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Spin structure of impurity band in semiconductors in two- and three-dimensional cases
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The exchange interaction between electrons located at different randomly distributed impurities is studied
for small density of impurities. The singlet-triplet splitting®) is calculated for two Coulomb centers at a
distanceR. Interpolated formulas are found which work for all distanBegfsom zero to infinity. The data from
atomic physics are used for the interpolation in the three-dimensional case. For the two-dimensional case the
original calculations are performed to find asymptotic behavior of the splitting at Rirgee splitting for the
“two-dimensional helium atom” R=0), and the splitting aR=ag, whereag is the effective Bohr radius.

The spin structure of the impurity band is described by the Heisenberg Hamiltonian. The ground state of a
system consists of localized singlets. The new results are obtained for the distribution of the singlet pairs in the
ground state. These results are exact at low density. The problem is reduced to a nontrivial geometric problem,
which is solved in the mean-field approximation and by computer modeling. The density of free electrons is
found as a function of temperature and the distribution function of the singlet-triplet transitions energies is
calculated. Both functions are given in an analytical fof80163-182@9)13631-3

I. INTRODUCTION rities. The density of impurities is assumed to be small.
This problem has a long stofy*® The following impor-
The structure of the impurity band of semiconductors hagant results have been obtained.

been widely studied during the past two decades both theo- (i) The ground state of the system consists of local sin-
retically and experimentallysee Ref. 1 In the early theo- glets.
retical studies the spin structure of the impurity band was (ji) Rossd® Thomas and Rossd,and Andrest al** used
completely ignored. Recent experiments suggest that the spififferent self-consistent approaches to get the distribution of
structure is very important for the variable range hoppingihe excitation energies of the singlet-triplet transitions.

conductivit;g, especially near the metal-nonmetal i) Bhatt and Le®*'°worked out a computational scal-

. 27
transition. ing approach which is exact at small density of impurities.

Thg exchaf‘ge mte_racpon myst be_ the main mechanism Ofhey have also mentioned a drastic difference between the
the spin-spin interaction in the impurity band. It appears as %eisenberg and Ising models

result of the overlap of the wave functions of different states. (iv) As far as we know, all previous authors used simpli-
The scale of this interaction decreases exponentially witg. d versions for the funct’iod(g) P
increasing distance between the states. Thus, this interacti ¥ :

becomes the most important one near the metal-nonmetal Qur Paper lpursur(]as th? fpllowmghggals. find the distrib
transition. In this region the scale of the interaction is of the (1) We analyze the existing methods to find the distribu-

order of the binding energy of a single impurity. tion of excitation energies and propose a new modification
In this paper we study the spin structure of the impurityfor the one-, two- and three-dimensional cases. Our approach
band created by Coulomb impurities in both two- and threeiS exact at low densities and it allows us to get an approxi-
dimensional cases in the limit of low density of impurities. In mate analytical expression for this distribution.
the two-dimensional case the impurities may be located ei- (i) To get an estimate for the energy of spin ordering, one
ther outside or inside the plane of electron gas. We assumeeeds a reliable calculation of the coefficiedits, which are
that all impurities are occupied by one electron. In this caselefined here as of the singlet-triplet splitting for the two
we can consider the coordinates of the occupied centers asates corresponding to the impuritieandk. We have per-
random variables without any correlations. formed these calculations for a pair of the Coulomb centers
Our study of the spin structure is based upon the Heiserat a distanceR;,. The result of the computations is a func-
berg Hamiltonian, which takes into account the spin-spin intion J(R) which is reliable at all distances from zero to in-
teraction of the electrons localized at different randomly dis-inity.
tributed impurities, The paper is organized as follows. In Sec. Il we consider
Hamiltonian Eq.(1) in the case of small impurity density.
We show that the ground state mostly consists of indepen-
H_i;k Ji(1/2+s-50), @D gent singlets. We 2how that the prol))/lem of finding thrt)ase
singlets can be reduced to a nontrivial geometric problem.
wheresis a spins operator] is a unit matrix, and,k denote ~ We solve it in a mean-field approximation and by computer
different impurity atoms. The sum is over all pairs of impu- modeling. The solution of this problem gives the distribution
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function F(E) for the energies of the singlet-triplet transi- 3

tions for a given function)(R). 2 ) .5
In Sec. Il we calculate](R) and its inverse function ) .3 ‘e

R(J). For the 3D case we present interpolated formulas 1@ ®

which are based upon the results of well-known calculation
for two hydrogen atoms. These calculations include analyti- ,
cal results for large distancé$numerical calculations at in-
termediate distances, and known results for the singlet-triple: ®)
splitting of the He atom. Similar interpolated formulas are ()
presented for the 2D case. They are based upon our original gig. 1. pifferent configurations of fou@) and six(b) spins.
calculations given in the Appendixes. We present an analyti-
cal expression fod(R) at large distances, a numerical result  gpait and Lek 10 take into account the next approxima-
for J(ag), and variational calculations for a “two- tion for the excitation energy,
dimensional He atom.”

