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Planar cyclotron motion in unidirectional superlattices defined by strong magnetic
and electric fields: Traces of classical orbits in the energy spectrum

S. D. M. Zwerschke
Max-Planck-Institut fu Festkaperforschung, Heisenbergstrale 1, D-70569 Stuttgart, Germany

A. Manolescu
Institutul Natonal de Fizica Materialelor, C.P. MG-7 Bucur@dvagurele, Romania

R. R. Gerhardts
Max-Planck-Institut fu Festokaperforschung, Heisenbergstrae 1, D-70569 Stuttgart, Germany
(Received 14 December 1998

We compare the quantum and the classical description of the two-dimensional motion of electrons subjected
to a perpendicular magnetic field and a one-dimensional lateral superlattice defined by spatially periodic
magnetic and electric fields of large amplitudes. We explain in detail the complicated energy spectra, consist-
ing of superimposed branches of strong and of weak dispersion, by the correspondence between the respective
eigenstates and the “channeled” and “drifting” orbits of the classical descripfi86163-182809)04732-3

[. INTRODUCTION For sufficiently smallBy, drifting orbits may extend over
many periods of the modulation. At sufficiently lards

In the last decade there has been a constant interest in tigufficiently small modulation amplitudgsnly the drifting
transport properties of the periodically modulated two-orbits survive. The “Weiss oscillations” manifest a com-
dimensional electron ga2DEG). In particular, in the pres- mensurability effect depending on the ratio of the extent of
ence of a lateral modulation of a one-dimensional charactedrifting orbits (at the Fermi energyand the modulation pe-
the resistivity may be strongly anisotropic, which essentiallyriod. With increasing modulation strength, the positive mag-
reflects the anisotropy of the electronic states. Two types ofietoresistance becomes more pronounced and extends to
modulations can be achieved in the experimental devicedarger B, values, suppressing progressively the [By-
electrostatic potential modulationd and, more recently, Weiss oscillationg® This effect is well understood within
magnetic-field modulatiors.2 Weak modulations of both the classical calculatiot, if both types of trajectories are
types lead already to pronounced magnetoresistance effeaslequately included, and it has recently also been obtained
in the presence of an average magnetic figéjdapplied per- by a quantum calculation for a strong modulatidn.
pendicular to the 2DEG. These effects occur at low and in- A qualitatively new type of magnetoresistance effect has
termediateB, values, well below the magnetic quantum re- recently been observed by Yet al'* on samples with an
gime where Shubnikov—de Haas oscillations appear. At vergxtremely strong magnetic modulation. Samples with a sur-
small values oB, a pronounced positive magnetoresistanceface array of ferromagnetic microstrips were measured in
is observed, followed at intermediat®, values by the tilted magnetic fields, so that the applied magnetic field had a
“Weiss oscillations” due to commensurability effects. Both large component parallel to the surface, producing a large
effects are adequately understood within a classical transpomagnetization of the ferromagnetic strips, while only the
calculation based on Boltzmann's equation, and can bemall perpendicular component determined the average mag-
traced back to the predominance of different types of classinetic field By in the 2DEG. In this way a huge positive
cal trajectories ! magnetoresistance with superimposed Shubnikov—de Haas-

The positive magnetoresistance is understood as causéle oscillations was obtained at low values of the average
by “channeled orbits” which exist if the modulation is suf- magnetic field, at which no magnetic quantum effects should
ficiently strong or, equivalently, the average magnetic field isoe expected for weak modulatiohlt rather seems that the
sufficiently small. For electric modulation they occur nearquantum oscillations are induced by the large-amplitude pe-
the minima of the modulation potentigtopen” orbits!®),  riodic magnetic modulation field. Such conditions require a
and for magnetic modulation near the lines of vanishing totafjuantum transport theory and, as a first step, the understand-
magnetic field“snake” orbits'?). They are always confined ing of the quantum electronic states of a 2DEG with a strong
within a single period of the modulation, which we choose inmagnetic modulation. This is the motivation of the present
x direction. They are wavy trajectories allowing for fast mo- work.
tion of electrons with velocities within small angles around Channeled and drifting quantum states in linearly varying
the direction of translational invariancg @irection. These magnetic field are already discussed by other authdrs.
channeled orbits occur in addition to the “drifting orbits,” The Schrdinger equation for periodic magnetic fields alter-
which are self-intersecting trajectories with loogalong  nating in sign has been solved previously, but only for the
each of which the direction of the velocity changes hy)2  case when the average field is z&tdn the present paper we
so that usually a low drift velocity in thg direction results.  shall study the quantum electronic states in strong periodic
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magnetic fields with a nonvanishing average and compare iieduced wave function/fn,xo(x). If U(x) and An(x) are
with the case of a strong electric modulation. In both situaounded, they, x (x) drop Gaussian-like fotx|—o, and
0

tions rather complicated energy spectra are obtained, With)r a fixed value of the quasicontinuous quantum numer

striking qualitative similarities and quantitative dlfferences.'the energy spectruri,(X,) is discrete.

For the case of strong electric modulation, such_ a compli- In the classical description, we use the equation
cated energy spectrum has recently been publiShéuait ; . . Y
. . ; . =p,+eA(x), which may also be derived directly from New-
without an attempt at explanation. We will demonstrate mton'ys equation, to eliminate the velocity,. The effective
this paper that a close comparison with classical motion otion?nxdiréction i determined bM(Xy)I=E Similar to
leads to a detailed and intuitive understanding of these spec- . : : 0 ) .
e wave functions, the orbits for given constants of motion,

tra and the corresponding eigenstates, Xo andE, are bounded in th& direction; however, the en-

In Sec. Il we start with some general remarks on the re- Ei i iable. F e £ h
lation between quantum and classical description of the 20379y E IS a continuous variable. -or a giv F, €ac

electron motion in one-dimension&lD) lateral superlat- pos_:itionx[with U(X).<EF] is the turning point%;two orbits
tices, and we introduce suitable reduced units. In Sec. llI wth'Ch are characterized by the center coordinates
focus on the effect of a simple harmonic magnetic modula- An(X) Ux)
tion of arbitrary strength. In Sec. IV we include an electric XE(x)=x4+ /4" +R 1— 3

. . . . . O( ) B 0 E ’ ( )
modulation, which requires a somewhat different analytical 0 F
procedure. The inclusion of electric modulation seems alsQptained from H(Xo)=Ef for v,=p,/m=0. Here R,

necessary from the experimental point of view, since the:VF/wO is the cyclotron radius of electrons moving with

ferromagnetic strips on the sample surface introduce a perisnargyEc=mv2/2 i o .
X : ' . . =mvg/2 in the magnetic fielB,. For givenE
odic stress field in the sample, which acts as an electri 9y Ee= Ve d 0 g F

) L . Y (%) <

modulation on the 2DEG. Finally, in Sec. V we summarize(in>c(1+)((°)’ h%rg;s T(;)'(SIS;_"(I)n slrgirc\;r?lznl'gnr\::r::srjs)i‘ch(t?onﬁc} the

the essential features derived in the paper and extend the ™°. X S 1S W ven ! '11
ssible orbits at fixed enerdyr and for varyingXy.~ Of

discussion beyond the model of simple harmonic modulaP®

tions. Some of the present results have been recently pulg_ourse, the same classification can also be done by directly
lished in a preliminary fornt? investigating the effective potential. This may be preferred if

one is interested in orbits at different energies but the same
XO.

