. Numbers show Detween the number of bound states and the screening wave
values. numberqs. With decreasing screening, bound states appear

] ] ] at critical values of the screening length given by the simple
whereq; is the 2D screening wave numbgvhich depends  formula2

on temperature and carrier dengitye is the static dielec-

tric constant of the semiconductor, adg(x), Ng(x), and

Ho(x) are the Bessel, Neumann, and Struve functions, re-

spectively. The upper sign in Edq7) is for electron-hole

22[{:?6'(}:))?1];22 the lower sign is for electron-electron or hOIe'Equation(g) can be easily inverted, and the number of bound
Being the long-wavelength, static limit of the random- states for giverm andg can be expressed as

phase approximation for a purely 2D c&8é°Eq. (7) is the

scattering phase shifts, 3, (k)

momentum, k (1/a%)

1
qsa*

_(2|m|+ v—1)(2|m|+v)
= 5 7

v=12,.... (9

C

simplest model for the screened Coulomb potential in two vm=max0,vo—2|ml}, (10
dimensions. Nevertheless, this expression reflects the fagjyere

that the statically screened potential in two dimensions de-

creases at large distances slower than in the 3D @sa W*‘l

power law rather than exponentigllyDespite numerous re- Vo= S (11)
alistic correction$>%%?” Eq. (7) remains the most widely 2

used approximation for the 2D screening, especially for th
screened exciton probletfi?8-3 Optically active (n=0)
bound states in the attractive, statically screened Coulom
potential[upper sign in Eq(7)] have been studied using a
variational method®?°by a numerical procedure based on a
shooting method® and more recently using the WKB

agproxwfnatlt?]ﬁ anctj_t_pertfurba}tt_lon thleo;f.[_ A;]I mtertltloned vn<1l/(mgsa*). This was also found to give a gross over-
above, for the partition Tunction caiculation]l States are  oqimate of the number of bound states.

needed, bound and unbound, optically active and inactive. . *
None of the above methods is suitable for analysis of shal- The total number of bound statds, , for a givengga*,
low bound states and low-energy scattering states. Ml max

We use for calcu_latlon of t_he scattering phase shifts and Np= 1o+ 2 2 Vs (12)
bound state energies entering EdS) and (6) the 2D =1
formulatior?? of the variable phase methdtlin this method N
the scattering phase shift and the function defining boundcan also be found explicitly as follows. From E) the
state energies can be obtained as the large distance limit 81aximum possible value dfn| for the state which remains
the phase function, which satisfies the first-order, nonlineapound is
Riccati equation originating from the radial ScHiager

§s the number of bound states with=0. Here, and in Egs.
13) and(14), the bold square brackets designate the integer
éart of a number. For smatdjs, Eq.(11) gives a number 2.5
times smaller than the WKB estimédtefor the maximum
number of bound states. The Bargmann bound condifion
(restated for the 2D cab® for the attractive potential?) is

equation(see Appendix A The variable phase method is | V8lgsa*)+1 —1] [w—1 1
especially effective for calculation of the shallow-state bind- M max= 4 2 (13

ing energies and low-energy scattering phase shifts.
In Fig. 1 we show thek dependence of the scattering Then the sum in Eq.12) can be easily evaluated using Egs.
phase shifts for the attractive and repulsive Thomas-Fernfil0) and (13):
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FIG. 2. The normalized number of bound statgsal )N, as a
function of the inverse screening parameter,qldf), for q.a*
=<l1.
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FIG. 3. The bound-state energi&s, , of the 2D exciton in
exciton Rydberg units are shown as a function of the screening
parametegga* for differentmvalues. Solid lines shom=0 states
(Eo1, Eo2, and Egg); dashed lines shown=1 states E;; and

Np= 1o+ 2| M| ma Yo~ [M|max— 1) Ei»; the dot-dashed line shows the lowest state with
=2 (E,4). The inset is an enlargement nega* =0.
Vo— 1 Vo— 1 ’
:V0+2 2 {Vo_l_ 2 ] (14)
=%2/(2uer@*?)], and we use the same classification of en-

ergy levels as in Ref. 32, i.e., each energy level is character-

For small g.a* (weakly screened potentjah simple ap-
d:a” y P ) P P ized by the angular momentum quantum numiveand an-

proximate expression for the total number of bound state

follows from substitution of Eq(11) into Eq. (14): other numbern which numerates different bound states for a
givenm, with (v—1) being the number of nonzero nodes of
2 1 the radial wave function. Fan=0 (s stateg the calculated
Ny~ iy — (15) energies are consistent with those obtained by J.dtea?®
2 Qs using a variational method.