In the Conclusion we discuss the distribution function of — _ _
singlet-triplet splittingsF(Ine), where e=J/J(0), and the B =235yt (157 J20) (Jaa™ J1a) ez @
density of free sping(T) at finite temperaturd. These two  Since J;, is the largest term, the second term should be

functions are the final results of our paper. small. It looks like it can change the ground state from sin-
glet to triplet if J34 is unusually small. However, such con-
Il. GROUND STATE AND EXCITED STATES OF THE figurations are extremely rare. It happens because in the case
HEISENBERG HAMILTONIAN IN THE IMPURITY BAND of small J;, one should consider Fig.(d) with six spins

rather than Fig. (). Indeed, very smallz, means a long
distance between impurities 3 and 4. It is more likely that in
We find the ground state and excited states of the Hamilthis situation some other strong singlé&;6) is the nearest

A. The structure of the ground state

tonian Eq.(1) using the following properties afj . neighbor of the impurity 4 rather than the singl&t2).
(i) All J;>0, which means an antiferromagnetic interac- In this six-spin system we have two strongly connected
tion. groups of spins, namely 1,2,3 and 4,5,6. Assumehgand

(if) The density of impurities is assumed to be small, so Jgg provide the strongest bonds in each group. Suppose there
that the average distance between them is larger than th no interaction between the groups. Then, the ground state
characteristic length of the exponential decayJgf. This  in each of them is a degenerate doublet. Altogether the sys-
means there is a very large dispersionJgf. In fact, we tem is fourfold degenerate. If one takes into accalypt the
shall assume that i#;>J,,,, thenJ;>J,,. Thus, we ig- degeneracy of the ground state will be lifted. One gets a
nore the cases when the distarRg is very close to the singlet and a triplet with the energy splittingl. On the
distanceR,,,,, assuming that these two pairs are not very farother hand, the general six-spin problem can be solved as-
from each other. suming that bothl,, andJsg are infinite. In this approxima-

To understand the physics of the problem it is very help-tion one gets the same result: the ground state is a singlet and
ful to consider the Hamiltoniafil) with four impurities only  the excitation energye=2Js,. It follows that the other
[Fig. 1(a)]. From a general principle one can concltf#hat  bonds connecting the two groups, lidg;, may contribute to
the energy spectrum consists of six levels, one level withthe excitation energy only in the second order of perturbation
spin S=2, three levels withS=1, and two levels withS  theory. This contribution will contain a small dimensionless
=0. Let us assume thdt, is much larger than all othek,  coefficient likeJ;5/J1, and it may be neglected. Thus, it is
in this problem. Then the ground-state wave function denot necessary to take into account the renormalization of the
scribes two singlets at sité$,2) and(3,4). It is easy to write weak bonds due to their strong neighbors in the limit of
the energy of the ground state and the first excited state asmall density. Bhatt and Lee also mentidthat their com-
suming putations show the triplet ground state in very rare cases.

Thus, we assume that the ground-state energy of any even
1=>"13,<J @) number of impurities ha§=0 and the system can be split
k=12 into localized singlets. To find the pairs of impurities which
form the singlet in the ground state, we propose the follow-
ing geometric problem.

(i) For every impurity in the system, find its nearest
neighbor.

1 oy __ / (i) Take the pair with the smallest distance. Generally,
Fo iz~ Jaut V12 By Izt daat 312 () the nearest neigﬁbor of a sikedoes not have sit& as its
The physical meaning of E¢B) is simple. Two singlet§1,2) nearest neighbor. But for the closest pair this is the case.

where the sum includes all;, exceptJ;, and J3,. The
ground-state energf, and the energy of the first excited
stateE, are given by the equations

and (3,4 do not interact with each other if conditid®) is (iii ) This closest pair forms a singlet with the largest bind-
fulfilled. The J'/2 terms come from the first term in the ing energy. To find all other singlets remove both sites of the
Hamiltonian(2). first pair. Go to point 1 and continue until all the singlets will

In this approximation the excitation energy Es=2J,,. be found.
The ground state has a total sf8r 0 while the first excited The same geometric problem has been proposed by Tho-

state hass=1. mas and Ros<d for the three-dimensional case.