The calculation of the orbits is a simple textbook problem,

We consider a(noninteracting 2DES in thex-y plane but must in general be done numerically. In accordance with
subjected to a magnetic field withcomponentB,(x)=B, the translational symmetry of the problem, we will in the
+B,,(x) and an electrostatic field ixdirection leading to a  following not distinguish orbits which differ only by a rigid
potentia| energyj(x)_ Our aim is a close Comparison of the shift in they direction. If an electron is at tlmt-;' at pOSition
classical and the quantum description of the electron motiofXi,Y;) on an orbit characterized by the constants of motion
(in terms of orbits and wave functions, respectiyatysuch ~ Er and Xo, with turning pointsx; and x, (x<x;<X;), it
fields, especially in the case thdf{x) andB,(x) are peri- Mmoves toward one of the turning points so that at time
odic in x with the same period and vanishing average val-
ues.

To evidence the translation invarianceyidirection in the
(either classical or quantuntdamiltonian

Il. GENERAL REMARKS

t(x; X, Ep)=t;+ fx ax (4)
X; s =T1. —_—mmm
ST L XX, Ep)

it is at position(x,y(x;Xq,Eg)), with

1
H=_-——(p+eA)?+U, (1) « '

am y(x;xo,EF>=yi+f WX )
we describeB,(x) by anx-dependent vector potential(x) xi V(X" Xo,EF)
=A(x) g, with  A(X)=xBg+An(x) and Ay(x) where
= [5dX'Bn(x"). Theny is a cyclic variable and the canoni-
cal momentump, is conserved, and one obtains(ane- [V (X; X0, Ep) | = VEV1—V(X; Xo)/EE
dimensional effective  Hamiltonian H(Xo)=p2/2m
+V(x;Xo). ForBy#0, the effective potential can be written = woV[Xg (X) = Xol[Xo—Xg (X)]

2 and
+U(x), 2

Am(X)
B

m
V(x; X :—wz(x—x +
(6%0)= 5 | X~ %o Vy(X;X0) = (0f2[Xg (X) +Xg (%) — 2Xo].
whereX,= —p, /eBy is the center coordinate of the effective |t 5t one of the turning pointg; or x,, wherev,(x;Xo,Eg)
potential anduo=eB,/m is the cyclotron frequency, bothin  — o the derivative?V(x;X,)/dx vanishes, we call this turn-
the absence of modulation. _ ing point and this orbit “critical.” At critical turning points
~In the quantum description, the reduction to a one+he integrals(4) and (5) diverge, so that the critical orbits
dimensional p_rflgllem is achieved by the product ansatfhere asymptotically approach straight lines parallel toythe
W x, (X Y) =Ly ““explp,y/h)inx(X) for the energy eigen- axis. For noncritical orbits the integrald) and(5) converge
functions, wherel, is a normalization length, and the dis- asx approaches the turning points, and the total orbit can be
crete quantum number=0,1,2,... counts the nodes of the composed out of right-runningv(>0) and left-running
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(v4,<0) pieces with finite traverse timeT(Xq,Ef) may define dimensionless variablés=x/I and &= Xq/l.

=f§|rdX/|Vx(X;Xo,EF)|- The probability density of finding The effective potential, Eq(2), then can be written as

the electron at positior is V06 X0) = VimagV (& £0) With

V(& E)=[E—EptsaKIEKIPP+wu(KIg),  (7)

wheres=Bp/By, a(¢)=/§d¢'b(¢"), andw=Vg/V aq. I

This is the classical analog W,n’xo(x)|2_ the quantum description, the kinetic energy operator
If U(X)=U(x+a) and B,(x)=B(x+a) are periodic —(fi2/22m)d2/2dx2= —E d?/dé?, introduces an energy scale

with perioda, as we will assume in the following, the effec- E1=%/(2mI%), which has no classical analog. Introducing
tive potential, Eq.(2), has the symmetry/(x+a;Xo+a) the energy ratiax= Ei/Vimag: We write the effective Schro
=V(x;X,). As a consequence, the energy spectrum is als§inger equation as
periodic, E,(Xo+a) =E,(Xp), and can be restricted to the
“first Brillouin zone” 0 <Xy=<a. The eigenfunctions can be ~ ~ ~ _
taken to satisfyy, x_+a(X) = ¥n x,(X—a). The correspond- —ad—§2+v(§, €o) ~&n(£0) | ¥ng(6)=0, (8)
ing classical symmetry is that an orbit characterizeddy
andX, + a differs from that characterized 5 andXo only  with 2 (&) =En(X0)/Vimagand ¥in ¢, ()= VI hn x,(X)-

W(x; Xo,Ep) = L T(Xo,Ep)|Vx(X; X0, Ep)| 1.

dZ

by a r|g|d_ shift pf amount in the x direction. - If we would takel=1,, we hadV,—E =%wy/2 and
The dispersion of the energy bans(Xo) implies @  thys simplya=1. The effective potential Eq7) would then
group velocity in they direction, depend on the constant of motigiy and, in addition, on
three dimensionless model parametessy, and Kl,. To

1 dE.(Xe) specify an eigenstate or, in the classical description, a trajec-

(n,Xo|vy|n,Xo)= - _mwo dx, (6) tory, one further needs an energy vaki@s a second con-

stant of motion. A description that, for fixed constants of

which is the expectation value of the velocity operator in themohon, needshree parameters to specify the effective po-

energy eigenstaté,, x . It is the quantum equivalent to the tent|al_ and_, further.more, relies .d’ﬁ a’.‘dﬁ‘”o’ which have no
. . o . meaning in classical mechanics, is rather clumsy and not
classical drift velocity, i.e., the average velociy the y

acceptable.
direction) along the corresponding classical orbit. The drift Ingtead we také=1/K and, thereforey...=V..... where
' mag cyc

velocity in the x _dire(_:tion vanishes, since the orbits are Vo= mwS/(ZKz) is the energy of a classical cyclotron orbit
bounded in thec direction. of radius 1K in the homogeneous magnetic fielg. Now
the effective potential Eq(7) depends only on théwo di-
Suitable units mensionless modulation strengthandw=V,/V., which

. . . both are well defined within the classical approach. Also the
For an economic comparison of classical and quantum

. _ ~_ _ 2 .
aspects it is important to use suitable length and energy unitg]ons_tants of motiongo=KXo ande=E/V .= (KRy)*, in-
which are meaningful for both the quantum description and®uding the dimensionless version of EG),
the classical limit. By doing so, we will see that the classical
features depend on fewer scaled parameters than the quan- §§(§)=§+s aé)=Ve—wu(é), 9
tum ones. To be specific but still rather general, we assume _ . o _ _ _
in the following periodic modulations of the formB,,(x) remain meaningful in the classical limit. This choice of units
=B b(Kx) andU(x)=V,u(Kx) for the magnetic and the will also be very _useful for a systematic discussion of the_z
electric modulation, respectively, wheb¢£) and u(£) are quantum-mechanical energy spectra. Quantum mechanics
dimensionless periodic functions with periog-2nd vanish-  €nters the effectw;a Schidmger equation(8) only via the
ing average values. ThuB,(x) and U(x) have the same para_metebzz(IoK) , Which scales the kinetic energy. It de-
perioda=27/K, but may have different shapes and phasest€mines the on_ly true quantum aspect of the Spectrum,
In the numerical examples we will use for batif¢) and namely the spacing of the energy leve|{ o). We will see
u(é€) simple cosines, eventually with a phase shift. in Sec. Il B that all the essential structural features of the

The average magnetic field, sets, with the magnetic €nergy spectrum, e.g., the complicated backfolded structure
lengthly=\%/(mw,) and the cyclotron energiw,, both a due to the coexistence of “channeled” and “drifting” states,
length and an energy scale, which are useful for quantur@re determined solely by the “classical” parameteendw.
calculations, but have no meaning for the classical motionThe density of the quantized levels, (&), on the other
For the discussion of commensurability effects, such as thband, increases with increasing raéifl .