Thus, for the weakly screened Thomas-Fermi potential, the

bound-state sum in the partition functifleq. (5)] has a finite  Ill. PARTITION FUNCTIONS AND IONIZATION DEGREE
number of terms which is approximately equal to the screen-
ing radius 15 measured in units of the Bohr radius. The
WKB estimate of the number of bound stafegives a dif-
ferent(square roogtdependence dfl, on 1/(qsa*) for small
gsa*. The reason for this difference is that in Ref. 31 only
m=0 states are considered, whereas all valuesnoére

Before we present the results of calculations of the parti-
n functions and the ionization degree, we would like to
discuss an important consequence of Levinson’s theorem for
the statistical mechanics of the 2D gas with an attractive
interaction between its particles. The bound-state sum
, z =2 m.,exp(=pBE,,), entering the two-body partition
needed to obtain the result of EGL5). function in Eq}.)((S)',B eT(h)ibits jump?s whenever bzuﬂd states

_As the screening is reducell,, given by Eq.(14), €x-  gisapnear with increasing screening. We will now show that
hibits steps of ever increasing height. In order for the limit of 4, s jumps do not give rise to unphysical discontinuities in

Eq. (15 to be meaningful the step height should be smallete arition function if the scattering states are properly
than Ny, itself, i.e., the normalized number of bound states,;yen into account.

Nb/Ng=~%= (gsa*)N,, should converge to unity ag.a* Integrating by parts the scattering term and using
—0. As can be seen in Fig. 2, this number oscillates arountlevinson’s theorem in the form of E¢8), we can rewrite
unity with the amplitude of oscillations decreasing with in- Eq. (5) as

creasing 1/§sa*). It can be shown that fogsa* —0 the

amplitude of these oscillations is proportional pg* )2, 2 (= 2

and their period is proportional tay(a*) %2 Zew= 2 {exp(—BEp,) —1}+ —2f ( > 5m(k))
In order to calculate the partition function, the bound-state m mArJo Am==e

energies are required. These can also be obtained using the x exp( — k?/g2)kdk, (16)

variable phase method, and the necessary equations are pre-

sented in Appendix A 2. Numerical results for the attractivewhereq?=2us-kgT/%2. The modified bound-state sufthe
screened Coulomb potentiplpper sign in Eq(7)] are pre-  first term in Eq.(16)] does not exhibit jumps whenever
sented in Fig. 3. In this figure the energigg , of the sev- bound states disappear with increasing screening. For non-
eral lowest bound states of the screened exciton are shown asro temperature the scattering intedthle second term in

a function of the screening wave numbgya*. Here the Eq. (16)] is also a smooth function of the interaction
energies are measured in effective exciton Ryd{drg* strength, which can be understood from Fig. 4. In this figure
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FIG. 4. The scattering phase shdfy is shown as a function of
the in-plane wave vectde (measured in inverse exciton Bohr radii FIG. 5. The two-body interaction part of the partition function
for several values of the inverse screening parameter close to thés the inverse screening parameterql#() for two values of
critical value, 1/g.a*)=10. Solid line: 1/g.a*)=9.9; dashed line:  kgT/Ry*. Three upper curveskgT=1Ry*; three lower curves:
1/(gsa*)=9.95; dot-dashed line Id(a)=9.98. Dots shows,(k) keT=5Ry*. Solid lines show the bound state contributidfigng
for 1/(gsa*)=10.1 (a shallow bound state witm=2 has just ap- only; dashed lines sho&,,; dot-dashed lines sho&p+ Zee.

pearedl.
+Z.. ensures that thermodynamic properties of the 2D

electron-hole plasma in GaAs are much closer to the ideal

the scattering phase shift is plotted as a function df for . A k
gas behavior than those in the case of the wide-gap

several values of 1fza*) close to the critical value . 0
semiconductof®

* = 1 i =
1/(q;a™) = 10 when the first bound state with=2 appears. For the two-component electron-hole plasma, the

One can see that althoudi},(0) has a jump wheng passes : . )
a critical value, this jump does not influence the value of theThomas—Ferml 2D screening wave number entering ().

