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Planar cyclotron motion in unidirectional superlattices defined by strong magnetic
and electric fields: Traces of classical orbits in the energy spectrum
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We compare the quantum and the classical description of the two-dimensional motion of electrons subjected
to a perpendicular magnetic field and a one-dimensional lateral superlattice defined by spatially periodic
magnetic and electric fields of large amplitudes. We explain in detail the complicated energy spectra, consist-
ing of superimposed branches of strong and of weak dispersion, by the correspondence between the respective
eigenstates and the ‘‘channeled’’ and ‘‘drifting’’ orbits of the classical description.@S0163-1829~99!04732-3#
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I. INTRODUCTION

In the last decade there has been a constant interest i
transport properties of the periodically modulated tw
dimensional electron gas~2DEG!. In particular, in the pres-
ence of a lateral modulation of a one-dimensional chara
the resistivity may be strongly anisotropic, which essentia
reflects the anisotropy of the electronic states. Two type
modulations can be achieved in the experimental devi
electrostatic potential modulations1–4 and, more recently
magnetic-field modulations.5–8 Weak modulations of both
types lead already to pronounced magnetoresistance ef
in the presence of an average magnetic fieldB0 applied per-
pendicular to the 2DEG. These effects occur at low and
termediateB0 values, well below the magnetic quantum r
gime where Shubnikov–de Haas oscillations appear. At v
small values ofB0 a pronounced positive magnetoresistan
is observed, followed at intermediateB0 values by the
‘‘Weiss oscillations’’ due to commensurability effects. Bo
effects are adequately understood within a classical trans
calculation based on Boltzmann’s equation, and can
traced back to the predominance of different types of cla
cal trajectories.9–11

The positive magnetoresistance is understood as ca
by ‘‘channeled orbits’’ which exist if the modulation is su
ficiently strong or, equivalently, the average magnetic field
sufficiently small. For electric modulation they occur ne
the minima of the modulation potential~‘‘open’’ orbits10!,
and for magnetic modulation near the lines of vanishing to
magnetic field~‘‘snake’’ orbits12!. They are always confined
within a single period of the modulation, which we choose
x direction. They are wavy trajectories allowing for fast m
tion of electrons with velocities within small angles arou
the direction of translational invariance (y direction!. These
channeled orbits occur in addition to the ‘‘drifting orbits,
which are self-intersecting trajectories with loops~along
each of which the direction of the velocity changes by 2p),
so that usually a low drift velocity in they direction results.
PRB 600163-1829/99/60~8!/5536~13!/$15.00
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For sufficiently smallB0, drifting orbits may extend over
many periods of the modulation. At sufficiently largeB0
~sufficiently small modulation amplitudes! only the drifting
orbits survive. The ‘‘Weiss oscillations’’ manifest a com
mensurability effect depending on the ratio of the extent
drifting orbits ~at the Fermi energy! and the modulation pe
riod. With increasing modulation strength, the positive ma
netoresistance becomes more pronounced and extend
larger B0 values, suppressing progressively the low-B0
Weiss oscillations.10 This effect is well understood within
the classical calculation,11 if both types of trajectories are
adequately included, and it has recently also been obta
by a quantum calculation for a strong modulation.13

A qualitatively new type of magnetoresistance effect h
recently been observed by Yeet al.14 on samples with an
extremely strong magnetic modulation. Samples with a s
face array of ferromagnetic microstrips were measured
tilted magnetic fields, so that the applied magnetic field ha
large component parallel to the surface, producing a la
magnetization of the ferromagnetic strips, while only t
small perpendicular component determined the average m
netic field B0 in the 2DEG. In this way a huge positiv
magnetoresistance with superimposed Shubnikov–de H
like oscillations was obtained at low values of the avera
magnetic field, at which no magnetic quantum effects sho
be expected for weak modulation.14 It rather seems that the
quantum oscillations are induced by the large-amplitude
riodic magnetic modulation field. Such conditions require
quantum transport theory and, as a first step, the underst
ing of the quantum electronic states of a 2DEG with a stro
magnetic modulation. This is the motivation of the prese
work.

Channeled and drifting quantum states in linearly vary
magnetic field are already discussed by other authors.12,15

The Schro¨dinger equation for periodic magnetic fields alte
nating in sign has been solved previously, but only for t
case when the average field is zero.16 In the present paper we
shall study the quantum electronic states in strong perio
5536 ©1999 The American Physical Society
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magnetic fields with a nonvanishing average and compa
with the case of a strong electric modulation. In both situ
tions rather complicated energy spectra are obtained,
striking qualitative similarities and quantitative difference
For the case of strong electric modulation, such a com
cated energy spectrum has recently been published,13 but
without an attempt at explanation. We will demonstrate
this paper that a close comparison with classical mot
leads to a detailed and intuitive understanding of these s
tra and the corresponding eigenstates.

In Sec. II we start with some general remarks on the
lation between quantum and classical description of the
electron motion in one-dimensional~1D! lateral superlat-
tices, and we introduce suitable reduced units. In Sec. III
focus on the effect of a simple harmonic magnetic modu
tion of arbitrary strength. In Sec. IV we include an elect
modulation, which requires a somewhat different analyti
procedure. The inclusion of electric modulation seems a
necessary from the experimental point of view, since
ferromagnetic strips on the sample surface introduce a p
odic stress field in the sample, which acts as an elec
modulation on the 2DEG. Finally, in Sec. V we summari
the essential features derived in the paper and extend
discussion beyond the model of simple harmonic modu
tions. Some of the present results have been recently
lished in a preliminary form.17

II. GENERAL REMARKS

We consider a~noninteracting! 2DES in thex-y plane
subjected to a magnetic field withz componentBz(x)5B0
1Bm(x) and an electrostatic field inx direction leading to a
potential energyU(x). Our aim is a close comparison of th
classical and the quantum description of the electron mo
~in terms of orbits and wave functions, respectively! in such
fields, especially in the case thatU(x) and Bm(x) are peri-
odic in x with the same perioda and vanishing average va
ues.

To evidence the translation invariance iny direction in the
~either classical or quantum! Hamiltonian

H5
1

2m
~p1eA!21U, ~1!

we describeBz(x) by anx-dependent vector potentialA(x)
5A(x) ey with A(x)5xB01Am(x) and Am(x)
5*0

xdx8Bm(x8). Theny is a cyclic variable and the canon
cal momentumpy is conserved, and one obtains a~one-
dimensional! effective Hamiltonian H(X0)5px

2/2m
1V(x;X0). For B0Þ0, the effective potential can be writte

V~x;X0!5
m

2
v0

2S x2X01
Am~x!

B0
D 2

1U~x!, ~2!

whereX052py /eB0 is the center coordinate of the effectiv
potential andv05eB0 /m is the cyclotron frequency, both in
the absence of modulation.

