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Statistics of Hartree-Fock levels in small disordered systems
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We study the statistics of quasiparticle and quasihole levels in small interacting disordered systems within
the Hartree-Fock approximation. The distribution of the inverse compressibility, given according to Koop-
mans’ theorem by the distance between the two levels across the Fermi energy, evolves from a Wigner
distribution in the noninteracting limit to a shifted Gaussian for strong interactions. On the other hand, the
nature of the distribution of spacings between neighboring levels on the same side of the Fermi energy
(corresponding to energy differences between excited states of the system with one missing or one extra
electron is not affected by the interaction and follows Wigner-Dyson statistics. These results are derived
analytically by isolating and solving the appropriate Hartree-Fock equations for the two levels. They are
substantiated by numerical simulations of the full set of Hartree-Fock equations for a disordered quantum dot
with Coulomb interactions. We find enhanced fluctuations of the inverse compressibility compared to the
prediction of the random matrix theory, possibly due to the localization of the wave functions around the edge
of the dot. The distribution of the inverse compressibility calculated from the discrete second derivative with
respect to the number of particles of the Hartree-Fock ground state energy deviates from the distribution of the
level spacing across the Fermi energy. The two distributions have similar shapes but are shifted with respect to
each other. The deviation increases with the strength of the interaction thus indicating the breakdown of
Koopmans' theorem in the strongly interacting linfi0163-182609)15031-9

[. INTRODUCTION Coulomb blockade in disordered quantum dots, cf. Refs.
6—8. The neutral particle-hole excitations can be measured
It is universally accepted that the principal signature ofby studying acoustic phon8hand microwave absorpticf.
quantum chaos is the statistics of the random matrix tHeory
(RMT), which is obeyed by the energy levels of chaotic sys-
tems. This is supported by semiclassical consideratians IIl. THE HARTREE-FOCK APPROXIMATION
well as many numeric3f and analytical examples. How- IN WEAKLY DISORDERED SYSTEMS
ever realistic chaotic systems such as quantum dots, small |nteracting electrons in a disordered system are described
metallic grains, or the so-called yrast levels in rotating nucleyy the Hamiltonian
involve interactions between many particléslectrons,
nucleons, etc An interesting problem then arises of how the
interactions are expected to modify the RMT predictions.

Several recent experi i icati H=2 hysala
perimental and theoretical publications T ap%ap
have begun to deal with this problém-®
Applications of RMT to noninteracting chaotic systems, 1 t 4
such as quantum dots, are concerned with the statistical +§a;/6 Vapysdadpasdy, @)

properties of single particle quantities. Analogous and ex-
perimentally relevant in interacting systems are quantities
which characterize quasiparticles. In small disordered syswhere|a), |B), ..., denote states of a single particle basis.
tems one can discuss the statistics of their energy leveld,he noninteracting part dfl is controlled by the one body
lifetimes, and wave functiongeal and imaginary parts and Hamiltonianh,; representing the disordered system. In this
the residues of the poles of the single particle Green’s funcwork we are interested in the regime of disorder for which
tion, respectively. Experience gained in nuclear and atomicthe random matrixh,; can be viewed as described by the
physics indicates that the Hartree-FogkF) method pro- rules of RMT. The interactioV .z, s is not random and in a
vides a very reasonable approximate description of quasipaftuantum dot, for example, represents matrix elements of the
ticle properties in finite systems. The nondegenerate HEEoulomb or screened Coulomb interaction. In our discus-
particle-hole excitations form a convenient basis to describsion, however, we will regard it as a general matrix and will
low lying excitations of these systems. In this paper we adopbe able to draw conclusions for wide classes of possible
this description and study statistical properties of the HFV z,s.

levels in small disordered systems. Properties of charged ex- Our main approximation will be to treat the Hamiltonian
citations have been probed experimentally by measuring thél) in the HF approximation. The HF equations are
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> hE (B =sii(@) ) Pap= 2 dn(@)yi5(B). @
B heholes
Henceforth we will denote biz, h’ andp, p’, etc., the hole
(occupied and particle(unoccupiedl levels, respectively.
It is common to view the HF approximation as arising
hHP—h o+ D VA o, (3)  from the variational minimization of the total energy of the
B system. In this interpretation the direct physical meaning of
the energies; and the wave functiong;(a) remains ob-
or symbolicallyh™P=h+tr(V*p). HereV* is the antisym-  scure and one must use the so-called Koopmans’ the&rem.
metrized interaction matri’,; 5=V ,.z,5—Vapgs, and the  We recall however that the HF equations can also be derived
trace is taken over the second pair of the indice¥df The  from an approximation to the equation of motion for the one
self-consistent density matrixis given by particle Green’s function

with

G(a,ﬂ;m:—iJldte“"<<1>o<N)lTaa(t>a;<0>|®o<N)>

o(N)[a, | (N+1))(D;(N+1)|af|Po(N))
Ei(N+1)—Eo(N)—w—i0

-3 (@

s (@o(N)[ap|®i(N=1))(@i(N=1)|a, Po(N))
i Eo(N)—E(N—1)—w+i0 '

®

The HF energies, and e, and the corresponding wave Vagys=VoOa,0ps. (6)
functions () and J(«) are then approximate energies _ ) o ) o
and wave functions of, respectively, quasiparticles and quasithis interaction allows for a trivial exact solution which is
holes, reproduced by the HF equations. They are solved by the
eigenfunctions/(”(a) of the one body Hamiltonian
ep=Ep(N+1)—Ey(N),

hesti®(B) =" 4" (a), W
en=Eo(N) =En(N-1), and have the following eigenvalues
Pp(a)=(DPo(N)|a,|Py(N+1)), P +Vo(N-1), n=1
STl @1 vN, n=0 ®

