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Statistics of Hartree-Fock levels in small disordered systems
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We study the statistics of quasiparticle and quasihole levels in small interacting disordered systems within
the Hartree-Fock approximation. The distribution of the inverse compressibility, given according to Koop-
mans’ theorem by the distance between the two levels across the Fermi energy, evolves from a Wigner
distribution in the noninteracting limit to a shifted Gaussian for strong interactions. On the other hand, the
nature of the distribution of spacings between neighboring levels on the same side of the Fermi energy
~corresponding to energy differences between excited states of the system with one missing or one extra
electron! is not affected by the interaction and follows Wigner-Dyson statistics. These results are derived
analytically by isolating and solving the appropriate Hartree-Fock equations for the two levels. They are
substantiated by numerical simulations of the full set of Hartree-Fock equations for a disordered quantum dot
with Coulomb interactions. We find enhanced fluctuations of the inverse compressibility compared to the
prediction of the random matrix theory, possibly due to the localization of the wave functions around the edge
of the dot. The distribution of the inverse compressibility calculated from the discrete second derivative with
respect to the number of particles of the Hartree-Fock ground state energy deviates from the distribution of the
level spacing across the Fermi energy. The two distributions have similar shapes but are shifted with respect to
each other. The deviation increases with the strength of the interaction thus indicating the breakdown of
Koopmans’ theorem in the strongly interacting limit.@S0163-1829~99!15031-8#
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I. INTRODUCTION

It is universally accepted that the principal signature
quantum chaos is the statistics of the random matrix theo1,2

~RMT!, which is obeyed by the energy levels of chaotic s
tems. This is supported by semiclassical considerations3 as
well as many numerical3,4 and analytical5 examples. How-
ever realistic chaotic systems such as quantum dots, s
metallic grains, or the so-called yrast levels in rotating nuc
involve interactions between many particles~electrons,
nucleons, etc!. An interesting problem then arises of how th
interactions are expected to modify the RMT predictio
Several recent experimental and theoretical publicati
have begun to deal with this problem.6–19

Applications of RMT to noninteracting chaotic system
such as quantum dots, are concerned with the statis
properties of single particle quantities. Analogous and
perimentally relevant in interacting systems are quanti
which characterize quasiparticles. In small disordered s
tems one can discuss the statistics of their energy lev
lifetimes, and wave functions~real and imaginary parts an
the residues of the poles of the single particle Green’s fu
tion, respectively!. Experience gained in nuclear and atom
physics indicates that the Hartree-Fock~HF! method pro-
vides a very reasonable approximate description of quasi
ticle properties in finite systems. The nondegenerate
particle-hole excitations form a convenient basis to desc
low lying excitations of these systems. In this paper we ad
this description and study statistical properties of the
levels in small disordered systems. Properties of charged
citations have been probed experimentally by measuring
PRB 600163-1829/99/60~8!/5549~12!/$15.00
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Coulomb blockade in disordered quantum dots, cf. Re
6–8. The neutral particle-hole excitations can be measu
by studying acoustic phonon20 and microwave absorption.21

II. THE HARTREE-FOCK APPROXIMATION
IN WEAKLY DISORDERED SYSTEMS

Interacting electrons in a disordered system are descr
by the Hamiltonian

H5(
ab

habaa
†ab

1
1

2 (
abgd

Vabgdaa
†ab

†adag , ~1!

whereua&, ub&, . . . , denote states of a single particle bas
The noninteracting part ofH is controlled by the one body
Hamiltonianhab representing the disordered system. In th
work we are interested in the regime of disorder for whi
the random matrixhab can be viewed as described by th
rules of RMT. The interactionVabgd is not random and in a
quantum dot, for example, represents matrix elements of
Coulomb or screened Coulomb interaction. In our disc
sion, however, we will regard it as a general matrix and w
be able to draw conclusions for wide classes of poss
Vabgd .

Our main approximation will be to treat the Hamiltonia
~1! in the HF approximation. The HF equations are
5549 ©1999 The American Physical Society
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(
b

hab
~HF!c i~b!5« ic i~a! ~2!

with

hab
~HF!5hab1 (

a8b8
Vaa8bb8

A rb8a8 , ~3!

or symbolicallyh~HF!5h1tr(VAr). HereVA is the antisym-
metrized interaction matrixVabgd

A [Vabgd2Vabdg and the
trace is taken over the second pair of the indices ofVA. The
self-consistent density matrixr is given by
e
s
as

g

s
ap
te
n
ti
t

r
s

rab5 (
hPholes

ch~a!ch* ~b! . ~4!

Henceforth we will denote byh, h8 andp, p8, etc., the hole
~occupied! and particle~unoccupied! levels, respectively.

It is common to view the HF approximation as arisin
from the variational minimization of the total energy of th
system. In this interpretation the direct physical meaning
the energies« i and the wave functionsc i(a) remains ob-
scure and one must use the so-called Koopmans’ theore22

We recall however that the HF equations can also be der
from an approximation to the equation of motion for the o
particle Green’s function
G~a,b;v!52 i E
2`

`

dt eivt^F0~N!uTaa~ t !ab
†~0!uF0~N!&

52(
i

^F0~N!uaauF i~N11!&^F i~N11!uab
† uF0~N!&

Ei~N11!2E0~N!2v2 i0

2(
i

^F0~N!uab
† uF i~N21!&^F i~N21!uaauF0~N!&
E0~N!2Ei~N21!2v1 i0

. ~5!
is
the

y

ccu-

rm
s do

r

the
The HF energies«p and «h and the corresponding wav
functionscp(a) and ch(a) are then approximate energie
and wave functions of, respectively, quasiparticles and qu
holes,

«p.Ep~N11!2E0~N!,

«h.E0~N!2Eh~N21!,

cp~a!.^F0~N!uaauFp~N11!&,

ch~a!.^Fh~N21!uaauF0~N!&.