Weiss oscillations, the cyclotron orbits must be compared As a simple example one may consider the well known
with the perioda of the modulation. Thereforais a natural case of a weak electric or magnetic cosine modulation, which
choice for the lengths unit. The choice of a suitable energyeads to modified Landau bands of oscillatory with'®1°

unit is motivated as follows. The bandwidth assumes minima near the “flat band” ener-
Classically,B, determines only the cyclotron frequency gies E; =m(wea)(\ = 1/4)/8, with “+” (* =) for mag-
wo, and one needs an independent lerigtt define an en- netic (electrio modulation and\=1, 2, ... .These flat band

ergy scaleVmyag= mwgl 2/2. Using| as the length unit, we energies are distinct multiples of our energy Wiit,c, and



PRB 60 PLANAR CYCLOTRON MOTION IN UNIDIRECTIONAL ... 5539

occur ate, = w2(\ +1/4), independent of the special values ~ 20 f ™
of the model parameteB, anda. The level spacing, on the |
other hand, is of the ordérw, and depends in our units on 5%

g /Veye=215K?=2Va. } 10

15 F \\\ /,’l 4

w
T
\
!

IIl. MAGNETIC COSINE MODULATION @ B el

P i ; . . . i
We first consider a pure magnetic modulatibh(x)=0, 2 ® ' ' ' ' ' '
Bm(x)=BC b(Kx), so that the effective potential E¢f) be- 3T
comes e I
A0S |
V(& é0)=Veyd €~ Eots a§)]%. (10) 0
For s=0 one obtains the well known Landau levels and the 0_'?
Landau oscillator wave functionsfnxo(x). We use the set 18
fnx0 as the basis of our Hilbert space in order to obtain 15}
numerical solutions fos#0, by numerical diagonalization 12 f

of H(Xp). The electron effective mass is that of Gas, Soot '
=0.067my. We further assume spin degeneracy. For the nu- ¢ |
merical parameters chosen here the size of the basis will var 45 [ /
between 150—-300 Landau levels. : : . : ' :

Before discussing the numerical results we summarize 0402 0 02 04 06 08 £hon
some properties of the effective potential and of E®),
which now reduces to

1

FIG. 1. (a) Effective potentialV(&;&,) for magnetic cosine
modulation withs= Bom/BO:O.S and¢y/2m=1/4. For a given en-
- 7 : h . . :
tE)=é+s +KRn. 11 ergy Eg/Vg=(KRp) (horizontal line$ classical orbits exist
S0 (§)=é+sa¢) 0 (12) where V(&;£)<Eg. Solid line, Ep=17.6V,,; dotted line, E¢
For a fixed¢, the local extrema of the effective potential, =1.18/¢yc. (b) Locations of turning PO?HISS (é) for the Eg values
given by dV(&,£,)/9€=0, are the points where the total indicated in(a), same coding. Orbits with enerdy- and &, exist in

magnetic field is zero, i.e., the roots of an interval withg, (£) <&=<§&; (€). (c) Corresponding orbits imy
space, three cycles are shown each, the sense of motion is from
1+sb(¢)=0, (12)  filled to open dot.
and the points where the effective potential is zero, i.e., th%otential. For a given enerdg=Eq. (horizontal ling a clas-
roots of sical orbit exists wher¥(¢; &) <Eg. Figure Ib) shows the

_ location of the turning points as the crossing points of the
§-&otsag)=0. 13 horizontal line&y=m/2 with the functionsé, (£). The cor-

An important aspect for the following discussion is that theresponding drifting orbit exists in the interval witfy, (§)

roots of the first kind, Eq(12), if existent, are independent of < ¢ <&, (£). The orbits in real space are illustrated in Fig.

&o, while those of the second kind, E(L3), do depend on 1(c). In Fig. 2 we plot the corresponding quantities fr

&o. We will see that orbits with¢ values near roots of the =0.5 andé,== (i.e., Xo=a/2). In this case the effective

first kind are channeled, while those wighvalues near roots potential is symmetric with respect to the center coordinate

of the second kind are drifting orbits. The analytic depen-X,. As a consequence, the orbits are closed and their drift

dence of the effective potential on the relevant position covelocity in they direction is zero.

ordinate is determined by the modulation strengtiThere- For small energiesEr/Vy= (KRp)?<m? (i.e., 2R,

fore the number of its possible zeroes, the classification ok a), the extents of the orbits in thedirection are smaller

orbits, and the energy spectrum depend critically on the pathan a modulation period and essentially determined by the

rameters. To demonstrate this, we choose in the following |ocal values of the total magnetic field. At high energies,

examplesh(¢) =cosé, and consequentlg(&) =siné. Er/Vee>1, the orbits extend over several periods of the
modulation and the extent of an orbit, i.e., the width of the

A. Weak modulation, s<1 effective potential valley at the corresponding energy, is de-

termined by the cyclotron radius in the average magnetic

Fors<1, the effective potential has exactly one minimumfield (X, — X, ~2Ry)
of the second kind for each valug, which is due to the r 7l o .
confinement by the average magnetic field. The functions In Fig. 3@ we d.|splay the _f',rSt 50 energy ban&s,go
§§(§) in Eq. (11) have no extrema. For each valtig they calculated from thefirst 150 original, degenerated Landau
determine exactly one orbit, which is a drifting cyclotron L()EVE(;S, _fors= O.5.fT”he Ier\]/ell spallcm:g of ]fhﬁ Iowelst-energy
orbit. By this we mean a self-intersecting orbit consisting off.alr:j SIS SeEn toh_o ow the ocgl fva ueho It € t|0ta magnetic
loops along each of which the azimuth angle in velocity ield, Fig. 3b). This is expected from the local approxima-

space g =arctan(y /v,) increases by 2. A typical example tion Epg,~(n+ 1/2.)ﬁeB(§0)/m,.which is valid if the extent
is illustrated in Fig. 1 fors=0.5, £,=/2 (i.e., X,=a/4),  Of the wave functionsj, x () is smaller than the modula-
and two energy valueEg. Figure 1a) shows the effective tion period. With our energy uniV, the apparent level
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FIG. 2. As Fig. 1, but¢y/2r=1/2. The effective potential is
symmetric and therefore the guiding center of these drifting orbits  ° [

does not drift in(c). 20

spacing of energies which are independent of the pesiod 10} /\/\/\/\ 12
becomes proportional t§'a. For example, if the local ap- o | m n=3 \ © |E
proximationEy ~(n+ 1/2)iw(éo) holds forEpe <4Veye, & ° — ]
as in Fig. 3a), this implies that it holds forn+1/2 30 b £y/27=0.5 °,'r:p
<AVl [ho(&)]=2[ wolw(&)]/e. Thus, the number of ‘ j

bands which are well described by the local approximation
increases quadratically with increasing modulation peaod 10+ 1
The local approximation fails at higher energies when the O n=3 /\/V\/\ )
width of the wave functions becomes larger than the period 0_1 05 0 05 1 15
: &2
of the modulation, and the structure of the energy spectrum
changes. Indeed it is well known from the limit of very weak  F|G. 3. (a) Landau bands fos=0.5. B,=0.2 T anda=800 nm,
magnetic modulations<1, that in contrast to this local ap- so thatV,,=0.85 meV andx=0.041 and(b) total magnetic field
proximation the bands become flat at the ener@igéV ..  B(&). The marked points on Landau bands 43 and 3 are the states
= 772()\+ 1/4), forn=1,2, ... 18,196 These flat band condi- for which the wave functions are shown (0 and(d) in arbitrary
H—nits together with the corresponding effective potentidisshed
line). The wave functions are plotted with an offset, indicating the
energy of the state. The states(af and (d) are to be compared
Q/\tiith the classical orbits in Figs. 2 and 1, respectively.