scattering integral if the thermal wave numlzgr is larger 's given in the Boltzmann limit b
than the interval ok in which é,,(k) changes rapidly. As 2.h2 Ry*
shown in Fig. 4, when the bound state disappears the phase g.a* = (np+nd)=4m T (nda*2+nla*?).
shift is affected only in an infinitesimally thin region around B 1
k=0. For any nonzero temperature this transition region (17
makes no contribution to the phase-shift integral. Thus théNote that we use uncorrelated quasiparticle densﬁgeand
electron-hole interaction part of the partition function given ng for the calculation of the screening wave number, since
by Eq.(16) is a smooth function of the interaction strength, Eq. (17) is derived for the noninteracting 2D plasrif£>We
as expected from the general thermodynamic arguf@éfit. assume that the screening by excitons is much smaller then
Similar cancellation of the bound-state sum diSCOﬂtinUitie&he free-carrier Screening when exciton and free carrier den-
for a 3D plasma is well knowf:** sities are of the same order. However, if one calculates the
The results of the calculation of the two-body interactionscreening wavenumber using the difference between the total
part of the partition function for the model number of carriers and the number of bound carriers, un-
semiconductot>** for which the assumptionM,=M;,  physical jumps appear in the dependence of the screening
=2puen is made, are presented in Fig. 5. Calculations arevave number on total density as shallow bound states disap-
performed for two values of the ratio &fgT to the bulk  pear with increasing density. Thus it is natural to calcutgte
excitonic RydbergkgT/Ry* =1 (three upper curvésand  on the basis of uncorrelated densin¢-n?), which is a part
kgT/Ry* =5 (three lower curves which roughly correspond  of the total density behaving as an ideal gase Appendix
to ZnSe(or GaN and GaAs at room temperature. Solid linesB), and which is a smooth function of the total density.

show the bound-state sun¥poung=Zm,,eXP(~Em,/kgT), For the model semiconductor,n’=n%=an, and Eq.
which exhibits jumps whenever bound states disappear witly7) can be further simplified to

increasing screening. The electron-hole part of the partition

function, Z,, which is shown by dashed lines, is a smooth Ry*

function of the screening parameter, and the bound-state sum qs@* =8ma KT na*?. (18
discontinuities are compensated for by the scattering state B

contributions. Dot-dashed lines show the suig,+Z.e, Equation(18) shows clearly the connection between the di-
which enters the modified law of mass act[@&m. (4)] (when  mensionless screening paramedga* and the two main di-
simplified for the model semiconducjoiNote that the can- mensionless parameters characterizing the 2D electron-hole
cellation of theZ,, term by theZ,. term forkgT/Ry* =5 is  plasma, namely, the dimensionless densig*? and tem-
stronger than fokgT/Ry* = 1. This can be explained by the peraturekgT/Ry*. In addition, the role of the degree of ion-
enhanced role of scattering states for the higher ratikz@f  ization, «, introduced by Eq(3) becomes more transparent.
to the excitonic Rydberg. The lower absolute valueZgfy  The parametew enters Eq.(18) explicitly, governing the

/“ethT




PRB 60 IONIZATION DEGREE OF THE ELECTRON-HOLE ... 5575
1.0 - n=2/)\f,|e. As mentioned in Sec. |, the nondegenerate treat-
0.8 ment is more adequate for the wide-gap material.
On the same plot we show, by the dashed lines, the degree
0.6 of ionization calculated using a simple law of mass action
with a single bound statéhe ground state of the screened
3 0.4 exciton. It can be seen from the figure that the degree of
R ionization is well described by the single-bound-state mass
S 02t : action law only for low carrier densiti€$.For high densities
§ (but remaining in the nondegenerate regirie role of scat-
c 0.0 : tering states becomes essential. Instead of the unphysical be-
f—f 10 , : havior predicted by the simple mass action law, in which the
8 degree of ionization decreases with increasing density, we
o 0.8 }\\ . find that the degree of ionization increases at higher densi-
b N ties.
© 0.6 . I . A minimum on the curve showing the density dependence
- \\\\ of the degree of ionization has the following explanation. At
04 r T —— 1 low densities the main contribution to the correlated density
I T comes from the ground exciton state, which is almost un-
o2 (b) 1 screened. This state in two dimensions is at least nine times
I . deeper than the first excited state. Therefore, the simple
0.0 0 1 P single-bound-state law of mass action is a good approxima-

tion at low densities, but not as—0 — when the number of
bound states becomes larger than the ground state contribu-
FIG. 6. The degree of ionizatiofsolid lineg of the nondegen-  tjon to the partition function; see Ref. 43. The standard law
erate 2D electron-hole plasma as a function of the total electrogyf mass action states that the density of bound states is pro-
density at room temperature, calculated for the model Semicond“(bortional to uncorrelated density squared, which reflects the
tor with the effective Bohr radius and excitonic Rydberg @  fact that at fixed temperatufeoom temperature in our case
ZnSe, andb) GaAs. The arrows indicate=2/Ay, for ZnSe and 4 |6\ density most of carriers occupy the high-energy ion-
GaAs at room temperature. Dashed lines show the degree of ioR;e( states in the continuum rather than the bound states. The
ization calculated using a simple law of mass action with a S'ngle\ow-density high-temperature electron-hole plasma behaves
bound state. as an ideal gas, with the degree of ionization close to unity.