PRB 60 SPIN STRUCTURE OF IMPURITY BAND IN . .. 5487

Assuming that all neighboring;, are very different, one

can write the total energy of the lowest state in the form p2(X)= T2 (8)
1 h X) is the two-di ional density. Simil Icu-
Emee> 3. 4+= I, 5 w .erepz( ) is the two imensional density. Similar calcu
0 z k' 2 otEher Ik © lations for the three- and one-dimensional cases give
where the first sum includes all pairs which form singlets and 1
the second one includes all other pairs. pa(X)= 1xd 9)

One can prove that the distribution of singlets, obtained as
a solution of the problem above, gives the minimum of totaljere X = (477/3n,) 3R atd=3 andX=2nyR atd=1. This

energy. Suppose, for example, that the solution prescribegstribution has been obtained by Roséar d=3. One can
the configuration of singletdl,2), (3,4), and(5,6), for impu-  ghow that at smalk the above results are exact, includig
rities with numbers from 1 to 6. One can show that any othegqrrections. Bhatthas pointed out that it is not exact at large
location of singlets at the same impurities, likB3), (2,5,  x. we believe that the exact distribution has the following
and(4,6), has larger energy. form at largeX:

We mention first that the contribution to the energy from
all other impurities like B... is thesame at all configura- 1
tions of singlets of six chosen impurities. Suppose now that pa(X)= Hoxd (10
J15>Ja4,J56. Then all otherd;, connecting the six impuri- d

ties are also less thah,. Indeed, if one of them were larger, \where the coefficienby# 1 and it depends on the dimen-

it would be used to form a singlet instead . Thus, any  sjonality of space. It follows from Eq.(10) that the average
rearrangement of the pairs within six impurities that deStTOY%iensityn(R) is independent ofi, at large values oR and it
singlet(1,2) increases the total energy. In the same way 0Ngs of the order ofR~ Y. This is because the average distance
can show that rearrangement of singlets in the system of foletween impurities cannot be smaller th@rby definition,
impurities 3,4,5,6 also increases the total energy. The samg,q there are no reasons for it to be substantially larger than
consideration can be done for any even number of impurir That is why we believe that E10) is exact at largex.

ties. Thus, the solution of the above geometric problem giveg,, computer modeling confirms this point and it gives us

the ground state of the system. the valuesby .
We propose an improved mean-field approach which
'B. Solution of geometric problem takes into account the fact that the densityoutside the
and distribution function of excitation energies circles is slightly larger than the average densitR), be-

We start with the simplest mean-field approximation.cause there are no impurities inside the circles. For example,
Suppose we are at the stage where all pairs with distance legéd=2, one gets
thanR are removed and we want to find the residual impurity
densityn(R). The crucial point of the mean-field approxima- - N
tion is that we neglect correlations in the positions of the n= S_N7Ra’ 11
remaining impurities except that they cannot be closer to one @

another tharR. whereN7R2q is the excluded area insidécircles. We have

_ We start with the two-dimensional case. Let us draw &nuqoqyced a free parameter<1, which takes into account
circle around each impurity with the radiés There will be 6 oyerlap of the circles. Its value can be extracted from

no other impurities inside the circles. Now increase the radii:omparison with numerical computations.

from R to R+dR and calculate how many impurities occur Equation(11) can be generalized for ary/to get a dif-
in the rings betweeR andR+dR. The total number of these o antial equation imy,

impurities gives the decrease df(R), where N(R)
=Sn(R) andSis the total area of the system. Thus, one gets q 2
the equation o ____ Pu (12)
dxd  1—agpgX®

dN(R)=—N(R)27Rn(R)dR. (6) o ,

The solution is given by the following transcendental equa-
Heren(R) is the density of the impurities outside the circles. tion:
It is slightly larger tham(R) (see below; but in the simplest
mean-field approximation we ignore this difference.