tions are the quantum equivalents to the classical comme
surability conditions leading to the Weiss oscillations in
magnetotransport, and do not change their positions in a pl
like Fig. 3@, even if we change the modulation period. A
larger modulation perio@ just leads to a higher density of ) .
the energy bands. modu!atl_on the group \_/elocmes_:_can be shown to reduce
In Fig. 3(c) we plot for &= /2 the effective potential quant_ltanvely to the drift velocities of the corresponding
and the square of the energy eigenfunctions for the energglassical orbits. , o
values considered in Fig. 1. Width and location of the wave [N Fig. 4 we consider the “critical” situatiors=1. The
functions in the effective potential is in close agreement withderivatives &5 (£e,) =0 and &y (&) =0 vanish for &,
that of the corresponding classical orbits. In Figd)3ve plot  =(2p+1)w (p integey, i.e., for the positions where the
the corresponding quantities for the symmetric situatjgn magnetic field vanishes, Eq12). For all values of¢, the
=1, to be compared with Fig. 2. These wave functions be-effective potential(7) becomes flat at these poingg, [see
long to (relative) extrema of the energy bands, and thus haveFig. 4(c)]. The classical situation is as fa<<1 with the
zero group velocity, in agreement with the zero drift velocity exception that foréy=¢&.,=KR, there are critical orbits
of the corresponding classical orbits. The wave functions invhich asymptotically approach straight lines parallel toythe
Fig. 3(c) belong to finite energy dispersion and describe mo-axis on their left(for +) or their right(for —) side, where
tion in the positive (= 3) and the negativen=43) y direc- B(x)=0. The dashed lines plotted over the energy spectrum
tion, respectively, in agreement with the correponding clasef Fig. 4a show the evolution of the flat regions of the
sical orbits in Fig. 1. For large quantum numbarand weak effective potential withy, i.e., the parabolas resulting from
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FIG. 4. (a) Energy spectrum fos=1. B;=0.1 T anda=800
nm, so thatV,=0.21 meV andx=0.17. The dashed lines show
V(&,(2p+1)7) with |p|<1. (b) Quantum-mechanicalthick
lines) and corresponding classicdhin lineg probability densities
for two states. The chosen states are marked with dofa)irn(c)
Effective potentials and classical orbits flr="7Vy,&=0.5
(solid lineg and Eg=39.6V,.,&,=3.18 (dotted liney. The hori-
zontal lines indicate the Fermi energy.

V(&ex; ég) With p=0 andp==1. In the first Brillouin zone
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effective potentials together with the corresponding classical
orbits are plotted in Fig. @). The trajectory corresponding
to the staterf=5, £,=0.50 is close to a critical orbit with a
critical right turning point. This leads to an enhanced prob-
ability density near that point, which is also reflected in the
quantum mechanical probability density. We will see that for
slightly stronger modulation a type of nearly free motion
occurs with energies close to the parabolds.,; &) in the
energy spectrum.

B. Strong modulation, s>1

For s>1, & (£)=0 ata(&)=cosé=—1/s, and & (&)
has extrema at the following positions:

minima:  £P) =(2p+1)7+ 4,

maxima: ¢P) =(2p+1)7— 6, (14)

wherep is an integer andd=arctan/s’— 1. The values at
these extrema are

& (R )=(2p+1)m—g(s) = KRy,

£ (£R),)=(2p+1)m+9(s) TKRy, (15)
where
g(s)=s’—1—arctan/s°—1>0. (16)

The effective potentiaV/(¢; £y) has extrema of the first kind,
Eqg. (12), at the same positions. The extrema with values
V(PR €)=V, d (2p+1)m—g(s)—&]? are minima if
(2p+1)m7>¢&,, and maxima otherwise, and those with val-
ues V(EPR) ;&) = Ve, d (2p+1)m+9(s) — &]? are maxima

if (2p+1)7>§&y, and minima otherwise.

1. Classical approach

The number of zeroes df, (¢)— &, depends on botls
and &. If g(s)<m, & (&) — &, has at most three zeroes. If
£o=¢5(8) for any ¢ satisfying él), <2< &), ie., if (2p
+1)m—g(s) <&+ KRo<(2p+1)m+9(s), & (§)—éo has
three zeroes. The same argument holds for(E8), i.e., the
effective potential has three zeroes. Fop(21)m+g(s)
<¢o+KRo<(2p+1)m—g(s), on the other hand, there ex-
ists only a single zero.

these lines are seen as the backfolding of the lowest parabola " Fig. 5 we show, fors=2 [i.e., g(s)=0.685], an ex-

centered or¢., with p=0, and they are an indication of a

ample where the effective potential has a single zero near

kind of a free-electron motion along the lines where the magé/27=0.1, so that for sufficiently low energy only a single
netic field is zero. Close to these parabolas the energy ban@éifting orbit exists. The number and the type of the possible
have large dispersion near inflexion points, and the energ@'Pits depend on the energy. At the highest energy shown in
separation between adjacent bands is minimum. Similar fed='9- @& two orbits exis{solid lines in Fig. &d)]. There is a
tures have been obtained in the energy spectra for Singgnftmg cyclotron orbit extending over more than two peri-

magnetic wells by Peeters and Matffisin other words,

ods of the modulation, with the left turning point @ﬁ(g)

such states experience a weak effective magnetic field, due typpermost curve in Fig. (6)] near ¢/2m=—1.1, and the
the constant effective potential over a substantial spatial reight turning point oné, (§) [bottom curve in Fig. &)] near
gion. The wave functions corresponding to states with largg/2m=1.3. Near the relative minimum of, (&) close to
energy dispersion have large amplitudes at the positions af/27=1.7, which corresponds to a relative minimum of the

flat effective potentialvanishing total magnetic field This
is demonstrated for two selected stafés=43, £,=3.18)
and (=5, £=0.50)] in Fig. 4b), together with the prob-

effective potentia[thick dashed line in Fig. ®)], there ex-
ists a “channeled orbit” moving in the positive direction.
We define channeled orbits as trajectories which have both

ability distributions of the corresponding classical orbits. Theturning points either o, (&) or on&, (£), in contrast to the
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FIG. 5. (a) Effective potentialV(¢;£,) for magnetic cosine FIG. 6. As in Fig. 5 but fors=2, and¢y/27=0.5. Horizontal
modulation withs=B/B,=2, and¢&,/2=0.2. For given energy lines in(a) are forEg/Veyc=40 andEg/V,=0.3. The inset shows
Er (horizontal line$ classical orbits exist wheré(&; &0)<E . (b) V(¢;&,) enlarged betweeg=0 and £=2m, where it has three
Total magnetic field(c) Locations of turning pointg, (&) for the zeroes/(c) For both indicated energies there exist three orbits, one
Er values indicated ia). The outermost pair of lines belongs to drifting and two channeled orbits fd&g/V =40, and three drift-
the largesEg value; the innermost pair belongs to the smallgst  ing orbits for E¢/V,=0.3, plotted in(d). Since the effective po-
value. The constant of motiafy appears as a horizontal line in this tential is symmetric, there is no guiding center drift for the central
plot (¢£x/2w=0.2 is indicate§l Orbits with fixed energyi.e., fixed  drifting orbits.
curvesé; (£)] and this value ofg, exists in intervals withg; (£)
<¢,<&;(&). Orbits, plotted in(d), with one turning point on
& (€) and the other orgg (£) are drifting orbits, the others are
channeled orbitgésee text

indicated in the figure Actually the “drifting” orbits lo-
cated around'= 1 have zero drift velocity due to symmetry
reasons.

