
PHYSICAL REVIEW B 15 AUGUST 1999-IIVOLUME 60, NUMBER 8
Ionization degree of the electron-hole plasma in semiconductor quantum wells

M. E. Portnoi* and I. Galbraith
Physics Department, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom

~Received 7 January 1999!

The degree of ionization of a nondegenerate two-dimensional electron-hole plasma is calculated using the
modified law of mass action, which takes into accountall bound and unbound states in a screened Coulomb
potential. Application of the variable phase method to this potential allows us to treat scattering and bound
states on the same footing. Inclusion of the scattering states leads to a strong deviation from the standard law
of mass action. A qualitative difference between midgap and wide-gap semiconductors is demonstrated. For
wide-gap semiconductors at room temperature, when the bare exciton binding energy is of the order ofkBT,
the equilibrium consists of an almost equal mixture of correlated electron-hole pairs and uncorrelated free
carriers.@S0163-1829~99!03532-8#
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I. INTRODUCTION

The drive for ever higher storage capacity has led to
development of semiconductor lasers operating in the b
spectral region, based on ZnSe~Ref. 1! and GaN.2 Along
with the large energy gap of these materials comes a la
exciton binding energy, of the same order askBT at room
temperature. As has been well known since the 1970s,3 ex-
citonic gain processes are important in wide-gap semic
ductors, and their importance is further enhanced
quantum-well structures where the binding energy may
considerably larger thankBT ~e.g., ;35 meV in
ZnxCd12xSe/ZnSe quantum wells!.

Theoretical treatments of GaAs- and InP-based lasers
well established using a microscopic many-body appro
based on linear-response theory.4 Screening and band-ga
renormalization effects are included, assuming that the
jected carriers form a completely ionized electron-h
plasma. Such treatments have been successful in expla
many of the observed features of mid-infrared laser diod
Complex valence-band effects and strain effects as we
carrier thermalization effects have all been included at v
ous levels of complexity. In this way, a relatively comple
understanding exists for the basic operation of these las

In wide-gap semiconductors, however, the strong C
lomb interaction leads to the existence of bound-exci
states, which persist even at elevated densities and tem
tures. As such, the conventional assumption that the in
sion is in the form of an electron-hole plasma with no ex
tons present deserves closer examination. A self-consis
description where both bound and unbound states are tre
on an equal footing is required. Unfortunately, as far as
are aware no comprehensive theoretical treatment of
problem exists. Treatments based on bosonic exciton op
tors have been proposed,5 but this approach breaks down
high injection when the screening of the Coulomb poten
weakens the binding and produces a population of unbo
scattering states, which clearly do not exhibit bosonic ch
acter. On the other hand, a treatment based around ferm
electron and hole operators is complex when higher-or
excitonic correlations are important.6,7 A natural concept in
considering this issue is the degree of ionization in the in
PRB 600163-1829/99/60~8!/5570~12!/$15.00
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acting electron-hole plasma, and in this paper we calcu
this for a two-dimensional~2D! plasma. We focus on two
dimensious for two reasons. First, most modern semicond
tor lasers are fabricated in quantum-well heterostructu
Second, the presence of at least one bound state in the a
tive 2D potential requires a nonperturbative treatment of
screened Coulomb interaction.

We will be mostly interested in the plasma properties
duced by the pair Coulomb interaction between charged
ticles, neglecting band-gap renormalization and phase-sp
filling effects, which have been extensively studied in bo
three-dimensional~3D! and 2D cases.8,9 These effects can be
neglected only in the low-density~nondegenerate! limit,
which is defined in 2D by the inequality

nlM
2 /g,1, ~1!

wheren is the 2D carrier density,g is the spin degenerac
factor of 2D particles, andlM5(2p\2/MkBT)1/2 is the ther-
mal wavelength. For the two-component plasma the ligh
carrier ~usually electron! effective mass must be used
evaluate the thermal wavelength to ensure that condition~1!
is valid for both types of carriers. Inequality~1! provides that
the motion of excitons can also be considered as class
For GaAs at room temperaturelMe

'1.6631026 cm,

electron-spin degeneracyge52, and condition~1! is satisfied
for n&7.231011 cm22. The electron effective mass i
wide-gap semiconductors is usually at least two times lar
than in midgap semiconductors; therefore, condition~1! is
valid over a wider range of carrier densities@e.g., for ZnSe at
room temperature, inequality~1! is satisfied for n&1.7
31012 cm22#. Thus the nondegenerate~Boltzmann! limit is
not only a convenient approximation, in which the Coulom
interaction is not hidden by the band-filling effects, but
also gives a realistic picture of the electron-hole plasma
wide-gap semiconductors at room temperature and mode
carrier densities. Lasing at anomalously low densities~below
the Mott density! has been reported in ZnxCd12xSe/ZnSe
quantum wells.10

Following an approach applied in three dimensions
nuclear matter,11 an ionic plasma,12 and the electron-hole
5570 ©1999 The American Physical Society
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PRB 60 5571IONIZATION DEGREE OF THE ELECTRON-HOLE . . .
system in excited semiconductors,13 we divide the total elec-
tron ~hole! density between two terms:

na5na
01na

corr . ~2!

The first termna
0 is the density of uncorrelated quasiparticl

with renormalized energies. This term is that part of the to
density which is independent of the interparticle interact
~see Appendix B!. All correlation effects both in the boun
and continuum states are incorporated into the second
na

corr , which is called the correlated density. The lower ind
in Eq. ~2! is a species index,a5e for electrons anda5h for
holes. It is also useful to introduce the degree of ionization
the electron-hole plasma,

a5
ne

0

ne
5

ne
0

ne
01ne

corr
, ~3!

which characterizes the deviation of the thermodynam
properties of the electron-hole plasma from those of the id
gas (a51). The knowledge of the degree of ionization
essential in determining the dominant lasing mechani
When a is close to unity, the main lasing mechanism
stimulated emission from the free-carrier plasma, for low
values of a several excitonic gain processes have to
considered.14

In the nondegenerate limit there is no need to go bey
two-particle correlations. This allows us to separate clea
the role of the inter-particle Coulomb interaction from t
phase-space filling effects. In this limit, the correlated a
uncorrelated densities are related by

na
corr5(

b
na

0nb
0 2pb\2

mab
Zab , ~4!

whereb51/(kBT), mab5MaMb /(Ma1Mb) is the reduced
effective mass, andZab is the two-body interaction part o
the partition function. This relationship is derived in Appe
dix B. Note that due to charge neutrality the total electro
hole densityne5nh5n is independent of species, where

ne
0Þnh

0 and ne
corrÞnh

corr if electrons and holes have dif
ferent effective masses.