In(@)=(Pp(N—=1)[a,|Po(N)).
) o ) whereN is the number of particles ang is the occupation
We wish to study the statistical properties of the set  nymber of theith level. It is clear that the lowest energy

and the wave functiong;(a) which follow from the random  so|ytion is obtained by occupying the lowdétnoninteract-
nature ofh,s. Ideally one would like to be able, starting jng states. The gap which separates the energies of the occu-
from the pI’ObabI|Ity d|Str|bUt|OrP(h), to determine the jOint p|ed (ho|e) and empty(par“c'é levels for V0>O results
probability distributionP(&1,65,....,en,...,) andsimilar  from the absence of the contribution from the exchange term
distribution for ¢;(8) and on its basis to predict various in the latter. In a sense one can say that the empty levels do
correlation properties of these quantities. In the present pap@lot create the exchange hole which decrediseseasesthe
we address a much simpler problem of the repulsion pattergye| energy for positivénegative V.
of neighboring pairs of; and its application to the addition  From the known distribution of(“) it is easy to calculate

spectra of quantum dots. We will present simple analytiGhe statistical properties of the HF levels. Since the spac-
approximations and perform numerical investigations  t0jq< of neighboring levels a=A=(© for levels below and
check their validity. abovee; their distribution is given by the ordinary Wigner
surmise, e.g.,
IIl. THEORETICAL CONSIDERATIONS

A. Constant part of the interaction P(s)=Py(s)= 7 s exg — (i)z
| . | . W o(s)? "\2(s)
The simplest limiting case is a constant interacti(ir
—r'[)=V, which will serve as a reference point for our for GOE. The spacing between the levels lying across the
discussion. In the following we consider the spinless casefermi energy iss=V,+A&(® and therefore its distribution
One has for the matrix elements (ih) is given by the Wigner surmise shifted by the valMg,
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P(s)=Pu(s— Vo). (99  the square root of the sum of squares of real quantities and

can be deduced by evaluating, for small
The gap in the distribution of the level spacings across the y g

Fermi energy is reflected in the differences of the total
ground state energg, of the system as a function of the P(S)Zf d[s—s(B)]P(B)dB. (15
particle number

The familiar behaviorP(s)~s for GOE andP(s)~s? for

N 0, Vo GUE (s<A) follows then directly for anyP(B) which does
EO(N):; &gt 7N(N_1)’ (20 not vanish for smalB=|B|. The (unjustified evaluation of
(15) for all values ofs taking P(B) to be of a Gaussian form
Eo(N+1)—Eo(N)=&"), +VoN=¢p, 1, (11  results in the Wigner distribution for the case of real
In the Appendix we discuss how the res(B) is modi-
D,(N)=Eo(N+1)—2Eq(N) +Eo(N—1) fied by the presence of the self-consistent ternvAidp).
Under the conditions discussed in Sec. IIIC we show the
:Sg\loll_sg\?)—i_vozsNi'l_SN' (12) f0||0WIng

, . S . (1) When the two close levels are both occupied or both
Here we defined the quantiy,(N) which is essentially the empty the distribution of their level spacings for small

inverse compressibility of the dot. Its distribution has been<A is ~s or ~s2 as in the noninteracting case.

measured in transport experiment of quantum dots in the (2) When the two levels are on opposite sides of the

Coulomb blockade reginte:® Equation (11) is Koopmans Fermi level, i.e., one occupied and one empty the expression
theorem which is exact in this case. It leads directly to the Y P Pty P

expression12) of D, in terms of the energy difference be- (13 changes to

tween the two HF levels across the Fermi energy, a fact _ = <

which motivates the study of this spacing. The Coulomb gap s=2[B—J-m(B,J). (16

in D, does not fluctuate in the limit of constant interaction. jare we use the dyadic notati@ﬁ-m] :Eg JapMy. As
o . a —1JdapMp -

For more realistic interactions the Coulomb blockade gap, e noninteracting case the “vectoB contains the infor-

must_undergo .fluctuatlon.s in addition to the fluctuatlc_)ns ofmation about the random pait sh of the HF Hamiltonian
the single particle energies;, . Study of these fluctuations < L : .
whereas the matrid is the projection on the Pauli matrices

will be one of our principal goals. -

of the interaction matriv/,;x, , (1,J,K,L=1,2) in the sub-
space of the two close levels and i, (cf. the Appendix for
the precise definition of/, B andJ). The vectorm(B,J) is
a unit vectorm|=1 and is a solution of the self-consistent
HF equations for the two levels

B. Realistic interaction—repulsion of the Hartree-Fock levels

For smalls (s<A, the mean level spacinghe well
known behavior of the distributioR(s) for random Hamil-
tonians(i.e., linear for GOE, quadratic for GUE, etcan be
derived by considering the repulsion of close pairs of levels.
In this subsection we generalize this analysis to the case of
two close HF levels. The new element in the HF problem,
Eq. (2), is the presence of the non linear self-consistent term

mX (B—J-m)=0. a7

In this notation the total HF energy is

Ea,ﬁ,vza,ﬁﬁ,pﬁra, which implicitly depends on the realiza- e=B-m—im-3.m. (18)
tion of the random part, .
Let us assume that for some realizationhof; the HF The full investigation of the solutions of the above equa-