In the quantum description, the reduction to a on
dimensional problem is achieved by the product ans
Cn,X0

(x,y)5Ly
21/2exp(ipyy/\)cn,X0

(x) for the energy eigen-

functions, whereLy is a normalization length, and the dis
crete quantum numbern50,1,2, . . . counts the nodes of th
it
-
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reduced wave functioncn,X0
(x). If U(x) and Am(x) are

bounded, thecn,X0
(x) drop Gaussian-like foruxu˜`, and

for a fixed value of the quasicontinuous quantum numberX0
the energy spectrumEn(X0) is discrete.

In the classical description, we use the equationmvy
5py1eA(x), which may also be derived directly from New
ton’s equation, to eliminate the velocityvy . The effective
motion inx direction is determined byH(X0)5E. Similar to
the wave functions, the orbits for given constants of moti
X0 and E, are bounded in thex direction; however, the en
ergy E is a continuous variable. For a givenE5EF , each
positionx @with U(x),EF] is the turning point of two orbits
which are characterized by the center coordinates11

X0
6~x!5x1

Am~x!

B0
6R0A12

U~x!

EF
, ~3!

obtained from H(X0)5EF for vx5px /m50. Here R0
5vF /v0 is the cyclotron radius of electrons moving wit
energyEF5mvF

2/2 in the magnetic fieldB0. For givenEF

and X0, orbits exist in intervals in whichX0
2(x)<X0

<X0
1(x) holds. This allows a convenient classification of t

possible orbits at fixed energyEF and for varyingX0.11 Of
course, the same classification can also be done by dire
investigating the effective potential. This may be preferred
one is interested in orbits at different energies but the sa
X0.

The calculation of the orbits is a simple textbook proble
but must in general be done numerically. In accordance w
the translational symmetry of the problem, we will in th
following not distinguish orbits which differ only by a rigid
shift in they direction. If an electron is at timet i at position
(xi ,yi) on an orbit characterized by the constants of mot
EF and X0, with turning pointsxl and xr (xl,xi,xr), it
moves toward one of the turning points so that at time

t~x;X0 ,EF!5t i1E
xi

x dx8

uvx~x8;X0 ,EF!u
~4!

it is at position„x,y(x;X0 ,EF)…, with

y~x;X0 ,EF!5yi1E
xi

x vy~x8;X0!

vx~x8;X0 ,EF!
dx8, ~5!

where

uvx~x;X0 ,EF!u5vFA12V~x;X0!/EF

5v0A@X0
1~x!2X0#@X02X0

2~x!#

and

vy~x;X0!5~v0/2!@X0
1~x!1X0

2~x!22X0#.

If at one of the turning pointsxl or xr , wherevx(x;X0 ,EF)
50, the derivative]V(x;X0)/]x vanishes, we call this turn
ing point and this orbit ‘‘critical.’’ At critical turning points
the integrals~4! and ~5! diverge, so that the critical orbits
there asymptotically approach straight lines parallel to thy
axis. For noncritical orbits the integrals~4! and~5! converge
asx approaches the turning points, and the total orbit can
composed out of right-running (vx.0) and left-running
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(vx,0) pieces with finite traverse timeT(X0 ,EF)

5*xl

xrdx/uvx(x;X0 ,EF)u. The probability density of finding

the electron at positionx is

W~x;X0 ,EF!51/@T~X0 ,EF!uvx~x;X0 ,EF!u#.

This is the classical analog toucn,X0
(x)u2.

If U(x)5U(x1a) and Bm(x)5Bm(x1a) are periodic
with perioda, as we will assume in the following, the effec
tive potential, Eq.~2!, has the symmetryV(x1a;X01a)
5V(x;X0). As a consequence, the energy spectrum is a
periodic, En(X01a)5En(X0), and can be restricted to th
‘‘first Brillouin zone’’ 0 <X0<a. The eigenfunctions can b
taken to satisfycn,X01a(x)5cn,X0

(x2a). The correspond-

ing classical symmetry is that an orbit characterized byEF
andX01a differs from that characterized byEF andX0 only
by a rigid shift of amounta in the x direction.

The dispersion of the energy bandsEn(X0) implies a
group velocity in they direction,

^n,X0uvyun,X0&52
1

mv0

dEn~X0!

dX0
, ~6!

which is the expectation value of the velocity operator in
energy eigenstatecn,X0

. It is the quantum equivalent to th
classical drift velocity, i.e., the average velocity~in the y
direction! along the corresponding classical orbit. The dr
velocity in the x direction vanishes, since the orbits a
bounded in thex direction.

Suitable units

For an economic comparison of classical and quan
aspects it is important to use suitable length and energy u
which are meaningful for both the quantum description a
the classical limit. By doing so, we will see that the classi
features depend on fewer scaled parameters than the q
tum ones. To be specific but still rather general, we assu
in the following periodic modulations of the formBm(x)
5Bm

0 b(Kx) andU(x)5V0 u(Kx) for the magnetic and the
electric modulation, respectively, whereb(j) and u(j) are
dimensionless periodic functions with period 2p and vanish-
ing average values. ThusBm(x) and U(x) have the same
perioda52p/K, but may have different shapes and phas
In the numerical examples we will use for bothb(j) and
u(j) simple cosines, eventually with a phase shift.

The average magnetic fieldB0 sets, with the magnetic
length l 05A\/(mv0) and the cyclotron energy\v0, both a
length and an energy scale, which are useful for quan
calculations, but have no meaning for the classical mot
For the discussion of commensurability effects, such as
Weiss oscillations, the cyclotron orbits must be compa
with the perioda of the modulation. Thereforea is a natural
choice for the lengths unit. The choice of a suitable ene
unit is motivated as follows.

Classically,B0 determines only the cyclotron frequenc
v0, and one needs an independent lengthl to define an en-
ergy scaleVmag5mv0

2l 2/2. Using l as the length unit, we
o

e

t
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m
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may define dimensionless variablesj5x/ l and j05X0/ l .
The effective potential, Eq.~2!, then can be written as
V(x;X0)5Vmagṽ(j;j0) with

ṽ~j;j0!5@j2j01s a~Kl j!/Kl #21w u~Kl j!, ~7!

wheres5Bm
0 /B0 , a(z)5*0

zdz8b(z8), andw5V0 /Vmag. In
the quantum description, the kinetic energy opera
2(\2/2m)d2/dx252El d2/dj2, introduces an energy scal
El5\2/(2ml2), which has no classical analog. Introducin
the energy ratioa5El /Vmag, we write the effective Schro¨-
dinger equation as

F2a
d2

dj2
1 ṽ~j;j0!2 «̃n~j0!G c̃n,j0

~j!50, ~8!

with «̃n(j0)5En(X0)/Vmag and c̃n,j0
(j)5Al cn,X0

(x).