We wish to study the statistical properties of the set« i
and the wave functionsc i(a) which follow from the random
nature ofhab . Ideally one would like to be able, startin
from the probability distributionP(h), to determine the joint
probability distributionP(«1 ,«2 , . . . ,«n , . . . ,) andsimilar
distribution for c i(b) and on its basis to predict variou
correlation properties of these quantities. In the present p
we address a much simpler problem of the repulsion pat
of neighboring pairs of« i and its application to the additio
spectra of quantum dots. We will present simple analy
approximations and perform numerical investigations
check their validity.

III. THEORETICAL CONSIDERATIONS

A. Constant part of the interaction

The simplest limiting case is a constant interactionV(ur
2r 8u)5V0 which will serve as a reference point for ou
discussion. In the following we consider the spinless ca
One has for the matrix elements in~1!
i-

er
rn

c
o

e.

Vabgd5V0dagdbd . ~6!

This interaction allows for a trivial exact solution which
reproduced by the HF equations. They are solved by
eigenfunctionsc i

(0)(a) of the one body Hamiltonian

habc i
~0!~b!5« i

~0!c i
~0!~a!, ~7!

and have the following eigenvalues

« i5H « i
~0!1V0~N21!, ni51

« i
~0!1V0N, ni50

, ~8!

whereN is the number of particles andni is the occupation
number of thei th level. It is clear that the lowest energ
solution is obtained by occupying the lowestN noninteract-
ing states. The gap which separates the energies of the o
pied ~hole! and empty~particle! levels for V0.0 results
from the absence of the contribution from the exchange te
in the latter. In a sense one can say that the empty level
not create the exchange hole which decreases~increases! the
level energy for positive~negative! V0 .

From the known distribution of« i
(0) it is easy to calculate

the statistical properties of the HF levels« i . Since the spac-
ings of neighboring levels ares5D« (0) for levels below and
above« f their distribution is given by the ordinary Wigne
surmise, e.g.,

P~s!5PW~s!5
p

2^s&2 s expF2pS s

2^s& D
2G

for GOE. The spacing between the levels lying across
Fermi energy iss5V01D« (0) and therefore its distribution
is given by the Wigner surmise shifted by the valueV0 ,
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P~s!5PW~s2V0!. ~9!

The gap in the distribution of the level spacings across
Fermi energy is reflected in the differences of the to
ground state energyE0 of the system as a function of th
particle number

E0~N!5(
i 51

N

« i
~0!1

V0

2
N~N21!, ~10!

E0~N11!2E0~N!5«N11
~0! 1V0N5«N11 , ~11!

D2~N![E0~N11!22E0~N!1E0~N21!

5«N11
~0! 2«N

~0!1V05«N112«N . ~12!

Here we defined the quantityD2(N) which is essentially the
inverse compressibility of the dot. Its distribution has be
measured in transport experiment of quantum dots in
Coulomb blockade regime.6–8 Equation ~11! is Koopmans
theorem which is exact in this case. It leads directly to
expression~12! of D2 in terms of the energy difference be
tween the two HF levels across the Fermi energy, a
which motivates the study of this spacing. The Coulomb g
in D2 does not fluctuate in the limit of constant interactio
For more realistic interactions the Coulomb blockade g
must undergo fluctuations in addition to the fluctuations
the single particle energies« i . Study of these fluctuation
will be one of our principal goals.

B. Realistic interaction—repulsion of the Hartree-Fock levels

For small s (s!D, the mean level spacing! the well
known behavior of the distributionP(s) for random Hamil-
tonians~i.e., linear for GOE, quadratic for GUE, etc.! can be
derived by considering the repulsion of close pairs of leve
In this subsection we generalize this analysis to the cas
two close HF levels. The new element in the HF proble
Eq. ~2!, is the presence of the non linear self-consistent te
(a8b8Vaa8bb8

A rb8a8 which implicitly depends on the realiza
tion of the random parthab .

Let us assume that for some realization ofhab the HF
Hamiltonianhab

~HF! has two closely lying levels,«2.«1 , so
thatD«[«22«1!D. We wish to investigate howD« reacts
when the randomh is varied bydh with D@udhIJu;D« for
I ,J51,2.

The variation of h causes a changedh~HF!5dh
1tr(VAdr) in the HF Hamiltonian where the second term
due to the induced change of the self-consistent den
Without this term one would get for the new spacing t
standard results52A(D«1dh222dh11)

214udh12u2, which
for future reference we shall rewrite in the form

s52AB1
21B2

21B3
2[2uBu. ~13!

The vectorB is a projection on the Pauli matrices of th
232 Hamiltonian (h1dh) IJ in the subspace of the tw
close levels,I ,J51,2,

B5 1
2 tr@s~h1dh!#, ~14!

where s i are the Pauli matrices. The level repulsion
small spacings is a consequence of the proportionality ofs to
e
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the square root of the sum of squares of real quantities
can be deduced by evaluating, for smalls

P~s!5E d@s2s~B!#P~B!dB. ~15!

The familiar behaviorP(s);s for GOE andP(s);s2 for
GUE (s!D) follows then directly for anyP(B) which does
not vanish for smallB5uBu. The ~unjustified! evaluation of
~15! for all values ofs takingP(B) to be of a Gaussian form
results in the Wigner distribution for the case of realh.