Hamiltonianh{f§” has two closely lying levelss,>#1, SO tions and the expressidae) is found in the Appendix. Here
thatAe=e,—e;<A. We wish to investigate hode reacts  we will concentrate on the simplest case when the matrix of
when the randonh is varied bysh with A>|8h;|~Ae for interactions],, is degenerate, i.e., has equal eigenvalues. As
,J=1,2. is shown in the Appendix such a degenerdtg matrix cor-
The variation of h causes a changeshtP=sh responds to a complete absence of degendiamh as spin
+tr(VA5p) in the HF Hamiltonian where the second term is of the close HF levels. We will furthermore restrict ourselves
due to the induced change of the self-consistent densityto real Hamiltonian$1+ sh. Then the vectoB has only two
Without this term one would get for the new spacing thecomponents8, andB; and one needs to consider only the
standard resuls=2\/(Az + shy,— 6hy7)*+4[5hy]%, which  corresponding components af, with a,b=1,3. For a de-

for future reference we shall rewrite in the form generatel,, the vectord-m is parallel tom and the two
SZZWEZBL (19 level HF equation(17) becomes a simple linear relation

m;B5;—m3B; =0 without any dependence on the interaction.
The vectorB is a projection on the Pauli matrices of the The level spacing16) however still contains the interaction
2x2 Hamiltonian @+ 8h),; in the subspace of the two term. Using the normalization condition?+m3=1 one ob-
close levels),J=1,2, tains

B= s tr[a(h+sh)], (14 s=2|B+J|, (19

where o; are the Pauli matrices. The level repulsion atwhereB= \/Blz+ B32 andJ is the degenerate eigenvalue. The
small spacings is a consequence of the proportionalig/tof — explicit expression fod is
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lem. The matrix elements i(20) are defined with respect to
such wave functions. Although we do not have an analytic

For a positive] which corresponds to the case of a repul-theory of P(J) we will present below numerical investiga-

sive interaction the equation for the spaciig) describes a
conical surface separated by a distanddr®m the B,,B3)
plane. This means that the probability for a givehas a gap
of the magnitude 2 above which it must rise linearly

0, s<2J
(s—2J)f(s), s=2J

where f(s) is an undefined function which is finite &t
=2J. For general reasons one should expect fifja} van-
ishes ats— .

The result(21) implies that the distributiorP(s;J) is
qualitatively the same as the shifted Wigner distribution

P(s;J)= (21)

0, s<2J

(22)

tion of this function and the validity of the expression of the
type (23). Numerically we find that the distribution of is
approximately Gaussian. Adopting this finding into expres-
sion (23) and assuming the forif22) for P(s;J) one obtains

a |12 )
P(s) :ﬁ(m> e lapBl(a+p)l(s—239)
X ¢ f 4 (s—2Jp)
——erfc¢| — ——=(s—
a+ \/aT,B 0

1
J’_—
Vr(a+ B)

wherea=(8¢2) ! and 8= =/(2A)? with A being the mean
level spacing at the vicinity of the Fermi energly. and o
are the mean and standard deviatiorP§0), respectively.

e [azl(a+ﬁ>]<szao>2] 29

similar to what was found in the case of the constant inter-

action, Eq.(9). There is however a crucial difference which

we will now try to elucidate.
As is seen from Eq(20) the degenerate eigenvaldeis

C. Validity of the two level treatment— why only the statistics
of spacings across the Fermi level is effected
by the interaction

invariant under unitary transformations in the subspace The above results are valid as long as the spacing between

spanned by the two given close statigsand ¢, . As long as
one examines realizations of the randbnfor which these

the given two levels is much smaller than the distance to
other levels. This restriction is needed in order to be able to

two particular states stay close in energy they mix stronglysolate the two levels from the rest. For repulsive interactions

only between themselves addstays the same. The distribu-

tion of the level spacings for such selectiorhdd is given by

the distance between the pair of levels on different sides of
the Fermi energy is determined by the matrix elemEe[tf.,

(21) with a fixedJ as in the constant interaction case. How- Eq. (19)]. Therefore the condition of the validity of our treat-

ever variations oh may bring another pair of levels, say,
and 5 at close distance on both sideseqf. For such levels

the value of] may be completely different and given by the

corresponding matrix element¥ {315~ V1337)/2. In calcula-
tions of the overallP(s) for small s one should therefore
average over the distributioR(J) of all J's

P(s)=f P(J)P(s;J)dJ. (23

For a constant interactiad= V, for any pair of stateg; ,
; and thereford®(J) is a 6 function centered a¥,. For an
extreme short range interactiaf(|r—r'|)=Vy8(r—r’') all

ment for such levels ig<A. As we will see below numeri-

cal evidence indicates that at least qualitatively the expres-
sion (23) remains correct also for a much larger A. For

an even stronger interaction the two level treatment ceases to
be valid and one must account for the reaction of distant

levels to the changes of the self-consistent potential

tr(VAsp).

Here we wish to add the following remark. For a constant
interaction our result is trivially valid for any strength. On
the other hand for any given interaction one can extract a
constant part, i.e.,V,g,5=V09,,085TUypys, Where
Uaﬁ)_/ﬁzvaﬁyé_vogayaﬁé" Since the HF wave functions
are independent oY/, one may try to solve the problem

values ofJ are zero and do not fluctuate. One expects thereusingU first and then add&,. This procedure is not unam-

fore that for a general interaction the average valugd o

biguous and must be dictated by the physics of the problem.

coming mainly from the very long range component while itslf P(J) vanishes forJ<J., i.e., in the presence of a hard

fluctuations reflect the middle range component¥ of

The main feature of matrix element§) of a constant
interaction is that they have the same form in &osthonor-
mal) basis of the single particle statg¢s which are used to

calculateV,g, 5. In other words for a constant interaction the

gap (like in a quantum dot with Coulomb interactigrit is
natural to takevVy=J.. The condition of validity is therd,
<A whereJ, is the typical gap due to the residual interac-
tion U.