It is convenient to introduce the dimensionless coordinate

X=/7nyR and the normalized number of particles den-
sity) p(X)=n/ng=N/N,. Hereny=n(0) is the initial con-  with by=ay+1. It is worth mentioning that if we would
centration of particles. The differential equation fgX) at  neglect the “circles” overlappingl{y=2), then the solution
Nn=n has the form of Eq. (13) is

b

Xd=
Papd

(13

dp=—2Xp2dX. (7)
pd(X)

1
=, (14)
The solution of this equation with the conditipf0)=1 is X941+ X
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FIG. 2. Residual density of impurities as a functionXof(a) shows the results of numerical computationsder1,2,3 and the result of
a simple mean-field approximation E). (b)—(d) displays the ratio opy as obtained by numerical computationspipfound using the
interpolated formula Eq(16) for d=1-3. The insets show the asymptotic behavior of the numerical(td#agles and the interpolated
formula (solid line).

which is an underestimate for large distances. In the general
case, for Kby<2, the analytical solution of the transcen-
dental equatioril3) can be obtained only for large and small

(16)

1
X = 1
P S TT by 1

values ofX, which resembles Ed14), describes the residual density well
3—by for the whole range of distances. The comparison of this
1-X94 szd+ R X<1, formula with the results of computer modeling is shown in
- . (15) Figs. 2b)—2(d) for d=1,2,3. Below we use only Eq16)
Pd 1 1 d X1 with the values oby obtained above.
bgX® bgX® ’

Ill. CALCULATION OF J(R)
We performed computer simulations of this problem for
the one-, two-, and three-dimensional cases. The results are
shown in Fig. 2a) together with the simple mean-field ap-
proximation of Eq.(9). We found that fitting our numerical
data using Eq(13) shows excellent agreement if we choose
b;=1.67, b,=1.49, b;=1.15. It would be natural to think
that the simple mean-field approach witl=0 becomes ex-
act for large values od. for the hydrogenlike molecule, where nuclei are represented
Unfortunately, Eq(13) does not have an analytical solu- by two impurities. Hereafter, we use effective atomic units
tion for all X and so it is not convenient for our purpose. We (a.u) which means that all distances are measured in units of
found that the simple interpolated formula the effective Bohr radiusz=7%%¢/m*e?, and energies in

A. Three-dimensional case

The spin-spin interaction constant is the splitting energy
between the ground states for total sfis1 andS=0,

_ES=1_S=0_3v+_ 1y +
20=EJ'-EJO=3y -3,
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units of m*e*/%2¢2, wherem* is the effective carrier mass

and € is the dielectric constant.

We propose a simple interpolated formula for the ex-
change constant based on the most accurate numerical calc

lations of the hydrogen molecdfe and the following
asymptotic expressidfifor largeR:

2J(R)~1.63R%exp —2R). (17

We foundJ(0) from the data for the singlet-triplet split-

ting of the helium aton??

2J(0)=0.770 a.u.

The numerical dafd show that the behavior of the logarithm

of the exchange constant for smallis well described by a
second-order polynomial.

To obtain the interpolated formula we match the second

derivative of I{J(R)). In two regions it has the following
behavior:

—-2A, Rs1
3In(J)
PR 5 (18
IR ——, R>1,
2R?

whereA is the matching constant. The simplest formula that 3.

satisfies both conditions is
2A

#In(d)
1+4/5AR?

IR?

19
After integrating twice we obtain

In(J)=1In(3(0))— yR— EARarctamAR) + Zln(1+A2R2),

2
(20)
whereA and y are connected by equation
= 4(2—
A= \4A/5= M (21)
S5

This interpolated formula has one fitting parameteand the
correct asymptotic behavior.

The parametery has to be chosen to match small dis-
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FIG. 3. Interpolated formula&solid lineg for J(R) in the three-
and two-dimensional cases as given by EG®) and(27). For the
3D case the crosses show numerical results of Ref. 17. For the 2D
case the crosses show our numerical resultRatl and R=0.
Dashed lines show the corresponding asymptotic formulas which
are valid at largeR. The solid lines in the insets show the behavior
of the inverse functiorR vs In(J(0)/J) as given by interpolated

tances in an optimal way. The least-square method gjves formulas (23) and (28). The crosses in the insets have the same

=0.1. The final equation is

2J3(R)=0.77Q1+0.23R?)%4

Xexg —0.1R—1.21Rarctarf0.48R)].
(22

For further calculations we need the inverse funct{d) as

meaning as in the main figures.

The interpolated curves and all available data are shown in
Fig. 3@.

B. Two-dimensional case with in-plane impurities

We are unaware of any calculations 4fR) for the two-

well. Becausg of the expo_nential character of the excha”gﬁimensional case. We have considered a general problem
constant, the inverse function depends on energy logarithmiyhen the motion of the electrons is confined to a plane, but

cally. Therefore, we performed interpolation for the function

R(x), wherex=1In(J(0)/J). The result is

X 3.5
N 3.5
1.69+0.68In(1+x)

(23

1

the Coulomb impurities are at distances and h, outside
the plane. However, in this paper only the calculations for
in-plane impurities k;=h,=0) are presented. The results
for the general case will be published elsewttére.