In the Appendix we discuss how the result~13! is modi-
fied by the presence of the self-consistent term tr(VAdr).
Under the conditions discussed in Sec. III C we show
following:

~1! When the two close levels are both occupied or b
empty the distribution of their level spacings for smalls
!D is ;s or ;s2 as in the noninteracting case.

~2! When the two levels are on opposite sides of t
Fermi level, i.e., one occupied and one empty the expres
~13! changes to

s52uB2JI•m~B,JI!u. ~16!

Here we use the dyadic notation@JI•m#a5(b51
3 Jabmb . As

in the noninteracting case the ‘‘vector’’B contains the infor-
mation about the random parth1dh of the HF Hamiltonian
whereas the matrixJI is the projection on the Pauli matrice
of the interaction matrixṼIJKL , (I ,J,K,L51,2) in the sub-
space of the two close levelsc1 andc2 ~cf. the Appendix for
the precise definition ofṼ, B andJI…. The vectorm(B,JI… is
a unit vectorumu51 and is a solution of the self-consiste
HF equations for the two levels

m3~B2JI–m!50. ~17!

In this notation the total HF energy is

«5B–m2 1
2 m–JI–m. ~18!

The full investigation of the solutions of the above equ
tions and the expression~16! is found in the Appendix. Here
we will concentrate on the simplest case when the matrix
interactionsJab is degenerate, i.e., has equal eigenvalues.
is shown in the Appendix such a degenerateJab matrix cor-
responds to a complete absence of degeneracy~such as spin!
of the close HF levels. We will furthermore restrict ourselv
to real Hamiltoniansh1dh. Then the vectorB has only two
componentsB1 and B3 and one needs to consider only th
corresponding components ofJab with a,b51,3. For a de-
generateJab the vectorJI–m is parallel tom and the two
level HF equation~17! becomes a simple linear relatio
m1B32m3B150 without any dependence on the interactio
The level spacing~16! however still contains the interactio
term. Using the normalization conditionm1

21m3
251 one ob-

tains

s52uB1Ju, ~19!

whereB5AB1
21B3

2 andJ is the degenerate eigenvalue. Th
explicit expression forJ is
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J5~V12122V1221!/2. ~20!

For a positiveJ which corresponds to the case of a rep
sive interaction the equation for the spacing~19! describes a
conical surface separated by a distance 2J from the (B1 ,B3)
plane. This means that the probability for a givens has a gap
of the magnitude 2J above which it must rise linearly

P~s;J!5 H 0, s,2J
~s22J! f ~s!, s>2J, ~21!

where f (s) is an undefined function which is finite ats
52J. For general reasons one should expect thatf (s) van-
ishes ats˜`.

The result ~21! implies that the distributionP(s;J) is
qualitatively the same as the shifted Wigner distribution

P~s;J!5H 0, s,2J
p

2D2 ~s22J!e2 p/4@~s22J!/D#2
, s>2J,

~22!

similar to what was found in the case of the constant in
action, Eq.~9!. There is however a crucial difference whic
we will now try to elucidate.

As is seen from Eq.~20! the degenerate eigenvalueJ is
invariant under unitary transformations in the subsp
spanned by the two given close statesc1 andc2 . As long as
one examines realizations of the randomh for which these
two particular states stay close in energy they mix stron
only between themselves andJ stays the same. The distribu
tion of the level spacings for such selection ofh’s is given by
~21! with a fixedJ as in the constant interaction case. Ho
ever variations ofh may bring another pair of levels, say,c1
andc3 at close distance on both sides of« f . For such levels
the value ofJ may be completely different and given by th
corresponding matrix elements (V13132V1331)/2. In calcula-
tions of the overallP(s) for small s one should therefore
average over the distributionP(J) of all J’s

P~s!5E P~J!P~s;J!dJ. ~23!

For a constant interactionJ5V0 for any pair of statesc i ,
c j and thereforeP(J) is ad function centered atV0 . For an
extreme short range interactionV(ur2r 8u)5V0d(r2r 8) all
values ofJ are zero and do not fluctuate. One expects the
fore that for a general interaction the average value ofJ is
coming mainly from the very long range component while
fluctuations reflect the middle range components ofV.

The main feature of matrix elements~6! of a constant
interaction is that they have the same form in any~orthonor-
mal! basis of the single particle statesca which are used to
calculateVabgd . In other words for a constant interaction th
matrix elementsVabgd are invariant under the unitary grou
U(M ) of all transformations in the entire single particle H
bert space of the problem. HereM is the dimensionality of
this space~typically M˜`). This invariance ofVabgd for a
constant interaction is the reason thatP(J) is ad function in
this case. In order to develop a theory ofP(J) for a general
interaction one must understand the statistical propertie
the single particle wave functions—solutions of the HF pro
-

r-

e

y

-

e-
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-

lem. The matrix elements in~20! are defined with respect to
such wave functions. Although we do not have an analy
theory of P(J) we will present below numerical investiga
tion of this function and the validity of the expression of th
type ~23!. Numerically we find that the distribution ofJ is
approximately Gaussian. Adopting this finding into expre
sion ~23! and assuming the form~22! for P(s;J) one obtains

P~s!5bS a

a1b D 1/2

e2 @ab/~a1b!#~s22J0!2

3H a

a1b
er f cF2

a

Aa1b
~s22J0!G

1
1

Ap~a1b!
e2 @a2/~a1b!#~s22J0!2J , ~24!

wherea5(8sJ
2)21 andb5p/(2D̄)2 with D̄ being the mean

level spacing at the vicinity of the Fermi energy.J0 andsJ
are the mean and standard deviation ofP(J), respectively.