In summary, for B<g(s) < we find for given values of

drifting orbits with one turning point o0& (£) and the other the constants of motiorg, andE, at least one and at most

on &, (£). In contrast to the self-intersecting drifting orbits, thr'ee orblts..For Iarger values s Bom/BO’ more orbits may
the channeled orbits are always confined to less than a singf&iSt for @ given pair of, andE values. A careful analysis
modulation period, and they move without self-intersection<’ the extrema of the function&; (¢) shows, e.g., that for

in a relatively narrow interval of angles around the positive™<9(S)<27 between three and five orbits belong to the
or the negativey direction[see Fig. §d)]. Note that the cur- Same pair ok, andE. We will come l_)ack to this case below.
vature of the trajectories changes sign at the positions where Apparently the plots of the effective potentié(¢; o) are

the total magnetic field vanishes, see Fifp)5 very useful to see WhICh orblts_are possible _for a fixed value

If we lower the energy t&/V,,.= 40, we arrive in Fig. 5 of the center co.ordmat&) and d|ﬁereqt energies. Channeled
at a situation where only a single drifting orbit existiashed ~ Orbits exist in side valleys near relative minima\of¢; &o).
lines). In general, the extent in thedirection of the drifting I, on the other hand, the energy of the motion is given, the
orbits decreases with decreasing energy. At the lowest erlots of the locations of turning poing, (¢) is very useful
ergy indicated in Fig. lowest dotted line ifa) and inner-  to classify the possible orbits for different values &f.
most lines in(c)], we have again a drifting orbit ne@/27  Channeled orbits exist near relative minima &f(¢£) and
=0.1 and a channeled orbit arougtR7=0.6. At this low  relative maxima of; (£).
energy, the extent of the drifting orbit is considerably smaller
than the modulation period.

In Fig. 6 we show, for the same modulation strength, The energy spectra become more complicated in the case
=2, a situation,{,=m, where the effective potential has s>1, Figs. 7 and 8. Regions of different character can be
three zeroes, as is emphasized in the inset of k&). Bhese  distinguished in these spectra. Areas, where the energy bands
zeroes are separated by two shallow maxima. (p@sitive  are nearly parallel lines with low dispersigregion ) alter-

E value below these maxima is chosen, one finds three nanate with regions, where steep bands with large dispersion
row drifting cyclotron orbits located around the zeroes of theseem to cross bands with weak disperdi@gion 1l). In fact
effective potentia(solid lineg. For higher energies one may the energy bands never cross each other and the apparent
find either one drifting and two channeled orbiotted intersections are anticrossing points with exponentially small
lines) or a single drifting orbie.g., for 0.5<E/V,,:<30, not  gaps.

2. Quantum calculation



PLANAR CYCLOTRON MOTION IN UNIDIRECTIONAL ... 5543

120 -(a) £ LT~ F—FF 2 N LN AN < T Y 7 T

A} 7

/ \ ;
AR /
9’!‘4‘1;'111335

(@) SN
- I S S L e S A
h ﬂ_ 40 %2, |
.~..-n__,‘=m‘.‘¢.- A
A —— R S Y S 5 77X A\
R SN 75 N
R e T S Se 7 AN
S \’@ s 77
35

X
7/ Ny
77 AASS
’l’ 7 SANY
77
77

A

v‘ K
\'\ //‘. RS R T =
w‘v 777 TATATAYS SRR
IR PV
“vv 7, ™~
80 M 7 ™
N A s 30 7 N
SN DN S

\
\
7
7 Y
7 N

)
%(
|
#

N
OIS NN NN
AR

.......... .#i N \\
PR N \
PR
N
N
l ]
7
’ i
¢ Tt
eitesress
¥ of 05
¥ s
A0 95995757
Wi
K $9559%

O 997

(X5 $e%s

o 7

S

i\\\“‘

48
R

10 FRSSIRS =

I

R

|‘~l"n‘§0(2§)|2 (arb. units)

:
g =
up
23
0 == : = ol —l 0/
15 g 2 04 05 gpx 06 0 02 04 06 gy 1
FIG. 7. (a8 Energy spectrum(first 75 bands for s=2. B, FIG. 8. () Energy spectrun{fi_rst 100 bands for_s=2. Bo
=0.05 T anda=800 nm, S0 tha¥,,=0.053 meV andw=0.67. =02 T anda=800 nm, 50 thaV,c=0.851 meV andr=0.041.(c)
Effective potential and specific statés) (n=0,20,22) foréy/2m Effective potential and specific states=0,2,3,4,5), marked in ex-
=0.5 and(c) (n=0,1,2,25,44,45) foty/2m=0.2. tract of spectrumb), for £o/2m=0.5.

The boundaries of these regions are given by cIassicaﬂiSperS'on and the opposite sign of the group velocity
values only. If the energy is scaled by the classical cyclotron
energyV., for fixed modulation strengtis the regions I K dEngo
are surrounded by the parabol&s=V(£P);¢) and E (vy)=——— : (17)
=V(£&P) ;&) which, for [p|<2, are indicated by dashed
lines in the spectra. For any fixgg such a pair of parabolas Figure 7c) shows the effective potential for the asymmetric
gives the minimum and the maximum value of a certain sidecaseé,/27=0.2, corresponding to the classical situation de-
valley of the effective potentia¥ (¢; &) [extrema of the first  scribed in Fig. 5. Here we show six states, the ground state
kind, see Eq.(12)]. The energy interval in between these n=0 located near the zero of the effective potential, the two
values indicates the depth of that valley, i.e., an energy rangé&hanneled” states “bound” in the potential valley around
in which classically channeled orbits exist, in addition to theg/27=0.6, the extended drifting statem=25 near E
drifting orbits. =40V, the extended state=44, and the localized chan-

In Fig. 7(b) the effective potential is plotted for the sym- neled staten=45. The energies of all these states are indi-
metric casety= 7 (dotted ling, corresponding to the classi- cated in Fig. 7a). The states which extend over more than a
cal situation described in Fig. 6. Also shown are the stateperiod of the modulation belong to weakly dispersive energy
for n=0 (lower solid ling and forn=20 (upper solid lin¢  bands and correspond to the classical drifting orbits. The
andn= 22 (upper dashed line Apparently, state/=20 cor-  states belonging to the energy branches with strong disper-
responds to a classical drifting orbit, where®as 22 is the  sion have large amplitudes in side valleys of the effective
symmetric superposition of two states corresponding tgotential and vanish practically outside these valleys. They
channeled orbits in the side valleys. The latter has practicallgorrespond to classical channeled orbits. The apparent num-
the same energy as the corresponding antisymmetric supdser of nodes of the large-amplitude parts of these channeled
position (1=21), which is not shown. On the scale of Fig. states increases with energy as if they were truly bound states
7(a), all statesn=20, 21, and 22 seem to have the samein these narrow valleys. Note, however, that the wave func-
energy,E/V ,~38. The states=21 and 22 are hybridiza- tions of channeled states still havenodes, but the corre-
tions of states belonging to the branches with high-energgponding oscillations are not observable at the scale of the
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figure. Outside the valleys, the maxima in between the node:
are a few orders of magnitude smaller than the main peaks 4o

QA4
inside the valleys. ~~\‘M’“
The number of quantized states within a given valley of XY \.\V”Kv X

g a2l
the effective potential depends on the average magnetic fiel » XX ] vaA )
and the period of the magnetic modulation, even if the pa- } < \J mg&’
rametersV,,. ands are fixed. In Fig. 7 the period, or the 30 X X XQXQVA,}«
field By, is too small to have states quantized in the low- N X.— X
energy triple min_imum of the effec_tive potential f_or the sym- &Q@g&’é&”
metric case of Fig. (b) (see also Fig. 6 To investigate this \«.Z.Z’»(, <7
etric ) (S¢ : S A L

situation, we show in Fig. @ a denser spectrum for the 5° y ‘VA"/"

- | 5 <A
same modulations strength=2. In Fig. 8b) the spectrum =20 X e e
nearé,= 7 is enlarged. Five energy values are indicated, and X ~ =

in Fig. 8c) the correspondingsquares of thewave func- 15
tions are plotted for the states=0, 2, 3, 4, and 5, together
with the effective potential. The antisymmetric state 1,
which is nearly degenerate with=2, is not shown. This
demonstrates that all the classical features have their quar
tum analog, provided the model parameiém®rea) are suit- 5
ably chosen.