. . ) Thus at low density the correlated density is proportional to
screening wave number which determines the strength of thgye square of the total density and the degree of ionization

interaction between charged particles in the plasma. In Ur§gcreases with increasing density. However, with a further
the degree of ionization itself dependsqua* throughthe  jhcrease in the total density, screening becomes important
partition functionsZ,, andZ. For the model semiconduc- anq the inter-particle correlation caused by the Coulomb in-
tor the modified law of mass actigiq. (4)] can be rewritten  (eraction starts to decrease. Correspondingly, the degree of
as ionization changes the character of its density dependence.

There is a certain value of density, which corresponds to the
(19) minimal value of the degree of ioqization.

As expected, in wide-gap semiconductors the calculated

] . ) degree of ionization is much lower than in GaAs for the
and using Eqs(3) and (18) we obtain the following expres- same temperature and carrier density. For both materials the
sion for the degree of ionizatioa: calculated degree of ionization of the room-temperature 2D
electron-hole plasma reaches its minimum at a certain den-
sity. The same happens for a 3D plasti&! however, the
minimal value of the degree of ionization for the 3D plasma
is much higher than in the 2D cagempare Fig. 6 with Fig.
Equation(20), together with Eqs(5) and(6) for the partition 1 in Ref. 44. This is due to the much enhanced binding
functions, allows us to calculate the degree of ionizatioof  energy in two dimensions.
the dilute (nondegeneraje2D electron-hole plasma as a  The inclusion of Fermi statistics and phase-space filling,
function of the screening parametgga*. The connection which is beyond the scope of the present paper, would pro-
betweengsa* and the total electroithole) densityn [Eq.  vide a sharper rise of at high carrier densities as the phase
(18)] can be used for self-consistent calculationsaofas  space available for the construction of exciton states is re-
functions ofn for different temperatures or material param- stricted. This will apply to both wide-gap and narrow-gap
eters. The results of these calculations are shown in Fig. @emiconductors. In the foregoing discussion we have as-
Calculations are performed for the model semiconductosumed a purely 2D plasma. This assumption gives an overall
with the exciton Bohr radiua* and effective Rydberg Ry  overestimate of exciton binding energies, compared to a real,
corresponding to ZnSEFig. 6(@)] and GaAgFig. 6(b)] and finite-width quantum well, for which unscreened exciton
for room temperaturekgT=300 K). The arrows indicate binding energies are lower and the finite thickness correction
the points of crossover from Boltzmann to Fermi statistics,enhances the screening effétfThus the results shown in

carrier density, n (10"%cm™)

RY*
kgT

ngo"a*z = 477(”23-*2) (ZentZee),

qsa* -1
a={1+ ——(ZentZed | - (20)
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Fig. 6 should be considered as lower bound estimates of the 1. Scattering phase shifts
degree of ionization of the electron-hole plasmas in ZnSe The relative in-plane motion of two interacting particles

and GaAs quantum wells at room temperature. Note thaf; massed, andM, and the energy of relative motid

even this lower estimate does not give a value of the degreg,, pe considered as a motion of a particle with the mass
of ionization of a plasma in a ZnSe quantum well below

. . =M My /(M,+My) and energyg, moving in an exter-
0.33. This means that at room temperature at least one-thuﬁglb aMp/(Ma b) OE J

tth . | bound. which h b K central potentiaV(p). This motion is described by the
of the carriers are always unbound, which has to be takefaye function satisfying the stationary ScHirmger equation
into account in gain calculations.

R 72 (19 o 1 &
IV. CONCLUSION Hieitp=—

= T S g+ Vi) p=Ey.
2 p 9pPop 02 902 y+V(p)y=Ey

We have calculated the degree of ionization of the 2D (A1)
electron-hole plasma, taking into accouwllt screened exci- ] ] ]
ton bound states as well as scattering states. It has be&Ving to the axial symmetry of the potentiaV/(p), we can
shown that the scattering state contribution changes the chaféParate variables in the expression for the wave function
acter of the density dependence of the degree of ionization. .

We have found that the degree of ionization of the 2D Umlp,0)=Rp(p)e™?, m=0,x1,+2,.... (A2)
plasma reaches its minimal value at intermediate densities

and approaches unity at high densities, which differs fromTrhe equation for the radial functioR,,(p) reads

the result based on the simple law of mass action.