C. Validity of the two level treatment— why only the statistics
of spacings across the Fermi level is effected

by the interaction

The above results are valid as long as the spacing betw
the given two levels is much smaller than the distance
other levels. This restriction is needed in order to be able
isolate the two levels from the rest. For repulsive interactio
the distance between the pair of levels on different sides
the Fermi energy is determined by the matrix elementJ @cf.,
Eq. ~19!#. Therefore the condition of the validity of our trea
ment for such levels isJ!D. As we will see below numeri-
cal evidence indicates that at least qualitatively the exp
sion ~23! remains correct also for a much largerJ;D. For
an even stronger interaction the two level treatment cease
be valid and one must account for the reaction of dist
levels to the changes of the self-consistent poten
tr(VAdr).

Here we wish to add the following remark. For a consta
interaction our result is trivially valid for any strength. O
the other hand for any given interaction one can extrac
constant part, i.e., Vabgd5V0dagdbd1Uabgd , where
Uabgd5Vabgd2V0dagdbd . Since the HF wave functions
are independent ofV0 one may try to solve the problem
usingU first and then addV0 . This procedure is not unam
biguous and must be dictated by the physics of the probl
If P(J) vanishes forJ,Jc , i.e., in the presence of a har
gap ~like in a quantum dot with Coulomb interaction!, it is
natural to takeV05Jc . The condition of validity is thenJr
!D whereJr is the typical gap due to the residual intera
tion U.

When there is no minimal value forJ any subtraction is
bound to produceU which has both attractive and repulsiv
components. This fact may introduce fundamental diff
ences between the solutions to the HF problem obtained
ing the interactionV and the one derived in the manner i
dicated above. Most notably using the latter procedure
will find cases for which there exists enhanced probabi
for the two levels across« f to be close to each other@or at
distanceV0 after the addition of the constant part, see res
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~A15! of the Appendix#. However if the widthsJ of P(J) is
much smaller then its meanJ0 the use ofV05J02sJ will
causeU to change sign only in a small number of cas
Consequently we may use in such a casesJ!D as our cri-
terion for the validity of the two level treatment.

For pairs of neighboring levels which lie on the same s
of the Fermi energy the change in the density matrixdr
vanishes as long as only the two level subspace is con
ered. Consequently there is no self-consistent termVAdr
present and one recovers the results of the non-interac
case. There are two types of corrections to this two le
treatment which must be considered. One is the nonzero
tribution of the distant levels todr. Another is the correction
to the energies of the two close levels due to virtual tran
tion to distant levels.

To estimate the first correction we use the first order re

drab5(
ph

F ^pudh1VAdruh&
«h2«p

cp~a!ch* ~b!1H.c.G ,
~25!

which can be solved to obtain the RPA expression

drab5 (
a8b8

F2 (
p8h8

S ^p8uVAuh8&
«h82«p8

cp8ch8
* 1H.c.D G

ab,a8b8

21

3(
ph

F ^pudhuh&
«h2«p

cp~a8!ch* ~b8!1H.c.G . ~26!

Thus we find

dr;
dh

D1V
, ~27!

where hereV;(p8,h8Vpp8hh8 . The contribution todh~HF! is
therefore not justdh but dh~HF!;dh@11V/(V1D)#. How-
ever this still means that for such levelsdh~HF!;dh for any
strength of interactionV, the sole role of which is to renor
malize the random partdh.

The corrections to the energies of the close levels du
transitions to distant levels are

EI5« I1 (
iÞ1,2

udhIi
~HF!u2

« I2« i
, I 51,2 ~28!

where the« I ’s are the energies obtained in the two lev
treatment. But we have just shown thatdh~HF!;dh. There-
fore the correction term in expression~28! is of order
(dh)2/D!dh and can be disregarded for anyV. Thus we
expect that the two level treatment for a couple of occup
or empty levels gives correctly the smalls behavior ofP(s)
for any interaction strength. To stress, the difference betw
this case and the case of two levels on both sides of« f is that
theredr also included a ‘‘nonperturbative’’ zero order ter
coming from the mixing of the wave functions of the occ
pied and the empty states.

D. Addition spectrum vs excitation spectrum

The HF energies are interpreted as energies of quasip
cles~for « i.« f) or quasiholes (« i,« f). They are excitations
of a system with one added or one subtracted particle,
.
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Ei(N61)2E0(N)56« i . The excitations with the sam
particle numberEi(N)2E0(N) are described in the HF ap
proximation by solutions representing determinants with
same particle numberN which are orthogonal to the HF
ground state determinant. In the case of a constant inte
tion such excitations are simply particle-hole excitations
the noninteracting problem. The distribution of their spa
ings does not show any Fermi energy related gap and c
cides with the non shifted Wigner distribution. This is al
true in the two level HF model, Eq.~17!. Let us demonstrate
this in the simple case of the degenerate JI. The HF equation
~17! in this case ism1B32m3B150 which together with the
normalization conditionm1

21m3
251 produce two solutions

with different total HF energies, Eq.~18!, E56B2J/2.
These solutions represent the ground and excited state
this model which have the same number of particle. T
linear dependence of the differenceDE52B indicates that at
least as long as the two level treatment of the level repuls
is valid the HF energy spacing distribution between su
states obeysP(DE);DE for smallDE without any gap, as in
the noninteracting systems.

Yet another way to obtain this result is to consider t
spacings between neighboring particle or hole levels. T
correspond, within the HF approximation, to the distanc
between adjacent excited states of the system withN11 and
N21 electrons respectively. By the arguments given in
preceding subsection these spacings follow the Wign
Dyson statistics.