For the magnetic cosine modulation, the depth of the val- o . . , .
leys of the effective potential, 0 0.2 04 0.6 038

V(R €0 V(ER €0 Vo= 409 (2p+ D=kl £ 4 N s
-4

10 &

(18)

increases with the energy.e., with |p| for fixed &), and AV U T ,-'
thus more and more channeled states appear at higher ene 0H ; =16} VUV &

gies. For sufficiently high energies the strips with channeled " J\/vv\/\/\/\ a0=16 ‘a\ ; ) T E

states in the energy spectra may thus extend over the whol ¢ / Voo 4 / £

Brillouin zone. This will also happen for sufficiently large & ; [© y N s

. . e

The energy dispersion of the channeled states depend 5 i T o T - T o3

: . C i ] = J{/\/\/\/\/\/\/\/\/\/\/\/\/\/‘L— =

strongly, nearly quadratically, o&, according to Eq(10), T A i ! -

which expresses the nearly free motion of the electrons or 10 X \x n=7 '-. ARVAYNIAY: .

channeled orbits in thg direction. s gy
For s>1 andg(s)<, the area of the regions Il of the @ n=> /’ \\
spectrum increases with increasisgand the area of the 0 . v A
regions | shrinks accordingly. Fog(s)=m, one has -1 0.3 0 0.3 g !

V(EP &)=V (&P D £0) and the corresponding parabolas
coincide, leaving no room for regions I. If the modulation is
so large thag(s)=, drifting and channeled states coexist
everywhere in the spectrum. In Fig. 9 we have chosen

=5, corresponding t@(s) =3.53. Close to the edges of the ) rreciive potential and specific states fgg/2m=0.493. Wide

Brillouin zone, e.g., foréy/2m=0.016, Fig. 9), we can fiing staten=17, narrow drifting states)=5 and 6, and a chan-
identify channeled, e.gn=22 and 16, and drifting states, pejed staten=7.

e.g.,n=19. But now these drifting states are relatively nar-

row, confined in local minima of the effective potential and pjcture, the velocity of these narrow drifting states is in gen-
not in the wide potential-well centered arougigl which is  gra] lower than that of the channeled states.
given by the confinement due to the average magnetic field.

This case is already known from the discussion of Fig. 6.
The local minimum of the effective potential =0 is a
minimum of the second kind, with vanishing potential. Con-  For sufficiently strong mixed electric and magnetic modu-
sequently, these drifting states are similar to weakly periations one expects a similar situation as for the strong mag-
turbed Landau levels with energy gafpeB(&y)/m, as can  netic modulation, with a coexistence of channeled and drift-
be observed by a careful look at Figa® In the center of the ing orbits, and their quantum analogs. In the presence of an
Brillouin zone, say foy/27=0.493, Fig. 9d), the effective  electric modulation, we have no explicit analytic expressions
potential has three zeroes of the second Ksek Eq.(13)] for the minima of the effective potential, E¢7), not even
nearé=¢,. We, therefore, can find similar narrow drifting for simply harmonic modulations. Nevertheless, a qualitative
states, such as=5 and 6, but also wide drifting states at understanding of the classical and the corresponding
higher energies, likem=17 and channeled states in local quantum-mechanical motion is possible. For a given constant
minima of the first kind, such as=7. As in the classical of motion &, the effective potential has side valleys with

FIG. 9. (a) Energy spectrum fos=5. B,=0.1 T anda=800
nm, so tha/.,.=0.213 meV andv=0.16.(b) Total magnetic field.
(c) Effective potential and specific states fy27=0.016. Typical
channeled states=16 and 22 and narrow drifting statas= 19.

IV. MIXED HARMONIC MODULATIONS
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possible channeled orbits, dV(¢;&p)/9é=0 has more than @ T ' ' '
one solutioné. This is the case if the function 120

- @ @
== —
_ wou'() A
b =E+sad)— 5 T op (19 &

with w=V,/V, assumes the valug(¢{) = £y at more than
one ¢ value. At such¢ values the effective potential has
extrema with the values

EVy,

’ 2
HL@} @0

V(f;go(f))/VCyC:WU(f)"‘ 2 1+sb(é)

To be specific, we choose for the following &) = cosé,
a(é)=sin¢& andu(¢)=cosg+¢y).

Apparently, Eqs(19) and(20) provide a parametric rep-
resentation of the possible relative extrema of the effective o
potential in the energy-versug- diagram, similar to the
dashed lines in Figs. 7 and 8 which define the regions Il e — ————
where channeled states coexist with drifting ones. Due to the 0 02 04 06 08 &l
symmetries &y(é+2m)=&0(E)+2m and V(E+2m;&0(€ 08 ; . . . .
+2m))=V(§;&0(€)), itis sufficient to consider only one pe-
riod 0= ¢< 27 of the parameteg, provided thety(€) values
are backfolded into the first Brillouin zone.

For strong magnetic modulatios% 1) the denominators
in Egs.(19) and(20) lead to poles. Then the regions of type > %4 T
Il extend to arbitrary high energies, similar to the case of
pure magnetic modulation. A qualitatively different behavior o2 +
is obtained for weak magnetic, but arbitrarily strong electric
modulation, since then the denominators of EG®) and
(20) remain positivgfor s<1). Consequently, for given val- 0.3 04 0.5 06 gy 07
ues ofw, s, and ¢ the possible values 0¥ (¢;&0(€)), EqQ.

(20), are bound and channeled orbits can exist only below a FIG. 10. Pure electric modulation of strength= 20. (a) Energy
certain energy. spectrum(first 80 bands for B;=0.05 T anda=800 nm, so that
V¢yc=0.053 meV andx=0.67. (b) Drifting orbit (solid line) and

A. Pure electric modulation channeled orbit(dotted ling for &,/27=0.3. The energiegsee

) . ) marked states iita)] are chosen in such a way tht< &, for the

As a particularly simple example we consider a pure elecariﬁing and &> &, for the channeled orbit, see text.
tric cosine modulations=0, ¢s=0. For weak modulation
(w<2) the function¢o(¢) of Eq. (19) has a unique inverse, captured in a minimum of the electric potential, i.e., &r
i.e., the effective potentidV/(¢;&o) has for all values oy <y |t is demonstrated in Fig. 1), and will not be dis-
only a single extremum, namely the absolute minimum, ang,ssed further.

no channeled states should be expected. The energy spectrajt the electric modulation is strong enougw;>2, the

for this weak-modulation limit are well knowr**and will  f,nction £4(£) = £— (WI2)sirg, Eq. (19), has extrema af ,
npt .be reprqduced here.'Apart from a phase shift, they look_ arccos(20) >0 andé_=—¢, (modulo 2r) with values
similar to Fig. 3a) but with flat bands neaE/chC: 7T2()\ &o(£.)=Fg(wl2), whereg(s) is defined by Eq(16). Then,
—1/4),fora=1,2,... . for |§0|sg(wl2) the equatiory(€) = &y has three solutions