The electron-hole part of the partition function which e
hibits bound states~excitons! is given by

Zeh5(
m,n

exp~2bEm,n!1
1

pE0

`S (
m52`

`
ddm~k!

dk D
3expS 2b

\2k2

2meh
Ddk, ~5!

wherem\ is the projection of the angular momentum on
the axis normal to the plane of 2D motion (m50,61,
62, . . . ), \2k2/(2meh) is the energy of the relative motio
of the unbound~scattered! electron and hole,\k is the mag-
nitude of the relative motion momentum,dm(k) are the
2D scattering phase shifts,17,18 Em,n are the bound-state
energies~index n enumerates bound states with givenm),
and the double sum in the first term ranges only over bo
states. Equation~5! is the 2D analog of the Beth-Uhlenbec
formula19 and it can be derived in the same fashion as in
3D case, as shown in Appendix B.
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The scattering~integral! term on the right-hand side o
Eq. ~5! gives the contribution toZeh of the continuum part
of the energy spectrum. This term is usually neglected
calculations of the ionization degree of the electron-h
plasma.3,14–16 In what follows we will show that at high
enough temperature the scattering term is comparable to
bound-state sum and indeed this term has to be taken
account to ensure continuity of the partition function whe
ever bound states disappear with increasing screening.20

The electron-electron and hole-hole parts of the partit
function Zee and Zhh contain the scattering term only. T
calculateZaa one must take into account the Pauli exclusi
principle for identical particles, which modifies the sum ov
m. The electron-electron~hole-hole! part of the partition
function is given by~see Appendix B!

Zaa5
1

2p (
m52`

`

$22~21!m%E
0

`ddm~k!

dk
expS 2b

\2k2

Ma
Ddk.

~6!

Here we assume that both electron and hole states in q
tum wells are two-fold degenerate. The only difference b
tweenZhh andZee arises from the difference between ele
tron and hole effective masses.

Equations~2!–~6! provide a connection between the tot
electron-hole densityn and uncorrelated quasiparticle dens
tiesne

0 andnh
0 . The quasiparticle densities in turn govern t

screening13 and therefore the strength of interaction betwe
particles, which uniquely defines the set of binding energ
and scattering phase shifts which enter Eqs.~5! and ~6! for
the two-body partition functions. These partition functions
turn define the ratio betweenna

0 andna
corr via Eq. ~4!. Thus,

to find the degree of ionization of the electron-hole plasm
one must solve the system of equations~2!–~6! self-
consistently, together with a reasonable model of
screened interaction.

In Sec. II we discuss the statically screened Coulomb
tential which we use to model the interaction between p
ticles in an exciton/electron-hole plasma, and present res
from the application of the variable phase method22 to scat-
tering and bound states in this potential. In Sec. III w
present and discuss the results of calculations of parti
functions and the degree of ionization of the electron-h
plasma. In Appendix A we derive the basic equations of
variable phase method, which is used for calculation of sc
tering phase shifts and binding energies. The 2D analog
the Beth-Uhlenbeck formula and the modified law of ma
action are derived in Appendix B.

II. STATICALLY SCREENED COULOMB POTENTIAL

There is an extensive literature dealing with different a
pects of the screened Coulomb interaction in 2D system23

In this paper we model this interaction by the well-know
Thomas-Fermi expression for a statically screened Coulo
potential,17

Vs~r!57
e2

e E0

`qJ0~qr!

q1qs
dq

57
e2

e H 1

r
2

p

2
qs@H0~qsr!2N0~qsr!#J , ~7!
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5572 PRB 60M. E. PORTNOI AND I. GALBRAITH
whereqs is the 2D screening wave number~which depends
on temperature and carrier density!, e is the static dielec-
tric constant of the semiconductor, andJ0(x), N0(x), and
H0(x) are the Bessel, Neumann, and Struve functions,
spectively. The upper sign in Eq.~7! is for electron-hole
attraction, and the lower sign is for electron-electron or ho
hole repulsion.

Being the long-wavelength, static limit of the random
phase approximation for a purely 2D case,24,25 Eq. ~7! is the
simplest model for the screened Coulomb potential in t
dimensions. Nevertheless, this expression reflects the
that the statically screened potential in two dimensions
creases at large distances slower than in the 3D case~as a
power law rather than exponentially!. Despite numerous re
alistic corrections,23,26,27 Eq. ~7! remains the most widely
used approximation for the 2D screening, especially for
screened exciton problem.16,28–31 Optically active (m50)
bound states in the attractive, statically screened Coulo
potential @upper sign in Eq.~7!# have been studied using
variational method,28,29by a numerical procedure based on
shooting method,30 and more recently using the WKB
approximation31 and perturbation theory.16 As mentioned
above, for the partition function calculation,all states are
needed, bound and unbound, optically active and inact
None of the above methods is suitable for analysis of s
low bound states and low-energy scattering states.

We use for calculation of the scattering phase shifts
bound state energies entering Eqs.~5! and ~6! the 2D
formulation32 of the variable phase method.22 In this method
the scattering phase shift and the function defining bou
state energies can be obtained as the large distance lim
the phase function, which satisfies the first-order, nonlin
Riccati equation originating from the radial Schro¨dinger
equation~see Appendix A!. The variable phase method
especially effective for calculation of the shallow-state bin
ing energies and low-energy scattering phase shifts.