When there is no minimal value far any subtraction is

matrix elements/ 4, ; are invariant under the unitary group bound to produc&) which has both attractive and repulsive
U(M) of all transformations in the entire single particle Hil- components. This fact may introduce fundamental differ-

bert space of the problem. Heké is the dimensionality of
this spacdtypically M—o). This invariance oV, s for a
constant interaction is the reason tR4tl) is a & function in
this case. In order to develop a theoryR(J) for a general

ences between the solutions to the HF problem obtained us-
ing the interactioriv and the one derived in the manner in-
dicated above. Most notably using the latter procedure one
will find cases for which there exists enhanced probability

interaction one must understand the statistical properties dbr the two levels across; to be close to each othgor at
the single particle wave functions—solutions of the HF prob-distanceV, after the addition of the constant part, see result
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Ei(N£1)—Eyg(N)==*¢g;. The excitations with the same
particle numberg;(N) —Eq(N) are described in the HF ap-

causeU to change sign only in a small number of cases.proximation by solutions representing determinants with the

Consequently we may use in such a cageA as our cri-

terion for the validity of the two level treatment.

same particle numbeN which are orthogonal to the HF
ground state determinant. In the case of a constant interac-

For pairs of neighboring levels which lie on the same sidetion such excitations are simply particle-hole excitations of

of the Fermi energy the change in the density ma#jx

the noninteracting problem. The distribution of their spac-

vanishes as long as only the two level subspace is considrgs does not show any Fermi energy related gap and coin-

ered. Consequently there is no self-consistent t&thép

cides with the non shifted Wigner distribution. This is also

present and one recovers the results of the non-interactirigue in the two level HF model, Eq17). Let us demonstrate
case. There are two types of corrections to this two levethis in the simple case of the degeneratelie HF equation
treatment which must be considered. One is the nonzero coni7) in this case isn;B;—msB; =0 which together with the
tribution of the distant levels tép. Another is the correction ngrmalization conditiorm?+m3=1 produce two solutions
to the energies of the two close levels due to virtual transiyith different total HF energies, Eq18), &= +B—J/2.

tion to distant levels.

These solutions represent the ground and excited states of

To estimate the first correction we use the first order resulfnis model which have the same number of particle. The

sh+VAsp|h
%%(aw’m)mc.

8pap= > [

ph €h
(25)
which can be solved to obtain the RPA expression
(p'|[VAI") o
5pa,3= 2 - E (f(ﬂprlﬂz,‘l‘H.C.
a'ﬁ’ p'h' Enr 8p/ .
ap,a’'B
Mw(a’)tﬂ*(ﬁ’HHc (26)
ph gh—gp p h BN
Thus we find
0 on 2
[dadrenvi (27)

where hereV~3 ,/ n/Vporan . The contribution tosh® is
therefore not jussh but sSh"P~ sh[1+V/(V+A)]. How-
ever this still means that for such leveth™™~ sh for any

strength of interactiotv, the sole role of which is to renor-

malize the random paih.

The corrections to the energies of the close levels due t

transitions to distant levels are

| shi*7|2
E=¢+ -
: ! ig,z E1TE&j

1=1,2 (29)

linear dependence of the differena€= 2B indicates that at
least as long as the two level treatment of the level repulsion
is valid the HF energy spacing distribution between such
states obeyB(A &)~ A& for smallAE without any gap, as in
the noninteracting systems.

Yet another way to obtain this result is to consider the
spacings between neighboring particle or hole levels. They
correspond, within the HF approximation, to the distances
between adjacent excited states of the system MWitHL and
N—1 electrons respectively. By the arguments given in the
preceding subsection these spacings follow the Wigner-
Dyson statistics.

E. A schematic model—Keeping only the average interaction
matrix elements

For a given realization of the random,; let us consider
the Hamiltonian in the eigenbasis df, for which h,gz
=£98,5. In this random basis also the matrix elements of
the interactiorV 4, 5 are random. Their statistical properties
are known, cf., Refs. 24 and are as follows. Only the matrix
elementsV,z,s and V,z5, have nonzero averages. Their

istributions are narrow with the width behaving likeviLin
the random matrix theoryM is the size of the single particle
space and like 1g in the random potential theoryg(is the
dimensionless conductancd3ased on these properties one
is tempted to approximate the interaction by retaining only
the matrix elements with non zero averages, i.e., to assume

where theg,’s are the energies obtained in the two level that

treatment. But we have just shown th#ti"P~ sh. There-
fore the correction term in expressiai28) is of order
(6h)?/A<6h and can be disregarded for aby Thus we
expect that the two level treatment for a couple of occupiedvith V{*?=V§* . Such a model has an easy exact solution.
or empty levels gives correctly the smalbehavior ofP(s) The Hamiltonian

for any interaction strength. To stress, the difference between

this case and the case of two levels on both sides &f that
there 6p also included a “nonperturbative” zero order term
coming from the mixing of the wave functions of the occu-
pied and the empty states.