The case of the in-plane impurities corresponds to a 2D
hydrogenlike molecule with the Hamiltonian
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A, A, 2 1 wheree =E/(2J(0))=J/J(0).
A=—- ——- 2 ) —— The analytical expression fét(In(e)) based on Eq<16),
2 2 it (xj+ra)’+y? (23), and(28) is quite cumbersome. In the two limits of large
and small energie®r small and large distancethe behav-
1 1 ior of F in the leading order is
+ \/ > > + E (24
(X17%)"+ (Y17 Y2) 10.56mngain(1/e), el
WhenR>1, the singlet-triplet splitting constant is calcu- @% 16 (30)
lated by making use of the semiclassical appré&ct (see No ———[In(1/e)]73, &—0;
Appendix A. We obtained the following result: 1.49mnqag
2J(R)=30.413R"*exp( — 4R). (25) 128mead[In(1/e)]?,  e—1
To provide the poinR=0 we performed variational calcu- @% 9 (31)
lations for the two-dimensional helium atom. We found that No —S[In(lls)]*“, e—0.
(see Appendix B 1.15mngag
E(!S)=-11.635 a.u., Our results fop(T)=n(T)/ny are shown by the full lines
in Figs. 4a) and 4b) for the two-dimensional and the three-
E(*S)=-8.193 a.u., (26)  dimensional cases. We choose two different dimensionless
densitiesn, for each case. They ahenoaé:O.l and 0.025
2J(0)=3.567(*=1%) a.u. for 2D and 4qrn0a%/3=0.004 and 0.016 for 3D.

Finaly. we perormed numerical calclaons based o, 15 SSPEREDCE of e dmersiniss Ssriuien e
the method described in Ref. 20 for the poli=1. Using 0

the same method as in the 3D case, we get the followin ases for the same two donor densitigsis presented in

) ; igs. 4c) and 4d) by the full lines.
interpolated formulas fod(R) andR(In(Jo/J)): The most important features of both functions are the long

2J,(R)=3.5671+ 1.81R?)"® Iogarithmic; tgils in the .regions of low temperature and low
energy. Similar behavior has been obtained by Bhatt and
xexd—0.3R—2.35Rarctari1.34@R) ], Leel? Note thatp(T) decreases with increasing density.

27 This is not the case for the distribution function. Larger den-
sity corresponds to larger distribution functiéh at large

Ro— 4 3x energies. This is because the derivaiigg'dn/dR is larger
274 3% ' for larger densityny at smallR. However, the dimensionless
1+ 0.50+0.28In( 1+ x) distribution functiorF (Ine) is normalized to 1/2. That is why

(28) the functions for different densities cross each other at some
energy. Thus, at small energies the larger distribution func-

x=1n(J(0/J)). tion corresponds to smaller density.
o To clarify the role of the functiond(R), which have been
These results are shown in FigbB found here, we have calculated the density of free sp{i3
and the distribution functioffr (In(¢)) for a simplified func-
IV. CONCLUSION tion J4(R) used in Ref. 10,

We obtained an analytical expressit®) for the dimen-
sionless density of impurities which form singlet pairs with a
distance larger thaR. We have also calculated the strength (32
of the spin-spin interactiod and obtained analytical expres- _
sions for the functiorR(J) for the three-dimensiondl23) Js(R)=J(0)exp(—4R/ag) for 2D.
and the two-dimensional28) cases. Combining Eq(16)  |n these calculations we used our residual dens{fg). The
with Egs.(23) or (28) one can calculate an analytical expres-results are shown in Fig. 4 by the dashed lines. One can see
sion for the density of singlet pairg E)/2 that has a singlet-  that the difference is large. The distribution function for our
triplet energy splitting smaller thak=2J. At finite tem-  more accurate form of the exchange constant became nar-
peratureT the pairs WithE<T are destroyed by a thermal rower and the decline in the beginning is steeper. This comes
motion. Therefore, at a given temperature the functib)  from the different behaviors at small distances.
atE=T gives the density of free spins in the system which |t is interesting to compare the numerical scaling calcula-
contribute to the Curie susceptibility. Thus, we obtain antions by Bhatt and Le@ with our method of calculation
analytical expression for the density of free spr{¥). n(R). We have found that at the smallest density used in

We have also calculated the distribution function of exci-Ref. 10 both methods give similar results, but for larger den-
tation energy in a logarithmic scale. It is defined as follows:sities there is a small deviation. We think that both methods

are exact in the limit of small densities, but the method of
Fln(s))= E dn _No d_P dR (29) Bhatt and Lee works in a wider range, because they take into
account the renormalization of weak bonds caused by their