E. A schematic model—Keeping only the average interaction
matrix elements

For a given realization of the randomhab let us consider
the Hamiltonian in the eigenbasis ofh, for which hab

5«a
(0)dab . In this random basis also the matrix elements

the interactionVabgd are random. Their statistical propertie
are known, cf., Refs. 24 and are as follows. Only the ma
elementsVabab and Vabba have nonzero averages. The
distributions are narrow with the width behaving like 1/M in
the random matrix theory (M is the size of the single particle
space! and like 1/g in the random potential theory (g is the
dimensionless conductance!. Based on these properties on
is tempted to approximate the interaction by retaining o
the matrix elements with non zero averages, i.e., to ass
that

Vabgd5dagdbdV1
~ab!1daddbgV2

~ab! , ~29!

with V1
(aa)5V2

(aa) . Such a model has an easy exact soluti
The Hamiltonian

H5(
a

«a
~0! n̂a1

1

2 (
a,b

Jab n̂a n̂b , ~30!

whereJab5V1
(ab)2V2

(ab) has exact eigenstates given by t
eigenfunctions of the occupation operatorsn̂a

c5un1 ,n2 ,...,nk ,...,&, ~31!

with the corresponding eigenenergies
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E~$ni%!5(
i

« i
(0) ni1

1

2 (
i , j

Ji j ninj . ~32!

Like in the case of the constant interaction the exact res
are reproduced by the HF approximation. The HF equati
are

F«a
(0)1(

b
JabrbbGf i~a!2(

b
Jabrabf i~b!5« if i~a!,

~33!

and are solved byf i(a)5d ia . Therefore

« i5« i
(0)1(

h
Jih , ~34!

where the sum is over the occupied levels.
We are interested in the ground state of the Hamilton

~30!. A general argument due to Ref. 23 guarantees tha
least for positive definite~repulsive! interactions, which we
assume below, the HF ground state must be comprised o
N lowest energy single particle HF levelsf1 ,...,fN . While
the ground state of the constant interaction model is obta
by filling the N lowest noninteracting states this need not
the case for the present model. Consider

FIG. 1. Probability density distributions of the spacings betwe
~a! the last two hole levels below« f , ~b! the two levels across« f ,
and ~c! the first two particle levels above« f . The results were
derived by solving the HF equations of the schematic model
~30!. «a

(0) and Jab were generated by the random potential mo
with Coulomb interaction, described in Sec. IV, for a dot with
electrons,W/t51.2, andU/t51.2. We also included a constan
interaction part of strengthV056D0 . The spacings are measured
terms of the noninteracting mean level spacingD0 .
ts
s

n
at

he

d
e

«N112«N5«N11
(0) 2«N

(0)

1JN11,N1 (
k51

N21

~JN11,k2JN,k!. ~35!

Although«N11
(0) 2«N

(0)1JN11,N is positive definite the sum in
~35! is over 2N22 random variables and can be large a
negative. Consequently it may happen that«N11,«N in
variance with the above condition on the ground state.
such a case a different occupation pattern must be sought~we
note that even if the condition is not violated there may ex
other solutions that are consistent with it and which ha
lower energies!. We expect such crossings of levels acro
the Fermi energy to take place whenD1J0.A2NsJ , where
J0 and sJ are the mean and standard deviation ofJab , re-
spectively.

Similar crossings may occur for levels below or above« f

whenD.A2NsJ since for them

« j2« j 215« j
(0)2« j 21

(0) 1 (
k51

N

~Jjk2Jj 21,k!. ~36!

This shuffling of levels tends to reduce the correlation b
tween the energies of neighboring states. In particular
expects to find weaker level repulsion when eitherN or the
interaction strength (sJ) are increased.

To verify the above discussion we have calculated the
energies~34! using numerical values for«a

(0) andJab gener-
ated by the random potential model described in the n
section. We took care to choose the lowest energy solut
The results forP(s) below, across and above« f are shown
in Fig. 1. These distributions differ significantly from th
exact HF distributions calculated while retaining the o
diagonal elements ofV, cf., Figs. 2,3,6. The most prominen
incorrect feature is the absence of level repulsion inP(s) for
the levels below or above« f . One can attempt to correct thi
feature by using the average rather than the exact ma
elements which enterJab . As it follows from the random
potential model,24 such average matrix elements are fun
tions of the corresponding eigenenergies, i.e.,Jab5 j (u«a
2«bu) with j (x) a known function which is approximatel
2 ln x in two dimensions. Although this model reproduc
the density of states in the vicinity of the Fermi energy it
not expected to account for the correct correlations betw
neighboring levels as manifested inP(s).

IV. COMPARISON WITH NUMERICAL RESULTS

In order to substantiate the results of our analytical t
level treatment we have numerically solved the complete
of HF equations~2! derived from a tight-binding Hamil-
tonian for a disordered two dimensional quantum dot. W
the labeling of the sites by a double index (i , j ) the one-body
Hamiltonian is given by

h5(
i , j

« i , jai , j
† ai , j

2t(
i , j

~ai 11,j
† ai , j1ai , j 11

† ai , j1H.c.!, ~37!

where« i , j is the energy of the site (i , j ) and t is a constant
hopping matrix element. Each of the energies« i , j is chosen

n

.
l
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randomly from a Gaussian distribution with the standard
viation W/2. We assume repulsive 1/r interaction

V5U (
i , j ,k,l

ai , j
† ak,l

† ak,lai , j

ur i , j2r k,l u/b
, ~38!

whereb is the lattice constant andU5e2/b.
The dot was approximated by a grid ofM520320