. The correspondir_lg classical trajeqtories at sufficientlyg in the interval|¢|< r, which are local extrema of the ef-
high energies are drifting cyclotron orbits. At very low ener- ¢ tive potential with values

gies, E<Vo=wV,, a peculiarity occurs, since then the

classical trajectories are captured within a single valley of V(§;§0(§))/VCyC=1+(W/2)2—[1—(W/2)cos§]2. (21)

the electric potential, with turning points given by E§) in

the interval ¢.<¢&é<2m—¢. (modulo 27) with & In order to find in the energy spectra the regions Il corre-
=arccosE/Vy)>0. For &, values in the intervak.<&,  sponding to side valleys of the effective potential, one may
<2m— &, these trajectories are self-intersecting drifting or-proceed as follows. One plots in the extended zone scheme
bits, whereas fo,<&; and £,>27— &, there exist chan-  V(&;&p(&)) versuség(€), starting até=—a, where &y(§)
neled orbits withv,>0 andv, <0, respectively. The orbit =—m andV(§;&(§))= —Vo. With increasings, also&y(§)
with &,= & approaches the left turning point&t &, witha  andV(&; £y(€)) increase and reach &&= £ their maximum
tangent parallel to the axis, and that witit,=27— ¢, does  values g(w/2) and chc(1+w2/4), respectively. As¢ in-

the same at the right turning poiéit 27— &.. This peculiar  creases frong=¢_ to £€=0, £y(§) andV(¢;&x(€)) decrease
low-energy behavior is, of course, not restricted to the wealtowards the values 0 and,, respectively. Increasing from
modulation limit, but occurs always when the trajectories aré) to 7 leads to the mirror image of the described trace with
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respect to £=0: &o(§)=—E&(—¢) and V(§&(€)) 10
=V(—§&; &o(— &)). Finally these four line segments have to
be folded back into the *first” Brillouin zone & £,<2m to 125
obtain the absolute minimum of the effective potential as a
function of &3 and the boundaries of the regions Il. In con-
trast to the strong magnetic modulation, these regions be 100
come narrower with increasing energy and end &gt
= +g(w/2) (modulo 2r) with energyE/V,.= 1+w?/4. For
g(w/2)> 7 the backfolding leads to an overlap of different _%
branches of the region Il that is the coexistence of back anc%
forth running channeled states with drifting states in the 50
same area of the-¢, diagram. Figure 10 shows for a typical
example the quantum-mechanical energy spectrum togethe
with the boundaries of region Il obtained in this manner. The
“very complicated” energy spectrum obtained recently by
Shi and Szetb for strong electric modulation is thus ex- 0 B=
plained by the coexistence of channeled and drifting states.
In previous work®!! it was pointed out that, for given
modulation perioda and strengthVy and given energyE

=Eg, channeled orbits can exist only if the magnetic field e
By is smaller than a critical fielB;. Solving Ex/V 2F - ]
=1+w?/4 for Eg>Vo=wWV,,. andw>2 with respectto the & 1 :
magnetic field, one obtains the known reSult o Or
-1 F
2
2mVg 2 v o) 08 !
U eave | 14 1— (Vo /Ep)2

FIG. 11. (a) The first 175 Landau bands for combined magnetic
and electric modulationd,=0.1 T anda=800 nm, so thaV/
=0.213 anda=0.16. The modulation strengths ase 0.8 andw
) o _ =14.3, the relative phase shift is/2. (b) & curves forE/Vey,

If a magnetic modulation is added to an electric one, very=110. At this energy:s has local extrema, while there are none in
complicated interference effects may result. Only if theg; . Therefore all channeled orbits have negative velocitips
phase shiftog is zero orm, the resulting energy spectrum
will be symmetric in&,. Even in that case, the distribution of tric modulation, the results reduce to those of the pure mag-
channeled stategegions 1) in the E-§, diagram may be- netic modulation, apart from some peculiarities at very low
come rather complicated, especially at low energies. For thenergies, where additional regions of channeled orbits may
mixed case channeled states may occur even if the modulaxist.
tion parametersv and s are not large enough to produce In magnetically modulated systems prepared by the depo-
them for the pure electric and the pure magnetic modulatioition of magnetic microstrips there is always an induced
of these strengths. For weak magnetic modulations€ 1, electric modulation due to the interface stress between the
and arbitrary strength of the electric modulation, channelederromagnets and the semicondudrhe phase shift with
states can exist only below a certain energy, as in the purespect to the magnetic modulation occurs when the external
electric modulation case. magnetic field is tilted! Nevertheless, in the known experi-

For arbitrary phase shifps the energy spectrum may be mental situations the stress potential amplitude is presumably
so asymmetric that in a certain energy range only channeleghuch weaker than our bare potential.
orbits exist which carry current in on@ay the positivey)
dire_ction, bu_t no channele_zd or_bits_ carrying current_in the op- V. SUMMARY AND DISCUSSION
posite direction. Such a situation is presented in Fig. 11. The
regions 1l, where channeled and drifting states coexist, is We have discussed in detail the quantum electronic states
again calculated from Eq$19) and (20), i.e., from purely and energy spectr&,(Xy) of a 2DEG in strong one-
classical arguments. dimensional magnetic and electric superlattices, and in a

If a 2DEG is subjected to such an asymmetric mixednonvanishing average external magnetic field. By comparing
modulation, it may happen that in the thermal equilibriumthe quantum results with the corresponding characteristics of
the channeled states carry a finite current. Of course, thithe classical motion, we achieved a detailed and intuitive
current must be compensated by a corresponding oppositsnderstanding of the energy spectra and eigenstates. We
current carried by the drifting states. found that the complicated parts of the energy speCiex

For large magnetic modulatios>1, and arbitrary elec- gions II”’), where branches with strong dispersion coexist
tric modulation, the magnetic modulation dominates the enwith those of low dispersion, coincide with the areas in the
ergy spectra at large energies. The regions Il with channelell — X, diagram in which classically channeled orbits exist.
states become more and more important, as can be seen fromFor a systematic investigation of the possible energy spec-
the pole structure of Eq$19) and(20). For very weak elec- tra and eigenstates, and of the corresponding types of classi-

B. Weak magnetic modulation
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cal trajectories, it is useful to exploit the scaling properties of We have demonstrated these features by model calcula-
the Hamiltonian. Then it is not necessary to vary indepentions based on simple harmonic modulation fields. Qualita-
dently all the basic model paramaters, i.e., the stren@ﬁlgs tively the obtained results and the methods to derive them
andV, of magnetic and electric modulation, the modulationcan easily be extended to more general modulation fields,
period a, and the average magnetic fieR}. If one uses containing higher harmonics. This will be necessary if the
suitable units for energy and leng¥,,. anda/2, respec- distance of the 2DEG from the sample surface is not much
tively, one obtains the same classical results and the sam@rger than the period of the surface structure creating the
gross features of the energy spectrae same position of the modulation?* Anharmonic effective modulation potentials
regions ), if one changes théour parametersBOm, Vo, a, may also result from nonlinear screening effects, even if the
and B, in such a manner that thevo reduced modulation bare modulation potential is harmorfft™ _
strengthss=BY/B, and W=V,/V¢y remain constant. For We have also performed several additional calculations
different parameter sets with the same values a@ind w, and consistency checks which are not documented in the
only the density of the energy bands is different in the plot of@in text. E.g., we have checked the equivalence of classical
En(Xo)/Veyc Versusk X, not its overall appearance. This is drift velocity and quantum group velocity beyond the ana-
illustrated by Figs. ®) and 8a), for which the regions I lytically accessible case of very weak _modulatlon fields. For
coincide. The reason for this behavior is that, in these energ§®Me examples with strong modulation, we evaluated the
and length units, the effective potential is invariant under thdluantum-mechanical group velocity along several energy
scaling transformatior8%— yB®,, Bo— yB,, a—\a, and bandse,(Xg) and g:ompare(_j the rgsult Wlth the drift velocity
Vo— y2\2V,, for arbitrary positivey and \. To leave the of the corresponding classical trajectories with the same en-
guantum result exactly unchanged under a change of the fofd Y gndxo values. For most parts of.the b_an_ds the two
model parameters, one has to keep-(I,K)* also un- velocities ag'reed perfectly. A systematic dewauon was c_>b—
changed. This is because only with the restriction 1/\y served only in parameter regimes where the classical trajec-