VaB‘y(?: 5ayaﬁﬁvg.aﬁ) + 5(15537\/(2&8) ’ (29)

1
_ (O)A a ~
H—g & na+§;ﬁ Japhafg, (30)

whereld,, ;= V{*# —V{*® has exact eigenstates given by the
eigenfunctions of the occupation operatars
D. Addition spectrum vs excitation spectrum
The HF energies are interpreted as energies of quasiparti-
cles(for £;>¢¢) or quasiholesg;<e;). They are excitations
of a system with one added or one subtracted particle, i.ewith the corresponding eigenenergies

d=|n1,Ny ... Nk, (31)



5554 SHIMON LEVIT AND DROR ORGAD PRB 60

= (0) _ .(0)

03| _ EN+1T ENT EN+1T EN
B (a) N—1
%02 +In+int kZl (Int1k—Ing)- (39
R,
o1 Althoughe (), — &Q’+ Iy, 1 is positive definite the sum in
(35 is over 2N—2 random variables and can be large and
—_— - negative. Consequently it may happen that, ;<ey in
03 variance with the above condition on the ground state. In
’ () such a case a different occupation pattern must be sgught
- note that even if the condition is not violated there may exist
& 02 other solutions that are consistent with it and which have
R, lower energies We expect such crossings of levels across
0.1 the Fermi energy to take place whan- Jo= 2N, where
Jo and o, are the mean and standard deviationJgf, re-
. spectively.
03hH _ Similar crossings may occur for levels below or abaye
- (c) whenA=\2Ng, since for them |
30'2 Sj_Sj,]_:Sj(O)_Sj(g)l‘i‘z (\]jk_\]jflvk). (36)
A, k=1
01 This shuffling of levels tends to reduce the correlation be-
tween the energies of neighboring states. In particular one
= expects to find weaker level repulsion when eitheor the
0 5 10 15 . . .
s interaction strength;) are increased.

FIG. 1. Probability densitv distribufi f1h inas bet To verify the above discussion we have calculated the HF

- 1. Probability density distributions of the spacings eWeenenergies(34) using numerical values far® andJ,; gener-
(a) the last two hole levels below; , (b) the two levels across;, ated by the random potential model (:Tescr'bed in the next
and (c) the first two particle levels above;. The results were y P : : ! X

derived by solving the HF equations of the schematic model Eq.secuon' We took care to choose the lowest energy solution.

(30). sg’) andJ,; were generated by the random potential model_-rhe_res'“'ltS forP(s) _be!ow,_ across and_ab_o_\.@q are shown
with Coulomb interaction, described in Sec. IV, for a dot with 15 in Fig. 1. T_hes_e d_lstrlbutlons differ s!gnlflcal_"ltl_y from the
electrons W/it=1.2. andU/t=1.2. We also included a constant €Xact HF distributions calculated while retaining the off-
interaction part of strengtiy=6A,. The spacings are measured in diagonal elements df, cf., Figs. 2,3,6. The most prominent

terms of the noninteracting mean level spacing incorrect feature is the absence of level repulsioR {8) for
the levels below or above; . One can attempt to correct this
1 feature by using the average rather than the exact matrix

E({ni}):z en+ 52 Jijnin; . (32)  elements which ented,;. As it follows from the random

' Ll potential modef* such average matrix elements are func-

L . . tions of the corresponding eigenenergies, ng,/g=j(|sa
Like in the case of the constant interaction the exact result_SﬁD with j(x) a known function which is approximately

are reproduced by the HF approximation. The HF equations_lnx in two dimensions. Although this model reproduces

are the density of states in the vicinity of the Fermi energy it is
not expected to account for the correct correlations between

S&O)Jr% JapPpp d’i(a)—% JapPapdil B)=¢ (), neighboring levels as manifested R(s).
(33 IV. COMPARISON WITH NUMERICAL RESULTS
and are solved by;(a)= 6&;,. Therefore In order to substantiate the results of our analytical two
level treatment we have numerically solved the complete set
) of HF equations(2) derived from a tight-binding Hamil-
giT g +; Jin (34 tonian for a disordered two dimensional quantum dot. With
the labeling of the sites by a double indexj{ the one-body
where the sum is over the occupied levels. Hamiltonian is given by
We are interested in the ground state of the Hamiltonian +
(30). A general argument due to Ref. 23 guarantees that at h:iEj &i,j4 ;i

least for positive definitérepulsive interactions, which we

assume below, the HF ground state must be comprised of the + +

N lowest energy single particle HF levefs ,...,¢y . While _tz (@@ a8 j+H.C), (37
the ground state of the constant interaction model is obtained !

by filling the N lowest noninteracting states this need not bewheree; ; is the energy of the sitei () andt is a constant
the case for the present model. Consider hopping matrix element. Each of the energigs is chosen
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FIG. 2. Probability distribution&(s)= [gP(s’) ds’ of spacings FIG. 3. Same as Fig. 2 but for the spacing between the first two

between the last two hole levels just belew. The heavy lines particle levels just above the Fermi energy.

depict from top to bottom the numerical results fady/t

=0,0.4,0.8,1.2, and 1.6. The solid curves present the best fit téonvenient dimensionless measure of the strength of the in-

the data assuming a Wigner function with renormalized mean leveleraction isr = (€%/a)/e; wherea= M/ #7Nb is the average

spacingA. The inset containg®(s) for U/t=1.6 (histogram to- interparticle distance. In our cases=(U/t)M/167N

gether with its best fit to a Wigner function. =0.7U/t. Below we describe our results fdd/t=0.2
—1.6. Henceforth energy is quoted in units of the observed

randomly from a Gaussian distribution with the standard denoninteracting mean level spacing at the Fermi enexgy

viation W/2. We assume repulsiverlinteraction which was found to be larger by 7% then the clean value
A7t/M.
aﬁja;,awai,j The distribution function§ (s) = [§P(s’)ds’ of the spac-
V= Ui 4 m (39 ings between the last two occupiétble) levels and between
o ’ ' the first two empty(particle) levels are shown in Figs. 2 and
whereb is the lattice constant and = e?/b. 3. They are compared with the best fit to an integrated