If we would take l 5 l 0, we hadVmag5El5\v0/2 and
thus simplya51. The effective potential Eq.~7! would then
depend on the constant of motionj0 and, in addition, on
three dimensionless model parameters,s, w, and Kl 0. To
specify an eigenstate or, in the classical description, a tra
tory, one further needs an energy value«̃ as a second con
stant of motion. A description that, for fixed constants
motion, needsthree parameters to specify the effective p
tential and, furthermore, relies onl 0 and\v0, which have no
meaning in classical mechanics, is rather clumsy and
acceptable.

Instead we takel 51/K and, therefore,Vmag5Vcyc, where
Vcyc5mv0

2/(2K2) is the energy of a classical cyclotron orb
of radius 1/K in the homogeneous magnetic fieldB0. Now
the effective potential Eq.~7! depends only on thetwo di-
mensionless modulation strengthss andw5V0 /Vcyc, which
both are well defined within the classical approach. Also
constants of motion,j05KX0 and «̃5E/V cyc5(KR0)2, in-
cluding the dimensionless version of Eq.~3!,

j0
6~j!5j1s a~j!6A«̃2w u~j!, ~9!

remain meaningful in the classical limit. This choice of un
will also be very useful for a systematic discussion of t
quantum-mechanical energy spectra. Quantum mecha
enters the effective Schro¨dinger equation~8! only via the
parametera5( l 0K)4, which scales the kinetic energy. It de
termines the only true quantum aspect of the spectr
namely the spacing of the energy levels«̃n(j0). We will see
in Sec. III B that all the essential structural features of t
energy spectrum, e.g., the complicated backfolded struc
due to the coexistence of ‘‘channeled’’ and ‘‘drifting’’ state
are determined solely by the ‘‘classical’’ parameterss andw.
The density of the quantized levels«̃n(j0), on the other
hand, increases with increasing ratioa/ l 0.

As a simple example one may consider the well kno
case of a weak electric or magnetic cosine modulation, wh
leads to modified Landau bands of oscillatory width.2,4,18,19

The bandwidth assumes minima near the ‘‘flat band’’ en
gies El

65m(v0a)2(l61/4)/8, with ‘‘1’’ ~‘‘ 2’’ ! for mag-
netic ~electric! modulation andl51, 2, . . . .These flat band
energies are distinct multiples of our energy unitV cyc, and
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occur at«̃l
65p2(l61/4), independent of the special valu

of the model parametersB0 anda. The level spacing, on the
other hand, is of the order\v0 and depends in our units o
\v0 /Vcyc52l 0

2K252Aa.

III. MAGNETIC COSINE MODULATION

We first consider a pure magnetic modulation,U(x)[0,
Bm(x)5Bm

0 b(Kx), so that the effective potential Eq.~7! be-
comes

V~j;j0!5Vcyc@j2j01s a~j!#2. ~10!

For s50 one obtains the well known Landau levels and
Landau oscillator wave functions,f nX0

(x). We use the se

f nX0
as the basis of our Hilbert space in order to obt

numerical solutions forsÞ0, by numerical diagonalization
of H(X0). The electron effective mass is that of GaAs,m
50.067m0. We further assume spin degeneracy. For the
merical parameters chosen here the size of the basis will
between 150–300 Landau levels.

Before discussing the numerical results we summa
some properties of the effective potential and of Eq.~9!,
which now reduces to

j0
6~j!5j1s a~j!6KR0 . ~11!

For a fixedj0 the local extrema of the effective potentia
given by ]V(j,j0)/]j50, are the points where the tota
magnetic field is zero, i.e., the roots of

11s b~j!50, ~12!

and the points where the effective potential is zero, i.e.,
roots of

j2j01s a~j!50. ~13!

An important aspect for the following discussion is that t
roots of the first kind, Eq.~12!, if existent, are independent o
j0, while those of the second kind, Eq.~13!, do depend on
j0. We will see that orbits withj values near roots of the
first kind are channeled, while those withj values near roots
of the second kind are drifting orbits. The analytic depe
dence of the effective potential on the relevant position
ordinatej is determined by the modulation strengths. There-
fore the number of its possible zeroes, the classification
orbits, and the energy spectrum depend critically on the
rameters. To demonstrate this, we choose in the followi
examplesb(j)5cosj, and consequentlya(j)5sinj.

A. Weak modulation, s<1

For s,1, the effective potential has exactly one minimu
of the second kind for each valuej0, which is due to the
confinement by the average magnetic field. The functi
j0

6(j) in Eq. ~11! have no extrema. For each valuej0 they
determine exactly one orbit, which is a drifting cyclotro
orbit. By this we mean a self-intersecting orbit consisting
loops along each of which the azimuth angle in veloc
space,w5arctan(vy /vx) increases by 2p. A typical example
is illustrated in Fig. 1 fors50.5, j05p/2 ~i.e., X05a/4),
and two energy valuesEF . Figure 1~a! shows the effective
e

-
ry

e

e

-
-

of
a-

s

f

potential. For a given energyE5EF ~horizontal line! a clas-
sical orbit exists whereV(j;j0)<EF . Figure 1~b! shows the
location of the turning points as the crossing points of
horizontal linej05p/2 with the functionsj0

6(j). The cor-
responding drifting orbit exists in the interval withj0

2(j)
<j0<j0

1(j). The orbits in real space are illustrated in Fi
1~c!. In Fig. 2 we plot the corresponding quantities fors
50.5 andj05p ~i.e., X05a/2). In this case the effective
potential is symmetric with respect to the center coordin
X0. As a consequence, the orbits are closed and their
velocity in they direction is zero.

For small energies,EF /Vcyc5(KR0)2,p2 ~i.e., 2R0
,a), the extents of the orbits in thex direction are smaller
than a modulation period and essentially determined by
local values of the total magnetic field. At high energie
EF /Vcyc@1, the orbits extend over several periods of t
modulation and the extent of an orbit, i.e., the width of t
effective potential valley at the corresponding energy, is
termined by the cyclotron radius in the average magn
field (xr2xl'2R0).

In Fig. 3~a! we display the first 50 energy bandsEnj0

calculated from the~first 150! original, degenerated Landa
levels, for s50.5. The level spacing of the lowest-energ
bands is seen to follow the local value of the total magne
field, Fig. 3~b!. This is expected from the local approxima
tion Enj0

'(n11/2)\eB(j0)/m, which is valid if the extent

of the wave functionscn,X0
(x) is smaller than the modula

tion period. With our energy unitVcyc the apparent leve

FIG. 1. ~a! Effective potentialV(j;j0) for magnetic cosine
modulation withs5Bm

0 /B050.5 andj0/2p51/4. For a given en-
ergy EF /Vcyc5(KR0)2 ~horizontal lines! classical orbits exist
where V(j;j0)<EF . Solid line, EF517.6Vcyc; dotted line, EF

51.18Vcyc. ~b! Locations of turning pointsj0
6(j) for theEF values

indicated in~a!, same coding. Orbits with energyEF andj0 exist in
an interval withj0

2(j)<j0<j0
1(j). ~c! Corresponding orbits inxy

space, three cycles are shown each, the sense of motion is
filled to open dot.
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spacing of energies which are independent of the perioa
becomes proportional toAa. For example, if the local ap
proximationEnj0

'(n11/2)\v(j0) holds for Enj0
,4Vcyc,

as in Fig. 3~a!, this implies that it holds forn11/2
,4Vcyc/@\v(j0)#52@v0 /v(j0)#/Aa. Thus, the number o
bands which are well described by the local approximat
increases quadratically with increasing modulation perioda.

