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Spin structure of impurity band in semiconductors in two- and three-dimensional cases
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The exchange interaction between electrons located at different randomly distributed impurities is studied
for small density of impurities. The singlet-triplet splitting 2J(R) is calculated for two Coulomb centers at a
distanceR. Interpolated formulas are found which work for all distancesR from zero to infinity. The data from
atomic physics are used for the interpolation in the three-dimensional case. For the two-dimensional case the
original calculations are performed to find asymptotic behavior of the splitting at largeR, the splitting for the
‘‘two-dimensional helium atom’’ (R50), and the splitting atR5aB , whereaB is the effective Bohr radius.
The spin structure of the impurity band is described by the Heisenberg Hamiltonian. The ground state of a
system consists of localized singlets. The new results are obtained for the distribution of the singlet pairs in the
ground state. These results are exact at low density. The problem is reduced to a nontrivial geometric problem,
which is solved in the mean-field approximation and by computer modeling. The density of free electrons is
found as a function of temperature and the distribution function of the singlet-triplet transitions energies is
calculated. Both functions are given in an analytical form.@S0163-1829~99!13631-2#
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I. INTRODUCTION

The structure of the impurity band of semiconductors h
been widely studied during the past two decades both th
retically and experimentally~see Ref. 1!. In the early theo-
retical studies the spin structure of the impurity band w
completely ignored. Recent experiments suggest that the
structure is very important for the variable range hopp
conductivity, especially near the metal-nonme
transition.2–7

The exchange interaction must be the main mechanism
the spin-spin interaction in the impurity band. It appears a
result of the overlap of the wave functions of different stat
The scale of this interaction decreases exponentially w
increasing distance between the states. Thus, this intera
becomes the most important one near the metal-nonm
transition. In this region the scale of the interaction is of t
order of the binding energy of a single impurity.

In this paper we study the spin structure of the impur
band created by Coulomb impurities in both two- and thr
dimensional cases in the limit of low density of impurities.
the two-dimensional case the impurities may be located
ther outside or inside the plane of electron gas. We ass
that all impurities are occupied by one electron. In this c
we can consider the coordinates of the occupied center
random variables without any correlations.

Our study of the spin structure is based upon the Heis
berg Hamiltonian, which takes into account the spin-spin
teraction of the electrons localized at different randomly d
tributed impurities,

H5(
iÞk

Jik~ I /21si–sk!, ~1!

wheres is a spin-12 operator,I is a unit matrix, andi ,k denote
different impurity atoms. The sum is over all pairs of imp
PRB 600163-1829/99/60~8!/5485~12!/$15.00
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rities. The density of impurities is assumed to be small.
This problem has a long story.8–15 The following impor-

tant results have been obtained.
~i! The ground state of the system consists of local s

glets.
~ii ! Rosso,8 Thomas and Rosso,13 and Andreset al.11 used

different self-consistent approaches to get the distribution
the excitation energies of the singlet-triplet transitions.

~iii ! Bhatt and Lee12,10 worked out a computational sca
ing approach which is exact at small density of impuritie
They have also mentioned a drastic difference between
Heisenberg and Ising models.

~iv! As far as we know, all previous authors used simp
fied versions for the functionJ(R).

Our paper pursues the following goals.
~i! We analyze the existing methods to find the distrib

tion of excitation energies and propose a new modificat
for the one-, two- and three-dimensional cases. Our appro
is exact at low densities and it allows us to get an appro
mate analytical expression for this distribution.

~ii ! To get an estimate for the energy of spin ordering, o
needs a reliable calculation of the coefficientsJik , which are
defined here as12 of the singlet-triplet splitting for the two
states corresponding to the impuritiesi andk. We have per-
formed these calculations for a pair of the Coulomb cent
at a distanceRik . The result of the computations is a fun
tion J(R) which is reliable at all distances from zero to in
finity.

The paper is organized as follows. In Sec. II we consi
Hamiltonian Eq.~1! in the case of small impurity density
We show that the ground state mostly consists of indep
dent singlets. We show that the problem of finding the
singlets can be reduced to a nontrivial geometric proble
We solve it in a mean-field approximation and by compu
modeling. The solution of this problem gives the distributi
5485 ©1999 The American Physical Society
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function F(E) for the energies of the singlet-triplet trans
tions for a given functionJ(R).

In Sec. III we calculateJ(R) and its inverse function
R(J). For the 3D case we present interpolated formu
which are based upon the results of well-known calculati
for two hydrogen atoms. These calculations include anal
cal results for large distances,18 numerical calculations at in
termediate distances, and known results for the singlet-tri
splitting of the He atom. Similar interpolated formulas a
presented for the 2D case. They are based upon our orig
calculations given in the Appendixes. We present an ana
cal expression forJ(R) at large distances, a numerical res
for J(aB), and variational calculations for a ‘‘two
dimensional He atom.’’