The dot was approximated by a grid of =20x20  Wigner function with a renormalized mean level spacing
=400 sites with hard wall boundary conditions. Most of the These and the following results were obtained by averaging
numerical data was obtained for a dot filled wih=15  the HF spectrum of 15, 16, and 17 electrons over 450-500
— 17 spinless electrons and a disorder streWgth1.2t. Un-  realizations of the disorder. While the distributions vanish
der such conditions the dot was in the diffusive regime andjuadratically for small spacings increasing deviations from
the levels in the vicinity ok ; exhibited RMT statistics in the the Wigner function are observed when the interaction be-
noninteracting limit. For the low filling that we used the comes stronger. We find enhanced probability for the occur-
energy band was approximately parabolic and the Fermi errence of spacings smaller and much larger thefor large
ergy for a clean noninteracting system was-47tN/M. A values ofU/t. The renormalized mean level spacifgalso

12

U/t=0.2 1 4l U/=04 A
. |1
3
=
A 6 S’
a2
3 1
%0 01 oz FHIL 04 05 %0 02 02 06 08 10
) I & ’ J ’ ’ FIG. 4. Probability density distributions of the
20 — 08 parameted for various interaction strengths.
U/t=038 m U/t=16 -
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q
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FIG. 5._ Probability density dlstrlbutlons of the inverse partici- £, 7. The standard deviations 08 2P, —the Wigner distri-
pation ratio of the 10 hole and 10 particle levels aroundfor  pytion that fits best the distribution of spacings in the vicinity:pf
various interaction strengths. D,(16) andAe—the spacing between the two levels across the
. . . . . Fermi energy. The inset depicts the normalized fluctuations
increases with the strength of the interaction. The width Ofo(DZ)/(D2> (full diamonds and o(A€)/{A€) (empty diamonds
the fitted Wigner functiono(Py,)=0.52A is presented in  The results are for a dot with 15—17 electrons and disorder strength
Fig. 7. It grows approximately linearly withl/t. The mean w=1.2t.
level spacing between adjacent levels further away from the
Fermi energy decreases with the distance fremand ap-  small values of the interaction strength but develop asymme-
proaches 1. try towards the highl end whenU/t is increased. The mean

The distributions of the quantity defined in Eq(20) are  of the distribution scales with the interaction &g)
depicted in Fig. 4. They are approximately Gaussian for=1.7U/t. For the widtho(J)= (%) —(J)? we find o(J)

=0.168J/t+0.13(U/t)? over the range of parameters studied

0.6 (see Fig. 7. These fluctuations are responsible for the smear-
N U/t=0.2 ing of the distribution of spacings acrossas will be shown
204 below. A lengthy calculation using the random vector model
Ry 0.2 (RVM) gives for our system(Jy=2.1U/t and o(J)

' =0.032/t. The fact that the RVM result fofJ) is larger

then the observed one reflects the tendency of the system to

0.6 U/t=0.4 prefer a nonuniform density distribution that reduces the
%04 Coulomb energy. We believe that this is also the reason for
A, at least part of the enhancement of the actual fluctuations

0.2 relative to the RVM predictions. Typically we found the HF

eigenfunctiongboth particles and holg¢go have large am-

0.6 U/t=0.8 p!itude along the_periphgry of the dot, as gxpected from
_ ’ simple electrostatic considerations. The localizing effect of
=04 the interaction is evident from Fig. 5 where we present the
A 0.2 distribution of the inverse participation ratiol

=Mb*S; ;4*(i,j) averaged over the 10 particle and 10 hole

0.6 levels arounck; .

) U/t=12 In Fig. 6 we present the distribution for the spacitig
=04 between the HF levels across the Fermi energy together with
R 0.9 the distribution ofD,(16) calculated according to its defini-

) tion (12) and using the HF many body ground state energies

for 15, 16, and 17 electrons. We also compare them to the

0.6 U/t=1.6 analytic estimatg24). For its evaluation we used that
=04 interpolates between the values found from the Wigner func-
A, tions fitting P(s) below and aboves; and the numerical

0.2 m results for(J) ando(J). The two distributions evolve from

shifted Wigner functions at small values bf/t to an ap-
0 2 4 6 8 10 12 14 proximate Gaussian distributions as the interaction strength

5 is increased. The crossover occurs whenU/t~1. Around

FIG. 6. Probability density distributions of the spacing betweenthis point the fluctuations of the Coulomb gaf{2J) are
the levels across; (histogram$and ofD,(16) (broken lineg. The ~ comparable to the width of the Wigner function describing
solid curves correspond to the estimé2d). P(s) at the vicinity of the Fermi energfsee Fig. 7. Conse-
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FIG. 8. Same as Fig. 7 but for a dot filled with 10—12 electrons
and disorder strengtt/=1.6t.