The local approximation fails at higher energies when
width of the wave functions becomes larger than the per
of the modulation, and the structure of the energy spect
changes. Indeed it is well known from the limit of very wea
magnetic modulation,s!1, that in contrast to this local ap
proximation the bands become flat at the energiesEl /Vcyc
5p2(l11/4), for l51,2, . . . .18,19,6These flat band condi

tions are the quantum equivalents to the classical comm
surability conditions leading to the Weiss oscillations
magnetotransport, and do not change their positions in a
like Fig. 3~a!, even if we change the modulation period.
larger modulation perioda just leads to a higher density o
the energy bands.

In Fig. 3~c! we plot for j05p/2 the effective potentia
and the square of the energy eigenfunctions for the ene
values considered in Fig. 1. Width and location of the wa
functions in the effective potential is in close agreement w
that of the corresponding classical orbits. In Fig. 3~d! we plot
the corresponding quantities for the symmetric situationj0
5p, to be compared with Fig. 2. These wave functions
long to ~relative! extrema of the energy bands, and thus ha
zero group velocity, in agreement with the zero drift veloc
of the corresponding classical orbits. The wave functions
Fig. 3~c! belong to finite energy dispersion and describe m
tion in the positive (n53) and the negative (n543) y direc-
tion, respectively, in agreement with the correponding cl
sical orbits in Fig. 1. For large quantum numbersn and weak

FIG. 2. As Fig. 1, butj0/2p51/2. The effective potential is
symmetric and therefore the guiding center of these drifting or
does not drift in~c!.
n

e
d
m

n-

lot

gy
e
h

-
e

n
-

-

modulation the group velocities can be shown to redu
quantitatively to the drift velocities of the correspondin
classical orbits.

In Fig. 4 we consider the ‘‘critical’’ situations51. The

derivatives j0
68(jex)50 and j0

69(jex)50 vanish for jex

5(2p11)p (p integer!, i.e., for the positions where th
magnetic field vanishes, Eq.~12!. For all values ofj0 the
effective potential~7! becomes flat at these pointsjex @see
Fig. 4~c!#. The classical situation is as fors,1 with the
exception that forj05jex6KR0 there are critical orbits
which asymptotically approach straight lines parallel to thy
axis on their left~for 1) or their right ~for 2) side, where
B(x)50. The dashed lines plotted over the energy spectr
of Fig. 4~a! show the evolution of the flat regions of th
effective potential withj0, i.e., the parabolas resulting from

s

FIG. 3. ~a! Landau bands fors50.5. B050.2 T anda5800 nm,
so thatVcyc50.85 meV anda50.041 and~b! total magnetic field
B(j0). The marked points on Landau bands 43 and 3 are the s
for which the wave functions are shown in~c! and ~d! in arbitrary
units together with the corresponding effective potentials~dashed
line!. The wave functions are plotted with an offset, indicating t
energy of the state. The states of~c! and ~d! are to be compared
with the classical orbits in Figs. 2 and 1, respectively.
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V(jex ;j0) with p50 andp561. In the first Brillouin zone
these lines are seen as the backfolding of the lowest para
centered onjex with p50, and they are an indication of
kind of a free-electron motion along the lines where the m
netic field is zero. Close to these parabolas the energy b
have large dispersion near inflexion points, and the ene
separation between adjacent bands is minimum. Similar
tures have been obtained in the energy spectra for si
magnetic wells by Peeters and Matulis.20 In other words,
such states experience a weak effective magnetic field, du
the constant effective potential over a substantial spatia
gion. The wave functions corresponding to states with la
energy dispersion have large amplitudes at the position
flat effective potential~vanishing total magnetic field!. This
is demonstrated for two selected states@(n543, j053.18)
and (n55, j050.50)] in Fig. 4~b!, together with the prob-
ability distributions of the corresponding classical orbits. T

FIG. 4. ~a! Energy spectrum fors51. B050.1 T anda5800
nm, so thatVcyc50.21 meV anda50.17. The dashed lines sho
V„j0 ,(2p11)p… with upu<1. ~b! Quantum-mechanical~thick
lines! and corresponding classical~thin lines! probability densities
for two states. The chosen states are marked with dots in~a!. ~c!
Effective potentials and classical orbits forEF57Vcyc,j050.5
~solid lines! and EF539.6Vcyc,j053.18 ~dotted lines!. The hori-
zontal lines indicate the Fermi energy.
ola
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ds
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effective potentials together with the corresponding class
orbits are plotted in Fig. 4~c!. The trajectory corresponding
to the state (n55, j050.50! is close to a critical orbit with a
critical right turning point. This leads to an enhanced pro
ability density near that point, which is also reflected in t
quantum mechanical probability density. We will see that
slightly stronger modulation a type of nearly free motio
occurs with energies close to the parabolasV(jex ;j0) in the
energy spectrum.

B. Strong modulation, s>1

For s.1, j0
68(j)50 at a(j)[cosj521/s, and j0

6(j)
has extrema at the following positions:

minima: jmin
(p) 5~2p11!p1d,

maxima: jmax
(p) 5~2p11!p2d, ~14!

where p is an integer andd5arctanAs221. The values at
these extrema are

j0
6~jmin

(p) !5~2p11!p2g~s!6KR0 ,

j0
6~jmax

(p) !5~2p11!p1g~s!6KR0 , ~15!

where

g~s!5As2212arctanAs221.0. ~16!

The effective potentialV(j;j0) has extrema of the first kind
Eq. ~12!, at the same positions. The extrema with valu
V(jmin

(p) ;j0)5Vcyc@(2p11)p2g(s)2j0#2 are minima if
(2p11)p.j0, and maxima otherwise, and those with va
ues V(jmax

(p) ;j0)5Vcyc@(2p11)p1g(s)2j0#2 are maxima
if (2 p11)p.j0, and minima otherwise.