5400 sites with hard wall boundary conditions. Most of t
numerical data was obtained for a dot filled withN515
217 spinless electrons and a disorder strengthW51.2t. Un-
der such conditions the dot was in the diffusive regime a
the levels in the vicinity of« f exhibited RMT statistics in the
noninteracting limit. For the low filling that we used th
energy band was approximately parabolic and the Fermi
ergy for a clean noninteracting system was« f54ptN/M . A

FIG. 2. Probability distributionsF(s)5*0
sP(s8) ds8 of spacings

between the last two hole levels just below« f . The heavy lines
depict from top to bottom the numerical results forU/t
50, 0.4, 0.8, 1.2, and 1.6. The solid curves present the best fi
the data assuming a Wigner function with renormalized mean le

spacingD̄. The inset containsP(s) for U/t51.6 ~histogram! to-
gether with its best fit to a Wigner function.
-

d

n-

convenient dimensionless measure of the strength of the
teraction isr s5(e2/a)/« f wherea5AM /pNb is the average
interparticle distance. In our caser s5(U/t)AM /16pN
.0.7U/t. Below we describe our results forU/t50.2
21.6. Henceforth energy is quoted in units of the observ
noninteracting mean level spacing at the Fermi energyD0
which was found to be larger by 7% then the clean va
4pt/M .

The distribution functionsF(s)5*0
sP(s8)ds8 of the spac-

ings between the last two occupied~hole! levels and between
the first two empty~particle! levels are shown in Figs. 2 an
3. They are compared with the best fit to an integra
Wigner function with a renormalized mean level spacingD.
These and the following results were obtained by averag
the HF spectrum of 15, 16, and 17 electrons over 450–
realizations of the disorder. While the distributions vani
quadratically for small spacings increasing deviations fr
the Wigner function are observed when the interaction
comes stronger. We find enhanced probability for the occ
rence of spacings smaller and much larger thenD for large
values ofU/t. The renormalized mean level spacingD also

to
el

FIG. 3. Same as Fig. 2 but for the spacing between the first
particle levels just above the Fermi energy.
e
FIG. 4. Probability density distributions of th
parameterJ for various interaction strengths.
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increases with the strength of the interaction. The width
the fitted Wigner functions(PW)50.52D is presented in
Fig. 7. It grows approximately linearly withU/t. The mean
level spacing between adjacent levels further away from
Fermi energy decreases with the distance frome f and ap-
proaches 1.

The distributions of the quantityJ defined in Eq.~20! are
depicted in Fig. 4. They are approximately Gaussian

FIG. 5. Probability density distributions of the inverse parti
pation ratio of the 10 hole and 10 particle levels around« f for
various interaction strengths.

FIG. 6. Probability density distributions of the spacing betwe
the levels acrosse f ~histograms! and ofD2(16) ~broken lines!. The
solid curves correspond to the estimate~24!.
f

e

r

small values of the interaction strength but develop asym
try towards the highJ end whenU/t is increased. The mea
of the distribution scales with the interaction as^J&
.1.7U/t. For the widths(J)5A^J2&2^J&2 we find s(J)
.0.16U/t10.13(U/t)2 over the range of parameters studi
~see Fig. 7!. These fluctuations are responsible for the sme
ing of the distribution of spacings across« f as will be shown
below. A lengthy calculation using the random vector mod
~RVM! gives for our system^J&52.1U/t and s(J)
50.032U/t. The fact that the RVM result for̂J& is larger
then the observed one reflects the tendency of the syste
prefer a nonuniform density distribution that reduces
Coulomb energy. We believe that this is also the reason
at least part of the enhancement of the actual fluctuati
relative to the RVM predictions. Typically we found the H
eigenfunctions~both particles and holes! to have large am-
plitude along the periphery of the dot, as expected fr
simple electrostatic considerations. The localizing effect
the interaction is evident from Fig. 5 where we present
distribution of the inverse participation ratio I
5Mb4( i , jc

4( i , j ) averaged over the 10 particle and 10 ho
levels arounde f .

In Fig. 6 we present the distribution for the spacingD«
between the HF levels across the Fermi energy together
the distribution ofD2(16) calculated according to its defin
tion ~12! and using the HF many body ground state energ
for 15, 16, and 17 electrons. We also compare them to
analytic estimate~24!. For its evaluation we usedD that
interpolates between the values found from the Wigner fu
tions fitting P(s) below and above« f and the numerical
results for^J& ands(J). The two distributions evolve from
shifted Wigner functions at small values ofU/t to an ap-
proximate Gaussian distributions as the interaction stren
is increased. The crossover occurs whenr s;U/t;1. Around
this point the fluctuations of the Coulomb gaps(2J) are
comparable to the width of the Wigner function describi
P(s) at the vicinity of the Fermi energy~see Fig. 7!. Conse-

n

FIG. 7. The standard deviations of 2J, PW—the Wigner distri-
bution that fits best the distribution of spacings in the vicinity ofe f ,
D2(16) andDe—the spacing between the two levels across
Fermi energy. The inset depicts the normalized fluctuatio
s(D2)/^D2& ~full diamonds! and s(De)/^De& ~empty diamonds!.
The results are for a dot with 15–17 electrons and disorder stre
W51.2t.
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quently the latter is smeared into a new more symmetric
broader distribution. It is evident from Fig. 6 that Koopman
theorem breaks down for strong interactions, i.e.,P(D«)
ÞP(D2). However it seems that the two distributions m
be viewed as shifted versions of each other having sim
shapes but somewhat different widths~see Fig. 7!. The shift
of P(D2) towards lower values is expected and is due to
change of the occupied levels in response to the additio
electron. This rearrangements, which is neglected by Ko
mans’ theorem, tends to lower the electrostatic charging
ergy. For reasons that are not clear to us our analytic estim
for P(D«) fits rather wellP(D2).