guently the latter is smeared into a new more symmetric and
broader distribution. It is evident from Fig. 6 that Koopmans’
theorem breaks down for strong interactions, iR(Ae)
#P(D,). However it seems that the two distributions may
be viewed as shifted versions of each other having similar
shapes but somewhat different widttzee Fig. 7. The shift

of P(D,) towards lower values is expected and is due to the
change of the occupied levels in response to the additional 6 4 2 0 2 4 6
electron. This rearrangements, which is neglected by Koop-
mans’ theorem, tends to lower the electrostatic charging en- FIG. 9. The density of states neay. The results are for a dot
ergy. For reasons that are not clear to us our analytic estimafiled with 15-17 electrons and disorder strength= 1.2t.

for P(Ae) fits rather wellP(D5,).

b t\Ne_trhep?ated th%_nurge;;\(/:;alzl_cilgltjlau%nsf for thfosaime dOﬁansion of the concept of single particle level statistics by
ut with stronger disordej2=1.6t and fewer(10-13 replacing the non-interacting levels with their HF counter-

electrons. All of the effects reported above have been ob- dinalv it is of i i h
served for this case as well. The deviationR{fs) above or parts. Accordingly it is of interest to generalize the RMT

below ¢; from the Wigner function were more pronounced. program to study HF Hamiltonians of random systems. This

The fluctuations ofJ also increased and we foun(J) is a difficult tas_k due to the self-consistent nature of thg HF
~0.25U/t+0.06QU/t)2 with enhanced asymmetry in the problem. A_saﬁrst step we extended the_treatment of Wigner
shape of the distribution for strong interactions. The discrep(©' € statistics of spacings between neighboring levels. We
ancy betweerP(As) and P(D,) at larger, persisted al- were able to make rigorous statements about the probability
though the shapes of the two distributions and particularlyf© find two levels close to each other and speculated on the
their width were closer for this dot then for the one described'@ture of the distribution for arbitrary spaciggst as in the
above. Figure 8 summarizes the dependence of the fluctugoninteracting case Our analytical considerations and nu-
tions of the different quantities on the strength of the inter-merical simulations indicate that while the spacing statistics
action. between holgoccupied or particle (unoccupiedl levels is
Our calculations were done for a fixed number of par-qualitatively unaffected by the interactions they have a dra-
ticles. In order to facilitate comparison with a fixed chemicalmatic effect on the spacing across the Fermi energy. The
potential ensemble the Fermi energy of each spectrum in therobability distribution for this spacing evolves from the
ensemble was shifted to zero. The resulting density of stated/igner function in the noninteracting limit to a much
is plotted in Fig. 9. broader Gaussian-like distribution as the interaction strength
is increased. This crossover is driven by increasing fluctua-
V. CONCLUSION tion§ of the charg?ng energy of the system..
Since the spacings between hole or particle HF levels are
The statistics of energy levels and wave functions in non+elated to the neutral excitations of the system and the spac-
interacting disordered systems is well established and foling across the Fermi energy reflects its addition spectrum
lows the predictions of RMT. The effects of interactions in their statistics have experimental consequences. However, a
this context are relatively unexplored. The strategy adoptedirect comparison between our results and the recent experi-
by us here was to include interactions within the HF approxi-mental data on addition spectra of quantum 8dtéwhich
mation. While being the crudest of approximations it iSagrees in its general characteristics with our findjrigsm-
known to yield a reasonable description of the quasiparticlepaired by the limitation of our treatment to spinless elec-
properties in small systems. It also allows for a natural extrons. The inclusion of spin is desirable both on theoretical
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grounds and in order to explain the lack of any spin signaturevith the “pure state” conditionsim|=|my/=1. Inserting
in the above mentioned experimental data. this into (A3) and transferring to the left all terms which do
not depend om one obtains
ACKNOWLEDGMENTS -
_ _ E=B-m—3im-J-m. (A5)
We benefited from the valuable help of M. Milgrom. We
gratefully acknowledge useful discussions with Y. Levinson,The notation in(A5) stands for
R. Berkovits, O. Bohigas, E. Domany, A. Finkelstein, Y.
Gefen, A. Kamenev, D. Khmelnitskii, and A. Mirlin. D.O. E=Epr— %tr[h+tr(Vp)+5h]
has been supported by the Rothschild Foundation.
+ 2tr{tr[V(my- o)}
APPENDIX: THE TWO LEVEL HARTREE-FOCK -
PROBLEM + 3 ttr(V)],

In Sec. IlIC we outlined the way in which the density
matrix p changes under a variatiath of the random part of
the HF Hamiltonian. We argued that while in the case of two
close levels that are both occupied or empty the term
tr(VASp) does not alter the smadlbehavior ofP(s) it must

B= i tr{ofh+tr(Vp)+ sh]}

— 2 tr{tr[ 6V(mg- o)1},

be included in a self-consistent manner for a couple of close Jap=— 3t o?tr(Vo?)], (AB)
level residing on both sides af;. In this Appendix we will - 3 ) )
concentrate on the latter scenario assunirgA . andm-J-m=ZX; ,_;JapMaMy . Varying € with respect tan