In Fig. 1 we show thek dependence of the scatterin
phase shifts for the attractive and repulsive Thomas-Fe

FIG. 1. Scattering phase shifts vs the in-plane wave vectork ~in
units of inverse Bohr radius 1/a* ) for a 2D particle in a screene
Coulomb potential@Eq. ~7!#. The screening wave numberqs

50.2/a* . For the attractive potential all phase shifts are positi
and for the repulsive potential they are negative. Numbers shom
values.
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potentials@both signs of Eq.~7!# with the screening wave
numberqs50.2/a* , wherea* 5e\2/(me2) is the 3D exciton
Bohr radius. The scattering phase shifts are negative for
repulsive potential and positive for the attractive potent
For the repulsive potential all zero-energy phase shifts v
ish, dm(k50)50 for all angular momentam. For the at-
tractive potential,

lim
k˜0

dm~k!5nmp, ~8!

wherenm is the number of bound states.35 Equation~8! is the
2D analog of Levinson’s theorem33 ~see also Ref. 34!, which
connects the zero-energy scattering phase shift with the n
ber of bound states for nonrelativistic particles in three
mensions. This theorem has been known for almost five
cades; however, its applicability to the 2D scattering probl
has been considered only recently.32,36–38

We recently32 used Levinson’s theorem in the form of Eq
~8! for bound-state counting in the attractive Thomas-Fe
potential, Eq.~7!, and found a remarkably simple relatio
between the number of bound states and the screening w
numberqs . With decreasing screening, bound states app
at critical values of the screening length given by the sim
formula32

S 1

qsa* D
c

5
~2umu1n21!~2umu1n!

2
, n51,2, . . . . ~9!

Equation~9! can be easily inverted, and the number of bou
states for givenm andqs can be expressed as

nm5max$0,n022umu%, ~10!

where

n05FA8/~qsa* !1111

2 G ~11!

is the number of bound states withm50. Here, and in Eqs.
~13! and~14!, the bold square brackets designate the inte
part of a number. For smallqs , Eq. ~11! gives a number 2.5
times smaller than the WKB estimate31 for the maximum
number of bounds states. The Bargmann bound condition39

~restated for the 2D case17! for the attractive potential~7! is
nm,1/(mqsa* ). This was also found to give a gross ove
estimate of the number of bound states.

The total number of bound states,Nb , for a givenqsa* ,

Nb5n012 (
m51

umumax

nm , ~12!

can also be found explicitly as follows. From Eq.~9! the
maximum possible value ofumu for the state which remains
bound is

umumax5FA8/~qsa* !11 21

4 G5Fn021

2 G . ~13!

Then the sum in Eq.~12! can be easily evaluated using Eq
~10! and ~13!:

,
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Nb5n012umumax~n02umumax21!

5n012Fn021

2 G H n0212Fn021

2 G J . ~14!

For small qsa* ~weakly screened potential! a simple ap-
proximate expression for the total number of bound sta
follows from substitution of Eq.~11! into Eq. ~14!:

Nb'
n0

2

2
'

1

qsa*
~15!

Thus, for the weakly screened Thomas-Fermi potential,
bound-state sum in the partition function@Eq. ~5!# has a finite
number of terms which is approximately equal to the scre
ing radius 1/qs measured in units of the Bohr radius. Th
WKB estimate of the number of bound states31 gives a dif-
ferent~square root! dependence ofNb on 1/(qsa* ) for small
qsa* . The reason for this difference is that in Ref. 31 on
m50 states are considered, whereas all values ofm are
needed to obtain the result of Eq.~15!.

As the screening is reduced,Nb , given by Eq.~14!, ex-
hibits steps of ever increasing height. In order for the limit
Eq. ~15! to be meaningful the step height should be sma
than Nb itself, i.e., the normalized number of bound stat
Nb /Nb

qs˜0
5(qsa* )Nb , should converge to unity asqsa*

˜0. As can be seen in Fig. 2, this number oscillates aro
unity with the amplitude of oscillations decreasing with i
creasing 1/(qsa* ). It can be shown that forqsa*˜0 the
amplitude of these oscillations is proportional to (qsa* )1/2,
and their period is proportional to (qsa* )21/2.

In order to calculate the partition function, the bound-st
energies are required. These can also be obtained usin
variable phase method, and the necessary equations are
sented in Appendix A 2. Numerical results for the attract
screened Coulomb potential@upper sign in Eq.~7!# are pre-
sented in Fig. 3. In this figure the energiesEm,n of the sev-
eral lowest bound states of the screened exciton are show
a function of the screening wave numberqsa* . Here the
energies are measured in effective exciton Rydberg@Ry*

FIG. 2. The normalized number of bound states (qsa* )Nb as a
function of the inverse screening parameter, 1/(qsa* ), for qsa*
<1.
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5\2/(2meha* 2)#, and we use the same classification of e
ergy levels as in Ref. 32, i.e., each energy level is charac
ized by the angular momentum quantum numberm and an-
other numbern which numerates different bound states fo
givenm, with (n21) being the number of nonzero nodes
the radial wave function. Form50 (s states! the calculated
energies are consistent with those obtained by J. Leeet al.29

using a variational method.

III. PARTITION FUNCTIONS AND IONIZATION DEGREE

Before we present the results of calculations of the pa
tion functions and the ionization degree, we would like
discuss an important consequence of Levinson’s theorem
the statistical mechanics of the 2D gas with an attract
interaction between its particles. The bound-state s
Zbound5(m,nexp(2bEm,n), entering the two-body partition
function in Eq. ~5!, exhibits jumps whenever bound stat
disappear with increasing screening. We will now show t
these jumps do not give rise to unphysical discontinuities
the partition function if the scattering states are prope
taken into account.