1. Classical approach

The number of zeroes ofj0
6(j)2j0 depends on boths

and j0. If g(s),p, j0
6(j)2j0 has at most three zeroes.

j05j0
6( ĵ) for any ĵ satisfyingjmax

(p) , ĵ,jmin
(p) , i.e., if (2p

11)p2g(s),j07KR0,(2p11)p1g(s), j0
6(j)2j0 has

three zeroes. The same argument holds for Eq.~13!, i.e., the
effective potential has three zeroes. For (2p21)p1g(s)
,j07KR0,(2p11)p2g(s), on the other hand, there ex
ists only a single zero.

In Fig. 5 we show, fors52 @i.e., g(s)50.685], an ex-
ample where the effective potential has a single zero n
j/2p50.1, so that for sufficiently low energy only a sing
drifting orbit exists. The number and the type of the possi
orbits depend on the energy. At the highest energy show
Fig. 5~a! two orbits exist@solid lines in Fig. 5~d!#. There is a
drifting cyclotron orbit extending over more than two pe
ods of the modulation, with the left turning point onj0

1(j)
@uppermost curve in Fig. 5~c!# near j/2p521.1, and the
right turning point onj0

2(j) @bottom curve in Fig. 5~c!# near
j/2p51.3. Near the relative minimum ofj0

2(j) close to
j/2p51.7, which corresponds to a relative minimum of t
effective potential@thick dashed line in Fig. 5~a!#, there ex-
ists a ‘‘channeled orbit’’ moving in the positivey direction.
We define channeled orbits as trajectories which have b
turning points either onj0

1(j) or onj0
2(j), in contrast to the
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drifting orbits with one turning point onj0
1(j) and the other

on j0
2(j). In contrast to the self-intersecting drifting orbit

the channeled orbits are always confined to less than a s
modulation period, and they move without self-intersectio
in a relatively narrow interval of angles around the posit
or the negativey direction@see Fig. 5~d!#. Note that the cur-
vature of the trajectories changes sign at the positions w
the total magnetic field vanishes, see Fig. 5~b!.

If we lower the energy toE/Vcyc540, we arrive in Fig. 5
at a situation where only a single drifting orbit exists~dashed
lines!. In general, the extent in thej direction of the drifting
orbits decreases with decreasing energy. At the lowest
ergy indicated in Fig. 5@lowest dotted line in~a! and inner-
most lines in~c!#, we have again a drifting orbit nearj/2p
50.1 and a channeled orbit aroundj/2p50.6. At this low
energy, the extent of the drifting orbit is considerably sma
than the modulation period.

In Fig. 6 we show, for the same modulation strengths
52, a situation,j05p, where the effective potential ha
three zeroes, as is emphasized in the inset of Fig. 6~a!. These
zeroes are separated by two shallow maxima. If a~positive!
E value below these maxima is chosen, one finds three
row drifting cyclotron orbits located around the zeroes of
effective potential~solid lines!. For higher energies one ma
find either one drifting and two channeled orbits~dotted
lines! or a single drifting orbit~e.g., for 0.5,E/Vcyc,30, not

FIG. 5. ~a! Effective potentialV(j;j0) for magnetic cosine
modulation withs5Bm

0 /B052, andj0/2p50.2. For given energy
EF ~horizontal lines! classical orbits exist whereV(j;j0)<E F . ~b!
Total magnetic field.~c! Locations of turning pointsj0

6(j) for the
EF values indicated in~a!. The outermost pair of lines belongs t
the largestEF value; the innermost pair belongs to the smallestEF

value. The constant of motionj0 appears as a horizontal line in th
plot (j0/2p50.2 is indicated!. Orbits with fixed energy@i.e., fixed
curvesj0

6(j)] and this value ofj0 exists in intervals withj0
2(j)

<j0<j0
1(j). Orbits, plotted in ~d!, with one turning point on

j0
2(j) and the other onj0

1(j) are drifting orbits, the others ar
channeled orbits~see text!.
le
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re
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indicated in the figure!. Actually the ‘‘drifting’’ orbits lo-
cated aroundj5p have zero drift velocity due to symmetr
reasons.

In summary, for 0,g(s),p we find for given values of
the constants of motion,j0 and E, at least one and at mos
three orbits. For larger values ofs5Bm

0 /B0, more orbits may
exist for a given pair ofj0 andE values. A careful analysis
of the extrema of the functionsj0

6(j) shows, e.g., that for
p,g(s),2p between three and five orbits belong to t
same pair ofj0 andE. We will come back to this case below

Apparently the plots of the effective potentialV(j;j0) are
very useful to see which orbits are possible for a fixed va
of the center coordinatej0 and different energies. Channele
orbits exist in side valleys near relative minima ofV(j;j0).
If, on the other hand, the energy of the motion is given,
plots of the locations of turning pointsj0

6(j) is very useful
to classify the possible orbits for different values ofj0.
Channeled orbits exist near relative minima ofj0

2(j) and
relative maxima ofj0

1(j).

2. Quantum calculation

The energy spectra become more complicated in the c
s.1, Figs. 7 and 8. Regions of different character can
distinguished in these spectra. Areas, where the energy b
are nearly parallel lines with low dispersion~region I! alter-
nate with regions, where steep bands with large dispers
seem to cross bands with weak dispersion~region II!. In fact
the energy bands never cross each other and the app
intersections are anticrossing points with exponentially sm
gaps.

FIG. 6. As in Fig. 5 but fors52, andj0/2p50.5. Horizontal
lines in ~a! are forEF /Vcyc540 andEF /Vcyc50.3. The inset shows
V(j;j0) enlarged betweenj50 and j52p, where it has three
zeroes.~c! For both indicated energies there exist three orbits, o
drifting and two channeled orbits forEF /Vcyc540, and three drift-
ing orbits for EF /Vcyc50.3, plotted in~d!. Since the effective po-
tential is symmetric, there is no guiding center drift for the cent
drifting orbits.
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The boundaries of these regions are given by class
values only. If the energy is scaled by the classical cyclot
energyVcyc, for fixed modulation strengths the regions II
are surrounded by the parabolasE5V(jmin

(p) ;j0) and E
5V(jmax

(p) ;j0) which, for upu<2, are indicated by dashe
lines in the spectra. For any fixedj0 such a pair of parabola
gives the minimum and the maximum value of a certain s
valley of the effective potentialV(j;j0) @extrema of the first
kind, see Eq.~12!#. The energy interval in between thes
values indicates the depth of that valley, i.e., an energy ra
in which classically channeled orbits exist, in addition to t
drifting orbits.