J(R)=J(0)exp(— 2R/ag) for 3D,
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FIG. 4. Dimensionless density of free spimST) as a function of logarithm of temperature and dimensionless distribution furfetion
of the singlet-triplet excitations as a function of logarithm of energy in the two-dimensional(@ad® and the three-dimensional case
(c),(d). The values of dimensionless dens‘rmoaé at (a) and(b) are 0.025 and 0.1. The values of dimensionless dens’rty0&§/3 at(c)
and(d) are 0.004 and 0.016. The solid lines show the final results of our calculations. The dashed lines show the results obtained with the
function J(R) as given by Eqgs(32). In all cases larger densities are shown by thicker lines.

strong neighbors. However, the great advantage of our

. . . . . H\PA: EA\IIA .
method is that it gives an analytical expressioni¢E).

(A3)

Because of the Fermi statistics, the two-electron wave func-
tion is antisymmetric with respect to permutation. Therefore,
the symmetric coordinate wave function corresponds to spin
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Jer(rl—a)Jer(rz—a)Jr7|r = |+§, (A4)
APPENDIX A: EXCHANGE CONSTANT 12

FOR THE 2D HYDROGENLIKE MOLECULE whereV, andV, are effective potentials of interaction be-

The exchange constant for the Hamiltoni@d) is deter- tween the electron and the corresponding atomic residue,

mined by which is of the Coulomb type far from the atom¥y
——1/r, r——0o. The electron energy
2J=(Ey '~E5 9)=(Ea—Es), (A1)
E=—a?2—B%2- 1R
where
A is accurate up to terms 1/R?. Herea?/2 and8%/2 are elec-
HY=EVg, (A2)  tron binding energies in the given “atom.”
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WhenR>1, the most appropriate method for determina- 9 9 1
. e . o X X
tion of the energy term splitting due to the spin-spin interac- — =B
tion is the Gor'kov-Pitaevskii method2° Xy T IXe | (%= X2) (V1= Y2)

SinceJ(R) is exponentially small aR—o, ¥, and Vg
are solutions of the same Schinger equation, and there- i_ 1 _ 1 x= (A8)
fore, with exponential accuracy their combinations 2a a—Xx; atx

VW, Equation(A8) is valid under the conditions
12— =
V2 ) |X1,ﬂ$a,y125|Y1_yz|<\/a,

are also the solutions of the same Scfinger equation with (A9)
the Hamiltonian(A4). They correspond to the states of “dis-
tinguishable” particles when, e.g., fob,(r,r,), the first Ra,RB>1, R|a—pg|<1.
electron is principally located near the first iorxat —a and . .
the second electron near the second ion witha. HereR ~ The general solution of E4A8) is
=2a is the distance between “nuclei,” which we place at
the points*=a on thex axis. In the main region of the elec- F(C1(X1,%2),Cal X, X1,X2,Y12)) =0, (A10)

tron distribution, the wave function¥ , , are products of the

where C,,C, are integrals of the motion of the ordinary

atomic single-particle wave functions with the asymptoticdifferential equations:

behavior of the radial atomic wave functions of the electron
in the Coulomb field of the atomic residue being determined

by the formulas % - _ % - d_X —1
2 2
a1 = A rYe-Voear o (1) — A p B2 BT @ B X [ V(X1—X2)+ Y7o
(AS) 11 1 !

Indeed, for large the potential idJ ~ —1/r, and the single- 2a a—x. atx
particle wave function of the electron obeys the equation ! 2

A 1 a2 Hence

TSP TeTT e
2 r 2 X(Xl 1X2 ,Y12)

It has the asymptotic solutiofA5) up to ¢/r? accuracy. The
coefficientsA,, ; are determined by the behavior of the wave
functions of the electron inside the atoms.

It is possible to shotf that

_ZH\PZ

Our main purpose is to find the wave functith, ,.
Let us suppose tha¥ ; , has the form

(9_)(1 1[?_)(l Xz Ay dys.

X1=Xy

2J

(AB)

Wo(ry,r)=da(|r1+al) da(|r—al)x(ry,ra),

X1
eXF{ - _Zaa)[\/(xl_xz)2+y12_ Xyt xp] M)

[a—x;]"*[a+x,]"#
X X
xf(_l X2

al

where the unknown functioffi(u) is determined from the
fact that y—1 whenx;— —a, X, is arbitrary, or wherx,
—a andx; is arbitrary. Finally, after expanding +a|=|a
+x|+y3,J2la+x| in the exponent, we obtain

(A11)

a

(A7) Wo(ry, M) =AAxatx,) % D2 (a—x,) 2~ A2
Wo(r1,2) = dallratal) e(|ri—al) x(ra,ry), ay?