Integrating by parts the scattering term and us
Levinson’s theorem in the form of Eq.~8!, we can rewrite
Eq. ~5! as

Zeh5(
m,n

$exp~2bEm,n!21%1
2

pqT
2E

0

`S (
m52`

`

dm~k!D
3exp~2k2/qT

2!kdk, ~16!

whereqT
252mehkBT/\2. The modified bound-state sum@the

first term in Eq. ~16!# does not exhibit jumps wheneve
bound states disappear with increasing screening. For n
zero temperature the scattering integral@the second term in
Eq. ~16!# is also a smooth function of the interactio
strength, which can be understood from Fig. 4. In this figu

FIG. 3. The bound-state energiesEm,n of the 2D exciton in
exciton Rydberg units are shown as a function of the screen
parameterqsa* for differentm values. Solid lines showm50 states
(E0,1, E0,2, and E0,3); dashed lines showm51 states (E1,1 and
E1,2); the dot-dashed line shows the lowest state withm
52 (E2,1). The inset is an enlargement nearqsa* 50.
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the scattering phase shiftd2 is plotted as a function ofk for
several values of 1/(qsa* ) close to the critical value
1/(qsa* )510 when the first bound state withm52 appears.
One can see that althoughdm(0) has a jump whenqs passes
a critical value, this jump does not influence the value of
scattering integral if the thermal wave numberqT is larger
than the interval ofk in which dm(k) changes rapidly. As
shown in Fig. 4, when the bound state disappears the p
shift is affected only in an infinitesimally thin region aroun
k50. For any nonzero temperature this transition reg
makes no contribution to the phase-shift integral. Thus
electron-hole interaction part of the partition function giv
by Eq. ~16! is a smooth function of the interaction strengt
as expected from the general thermodynamic argument20,40

Similar cancellation of the bound-state sum discontinuit
for a 3D plasma is well known.41,42

The results of the calculation of the two-body interacti
part of the partition function for the mode
semiconductor,13,21 for which the assumptionMe5Mh
52meh is made, are presented in Fig. 5. Calculations
performed for two values of the ratio ofkBT to the bulk
excitonic Rydberg,kBT/Ry* 51 ~three upper curves! and
kBT/Ry* 55 ~three lower curves!, which roughly correspond
to ZnSe~or GaN! and GaAs at room temperature. Solid lin
show the bound-state sum,Zbound5(m,nexp(2Em,n /kBT),
which exhibits jumps whenever bound states disappear
increasing screening. The electron-hole part of the parti
function, Zeh , which is shown by dashed lines, is a smoo
function of the screening parameter, and the bound-state
discontinuities are compensated for by the scattering s
contributions. Dot-dashed lines show the sumZeh1Zee,
which enters the modified law of mass action@Eq. ~4!# ~when
simplified for the model semiconductor!. Note that the can-
cellation of theZeh term by theZee term forkBT/Ry* 55 is
stronger than forkBT/Ry* 51. This can be explained by th
enhanced role of scattering states for the higher ratio ofkBT
to the excitonic Rydberg. The lower absolute value ofZeh

FIG. 4. The scattering phase shiftd2 is shown as a function o
the in-plane wave vectork ~measured in inverse exciton Bohr rad!
for several values of the inverse screening parameter close to
critical value, 1/(qsa* )510. Solid line: 1/(qsa* )59.9; dashed line:
1/(qsa* )59.95; dot-dashed line 1/(qsa)59.98. Dots showd2(k)
for 1/(qsa* )510.1 ~a shallow bound state withm52 has just ap-
peared!.
e
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1Zee ensures that thermodynamic properties of the
electron-hole plasma in GaAs are much closer to the id
gas behavior than those in the case of the wide-
semiconductor.20

For the two-component electron-hole plasma, t
Thomas-Fermi 2D screening wave number entering Eq.~7!
is given in the Boltzmann limit by29

qsa* 5
2p\2

mehkBT
~nh

01ne
0!54p

Ry*

kBT
~ne

0a* 21nh
0a* 2!.

~17!

Note that we use uncorrelated quasiparticle densitiesne
0 and

nh
0 for the calculation of the screening wave number, sin

Eq. ~17! is derived for the noninteracting 2D plasma.24,25We
assume that the screening by excitons is much smaller
the free-carrier screening when exciton and free carrier d
sities are of the same order. However, if one calculates
screening wavenumber using the difference between the
number of carriers and the number of bound carriers,
physical jumps appear in the dependence of the scree
wave number on total density as shallow bound states di
pear with increasing density. Thus it is natural to calculateqs

on the basis of uncorrelated density (ne
01nh

0), which is a part
of the total density behaving as an ideal gas~see Appendix
B!, and which is a smooth function of the total density.

For the model semiconductor,nh
05ne

05a n, and Eq.
~17! can be further simplified to

qsa* 58p a
Ry*

kBT
na* 2. ~18!

Equation~18! shows clearly the connection between the
mensionless screening parameterqsa* and the two main di-
mensionless parameters characterizing the 2D electron-
plasma, namely, the dimensionless densityna* 2 and tem-
peraturekBT/Ry* . In addition, the role of the degree of ion
ization,a, introduced by Eq.~3! becomes more transparen
The parametera enters Eq.~18! explicitly, governing the

he
FIG. 5. The two-body interaction part of the partition functio

vs the inverse screening parameter 1/(qsa* ) for two values of
kBT/Ry* . Three upper curves:kBT51Ry* ; three lower curves:
kBT55Ry* . Solid lines show the bound state contributionsZbound

only; dashed lines showZeh ; dot-dashed lines showZeh1Zee.
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screening wave number which determines the strength o
interaction between charged particles in the plasma. In
the degree of ionization itself depends onqsa* through the
partition functionsZeh andZee. For the model semiconduc
tor the modified law of mass action@Eq. ~4!# can be rewritten
as

ne
corra* 2 5 4p~ne

0a* 2!2
Ry*

kBT
~Zeh1Zee!, ~19!

and using Eqs.~3! and ~18! we obtain the following expres
sion for the degree of ionizationa:

a5H 11
qsa*

2
~Zeh1Zee!J 21

. ~20!