The calculated degree of ionization of the electron-hole 1
plasma in a ZnSe quantum well is significantly lower than in Rn+—R/+
a GaAs quantum well with the same carrier density and tem- P
perature. Therefore, excitonic processes should be consid-
ered for gain calculations in quantum wells based on wideYnere k?=2p,pE/h? and U(p)=2puapV(p)/h?. In what

gap semiconductors. However, at room temperature at leaf@!lOWs we considem=0 only, asR_(p) =Ru(p). -
one-third of the carriers in ZnSe wells is shown to be un- e assume that the interaction potential vanishes at infin-

bound, which allows us to speculate that the most likelylty (the precise decay rate will be discussed latghen at

lasing mechanism at moderate density is exciton/free-carridpr9¢ distances the radial function satisfies the free Bessel
scattering. equation, whose general solution is

Most of the results presented here are obtained for the
model system with equal electron and hole effective masses. Rmn(p)=An[Im(kp)cos dn—Np(kp)sin o]
For wide-gap semiconductors at room temperatukgT (
~1 Ry*) this approximation is good, sinc&,. is much "_'°°A
smaller thanZ,;, and the influence of the electron-electron = Am
part of the partition function on the degree of ionization is
not significant. In the case of an extreme difference between

elec_tron and hole masses the model fails, e.g., Il_ghte_r quasiz e 5. is the scattering phase shift!® and J, (kp) and
particles can be degenerate, when heavy quasiparticles alF '
nondegenerate. m(kp) are the Bessel and the Neumann functions, respec-

; . . tively.
The variable phase method is a powerful tool for studying . .
scattering and bound states in any short-range potential. This In the variable phase approadky, and 5y, are considered

method enabled us to find hitherto undiscovered propertie@.c.’t as constgnts but as functions of the d|st_emc?éhe am-
of a Coulomb potential statically screened by a 2D eIectrorPIItUde function An,(p) apd the phase functiodn(p) are
gas. The same approach can be applied to a more refiné"(?llr()duced by the equation

potential, which takes into account Friedel oscillations and

the finite thickness of the 2D layer. Rin(p) =Am(p)[Im(kp)€os dn(p) = Nm(Kp)sin y(p) ],
(A5)

m2
kz—U(p)—;Z) Rn=0, (A3)

2 1/2
’7T_kp> cogkp—(2m+1) w4+ 6,1,

(A4)

ACKNOWLEDGMENTS with the additional condition, which we are free to choose as

This work was supported by the UK EPSRC and the
Royal Society, and we thank Dr. S.-C. Lee and H. Ouerdane R/ (p)=An(p)[J}(kp)cos 5y(p) — N/ (kp)sin 8m(p)],
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where the prime indicates differentiation with respect to

The phase functiod,(p) has a natural physical interpreta-

tion as being the phase shift produced by a potential cut off
In this appendix we derive the basic equations of the variat a distance.

able phase approach in two dimensions from the radial Differentiating Eq.(A6) and substituting the resulting ex-

Schralinger equation. This derivation is similar to that in pression, together with EqeA5) and(A6), into Eq.(A3), we

three dimension® obtain

APPENDIX A: VARIABLE PHASE METHOD
IN TWO DIMENSIONS
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An(p)[Ifn(kp)cossim(p) = Np(Kp)sindm(p)] = 8r(p) Am(p) kM P ot
5m(P)*—22mT(ml)2J’o U(p')p dp’, p—0.
X[31(kp)sin 8n(p) +Ni(kp)cos dr(p)] ' (AL3)
=U(p)An(p)[Im(kp)cos én(p) From Eqg.(A10) and the asymptotic expansions of the
Bessel functions one can see that the variable phase method
—Np(kp)sin 8p(p)]. (A7) is applicable only if the scattering potentidl(p) satisfies

the necessary conditions
To obtain Eq.(A7) we used the fact that the functions

Jm(kp) andN,,(kp) satisfy the free Bessel equation f U(p")dp'—0, psos (A14)
”n 1 ’ 2 m2 ’
Fmt ;Fm‘f‘ k —? F.,=0. and
p?U(p)—0, p—0. (A15)

Equating the derivative of EqA5) to Eq. (A6) implies
the following condition on the derivatives of the amplitude The statically screened Coulomb potentig(p), defined by

and the phase functions: Eq. (7), behaves likep~! at small distances and like 3 at
large distances. Such behavior allows the application of the
Al (p)[Im(kp)cos 8m(p) —Np(kp)sin 8(p)] variable phase method to this potential.
= 5r’n(p)Am(P)[Jm(kp)5in Om(p)+Nm(kp)cos dy(p)].