. . Xexg —a(a+B)+BXy—aX;— =———
whereg,, 5 have the behavior of EqA5) andy is a slowly 2(at+xy)
varying function ofr, andr,. Substituting¥, into the wave 2
equation and neglecting the second derivativeg,ofve ob- _ & X(F r,) (A12)
tain 2(a—xp) |1 A

ea+xi/2aa . atta+ pyp| PRV a(@txr) v V(X1 =Xo) 2+ Y~ Xy % e
o
a=x atxz \/[B(a+x1)+a(a+x2)]2+(ay12)2+,8(a+xl)+a(a+x2)
X(Xq,X2,Y10)= g Yer > 2 U(a+pB)"
o a-xgi2a8 —Bi(atf)a Bla—x1)+a(@a—xy) V(X —=X2) "+ Y= X+ X
atx a=x VIBa—x0) + a(a= o) P+ (By1)*+ B(a—xy) + a(a—xz)

(A13)
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Here the upper expression is given fof+x,<0 and the

lower expression fok;+x,=0.

Substituting Eqg.(A12) in Eqg. (A6), and differentiating

only the exponential, we obtain

a
2)= +2(a+,3)f [W1W¥2]x,—x,-xd x d yid Y.
—a

Introducing the notationg = o+ B andv= 8— « and taking

into consideration the fact that at the approximatié®)
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VI(B+a)(@a=x)]?+(By1n)*+(B+a)(a—X)
~2(B+a)(a—x),

the formula(A14) transforms to

2)(a,B,R)=R¥* 2B~ Yre= R D (@, B,R)+ D(B,2,R)],

(A14)
(A15)
whereD(«,3,R) is the following function:
|
2alup
2+/.L Zulaﬁ)
2 @
1exd — (1—X)/a— yRX](1+ X 21B—2la+1lp 1—x 2la—1lu
Xfr[( ) a—vRX](1+Xx) (1-x) d (AL6)

0

In the casew= g it is independent oR;

Do(@)=2D(a,a,R)

1 1/2a
=8JFA§( ) r

4a

a+1l

2a

1
X f exp(—t/a)(2—t)Y2t322dx,  (A17)
0

and
2)(a,,R)=Dy(a)R"*exp(—2aR).  (A18)

For the two-dimensional hydrogen molecule=2, A,
=4/{2) it gives

J(2,2R)=30.413R"exp — 4R). (A19)

APPENDIX B: TWO-DIMENSIONAL HELIUM ATOM

1. Variational method

(1_XV/M)1+1IM

NZJ v2dr.

The most important thing is the correct choice of the coor-
dinate system. Namely, it is better to choose as independent
variables those that the potential energy depends on. These
are the three sides of the triangte,r,,r,, between the
nucleus and two electrods.The Hamiltonian and, as we
expect, the wave functions f@&terms do not depend on the
orientation of the triangle in the space:

W(r 1) =Y(ry,1,,0)=V¥(r,r,,—6), (B3
r2,=r2+r5—2rr,coq ). (B4)
Therefore, the volume elemedtr is
rirorqpdrodrydry,
Varig— (-1

Finally, we introduce the “elliptic” coordinates

dr=rqrp,drydr,d¢p do=8m

To find J(0) one should consider the singlet-triplet split- SThit e,
ting of two impurities which are at a distance much smaller t=ry—r,, (B5)
than the Bohr radius of one impurity state. The motion of
electrons is restricted by the plain, so this is as a “two- U=ryo,

dimensional helium atom.” In this case the variational ap-

proach is the most appropriate. The Hamiltonian is which reflect the symmetry of two-particle eigenfunction: the

wave function has to be an even functiontdbr total spin

H=——-—>-——— += (B1)
and Schrdinger’s variational principle is

fwﬂqf dr

E=min—-7¢/—, (B2)

where

S=0, and an odd function dffor S=1. Thus,

d TSt (B6)

T= S u
(s~ u?) (U~ t%)

The factora can be omitted, and if we take into consider-

ation the fact that

W2(s,t,u)=T%s,—t,u), AV (s,t,u)=THWY(s,—t,u),

we can restrict the integration region by the inequalities:



5494

Ostsusssox, (B7)

(or t=suss, Ostss<w), (B8)