Equation~20!, together with Eqs.~5! and~6! for the partition
functions, allows us to calculate the degree of ionizationa of
the dilute ~nondegenerate! 2D electron-hole plasma as
function of the screening parameterqsa* . The connection
betweenqsa* and the total electron~hole! density n @Eq.
~18!# can be used for self-consistent calculations ofa as
functions ofn for different temperatures or material param
eters. The results of these calculations are shown in Fig
Calculations are performed for the model semiconduc
with the exciton Bohr radiusa* and effective Rydberg Ry*
corresponding to ZnSe@Fig. 6~a!# and GaAs@Fig. 6~b!# and
for room temperature (kBT5300 K). The arrows indicate
the points of crossover from Boltzmann to Fermi statisti

FIG. 6. The degree of ionization~solid lines! of the nondegen-
erate 2D electron-hole plasma as a function of the total elec
density at room temperature, calculated for the model semicon
tor with the effective Bohr radius and excitonic Rydberg of~a!
ZnSe, and~b! GaAs. The arrows indicaten52/lMe

2 for ZnSe and
GaAs at room temperature. Dashed lines show the degree of
ization calculated using a simple law of mass action with a sin
bound state.
he
rn

6.
r

,

n52/lMe

2 . As mentioned in Sec. I, the nondegenerate tre

ment is more adequate for the wide-gap material.
On the same plot we show, by the dashed lines, the de

of ionization calculated using a simple law of mass act
with a single bound state~the ground state of the screene
exciton!. It can be seen from the figure that the degree
ionization is well described by the single-bound-state m
action law only for low carrier densities.43 For high densities
~but remaining in the nondegenerate regime! the role of scat-
tering states becomes essential. Instead of the unphysica
havior predicted by the simple mass action law, in which
degree of ionization decreases with increasing density,
find that the degree of ionization increases at higher de
ties.

A minimum on the curve showing the density dependen
of the degree of ionization has the following explanation.
low densities the main contribution to the correlated dens
comes from the ground exciton state, which is almost
screened. This state in two dimensions is at least nine ti
deeper than the first excited state. Therefore, the sim
single-bound-state law of mass action is a good approxi
tion at low densities, but not asn˜0 — when the number of
bound states becomes larger than the ground state cont
tion to the partition function; see Ref. 43. The standard l
of mass action states that the density of bound states is
portional to uncorrelated density squared, which reflects
fact that at fixed temperature~room temperature in our case!
and low density most of carriers occupy the high-energy i
ized states in the continuum rather than the bound states.
low-density high-temperature electron-hole plasma beha
as an ideal gas, with the degree of ionization close to un
Thus at low density the correlated density is proportiona
the square of the total density and the degree of ioniza
decreases with increasing density. However, with a furt
increase in the total density, screening becomes impor
and the inter-particle correlation caused by the Coulomb
teraction starts to decrease. Correspondingly, the degre
ionization changes the character of its density depende
There is a certain value of density, which corresponds to
minimal value of the degree of ionization.

As expected, in wide-gap semiconductors the calcula
degree of ionization is much lower than in GaAs for t
same temperature and carrier density. For both materials
calculated degree of ionization of the room-temperature
electron-hole plasma reaches its minimum at a certain d
sity. The same happens for a 3D plasma;13,44 however, the
minimal value of the degree of ionization for the 3D plasm
is much higher than in the 2D case~compare Fig. 6 with Fig.
1 in Ref. 44!. This is due to the much enhanced bindin
energy in two dimensions.

The inclusion of Fermi statistics and phase-space filli
which is beyond the scope of the present paper, would p
vide a sharper rise ofa at high carrier densities as the pha
space available for the construction of exciton states is
stricted. This will apply to both wide-gap and narrow-ga
semiconductors. In the foregoing discussion we have
sumed a purely 2D plasma. This assumption gives an ove
overestimate of exciton binding energies, compared to a r
finite-width quantum well, for which unscreened excito
binding energies are lower and the finite thickness correc
enhances the screening effect.27 Thus the results shown in

n
c-

n-
e
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Fig. 6 should be considered as lower bound estimates o
degree of ionization of the electron-hole plasmas in Zn
and GaAs quantum wells at room temperature. Note
even this lower estimate does not give a value of the deg
of ionization of a plasma in a ZnSe quantum well belo
0.33. This means that at room temperature at least one-
of the carriers are always unbound, which has to be ta
into account in gain calculations.

IV. CONCLUSION

We have calculated the degree of ionization of the
electron-hole plasma, taking into accountall screened exci-
ton bound states as well as scattering states. It has
shown that the scattering state contribution changes the c
acter of the density dependence of the degree of ionizat
We have found that the degree of ionization of the
plasma reaches its minimal value at intermediate dens
and approaches unity at high densities, which differs fr
the result based on the simple law of mass action.

The calculated degree of ionization of the electron-h
plasma in a ZnSe quantum well is significantly lower than
a GaAs quantum well with the same carrier density and te
perature. Therefore, excitonic processes should be con
ered for gain calculations in quantum wells based on wi
gap semiconductors. However, at room temperature at l
one-third of the carriers in ZnSe wells is shown to be u
bound, which allows us to speculate that the most lik
lasing mechanism at moderate density is exciton/free-ca
scattering.

Most of the results presented here are obtained for
model system with equal electron and hole effective mas
For wide-gap semiconductors at room temperature (kBT
;1 Ry* ) this approximation is good, sinceZee is much
smaller thanZeh, and the influence of the electron-electro
part of the partition function on the degree of ionization
not significant. In the case of an extreme difference betw
electron and hole masses the model fails, e.g., lighter qu
particles can be degenerate, when heavy quasiparticles
nondegenerate.

The variable phase method is a powerful tool for study
scattering and bound states in any short-range potential.
method enabled us to find hitherto undiscovered proper
of a Coulomb potential statically screened by a 2D elect
gas. The same approach can be applied to a more re
potential, which takes into account Friedel oscillations a
the finite thickness of the 2D layer.
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APPENDIX A: VARIABLE PHASE METHOD
IN TWO DIMENSIONS

In this appendix we derive the basic equations of the v
able phase approach in two dimensions from the ra
Schrödinger equation. This derivation is similar to that
three dimensions.22
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1. Scattering phase shifts

The relative in-plane motion of two interacting particle
with massesMa andMb and the energy of relative motionE
can be considered as a motion of a particle with the m
mab5MaMb /(Ma1Mb) and energyE, moving in an exter-
nal central potentialV(r). This motion is described by the
wave function satisfying the stationary Schro¨dinger equation

Ĥrelc52
\2

2mab
S 1

r

]

]r
r

]

]r
1

1

r2

]2

]w2Dc1V~r!c5Ec.