the kinetic-energy operator is also independent of the scalintgorIeS are close to _c_r|t|cal o_rblts, which have no quantum
: . : nalog. Near the critical orbits the modulus of the classical
parametery [see Eq.(8)]. Thus, in the suitable units, the

exact quantum result depends onlytbreeindependent pa- drift velocity increases rather rapidly, whereas the quantum

rameters instead dbur, and the characteristic classical fea- mechanical group velocity shows no anomaly. .
We have also extended the band-structure calculations to
tures depend only otwo.

gry strong magnetic modulatiorBﬁ,/B():ZO). While at

There is a close correspondence between the quantu h . licated it f bands with st
states belonging to strong-dispersion branches of the ener gh energies a complicated superpositon ot bands with steep
nd with flat dispersions, similar to that in Fig(a® was

spectrum and the classical channeled orbits. These orbits o biained. the bands at | ios tend to cluster int
cur near lines of vanishing total magnetic field or nearoPtained, the bands at low energies tend to cluster nto

minima of the electric modulation potential and are restrictecgrorp:f‘ tﬁeparat;ad by relat||vel)é Iarge. 9aps. tTr;?hIow—en?rgy
to individual side valleys of the effective potential. They are]E)ar ort ﬁ'spec rumwas a reat'y ;grgnlscr:]en orthe slg)teg: rum
always restricted to a part of a single modulation period in or vanishing average magnetic fieid, where one obtains a
direction and represent a fast motion alofgavy) lines one-dimensional Bloch energy spectrum for each value of

. . ! ) " 7 p,= —eByX.X
without self-intersections in the positive or negatjdirec- y 0

tion. The corresponding quantum states are also essentiall) Concerning previous and forthcoming transport calcula-
confined to the same space region and belong to enerdg’ns’ we conclude from the close correspondence of the

branches with strong dispersion. At a given value of the con- uantum and the classical approach that at weak average

stant of motionX, channeled orbits exist in energy intervals magnetic fields the classical calculations are appropriate,

bounded by adjacent relative minima and maxima of the efprovided the modu!ation field_s are no_t too $trong. For the
fective potential, defining the bottom and top of the corre-Ye"Y strong magnetic modulation mentioned in the Introduc-

sponding side valley. Plotting these classically defined ex'_[ion, it may, however, happen that the energy-level spacing

trema versu,, one obtains the boundaries of the regions ”of 9hanne|ed orbits exceeds the thermal enekgy in a
of the quantum energy spectrum. Classically, for each chad<9'M€ wh_ere hwg<kgT. Then we .WOUId expect
neled orbit there exists a drifting orbit with the same Con_modulatlon-!nduced qyantum effects in the positive-
stants of motionX, and E. These drifting orbits are self- magnetoresistance regime at I&y.

intersecting trajectories which, for sufficiently large energy,

gxtend over more than one m(_)dulgtion period inxhﬁrec_- ACKNOWLEDGMENTS

tion and drift slowly in they direction. The corresponding

guantum states belong to low-dispersion branches of the en- We thank D. Pfannkuche for a critical reading of the
ergy spectrum. Quantum mechanically, the channeled statesanuscript. This work was supported by the German
do not appear at exactly the same energies as the driftinBundesministerium “fu Bildung und ForschungBMBF),
states, and they usually have a larger energy spacing than ti&rant No. 01BM622. One of ugA.M.) is grateful to the
latter, since they are confined to a narrower effective potenMax-Planck-Institut fu Festkoperforschung, Stuttgart for
tial well. support and hospitality.




5548 S. D. M. ZWERSCHKE, A. MANOLESCU, AND R. R. GERHARDTS PRB 60

1D. Weiss, K. v. Klitzing, K. Ploog, and G. Weimann, Europhys. Henini, O. H. Hughes, S. P. Beaumont, and C. D. W. Wilkinson,
Lett. 8, 179 (1989; also inHigh Magnetic Fields in Semicon- Phys. Rev. B42, 9229(1990.
ductor Physics Il edited by G. Landwehr, Springer Series in 'R. Menne and R. R. Gerhardts, Phys. Re\6B 1707 (1998.
Solid-State Sciences Vol. §Bpringer-Verlag, Berlin, 1989p. 123, E. Muler, Phys. Rev. Lett68, 385(1992.

357. 13Q. W. Shi and K. Y. Szeto, Phys. Rev. 3, 12 990(1996.
2R. R. Gerhardts, D. Weiss, and K. v. Klitzing, Phys. Rev. Lett. 1p. D. Ye, D. Weiss, R. R. Gerhardts, K. v. Klitzing, and S.
, 62, 1173(1989. Tarucha, Physica B49-251 330 (1998.
R.W. Winkler, J. P. Kotthaus, and K. Ploog, Phys. Rev. L&l 15g pofstetter, J. M. C. Taylor, and A. MacKinnon, Phys. Rev. B
1177(1989. 53, 4676(1996.

4C. Zhang and R. R. Gerhardts, Phys. RevB 12 850(1990.

SH. A. Carmona, A. K. Geim, A. Nogaret, P. C. Main, T. J. Foster,
M. Henini, S. P. Beaumont, and M. G. Blamire, Phys. Rev. Lett.
74, 3009(1995.

6 . . .

P. D. Ye, D. Weiss, R. R. Gerhardts, M. Seeger, K. von Klitzing,
g 9 393(1990.

K. Eberl, and H. Nickel, Phys. Rev. Leff4, 3013(1995. 19 i | h
’S. Izawa, S. Katsumoto, A. Endo, and Y. lye, J. Phys. Soc. Jpn2 F. M. Peeters and P. Vasilopoulos, Phys. Red7B1466(1993.

18|, S. Ibrahim and F. M. Peeters, Phys. Rev5B 17 321(1995.

A, Manolescu, S. D. M. Zwerschke, M. Nijt&J. J. Gossmann,
and R. R. Gerhardts, PhysicaZ56-258 375(1998.

18p_ vasilopoulos and F. M. Peeters, Superlattices Microstict.

64, 706 (1995 OF. M. Peeters and A. Matulis, Phys. Rev4B, 15 166(1993.
' ) 21
8p. D. Ye, D. Weiss, R. R. Gerhardts, and H. Nickel, J. Appl.zzR' R. Gerhardts, Phys. Rev. 88, 11 064(1996.
Phys.81, 5444(1997. U. Gossmann, A. Manolescu, and R. R. Gerhardts, Phys. Rev. B
9C. W. J. Beenakker, Phys. Rev. Lef2, 2020(1989. 57, 1680(1998.

1OP_ H. Beton, E. S. Alves, P. C. Main, L. Eaves, M. Dellow, M. 23A. Manolescu and R. R. Gerhardts, PhyS R95$9707(1993