In Fig. 7~b! the effective potential is plotted for the sym
metric casej05p ~dotted line!, corresponding to the class
cal situation described in Fig. 6. Also shown are the sta
for n50 ~lower solid line! and forn520 ~upper solid line!
andn522 ~upper dashed line!. Apparently, staten520 cor-
responds to a classical drifting orbit, whereasn522 is the
symmetric superposition of two states corresponding
channeled orbits in the side valleys. The latter has practic
the same energy as the corresponding antisymmetric su
position (n521), which is not shown. On the scale of Fi
7~a!, all statesn520, 21, and 22 seem to have the sa
energy,E/Vcyc'38. The statesn521 and 22 are hybridiza
tions of states belonging to the branches with high-ene

FIG. 7. ~a! Energy spectrum~first 75 bands! for s52. B0

50.05 T anda5800 nm, so thatVcyc50.053 meV anda50.67.
Effective potential and specific states~b! (n50,20,22) forj0/2p
50.5 and~c! (n50,1,2,25,44,45) forj0/2p50.2.
al
n

e

ge

s

o
ly
er-

e

y

dispersion and the opposite sign of the group velocity

^vy&52
K

mv0

dEnj0

dj0
. ~17!

Figure 7~c! shows the effective potential for the asymmet
casej0/2p50.2, corresponding to the classical situation d
scribed in Fig. 5. Here we show six states, the ground s
n50 located near the zero of the effective potential, the t
‘‘channeled’’ states ‘‘bound’’ in the potential valley aroun
j/2p50.6, the extended drifting staten525 near E
540Vcyc, the extended staten544, and the localized chan
neled staten545. The energies of all these states are in
cated in Fig. 7~a!. The states which extend over more than
period of the modulation belong to weakly dispersive ene
bands and correspond to the classical drifting orbits. T
states belonging to the energy branches with strong dis
sion have large amplitudes in side valleys of the effect
potential and vanish practically outside these valleys. Th
correspond to classical channeled orbits. The apparent n
ber of nodes of the large-amplitude parts of these chann
states increases with energy as if they were truly bound st
in these narrow valleys. Note, however, that the wave fu
tions of channeled states still haven nodes, but the corre
sponding oscillations are not observable at the scale of

FIG. 8. ~a! Energy spectrum~first 100 bands! for s52. B0

50.2 T anda5800 nm, so thatVcyc50.851 meV anda50.041.~c!
Effective potential and specific states (n50,2,3,4,5), marked in ex-
tract of spectrum~b!, for j0/2p50.5.
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figure. Outside the valleys, the maxima in between the no
are a few orders of magnitude smaller than the main pe
inside the valleys.

The number of quantized states within a given valley
the effective potential depends on the average magnetic
and the period of the magnetic modulation, even if the
rametersVcyc ands are fixed. In Fig. 7 the perioda, or the
field B0, is too small to have states quantized in the lo
energy triple minimum of the effective potential for the sym
metric case of Fig. 7~b! ~see also Fig. 6!. To investigate this
situation, we show in Fig. 8~a! a denser spectrum for th
same modulations strengths52. In Fig. 8~b! the spectrum
nearj05p is enlarged. Five energy values are indicated, a
in Fig. 8~c! the corresponding~squares of the! wave func-
tions are plotted for the statesn50, 2, 3, 4, and 5, togethe
with the effective potential. The antisymmetric staten51,
which is nearly degenerate withn52, is not shown. This
demonstrates that all the classical features have their q
tum analog, provided the model parameters~herea) are suit-
ably chosen.

For the magnetic cosine modulation, the depth of the v
leys of the effective potential,

uV~jmax
(p) ;j0!2V~jmin

(p) ;j0!u/Vcyc54g~s!u~2p11!p2j0u,
~18!

increases with the energy~i.e., with upu for fixed j0), and
thus more and more channeled states appear at higher
gies. For sufficiently high energies the strips with channe
states in the energy spectra may thus extend over the w
Brillouin zone. This will also happen for sufficiently larges.
The energy dispersion of the channeled states dep
strongly, nearly quadratically, onj0 according to Eq.~10!,
which expresses the nearly free motion of the electrons
channeled orbits in they direction.

For s.1 andg(s),p, the area of the regions II of th
spectrum increases with increasings, and the area of the
regions I shrinks accordingly. Forg(s)5p, one has
V(jmin

(p) ;j0)5V(jmax
(p21) ;j0) and the corresponding parabol

coincide, leaving no room for regions I. If the modulation
so large thatg(s)>p, drifting and channeled states coex
everywhere in the spectrum. In Fig. 9 we have choses
55, corresponding tog(s)53.53. Close to the edges of th
Brillouin zone, e.g., forj0/2p50.016, Fig. 9~c!, we can
identify channeled, e.g.,n522 and 16, and drifting states
e.g.,n519. But now these drifting states are relatively na
row, confined in local minima of the effective potential an
not in the wide potential-well centered aroundj0, which is
given by the confinement due to the average magnetic fi
This case is already known from the discussion of Fig.
The local minimum of the effective potential atj50 is a
minimum of the second kind, with vanishing potential. Co
sequently, these drifting states are similar to weakly p
turbed Landau levels with energy gaps\eB(j0)/m, as can
be observed by a careful look at Fig. 9~a!. In the center of the
Brillouin zone, say forj0/2p50.493, Fig. 9~d!, the effective
potential has three zeroes of the second kind@see Eq.~13!#
nearj5j0. We, therefore, can find similar narrow driftin
states, such asn55 and 6, but also wide drifting states
higher energies, liken517 and channeled states in loc
minima of the first kind, such asn57. As in the classical
es
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picture, the velocity of these narrow drifting states is in ge
eral lower than that of the channeled states.

IV. MIXED HARMONIC MODULATIONS

For sufficiently strong mixed electric and magnetic mod
lations one expects a similar situation as for the strong m
netic modulation, with a coexistence of channeled and dr
ing orbits, and their quantum analogs. In the presence o
electric modulation, we have no explicit analytic expressio
for the minima of the effective potential, Eq.~7!, not even
for simply harmonic modulations. Nevertheless, a qualitat
understanding of the classical and the correspond
quantum-mechanical motion is possible. For a given cons
of motion j0 the effective potential has side valleys wi

FIG. 9. ~a! Energy spectrum fors55. B050.1 T anda5800
nm, so thatVcyc50.213 meV anda50.16.~b! Total magnetic field.
~c! Effective potential and specific states forj0/2p50.016. Typical
channeled statesn516 and 22 and narrow drifting states,n519.
~d! Effective potential and specific states forj0/2p50.493. Wide
drifting state,n517, narrow drifting states,n55 and 6, and a chan
neled state,n57.
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possible channeled orbits, if]V(j;j0)/]j50 has more than
one solutionj. This is the case if the function

j0~j!5j1s a~j!2
w

2

u8~j!

11s b~j!
, ~19!

with w5V0 /Vcyc, assumes the valuej0(j)5j0 at more than
one j value. At suchj values the effective potential ha
extrema with the values

V~j;j0~j!!/Vcyc5w u~j!1Fw

2

u8~j!

11s b~j!G
2

. ~20!

To be specific, we choose for the followingb(j)5cosj,
a(j)5sinj andu(j)5cos(j1ws).