~A1!

Owing to the axial symmetry of the potentialV(r), we can
separate variables in the expression for the wave functio

cm~r,w!5Rm~r!eimw, m50,61,62, . . . . ~A2!

The equation for the radial functionRm(r) reads

Rm9 1
1

r
Rm8 1S k22U~r!2

m2

r2 DRm50, ~A3!

where k252mabE/\2 and U(r)52mabV(r)/\2. In what
follows we considerm>0 only, asR2m(r)5Rm(r).

We assume that the interaction potential vanishes at in
ity ~the precise decay rate will be discussed later!. Then at
large distances the radial function satisfies the free Be
equation, whose general solution is

Rm~r!5Am@Jm~kr!cosdm2Nm~kr!sin dm#

˜

r˜`

AmS 2

pkr D 1/2

cos@kr2~2m11!p/41dm#,

~A4!

wheredm is the scattering phase shift,17,18 and Jm(kr) and
Nm(kr) are the Bessel and the Neumann functions, resp
tively.

In the variable phase approach,Am anddm are considered
not as constants but as functions of the distancer. The am-
plitude functionAm(r) and the phase functiondm(r) are
introduced by the equation

Rm~r!5Am~r!@Jm~kr!cosdm~r!2Nm~kr!sin dm~r!#,
~A5!

with the additional condition, which we are free to choose

Rm8 ~r!5Am~r!@Jm8 ~kr!cosdm~r!2Nm8 ~kr!sin dm~r!#,
~A6!

where the prime indicates differentiation with respect tor.
The phase functiondm(r) has a natural physical interpreta
tion as being the phase shift produced by a potential cut
at a distancer.

Differentiating Eq.~A6! and substituting the resulting ex
pression, together with Eqs.~A5! and~A6!, into Eq.~A3!, we
obtain
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Am8 ~r![Jm8 ~kr!cosdm~r!2Nm8 ~kr!sindm~r!] 2dm8 ~r!Am~r!

3@Jm8 ~kr!sin dm~r!1Nm8 ~kr!cos dm~r!#

5U~r!Am~r!@Jm~kr!cosdm~r!

2Nm~kr!sin dm~r!]. ~A7!

To obtain Eq. ~A7! we used the fact that the function
Jm(kr) andNm(kr) satisfy the free Bessel equation

Fm9 1
1

r
Fm8 1S k22

m2

r2 DFm50.

Equating the derivative of Eq.~A5! to Eq. ~A6! implies
the following condition on the derivatives of the amplitud
and the phase functions:

Am8 ~r!@Jm~kr!cosdm~r!2Nm~kr!sin dm~r!#

5dm8 ~r!Am~r!@Jm~kr!sindm~r!1Nm~kr!cosdm~r!#.

~A8!

SubstitutingAm8 (r), obtained from Eq.~A8!, into Eq. ~A7!
yields

2dm8 ~r!@Jm~kr!Nm8 ~kr!2Nm~kr!Jm8 ~kr!#

5U~r!@Jm~kr!cosdm~r!2Nm~kr!sin dm~r!#2.

~A9!

Equation~A9! can be simplified further, using the Wronskia
of the Bessel functions,

W$Jm~x!,Nm~x!%5Jm~x!
d

dx
Nm~x!2Nm~x!

d

dx
Jm~x!

5
2

px
,

and thus becomes

d

dr
dm~r!52

p

2
r U~r!@Jm~kr!cosdm~r!

2Nm~kr!sindm~r!#2. ~A10!

This phase equation, Eq. ~A10!, is a first-order, nonlinea
differential equation of the Ricatti type, which must b
solved with the initial condition

dm~0!50, ~A11!

thus ensuring that the radial function does not diverge ar
50. The total scattering phase shiftdm can be obtained as
large-distance limit of the phase functiondm(r):

dm5 lim
r˜`

dm~r!. ~A12!

For numerical convenience, instead of the initial conditi
Eq. ~A11!, the small-r expansion is used:
dm~r!'2
pk2m

22m11~m! !2E0

r

U~r8!r82m11dr8, r˜0.

~A13!

From Eq. ~A10! and the asymptotic expansions of th
Bessel functions one can see that the variable phase me
is applicable only if the scattering potentialU(r) satisfies
the necessary conditions

E
r

`

U~r8!dr8˜0, r˜` ~A14!

and

r2U~r!˜0, r˜0. ~A15!

The statically screened Coulomb potentialVs(r), defined by
Eq. ~7!, behaves liker21 at small distances and liker23 at
large distances. Such behavior allows the application of
variable phase method to this potential.

2. Bound-state energies

For the states with negative energy of the relative mot
~bound states!, the wave numberk is imaginary,k5 ik, and
we introduce the functionhm(r,k) vanishing in the origin
and satisfying a nonlinear equation

d

dr
hm~r,k!52

p

2
rU~r!F I m~kr!coshm~r,k!

1
2

p
Km~kr!sin hm~r,k!G2

, ~A16!

whereI m(kr) andKm(kr) are the modified Bessel function
of the first and second kinds, respectively. Equation~A16! is
derived in the same fashion as Eq.~A10!. The functions
I m(kr) andKm(kr) represent two linearly independent s
lutions of the free radial-wave Schro¨dinger equation for the
negative value of energy,E52\2k2/2mab , and cothm
characterizes the weights of the diverging@ I m(kr)# and con-
verging @Km(kr)# solutions asr˜`. For the bound state
the diverging solution vanishes, implying the asympto
condition

hm~r˜`,kn!5~n21/2!p, n51,2, . . . . ~A17!

Here n numerates the bound states for a givenm, and (n
21) is the number of non-zero nodes of the radial wa
function. For numerical solution of Eq.~A16!, instead of the
boundary conditionhm(0,k)50, an asymptotic initial con-
dition @analogous to the condition Eq.~A13! for the phase
function dm(r)# is used.