We repeated the numerical calculations for the same
but with stronger disorderW/251.6t and fewer ~10–12!
electrons. All of the effects reported above have been
served for this case as well. The deviation ofP(s) above or
below « f from the Wigner function were more pronounce
The fluctuations ofJ also increased and we founds(J)
.0.25U/t10.06(U/t)2 with enhanced asymmetry in th
shape of the distribution for strong interactions. The discr
ancy betweenP(D«) and P(D2) at large r s persisted al-
though the shapes of the two distributions and particula
their width were closer for this dot then for the one describ
above. Figure 8 summarizes the dependence of the fluc
tions of the different quantities on the strength of the int
action.

Our calculations were done for a fixed number of p
ticles. In order to facilitate comparison with a fixed chemic
potential ensemble the Fermi energy of each spectrum in
ensemble was shifted to zero. The resulting density of st
is plotted in Fig. 9.

V. CONCLUSION

The statistics of energy levels and wave functions in n
interacting disordered systems is well established and
lows the predictions of RMT. The effects of interactions
this context are relatively unexplored. The strategy adop
by us here was to include interactions within the HF appro
mation. While being the crudest of approximations it
known to yield a reasonable description of the quasipartic
properties in small systems. It also allows for a natural

FIG. 8. Same as Fig. 7 but for a dot filled with 10–12 electro
and disorder strengthW51.6t.
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tension of the concept of single particle level statistics
replacing the non-interacting levels with their HF counte
parts. Accordingly it is of interest to generalize the RM
program to study HF Hamiltonians of random systems. T
is a difficult task due to the self-consistent nature of the
problem. As a first step we extended the treatment of Wig
for the statistics of spacings between neighboring levels.
were able to make rigorous statements about the probab
to find two levels close to each other and speculated on
nature of the distribution for arbitrary spacing~just as in the
noninteracting case!. Our analytical considerations and nu
merical simulations indicate that while the spacing statis
between hole~occupied! or particle ~unoccupied! levels is
qualitatively unaffected by the interactions they have a d
matic effect on the spacing across the Fermi energy.
probability distribution for this spacing evolves from th
Wigner function in the noninteracting limit to a muc
broader Gaussian-like distribution as the interaction stren
is increased. This crossover is driven by increasing fluct
tions of the charging energy of the system.

Since the spacings between hole or particle HF levels
related to the neutral excitations of the system and the s
ing across the Fermi energy reflects its addition spectr
their statistics have experimental consequences. Howev
direct comparison between our results and the recent exp
mental data on addition spectra of quantum dots6–8 ~which
agrees in its general characteristics with our findings! is im-
paired by the limitation of our treatment to spinless ele
trons. The inclusion of spin is desirable both on theoreti

s

FIG. 9. The density of states neare f . The results are for a do
filled with 15–17 electrons and disorder strengthW51.2t.
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grounds and in order to explain the lack of any spin signat
in the above mentioned experimental data.
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APPENDIX: THE TWO LEVEL HARTREE-FOCK
PROBLEM

In Sec. III C we outlined the way in which the densi
matrix r changes under a variationdh of the random part of
the HF Hamiltonian. We argued that while in the case of t
close levels that are both occupied or empty the te
tr(VAdr) does not alter the smalls behavior ofP(s) it must
be included in a self-consistent manner for a couple of cl
level residing on both sides of« f . In this Appendix we will
concentrate on the latter scenario assumingV!D.

Let us denote byc i the eigenfunctions ofh(HF) and byf i
the eigenfunctions ofh(HF)1dh(HF). Then in the basis ofc1
andc2 the HF problem for two close levels on both sides
« f is

S «1
(0)1dh111 (

I ,J51,2
Ṽ1I1JdrJIDa

1S dh121 (
I ,J51,2

Ṽ1I2JdrJIDb5«a,

S dh12* 1 (
I ,J51,2

Ṽ2I1JdrJIDa

1S «2
(0)1dh221 (

I ,J51,2
Ṽ2I2JdrJIDb5«b, ~A1!

with drJI the 232 matrix

dr5f1f1
12c1c1

15S uau221 ab*

a* b ubu2 D , ~A2!

and the normalization conditionuau21ubu251. The relation
between the matrixṼIJKL , I 51,2, etc., and the origina
Vabgd will be discussed below. We will also need the part
the HF energy the minimization of which, with respect
f1 , gives~A1!

EHF@f1#5tr$@h1tr~Ṽr!1dh#f1f1
1

1 1
2 tr@Ṽ~f1f1

122c1c1
1!#f1f1

1%. ~A3!

The solution of the set of algebraic equations~A1! is par-
ticularly simple if one uses the expansion in terms of Pa
matrices,

f1f1
15 1

2 ~11m•s!,

c1c1
15 1

2 ~11m0•s!, ~A4!
e

,

o

e

f

f

li

with the ‘‘pure state’’ conditionsumu5um0u51. Inserting
this into ~A3! and transferring to the left all terms which d
not depend onm one obtains

E5B•m2 1
2 m–JI–m. ~A5!

The notation in~A5! stands for

E5EHF2 1
2 tr@h1tr~Ṽr!1dh#

1 1
4 tr$tr@Ṽ~m0•s!#%

1 1
8 tr@ tr~Ṽ!#,

B5 1
2 tr$s@h1tr~Ṽr!1dh#%

2 1
4 tr$tr@sṼ~m0•s!#%,

Jab52 1
4 tr@sa tr~Ṽsb!#, ~A6!

andm•JI•m5(a,b51
3 Jabmamb . VaryingE with respect tom

under the conditionumu51 one obtains

m3~B2JI•m!50. ~A7!