Let us denote byy; the eigenfunctions di"P) and byg,  under the conditiogm|=1 one obtains
the eigenfunctions dit"" + sh("F)_ Then in the basis af/; -
and, the HF problem for two close levels on both sides of mx(B—J-m)=0. (A7)
et 1S This is a “magnetic form” of the equation@1). Of course
it could also be obtained by the direct substitution(Af).
a The “magnetic field” B contains the information about the
random parh+ sh of the HF Hamiltonian whereas the ma-
- trix J is the projection on the Pauli matrices of the interac-
Shypt |,J§="1,2 Vll2J593l) b=ea, tion matrix V, ;. taken in the subspace of the two stafls
and ¢,. For our general discussion we can diagonalize
This will reshuffle the components & which are random
a anyway.
The distanceAe between the eigenvalues (A1) is Ae

o -
e+ 5h11+| 3212 V11130p

J’_

( ohi+ | le , Va1130p3

- =tr{ (p5 — 161 ) (h+ 5h)"F] where due to orthogonality
(0) =
+le2 +5h22+|,321,2 V2|235PJ|)b—8b1 (Al) 4,07 =(1—m- &)/2. Therefore
with 8p;, the 2x 2 matrix Ae(B,J)=2|B—J-m(B,J)|, (A8)
. . (la*~1 ab* wherem(B,J) is a solution of(A7).
op=d1b1 —h1 = up Ibj2)" (A2) The equations are especially simple in the case when the

Hamiltonian and the wavefunctions are real. This corre-
and the normalization conditiofa|?+|b|?=1. The relation sponds to the orthogonal ensemble in the terminology of
between the matri®/ ;. , |=1,2, etc., and the original RMT. Only the projections owr; ando remain in this case.
V.., Will be discussed below. We will also need the part of The HF energy and the HF equation are, respectively,
the HF energy the minimization of which, with respect to
¢1, gives(Al) E=Bymy+Bsmg— 3 (Jymi+Jsm3), (A9)

=

Enel g1]=tr{[h+1tr(Vp)+ Sh]1 b7 m;B3;—mgB;+(J;—J3)mym3=0, (A10)

+ 3t V(pydi —24nihi )i}, (A3)  With the constrainmi+ms=1. In the above); andJs are
the eigenvalues of. The solution of(A10) are roots of a
The solution of the set of algebraic equatidAd) is par-  fourth order equation. Real roots are the extrema of the curve
ticularly simple if one uses the expansion in terms of Paulidefined by the intersection of the surfa@®9) and the con-
matrices, straint cylinderm?+m3=1. Only one real root must be se-
lected — that which minimizes.
11 =3 (1+m-0), Let us examine the energy spacing

Yl =35 (1+my- o), (A4) Ae=2y(By—J1m;)?+(B3—Jsmsy)? (A11)
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and determine when and how level crossings occur. In théhe two HF levelsnever crossaand one expects gap in the
absence of the interaction){=J3=0) Ae=0 at B;=B; probability distribution ofAe. In the last case of two positive
=0, reproducing the standard result. In the presence of theigenvalues the level spacing distribution in the vicinity of
interaction the level crossinge =0 occurs when Ae=0 will depend on the density afe =const lines close
to the ellipse(A13).

m=B1/J;, My=B3/Js. (AL2) The interactionV which determines); andJs is just VA
Due to the normalization constraint this can be fulfilled onlywhen the two levels:; and e, are not degenerate. In this
on an ellipse case we find fromA6) J,p=[(V1i210~ V1229/2]8ap- Thus
for a positive(negative definite? i.e., repulsive(attractive
interactionJ, =J;>0 (J;=J3<<0). When the levels are de-
generate one must extend the two levels treatment to include
all degenerate wave functions. However, if the degeneracy is
due to spin and the wave functions are separable spin-space
products, one can define an equivalent two level problem for

Bf B3
SN 1. (A13)

It is therefore sufficient to examine the minimum energy
solution on the ellipse. We note that the conditioA&2) are
consistent with equatiofA10), i.e., level crossings must oc- _ . . O .
cur at least for one of the solutions. However there is ndhne orbital parts with the interaction=V"+V. For this case
guarantee that this is also the minimum energy solution. In1= (V12127 2Vi221~ V1129 /2 ~and J3=[2V1215~ Vo
fact a detailed analysis reveals that the occurrence of levet (Vi111+V2229/2]/2. For suchV the signs of}; andJ; are
crossing for the minimum energy solution depends on théot uniquely related to the nature of the interaction. In par-
signs of the eigenvaluel andJ; as follows:(i) when both  ticular they may both be positive even for a repulsive inter-
signs are positive there are four real solutigheo minima  action. However, if this happens, we expect to find, due to a
and two maximaon the ellipse(A13) providedJ;>2J, or  general argumerif, another HF solutior(e.g., lacking spin
J;>2J5. Otherwise there are only two real solutiof@ne degeneracywith lower total energy for which the levels do
maximum and one minimum The solution withAe=0 is  NOt Cross.
always the(highesi maximum.(ii) when one of the eigen-  The casel; =J3=1J is particularly simple since the ellipse
values is negative and another positive there are four redlegenerates into a circle and one obtains
solutions on the ellipséwo minima and two maxima The
solution with Ae=0 is either a metastable minimum or a Ae(B,J)=2|B+]|, (A14)
maximum.(iii) only when both eigenvalues are negative the
solution with Ae=0 coincides with the absolute minimum where B=\/le+ B32. For positiveJ this result leads, after
of the HF energy. choosing for simplicityP(B) of a Gaussian form, to the
In the first two cases the minimum energy solution alwaysshifted Wigner distribution, Eq22). For negative] (attrac-
has a nonzero level spacing. Consequently for dya@mdJ;  tive interaction we find

lz[(2|3| —s)e” TSP 4 (2] ]|+s)e” @SN 5|
P(s;J)= - . (A15)
sz (2 +ee” AEITIT 5=y

This distribution is a sum of two, mirror reflected and shifted Wigner distributions resulting from the two roats of
=Ag(B,J). The most important feature to note (A15) is the nonzero probability?(s=0). This is a consequence of the
linear dependence dfe(B,J) atB=|J|.
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