2. Bound-state energies
(A8) For the states with negative energy of the relative motion

SubstitutingA/(p), obtained from Eq(A8), into Eq. (A7) (bound statgs the wave numbek is imaginary,k=i«, and
yields we introduce the functiom,,(p,«) vanishing in the origin

and satisfying a nonlinear equation

= n(P)[Im(kp)Nf(Kp) = Nin(kp)Ip(kp) ] -
= U(p)[In(kp)COS 51(p) ~ Ny (Kp)Sin (p) 2. gp Tm(p) == pU(p)
(A9)

I m(kp)COS 17m(p, k)

2

2
+—Km(kp)sin nm(p,x) | (A16)

Equation(A9) can be simplified further, using the Wronskian

of the Bessel functions, wherel («p) andK,,(xp) are the modified Bessel functions

of the first and second kinds, respectively. Equatidh6) is

d d . . . .
W{Jm(x),Nm(X)}:Jm(X)d_Nm(X)_Nm(X)d_Jm(X) derived in the same fashion as E_(q\lO). The functions
X X Im(kp) andK,(kp) represent two linearly independent so-
> lutions of the free radial-wave Schitimger equation for the

=, negative value of energyE=—#%k%2u,,, and cotryy
X characterizes the weights of the diverg|ng,(«p)] and con-
verging[K,(kp)] solutions asp—x. For the bound state,
the diverging solution vanishes, implying the asymptotic
condition

and thus becomes

d T
a5 Om(p) == 5 p U(p)[In(kp)cOSin(p)

dp Mm(p—o,k,)=(v—12)mw, v=12,.... (ALl7)

—Np(kp)sindy(p) 1. (A10)  Here » numerates the bound states for a givenand (v
—1) is the number of non-zero nodes of the radial wave
function. For numerical solution of EA16), instead of the
boundary conditiony,(0,<)=0, an asymptotic initial con-
dition [analogous to the condition EGA13) for the phase

This phase equationEq. (A10), is a first-order, nonlinear
differential equation of the Ricatti type, which must be
solved with the initial condition

5.(0)=0, (A11) function §,,(p)] is used.
thus ensuring that the radial function does not divergg at APPENDIX B: BETH-UHLENBECK FORMULA
=0. The total scattering phase shii, can be obtained as a IN TWO DIMENSIONS

I -dist limit of the ph functi :
arge-distance fimit of the phase functii(p) In this appendix we derive E¢5), which is the 2D analog

5= lim 8.(p). (A12) of the Beth-Uhlenbeck form_ul%?, and the modified law of

m m the mass actiofiEq. (4)]. This derivation is similar to the
analysis used for the calculation of the second virial coeffi-
For numerical convenience, instead of the initial conditioncient of low-density*He and“He monolayers on graphife.
Eq. (A11), the smallp expansion is used: Let us consider a binary mixture of componeatandb

p—*
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in two dimensions. The grand partition function of the mix-
ture is given by

02,2, AT)= > On nZa2". (B1)

a:Np
wherez, andz, are the fugacitiesz,=ef*a, with u, being
the chemical potential of the componex)t, A is the area of
the 2D system, andzNabe is the partition function defined
as

O, (A T)=Tr e ARNa N, (B2)

M. E. PORTNOI AND I. GALBRAITH
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In order to find the two-particle partition functio@, , it
is useful to separate the center-of-mass motion and the rela-
tive motion of the two particles:

Tr e~ Fhrel

Ql,l(A!T) = gagb 2

M +My

A

2
)\Ma+Mb

=00 f d2p§n‘, | p)|? € PEn,

(B12)

where the trace is to be taken over all states of the systemhere the factorA/\y, ., appears from performing the

that hasN, particles of the typea and N,, particles of the
type b in the areaA.

We now expand the quantity 3 as a power series in,
andz,:

In Q(z4,2, AT)= > AC_ 2727 (B3)
(S a’
The density of the componeatis given by
na=zzaaln Qzlgb |aC|a’|bZaabe, (B4)

From this point we consider the low-density limi,,z,
<1, and neglect all the terms higher thahin Eq. (B4).
Then

Na=~Cy Za+ C11ZaZo+2Co Z5 - (BS)

From comparing corresponding powers in E@B3) and
(B1), we obtain

C10= Q10/A, (B6)
C1,1=(Q1,1— Q1,020)/A, (B7)
and
1.
62,0: Q2,0_ EQ 1,0 A. (B8)

The next step is to calculate the partition functions entering
Egs. (B6)—(B8). First of all, the one-particle partition func- SPectra

tion Q, o is given by

h.2k?