APPENDIX B: BETH-UHLENBECK FORMULA
IN TWO DIMENSIONS

In this appendix we derive Eq.~5!, which is the 2D analog
of the Beth-Uhlenbeck formula,19 and the modified law of
the mass action@Eq. ~4!#. This derivation is similar to the
analysis used for the calculation of the second virial coe
cient of low-density3He and4He monolayers on graphite.45

Let us consider a binary mixture of componentsa andb
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in two dimensions. The grand partition function of the mi
ture is given by

V~za ,zb ,A,T!5 (
Na ,Nb

QNa ,Nb
za

Nazb
Nb , ~B1!

whereza andzb are the fugacities (za5ebma, with ma being
the chemical potential of the componenta), A is the area of
the 2D system, andQNa ,Nb

is the partition function defined
as

QNa ,Nb
~A,T!5Tr e2bĤ(Na ,Nb), ~B2!

where the trace is to be taken over all states of the sys
that hasNa particles of the typea and Nb particles of the
type b in the areaA.

We now expand the quantity lnV as a power series inza
andzb :

ln V~za ,zb ,A,T!5 (
l a ,l b

ACl a ,l b
za

l azb
l b . ~B3!

The density of the componenta is given by

na5
1

A
za

d

dza
ln V5 (

l a ,l b
l aCl a ,l b

za
l azb

l b . ~B4!

From this point we consider the low-density limit,za ,zb
!1, and neglect all the terms higher thanz2 in Eq. ~B4!.
Then

na'C1,0za1C1,1zazb12C2,0za
2 . ~B5!

From comparing corresponding powers in Eqs.~B3! and
~B1!, we obtain

C1,05Q1,0/A, ~B6!

C1,15~Q1,12Q1,0Q0,1!/A, ~B7!

and

C2,05SQ2,02
1

2
Q 1,0

2 D Y A. ~B8!

The next step is to calculate the partition functions enter
Eqs. ~B6!–~B8!. First of all, the one-particle partition func
tion Q1,0 is given by

Q1,0~A,T!5ga

A

~2p!2E d2k expS 2b
\2k2

2Ma
D5ga

A

lMa

2
,

~B9!

wherega is a quantum state degeneracy andlMa
is a thermal

wavelength,

lMa

2 5
2pb\2

Ma
. ~B10!

This yields

C1,05
ga

lMa

2
. ~B11!
m

g

In order to find the two-particle partition functionQ1,1 it
is useful to separate the center-of-mass motion and the
tive motion of the two particles:

Q1,1~A,T!5gagb

A

lMa1Mb

2
Tr e2bĤrel

5gagb

A

lMa1Mb

2 E d2r(
n

ucn~r!u2 e2bEn,

~B12!

where the factorA/lMa1Mb

2 appears from performing the

summation over all center-of-mass momenta, the Ham
tonian Ĥrel of the relative motion is given in Appendix A
and the sum in Eq.~B12! is taken over all different solutions
of Eq. ~A1!.

For the corresponding two-body system of noninteract
distinguishable particles, one would have

Q 1,1
(0)~A,T!5gagb

A

lMa1Mb

2 E d2r(
n

ucn
(0)~r!u2e2bEn

(0)
,

~B13!

where the superscript~0! refers to quantities of the noninter
acting system. The two-bodyinteractionpart of the partition
function is then defined by

Zab5E d2r(
n

$ucn~r!u2e2bEn2ucn
(0)~r!u2e2bEn

(0)
%

5 (
n

$e2bEn2e2bEn
(0)

%. ~B14!

Thus

Q1,1~A,T! 5 Q 1,1
(0)~A,T!1gagb

A

lMa1Mb

2
Zab .

~B15!

To analyze Eq.~B14! further, we must study the energ
spectraEn

(0) and En . For the noninteracting system,En
(0)

forms a continuum. We write

En
(0)5

\2k2

2mab
, ~B16!

which defines the relative wave numberk. Then for the
system of two noninteracting distinguishable particles
functionQ 1,1

(0) given by Eq.~B13! can be easily evaluated a

Q 1,1
(0)~A,T!5ga gb

A

lMa1Mb

2

A

~2p!2 E d2k expS 2b
\2k2

2mab
D

5gagb

A

lMa1Mb

2

A

lmab

2
5S ga

A

lMa

2 D S gb

A

lMb

2 D
5Q1,0Q0,1. ~B17!
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For the interacting system, the spectrum ofEn in general
contains a discrete set of valuesEB , corresponding to two-
body bound states, and a continuum. In the continuum,
define the wave numberk for the interacting system by put
ting

En5
\2k2

2mab
. ~B18!

Let g(k)dk be the number of states with a wave numb
lying betweenk and k1dk, and letg(0)(k)dk denote the
corresponding quantity for the noninteracting system. Th
Eq. ~B14! can be written in the form

Zab5(
B

e2bEB1E
0

`

dk$g~k!2g(0)~k!%expS 2b
\2k2

2mab
D .

~B19!

The difference in density of states is related to the scatte
phase shifts by the following argument.45 The relative wave
function can be factorized@see Eq.~A2!# into a product of a
trivial azimuthal part and nontrivial radial wave functio
Rm(r), which satisfies Eq.~A3!. For large value ofr where
the potential is assumed negligible,

Rm~r˜`!}cos$kr2~2m11!p/41dm~k!%, ~B20!

which defines the phase shiftdm(k) of themth partial wave.
For the noninteracting system all the phase shiftsdm(k)[0.
If the system is placed within a circle of radiusR, the van-
ishing of the wave function at the boundary requires that
allowed values ofk are given by

kR2~2m11!p/41dm~k!5S n1
1

2Dp ~B21!

for the interacting system, and

kR2~2m11!p/45S n1
1

2Dp ~B22!

for the noninteracting system, wheren50,1,2, . . . . For a
given m, changingn by one unit causesk to change by the
respective amountsDk andDk(0):

Dk5
p

R1@ddm~k!/dk#
, ~B23!

Dk(0)5
p

R
. ~B24!

These are the spacings of eigenvalues for a givenm. Let the
number of states of a givenm with wave number lying be-
tweenk andk1dk be denoted bygm(k) dk andgm

(0)(k) dk
for the two cases. We must have

gm~k! Dk51, ~B25!

gm
(0)~k!Dk51 ~B26!

or

gm~k!5
1

p S R1
ddm~k!

dk D , ~B27!
e

r

n

g

e

gm
(0)~k!5

1

p
R. ~B28!