This is a ‘‘magnetic form’’ of the equations~A1!. Of course
it could also be obtained by the direct substitution of~A4!.
The ‘‘magnetic field’’ B contains the information about th
random parth1dh of the HF Hamiltonian whereas the ma
trix JI is the projection on the Pauli matrices of the intera
tion matrix ṼIJKL taken in the subspace of the two statesc1

and c2 . For our general discussion we can diagonalizeJI.
This will reshuffle the components ofB which are random
anyway.

The distanceD« between the eigenvalues of~A1! is D«
5tr@(f2f2

12f1f1
1)(h1dh)HF# where due to orthogonality

f2f2
15(12m•s)/2. Therefore

D«~B,JI!52uB2JI•m~B,JI!u, ~A8!

wherem(B,JI) is a solution of~A7!.
The equations are especially simple in the case when

Hamiltonian and the wavefunctions are real. This cor
sponds to the orthogonal ensemble in the terminology
RMT. Only the projections ons1 ands3 remain in this case.
The HF energy and the HF equation are, respectively,

E5B1m11B3m32 1
2 ~J1m1

21J3m3
2!, ~A9!

m1B32m3B11~J12J3!m1m350, ~A10!

with the constraintm1
21m3

251. In the aboveJ1 and J3 are

the eigenvalues ofJI. The solution of~A10! are roots of a
fourth order equation. Real roots are the extrema of the cu
defined by the intersection of the surface~A9! and the con-
straint cylinderm1

21m3
251. Only one real root must be se

lected – that which minimizesE.
Let us examine the energy spacingD«

D«52A~B12J1m1!21~B32J3m3!2 ~A11!
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and determine when and how level crossings occur. In
absence of the interaction (J15J350) D«50 at B15B3
50, reproducing the standard result. In the presence of
interaction the level crossingD«50 occurs when

m15B1 /J1 , m35B3 /J3 . ~A12!

Due to the normalization constraint this can be fulfilled on
on an ellipse

B1
2

J1
2 1

B3
2

J3
2 51. ~A13!

It is therefore sufficient to examine the minimum ener
solution on the ellipse. We note that the conditions~A12! are
consistent with equation~A10!, i.e., level crossings must oc
cur at least for one of the solutions. However there is
guarantee that this is also the minimum energy solution
fact a detailed analysis reveals that the occurrence of l
crossing for the minimum energy solution depends on
signs of the eigenvaluesJ1 andJ3 as follows:~i! when both
signs are positive there are four real solutions~two minima
and two maxima! on the ellipse~A13! providedJ3.2J1 or
J1.2J3 . Otherwise there are only two real solutions~one
maximum and one minimum!. The solution withD«50 is
always the~highest! maximum.~ii ! when one of the eigen
values is negative and another positive there are four
solutions on the ellipse~two minima and two maxima!. The
solution with D«50 is either a metastable minimum or
maximum.~iii ! only when both eigenvalues are negative t
solution with D«50 coincides with the absolute minimum
of the HF energy.

In the first two cases the minimum energy solution alwa
has a nonzero level spacing. Consequently for suchJ1 andJ3
-

G.
e

e

o
n
el
e

al

s

the two HF levelsnever crossand one expects agap in the
probability distribution ofD«. In the last case of two positive
eigenvalues the level spacing distribution in the vicinity
D«50 will depend on the density ofD«5const lines close
to the ellipse~A13!.

The interactionṼ which determinesJ1 andJ3 is just VA

when the two levels«1 and «2 are not degenerate. In thi
case we find from~A6! Jab5@(V12122V1221)/2#dab . Thus
for a positive~negative! definite,23 i.e., repulsive~attractive!
interactionJ15J3.0 (J15J3,0). When the levels are de
generate one must extend the two levels treatment to inc
all degenerate wave functions. However, if the degenerac
due to spin and the wave functions are separable spin-s
products, one can define an equivalent two level problem
the orbital parts with the interactionṼ5VA1V. For this case
J15(V121222V12212V1122)/2 and J35@2V12122V1221

2(V11111V2222)/2#/2. For suchṼ the signs ofJ1 andJ3 are
not uniquely related to the nature of the interaction. In p
ticular they may both be positive even for a repulsive int
action. However, if this happens, we expect to find, due t
general argument,23 another HF solution~e.g., lacking spin
degeneracy! with lower total energy for which the levels d
not cross.

The caseJ15J35J is particularly simple since the ellips
degenerates into a circle and one obtains

D«~B,J!52uB1Ju, ~A14!

where B5AB1
21B3

2. For positiveJ this result leads, after
choosing for simplicityP(B) of a Gaussian form, to the
shifted Wigner distribution, Eq.~22!. For negativeJ ~attrac-
tive interaction! we find
of
e

P~s;J!5H p

2D2 @~2uJu2s!e2 p/4@~2uJu2s!/D#2
1~2uJu1s!e2 p/4@~2uJu1s!/D#2# s,2uJu

p

2D2 ~2uJu1s!e2 p/4@~2uJu1s!/D#2
s>2uJu

J . ~A15!

This distribution is a sum of two, mirror reflected and shifted Wigner distributions resulting from the two rootss
5D«(B,J). The most important feature to note in~A15! is the nonzero probabilityP(s50). This is a consequence of th
linear dependence ofD«(B,J) at B5uJu.
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