_ A
2Ma _ga

xfﬂa
(B9)

whereg, is a quantum state degeneracy arma is a thermal
wavelength,

A 2
Ql,O(AJ—):gan d°k exp —

27 Bh?
2 _
M= L (B10)
This yields
cl,o—% (B11)
)\M

summation over all center-of-mass momenta, the Hamil-

tonian H,,, of the relative motion is given in Appendix A,
and the sum in EqB12) is taken over all different solutions
of Eq. (Al).

For the corresponding two-body system of noninteracting
distinguishable particles, one would have

A

2

QA T)=0.0p
)\Ma+Mb

J d2p> 4O p)|2eFER,
(B13

where the superscrif0) refers to quantities of the noninter-
acting system. The two-bodyteractionpart of the partition
function is then defined by

Zan= J @0 {|n(p)] e 50| YO (p)|2e FE)

0
- ; e PEn—e BEL Y. (B14)

Thus

A
Q1 i(AT) = QPNAT)+0als 5 Zap-
M +My

(B15

To analyze Eq(B14) further, we must study the energy
E( and E,. For the noninteracting systenk(”
forms a continuum. We write
h2k2
2pap’

EQ= (B16)

which defines the relative wave numbek. Then for the

system of two noninteracting distinguishable particles the
%) given by Eq.(B13) can be easily evaluated as

function Q‘Ll
f d%k exr{ -B

A

2
A
Ma

#2K?
2pap

Q(O)(A = L
LAY Ja9v >
)\Ma+Mb

(2m)*

A
=0a0b 5
)\Ma+Mb

= Ql,o Qo,l-

A

2
A
Hab

A
gb)\fﬂb

9a

(B17)
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For the interacting system, the spectrumEf in general

contains a discrete set of valuEg, corresponding to two- gk = —R (B29)
body bound states, and a continuum. In the continuum, we

define the wave numbésfor the interacting system by put- Therefore,

ting
1 dém(k)
h2k? gOk)==
E=r—. (B19) 9m(K) =g (K)= 7 ¢ (B29)
2Lap
Let g(k)dk be the number of states with a wave numberSumming Eq.(B29) over all allowedm, we obtain
lying betweenk and k+dk, and letg®(k)dk denote the s ik
corresponding quantity for the noninteracting system. Then O/ 1) — 2 ( )
Eqg. (B14) can be written in the form g(k)—g™(k) = _E (B30)
" 21,2 _ . .
Zap= efﬁEB_Ff dk{g(k)—g©@(k)lex k ) Substituting Eq(B30) into Eq. (B19) yields
B 0
B19 wf 2
| | | | (B19) | 2.-S e*ﬁEB+if 5 dSm(k)
The difference in density of states is related to the scattering &% 7)o \m=%» dk
phase shifts by the following argumehitThe relative wave -
function can be factorizefbee Eq(A2)] into a product of a wexd — ok dk (B31)
trivial azimuthal part and nontrivial radial wave function 2 ab

Rm(p), which satisfies Eq(A3). For large value op where
the potential is assumed negligible, which coincides with Eq(5) if we change the notation for

the bound-state energy froy to E, ,, where subscripi
Rm(p—2)xcogkp—(2m+1)m/4+ 6,(K)}, (B20)  enumerates bound states with a given
Now, having evaluated the interaction part of the partition
function, we can obtain the coefficied} ; needed in the
density expansion, by substituting E@®15) into Eq. (B7)
eand taking into account E¢B17):

which defines the phase shiff,(k) of the mth partial wave.
For the noninteracting system all the phase shifték)=0.

If the system is placed within a circle of radi&s the van-
ishing of the wave function at the boundary requires that th
allowed values ok are given by

1 Ja Ob
1 C1179a0h 5 Zab™ iab 2a — Zap- (B32)
kR—(2m+ 1)@+ 5n(k)=| n+ 5|7 (B2D) Mg+ My Mg M,
for the interacting system, and Up to this point we have considered a system of two
. distinguishable particlege.g., an electron and a holeTo
_ _ + calculate the remaining coefficie€i§ o in Eq. (B5), we must
kR=(2m+1)m/4 * 2)77 (B22 now consider the interaction of indistinguishable particles.
for the noninteracting system, where=0,12 . ... For a For such particles the sum over differentis modified, e.g.,

for two spinless bosons the relative wave function must be
symmetric; this means that only even valuesnmofre pos-
sible. For the case of two fermions with the same spin the
. coordinate wave function must by antisymmetric. Let us con-
Ak= ——— | (B23)  sider a case of the two fermions or bosons of the same type
R+[ddn(k)/dk] a, with the quantum state degeneragy. This degeneracy is
usually associated with the particle sgnso thatg,=2s
AKO=T (B24)  +1. For atwo-particle system there agé=(2s+1)? spin
R states, of which a fractions(+1)/(2s+1)=(g,+1)/(29,)