Apparently, Eqs.~19! and ~20! provide a parametric rep
resentation of the possible relative extrema of the effec
potential in the energy-versus-j0 diagram, similar to the
dashed lines in Figs. 7 and 8 which define the regions
where channeled states coexist with drifting ones. Due to
symmetries j0(j12p)5j0(j)12p and V„j12p;j0(j
12p)…5V„j;j0(j)…, it is sufficient to consider only one pe
riod 0<j<2p of the parameterj, provided thej0(j) values
are backfolded into the first Brillouin zone.

For strong magnetic modulation (s.1) the denominators
in Eqs.~19! and~20! lead to poles. Then the regions of typ
II extend to arbitrary high energies, similar to the case
pure magnetic modulation. A qualitatively different behav
is obtained for weak magnetic, but arbitrarily strong elect
modulation, since then the denominators of Eqs.~19! and
~20! remain positive~for s,1). Consequently, for given val
ues ofw, s, and ws the possible values ofV„j;j0(j)…, Eq.
~20!, are bound and channeled orbits can exist only belo
certain energy.

A. Pure electric modulation

As a particularly simple example we consider a pure el
tric cosine modulation,s50, ws50. For weak modulation
(w,2) the functionj0(j) of Eq. ~19! has a unique inverse
i.e., the effective potentialV(j;j0) has for all values ofj0
only a single extremum, namely the absolute minimum, a
no channeled states should be expected. The energy sp
for this weak-modulation limit are well known2,3,13 and will
not be reproduced here. Apart from a phase shift, they l
similar to Fig. 3~a! but with flat bands nearE/Vcyc5p2(l
21/4), for l51, 2, . . . .

The corresponding classical trajectories at sufficien
high energies are drifting cyclotron orbits. At very low ene
gies, E,V05wVcyc, a peculiarity occurs, since then th
classical trajectories are captured within a single valley
the electric potential, with turning points given by Eq.~9! in
the interval jc<j<2p2jc ~modulo 2p) with jc
5arccos(E/V0).0. For j0 values in the intervaljc,j0
,2p2jc these trajectories are self-intersecting drifting o
bits, whereas forj0,jc and j0.2p2jc there exist chan-
neled orbits withvy.0 andvy,0, respectively. The orbi
with j05jc approaches the left turning point atj5jc with a
tangent parallel to thex axis, and that withj052p2jc does
the same at the right turning pointj52p2jc . This peculiar
low-energy behavior is, of course, not restricted to the w
modulation limit, but occurs always when the trajectories
e
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captured in a minimum of the electric potential, i.e., forE
,V0. It is demonstrated in Fig. 10~b!, and will not be dis-
cussed further.

If the electric modulation is strong enough,w.2, the
function j0(j)5j2(w/2)sinj, Eq. ~19!, has extrema atj1

5arccos(2/w).0 andj252j1 ~modulo 2p) with values
j0(j6)57g(w/2), whereg(s) is defined by Eq.~16!. Then,
for uj0u<g(w/2) the equationj0(j)5j0 has three solutions
j in the intervaluju,p, which are local extrema of the ef
fective potential with values

V„j;j0~j!…/Vcyc511~w/2!22@12~w/2!cosj#2. ~21!

In order to find in the energy spectra the regions II cor
sponding to side valleys of the effective potential, one m
proceed as follows. One plots in the extended zone sch
V„j;j0(j)… versusj0(j), starting atj52p, where j0(j)
52p andV„j;j0(j)…52V0. With increasingj, alsoj0(j)
andV„j;j0(j)… increase and reach atj5j2 their maximum
values g(w/2) and Vcyc(11w2/4), respectively. Asj in-
creases fromj5j2 to j50, j0(j) andV„j;j0(j)… decrease
towards the values 0 andV0, respectively. Increasingj from
0 to p leads to the mirror image of the described trace w

FIG. 10. Pure electric modulation of strengthw520. ~a! Energy
spectrum~first 80 bands! for B050.05 T anda5800 nm, so that
Vcyc50.053 meV anda50.67. ~b! Drifting orbit ~solid line! and
channeled orbit~dotted line! for j0/2p50.3. The energies@see
marked states in~a!# are chosen in such a way thatjc,j0 for the
drifting andjc.j0 for the channeled orbit, see text.
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5546 PRB 60S. D. M. ZWERSCHKE, A. MANOLESCU, AND R. R. GERHARDTS
respect to j050: j0(j)52j0(2j) and V„j;j0(j)…
5V„2j;j0(2j)…. Finally these four line segments have
be folded back into the ‘‘first’’ Brillouin zone 0<j0<2p to
obtain the absolute minimum of the effective potential a
function of j0 and the boundaries of the regions II. In co
trast to the strong magnetic modulation, these regions
come narrower with increasing energy and end atj0
56g(w/2) ~modulo 2p) with energyE/Vcyc511w2/4. For
g(w/2).p the backfolding leads to an overlap of differe
branches of the region II that is the coexistence of back
forth running channeled states with drifting states in
same area of theE-j0 diagram. Figure 10 shows for a typica
example the quantum-mechanical energy spectrum toge
with the boundaries of region II obtained in this manner. T
‘‘very complicated’’ energy spectrum obtained recently
Shi and Szeto13 for strong electric modulation is thus ex
plained by the coexistence of channeled and drifting stat

In previous work10,11 it was pointed out that, for given
modulation perioda and strengthV0 and given energyE
5EF , channeled orbits can exist only if the magnetic fie
B0 is smaller than a critical fieldBcrit . Solving EF /Vcyc
511w2/4 for EF.V05wVcyc andw.2 with respect to the
magnetic field, one obtains the known result11

Bcrit5
2pV0

eavF
F 2

11A12~V0 /EF!2G 1/2

. ~22!

B. Weak magnetic modulation

If a magnetic modulation is added to an electric one, v
complicated interference effects may result. Only if t
phase shiftws is zero orp, the resulting energy spectrum
will be symmetric inj0. Even in that case, the distribution o
channeled states~regions II! in the E-j0 diagram may be-
come rather complicated, especially at low energies. For
mixed case channeled states may occur even if the mod
tion parametersw and s are not large enough to produc
them for the pure electric and the pure magnetic modula
of these strengths. For weak magnetic modulation, 0,s,1,
and arbitrary strength of the electric modulation, channe
states can exist only below a certain energy, as in the p
electric modulation case.

For arbitrary phase shiftws the energy spectrum may b
so asymmetric that in a certain energy range only chann
orbits exist which carry current in one~say the positivey!
direction, but no channeled orbits carrying current in the
posite direction. Such a situation is presented in Fig. 11.
regions II, where channeled and drifting states coexist
again calculated from Eqs.~19! and ~20!, i.e., from purely
classical arguments.

If a 2DEG is subjected to such an asymmetric mix
modulation, it may happen that in the thermal equilibriu
the channeled states carry a finite current. Of course,
current must be compensated by a corresponding opp
current carried by the drifting states.