Therefore,

gm~k!2gm
(0)~k!5

1

p

ddm~k!

dk
. ~B29!

Summing Eq.~B29! over all allowedm, we obtain

g~k!2g(0)~k!5
1

p(
m

ddm~k!

dk
. ~B30!

Substituting Eq.~B30! into Eq. ~B19! yields

Zeh5(
B

e2bEB1
1

pE0

`S (
m52`

`
ddm~k!

dk D
3expS 2b

\2k2

2mab
Ddk, ~B31!

which coincides with Eq.~5! if we change the notation fo
the bound-state energy fromEB to Em,n , where subscriptn
enumerates bound states with a givenm.

Now, having evaluated the interaction part of the partiti
function, we can obtain the coefficientC1,1 needed in the
density expansion, by substituting Eq.~B15! into Eq. ~B7!
and taking into account Eq.~B17!:

C1,15gagb

1

lMa1Mb

2
Zab5lmab

2 ga

lMa

2

gb

lMb

2
Zab . ~B32!

Up to this point we have considered a system of t
distinguishable particles~e.g., an electron and a hole!. To
calculate the remaining coefficientC2,0 in Eq. ~B5!, we must
now consider the interaction of indistinguishable particl
For such particles the sum over differentm is modified, e.g.,
for two spinless bosons the relative wave function must
symmetric; this means that only even values ofm are pos-
sible. For the case of two fermions with the same spin
coordinate wave function must by antisymmetric. Let us co
sider a case of the two fermions or bosons of the same
a, with the quantum state degeneracyga . This degeneracy is
usually associated with the particle spins, so thatga52s
11. For a two-particle system there arega

25(2s11)2 spin
states, of which a fraction (s11)/(2s11)5(ga11)/(2ga)
are symmetric and a fractions/(2s11)5(ga21)/(2ga) are
antisymmetric. For a fermion system, the symmetric s
states must be multiplied by antisymmetric spatial sta
~oddm) and the antisymmetric spin states multiply symm
ric spatial states~evenm). A similar argument is applicable
for bosons. Thus, for the 2D system of interacting partic
of the typea, the two-body partition function is

Q2,0~A,T!5Q 2,0
(0)~A,T!1ga

2 A

lMa

2
Zaa , ~B33!

whereZaa is defined by
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Zaa5(
m,n

ga6~21!m

ga
e2bEm,n

1
1

p (
m52`

`
ga6~21!m

ga
E

0

`ddm~k!

dk
expS 2b

\2k2

Ma
Ddk,

~B34!

Here and in what follows the upper sign is for bosons and
lower sign is for fermions. For the case of repulsive fermio
~which do not form bound states! and forga52, Eq. ~B34!
reduces to Eq.~6!.

Let us now calculate the two-body partition function
noninteracting bosons or fermions,Q 2,0

(0) , which is given by

Q 2,0
(0)~A,T!5

A

l2Ma

2

ga

2 E d2r( 8
k

$~ga61!ucs
(0)~k,r!u2

1~ga71!uca
(0)~k,r!u2%expS 2b

\2k2

Ma
D ,

~B35!

wherecs
(0)(k,r) andca

(0)(k,r) are symmetric and antisym
metric eigenfunctions of the noninteracting Hamiltonian
the relative motion, i.e.,

cs
(0)~k,r!5A2

A
cos~k•r! ~B36!

and

ca
(0)~k,r!5A2

A
sin~k•r!. ~B37!

The summation in Eq.~B35! must be performed over a
different two-particle states. Wave vectorsk and2k corre-
spond to the same state (k and 2k transfer into each othe
upon exchange of the two indistinguishable particles!, this
state should not be counted twice, and

( 8
k

˜

1

2

A

~2p!2E d2k. ~B38!

ThenQ 2,0
(0) can be written as

Q 2,0
(0)~A,T!5ga

A

lMa

2 $~ga61!Is1~ga71!Ia%, ~B39!

where

Is5
1

~2p!2E d2r d2k cos2~k•r!expS 2b
\2k2

Ma
D

5
1

2 S A

2lMa

2
1

1

4D ~B40!
t

.

e
s

f

and

Ia5
1

~2p!2E d2r d2k sin2~k•r!expS 2b
\2k2

Ma
D

5
1

2 S A

2lMa

2
2

1

4D . ~B41!

Finally,

Q 2,0
(0)~A,T!5

1

2S ga

A

lMa

2 D 2

6
1

4
ga

A

lMa

2
5

1

2
Q 1,0

2 6
1

4
ga

A

lMa

2
.

~B42!

Substituting Eqs.~B33! and ~B42! into Eq. ~B8! yields

C2,05
1

2
lmaa

2 S ga

lMa

2 D 2

Zaa6
1

4

ga

lMa

2
. ~B43!

Substituting Eqs.~B11!, ~B32!, and~B43! into Eq. ~B5!, we
find the following expression for the total density of th
componenta:

na'
ga

lMa

2
za6

1

2

ga

lMa

2
za

21lmaa

2 S ga

lMa

2 D 2

Zaaza
2

1lmab

2 ga

lMa

2

gb

lMb

2
Zabzazb . ~B44!

The first two terms in Eq.~B44! do not depend on interpar
ticle interaction~however, the second term depends via
sign on the statistics of the particles!. It is natural to call the
sum of two first terms in Eq.~B44! an uncorrelateddensity;
we denote it asna

0 . Note that these terms are the first tw
terms in the low-density expansion of the well-know
expression25 for the density of the noninteracting 2D Bose o
Fermi gases:

na
057

ga

lMa

2
ln~17za!.

The sum of the last two terms in Eq.~B44! is the interaction-
dependentcorrelateddensityna

corr .
In the low-density limit the second term in Eq.~B44! is

much smaller than the first one, and within the same ac
racy as Eq.~B44! we can write

na
corr'(

b
na

0nb
0lmab

2 Zab . ~B45!

Equation~B45! coincides with Eq.~4!, and it constitutes the
modified law of the mass action in two dimensions.
T.
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