These are the spacings of eigenvalues for a givehet the ~ &€ Symmetric and a fracticsi(2s+1)=(da—1)/(29,) are
number of states of a givem with wave number lying be- antisymmetric. For a fermion system, the symmetric spin

tweenk andk-+dk be denoted by, (k) dk andg(o)(k) dk  States must be multiplied by antisymmetric spatial states
for the two cases. We must have m (oddm) and the antisymmetric spin states multiply symmet-

ric spatial stategsevenm). A similar argument is applicable
gm(k) Ak=1, (B25)  for bosons. Thus, for the 2D system of interacting particles
of the typea, the two-body partition function is

given m, changingn by one unit causek to change by the
respective amountak and Ak(®:

g(k)Ak=1 (B26)
or (0) 2 A
szo(AyT): QZ’O(A!T) +ga)\TZaa’ (B33)
. 1 R dém(k) B2 "
Im(k)= P R (B27) whereZ,, is defined by
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+(—1)m and
Zaa:Z Me_BEm,y

m, v Ja 1 12k?
T, =—f d?pd?k siﬁ(k-p)exr{—ﬂ )
1 & gat (=)™ [=ds,(k) %22 & (2m)* Mg
+ — z f dk eX —BM— dk,
T m=—o Ja 0 a 1 A 1
(B34) "2\ a4 (B41)

Here and in what follows the upper sign is for bosons and the
lower sign is for fermions. For the case of repulsive fermionsFinally,
(which do not form bound stateand forg,=2, Eq.(B34)

2
reduces to Eq(6). ) Sy oAV 1A 1, 1A
Let us now calculate the two-body partition function of Q2oATI=3 ga)\fﬂ i4g"")\§/I B 2Q1'°J—r4gf")\§/I
noninteracting bosons or fermion@,‘f&, which is given by é é (BZZ)
A g ) Substituting Eqs(B33) and (B42) into Eq. (B8) yields
QA= 5[ 6T (@t DIkl Hbstiting EgstB33) and (B42) into £a. (88) v
2M 2
’ 1 g 1g
_1\2 a a
_ ) X h2k2 CZ'O_E)\Maa( )\T) Zaaiz )\T (843)
+(ga+1)|l//a (kvp)| }EX _B M ’ Ma Ma
a

Substituting Egqs(B11), (B32), and(B43) into Eqg.(B5), we
(B35) S . : :

find the following expression for the total density of the
where (" (k,p) and y{"(k,p) are symmetric and antisym- component:

metric eigenfunctions of the noninteracting Hamiltonian of

. . - 2
the relative motion, i.e., _ a E 92, o [ 9 .

> Ny~ 7\54 Za—2 )\ﬁn Zy Haa )\ﬁn aaZa

Pik.p)= \/% cosk-p) (B36) : : :
ga b

and iab)\; —ZapZals - (B44)

5 M, My

z//go)(k,p)= \/; sin(k- p). (B37)  The first two terms in Eq(B44) do not depend on interpar-

ticle interaction(however, the second term depends via its
The summation in Eq(B35) must be performed over all sign on the statistics of the partices#t is natural to call the
differenttwo-particle states. Wave vectoksand —k corre-  sum of two first terms in Eq(B44) an uncorrelateddensity;
spond to the same statk @nd —k transfer into each other we denote it as. Note that these terms are the first two
upon exchange of the two indistinguishable partiglekis  terms in the low-density expansion of the well-known

state should not be counted twice, and expressiof? for the density of the noninteracting 2D Bose or
Fermi gases:
. —ZA d?k B38
Z 22w ' (B39

n°=I&In(1Iz )
Then Q% can be written as N o

(0) A _ The sum of the last two terms in E@44) is the interaction-
Qz,o(A,T):ga)\T{( atDZst(9a71)Za}, (B39 dependentorrelateddensityns®” .
Ma In the low-density limit the second term in EB44) is
where much smaller than the first one, and within the same accu-
racy as Eq(B44) we can write

1 h2k?
I.= zf d?pd?k cog(k- p)ex;< -B )
(2m) Ma ng"~ > nIndN2 Zop. (B45)
b
1 A 1
=35 N tz (B40)  Equation(B45) coincides with Eq(4), and it constitutes the
Ma modified law of the mass action in two dimensions.
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