For large magnetic modulation,s.1, and arbitrary elec-
tric modulation, the magnetic modulation dominates the
ergy spectra at large energies. The regions II with chann
states become more and more important, as can be seen
the pole structure of Eqs.~19! and~20!. For very weak elec-
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tric modulation, the results reduce to those of the pure m
netic modulation, apart from some peculiarities at very lo
energies, where additional regions of channeled orbits m
exist.

In magnetically modulated systems prepared by the de
sition of magnetic microstrips there is always an induc
electric modulation due to the interface stress between
ferromagnets and the semiconductor.6 The phase shift with
respect to the magnetic modulation occurs when the exte
magnetic field is tilted.21 Nevertheless, in the known exper
mental situations the stress potential amplitude is presum
much weaker than our bare potential.

V. SUMMARY AND DISCUSSION

We have discussed in detail the quantum electronic st
and energy spectraEn(X0) of a 2DEG in strong one-
dimensional magnetic and electric superlattices, and i
nonvanishing average external magnetic field. By compar
the quantum results with the corresponding characteristic
the classical motion, we achieved a detailed and intuit
understanding of the energy spectra and eigenstates.
found that the complicated parts of the energy spectra~‘‘re-
gions II’’ !, where branches with strong dispersion coex
with those of low dispersion, coincide with the areas in t
E2X0 diagram in which classically channeled orbits exis

For a systematic investigation of the possible energy sp
tra and eigenstates, and of the corresponding types of cla

FIG. 11. ~a! The first 175 Landau bands for combined magne
and electric modulations.B050.1 T anda5800 nm, so thatVcyc

50.213 anda50.16. The modulation strengths ares50.8 andw
514.3, the relative phase shift isp/2. ~b! j0

6 curves forE/Vcyc

5110. At this energyj0
1 has local extrema, while there are none

j0
2 . Therefore all channeled orbits have negative velocitiesvy .
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cal trajectories, it is useful to exploit the scaling properties
the Hamiltonian. Then it is not necessary to vary indep
dently all the basic model paramaters, i.e., the strengthsBm

0

andV0 of magnetic and electric modulation, the modulati
period a, and the average magnetic fieldB0. If one uses
suitable units for energy and length,Vcyc anda/2p, respec-
tively, one obtains the same classical results and the s
gross features of the energy spectra~the same position of the
regions II!, if one changes thefour parametersBm

0 , V0 , a,
and B0 in such a manner that thetwo reduced modulation
strengthss5Bm

0 /B0 and w5V0 /Vcyc remain constant. Fo
different parameter sets with the same values ofs and w,
only the density of the energy bands is different in the plot
En(X0)/Vcyc versusKX0, not its overall appearance. This
illustrated by Figs. 7~a! and 8~a!, for which the regions II
coincide. The reason for this behavior is that, in these ene
and length units, the effective potential is invariant under
scaling transformationBm

0
˜gBm

0 , B0˜gB0 , a˜la, and
V0˜g2l2V0, for arbitrary positiveg and l. To leave the
quantum result exactly unchanged under a change of the
model parameters, one has to keepa5( l 0K)4 also un-
changed. This is because only with the restrictionl51/Ag
the kinetic-energy operator is also independent of the sca
parameterg @see Eq.~8!#. Thus, in the suitable units, th
exact quantum result depends only onthree independent pa-
rameters instead offour, and the characteristic classical fe
tures depend only ontwo.

There is a close correspondence between the quan
states belonging to strong-dispersion branches of the en
spectrum and the classical channeled orbits. These orbits
cur near lines of vanishing total magnetic field or ne
minima of the electric modulation potential and are restric
to individual side valleys of the effective potential. They a
always restricted to a part of a single modulation period ix
direction and represent a fast motion along~wavy! lines
without self-intersections in the positive or negativey direc-
tion. The corresponding quantum states are also essen
confined to the same space region and belong to en
branches with strong dispersion. At a given value of the c
stant of motionX0, channeled orbits exist in energy interva
bounded by adjacent relative minima and maxima of the
fective potential, defining the bottom and top of the cor
sponding side valley. Plotting these classically defined
trema versusX0, one obtains the boundaries of the regions
of the quantum energy spectrum. Classically, for each ch
neled orbit there exists a drifting orbit with the same co
stants of motionX0 and E. These drifting orbits are self
intersecting trajectories which, for sufficiently large energ
extend over more than one modulation period in thex direc-
tion and drift slowly in they direction. The corresponding
quantum states belong to low-dispersion branches of the
ergy spectrum. Quantum mechanically, the channeled s
do not appear at exactly the same energies as the dri
states, and they usually have a larger energy spacing tha
latter, since they are confined to a narrower effective pot
tial well.
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We have demonstrated these features by model calc
tions based on simple harmonic modulation fields. Qual
tively the obtained results and the methods to derive th
can easily be extended to more general modulation fie
containing higher harmonics. This will be necessary if t
distance of the 2DEG from the sample surface is not m
larger than the period of the surface structure creating
modulation.21 Anharmonic effective modulation potentia
may also result from nonlinear screening effects, even if
bare modulation potential is harmonic.22,23

We have also performed several additional calculatio
and consistency checks which are not documented in
main text. E.g., we have checked the equivalence of class
drift velocity and quantum group velocity beyond the an
lytically accessible case of very weak modulation fields. F
some examples with strong modulation, we evaluated
quantum-mechanical group velocity along several ene
bandsEn(X0) and compared the result with the drift veloci
of the corresponding classical trajectories with the same
ergy andX0 values. For most parts of the bands the tw
velocities agreed perfectly. A systematic deviation was
served only in parameter regimes where the classical tra
tories are close to critical orbits, which have no quantu
analog. Near the critical orbits the modulus of the classi
drift velocity increases rather rapidly, whereas the quant
mechanical group velocity shows no anomaly.

We have also extended the band-structure calculation
very strong magnetic modulation (Bm

0 /B0520). While at
high energies a complicated superpositon of bands with s
and with flat dispersions, similar to that in Fig. 9~a!, was
obtained, the bands at low energies tend to cluster
groups separated by relatively large gaps. The low-ene
part of the spectrum was already reminiscent of the spect
for vanishing average magnetic field, where one obtain
one-dimensional Bloch energy spectrum for each value
py52eB0X0.16

Concerning previous and forthcoming transport calcu
tions, we conclude from the close correspondence of
quantum and the classical approach that at weak ave
magnetic fields the classical calculations are appropri
provided the modulation fields are not too strong. For
very strong magnetic modulation mentioned in the Introd
tion, it may, however, happen that the energy-level spac
of channeled orbits exceeds the thermal energykBT in a
regime where \v0!kBT. Then we would expect
modulation-induced quantum effects in the positiv
magnetoresistance regime at lowB0.
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