The potential energy in the new coordinates is

Z Z S
Wi~ 2= 2oy =l 25w

1

(B9)
and the mean value of the kinetic energy is
A, A
K=(¥|-5 -5 ")
1
=§f [(V1¥)?+(V,¥)?]dr
2
ol | s
V(s?=u?)(u?~t%)
551 A5 (”’)
X + +
Js Ju
u —t2 s2—u? g
+2_ W2 ds W—t2 ot
(B10)

2. Ground state of He
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whereN,V;,V,, andK are defined by Eq¥B2), (B9), and
(B10) correspondingly. Here, in order to fing, we used the
values of the following integrals:

fol coshbt)[1—t2]" Y2dt

m[1o(b) (see Ref. 23, 3.534)2
2| 14(b)/b,

° I,(cx ot
J Xn—le—x V(V )d ( 1)n 1~

0 c ap"~ ap" 1

" (p++p®—c?)~”
/—pz_cz -

(see Ref. 24, 2.15)3

Thus, the energy is

1+y+(1-y)°
E(a,y)= 2
(a,y)=a 1+ (1—)
1 (1-y? (3=
—a{4 _Em(T+F(7)) .
(B14)

We can also rewrite it in the form

E(a,y)=a?f(y)—ag(y). (B15)

The minimum value of the energy is realized for valuesvof

For the ground state we use the trial wave function in a"d 7, which satisfy the equations

form
1 - + - + -
W:E(e (aarytazra) 4 @=(e2r1ta1l2)) = @~ oS cosh Bt),

=(a1t+ay)l2,

B=(a1—ay)/2,

and we also introduce the parameter (8/a)?.
After calculating all necessary integrals, we obtain

(2a)* (1-7)°
Tl (1-y)?

(B11)

,1:

1+y+(1—y)°

K/N= a?
1+(1-1y)?

(B12)
V,IN=—4aZ,

(1-)?
214(1-9)2

377
V,IN=

F(y))

12—u?+yu?(1-2u?

du,
0 V1-u(1-yu?)5?

F(y)= (B13)

JE JE

%: y @:0,

or

2af(y)—9(y)=0, af’'(y)—g'(y)=0.
Eliminating @, we get the equation iy,

f'(y) 9 (7)

ity “aly)

It has the solutiony=0.11436.
Then,

(B16)

a=3.4059,
(B17)
Es= —11.760.

The corresponding values aof;, and a, are
ay=a(1+y)=4.5576,

Jy)=2.2541.

For comparison we also represent the results for the one-
parameter wave functiol =e~ *1(l17 2 =g~ s

= a(l- (818)
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3 2
E(Q)ZQZ_Q(S_?), N= 2m 2\°+1 ,
(2a)* (1—N)*(1+N)?
JE 37
oo 0= a=4—1£=3.4109, K/N_2x4—>\3+4>\2—2>\+1
- 202+1
E=-11.635. (B20)
2
Thus, the difference between these two ground state energies v /N=83)\ —A+d
(B17) and (B19) is 1%. ! N2+ 1
3. Term 3S of He IN= 1 (1-M*1+N)F(N)—1717/16]
Taking into consideration the screening effect of the elec- 27 16 2\2+1 '
trons, we construct our trial wave function from an antisym- (B26)
metric combination of the 4 electron in a field of the charge Here
Z,=«a4/2 and the orthogonal 2electron state in a field of
the chargeZ,=3a,/2: o fl H(UN) |
= u,
P1oll) =exp—aqr), 0 (1—N2%u?)%%1-u?
(B21) (B27)
+
(on(r):exp(_azr)( T “2r), @(U\) = 16US(1—2 UZ)\6+ 24U5(1 -2 )\

+(45u*—24uB)\*+ (162u*— 144uf)\3
W(r,r)=e10(r)e2orf2) = e1or2) e20(r). (B22

Or rewriting in s, t variables,

+12u?(1+3u?—6u*)\?

+6Uu%(4—3U%)N+32—-4u%—9u”.

Y(st)=e “Latcost)+(as- 2)sinr(,8t)],(823) From minimizingE(a,\) we find

ai+a, AN=0.74217, «=2.30998, (B28)

aTT which correspond to the effective chargés=2.0122 and
(B24) Z,=0.8934. For these values &fand « we get the energy

B= a;— @y E,=—8.19345. (B29)

2 . . . .
It is worthwhile to note that for the wave function wiity

Performing a procedure similar to, though more tedious than=2 andz,=1 the energye=—8.19062 is only higher by
the 1S case, we obtain the following results € 8/ a): 0.03%.

Thus the exchange constant for the 2D helium atom is

a2k VitV
(aM)=a g —a—g—, J=Ep—Eg=3.567 (+1%) a.e. (B30)
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