In the Conclusion we discuss the distribution function
singlet-triplet splittingsF(ln«), where «5J/J(0), and the
density of free spinsr(T) at finite temperatureT. These two
functions are the final results of our paper.

II. GROUND STATE AND EXCITED STATES OF THE
HEISENBERG HAMILTONIAN IN THE IMPURITY BAND

A. The structure of the ground state

We find the ground state and excited states of the Ha
tonian Eq.~1! using the following properties ofJik .

~i! All Jik.0, which means an antiferromagnetic intera
tion.

~ii ! The density of impuritiesn is assumed to be small, s
that the average distance between them is larger than
characteristic length of the exponential decay ofJik . This
means there is a very large dispersion ofJik . In fact, we
shall assume that ifJik.Jlm , then Jik@Jlm . Thus, we ig-
nore the cases when the distanceRik is very close to the
distanceRlm , assuming that these two pairs are not very
from each other.

To understand the physics of the problem it is very he
ful to consider the Hamiltonian~1! with four impurities only
@Fig. 1~a!#. From a general principle one can conclude16 that
the energy spectrum consists of six levels, one level w
spin S52, three levels withS51, and two levels withS
50. Let us assume thatJ12 is much larger than all otherJik
in this problem. Then the ground-state wave function
scribes two singlets at sites~1,2! and~3,4!. It is easy to write
the energy of the ground state and the first excited state
suming

J85( 8 Jik!J12, ~2!

where the sum includes allJik except J12 and J34. The
ground-state energyE0 and the energy of the first excite
stateE1 are given by the equations

E052J122J341J8/2; E152J121J341J8/2. ~3!

The physical meaning of Eq.~3! is simple. Two singlets~1,2!
and ~3,4! do not interact with each other if condition~2! is
fulfilled. The J8/2 terms come from the first term in th
Hamiltonian~1!.

In this approximation the excitation energy isE52J34.
The ground state has a total spinS50 while the first excited
state hasS51.
s
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Bhatt and Lee12,10 take into account the next approxima
tion for the excitation energy,

E52J341~J132J23!~J242J14!/J12. ~4!

Since J12 is the largest term, the second term should
small. It looks like it can change the ground state from s
glet to triplet if J34 is unusually small. However, such con
figurations are extremely rare. It happens because in the
of small J34 one should consider Fig. 1~b! with six spins
rather than Fig. 1~a!. Indeed, very smallJ34 means a long
distance between impurities 3 and 4. It is more likely that
this situation some other strong singlet~5,6! is the nearest
neighbor of the impurity 4 rather than the singlet~1,2!.

In this six-spin system we have two strongly connec
groups of spins, namely 1,2,3 and 4,5,6. Assume thatJ12 and
J56 provide the strongest bonds in each group. Suppose t
is no interaction between the groups. Then, the ground s
in each of them is a degenerate doublet. Altogether the
tem is fourfold degenerate. If one takes into accountJ34, the
degeneracy of the ground state will be lifted. One get
singlet and a triplet with the energy splitting 2J34. On the
other hand, the general six-spin problem can be solved
suming that bothJ12 andJ56 are infinite. In this approxima-
tion one gets the same result: the ground state is a singlet
the excitation energyE52J34. It follows that the other
bonds connecting the two groups, likeJ35, may contribute to
the excitation energy only in the second order of perturbat
theory. This contribution will contain a small dimensionle
coefficient likeJ35/J12 and it may be neglected. Thus, it
not necessary to take into account the renormalization of
weak bonds due to their strong neighbors in the limit
small density. Bhatt and Lee also mention10 that their com-
putations show the triplet ground state in very rare cases

Thus, we assume that the ground-state energy of any e
number of impurities hasS50 and the system can be sp
into localized singlets. To find the pairs of impurities whic
form the singlet in the ground state, we propose the follo
ing geometric problem.

~i! For every impurity in the system, find its neare
neighbor.

~ii ! Take the pair with the smallest distance. Genera
the nearest neighbor of a siteA does not have siteA as its
nearest neighbor. But for the closest pair this is the case

~iii ! This closest pair forms a singlet with the largest bin
ing energy. To find all other singlets remove both sites of
first pair. Go to point 1 and continue until all the singlets w
be found.

The same geometric problem has been proposed by T
mas and Rosso13 for the three-dimensional case.

FIG. 1. Different configurations of four~a! and six~b! spins.
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Assuming that all neighboringJik are very different, one
can write the total energy of the lowest state in the form

E052(
s

Jik1
1

2 (
other

Jik , ~5!

where the first sum includes all pairs which form singlets a
the second one includes all other pairs.

One can prove that the distribution of singlets, obtained
a solution of the problem above, gives the minimum of to
energy. Suppose, for example, that the solution prescr
the configuration of singlets~1,2!, ~3,4!, and~5,6!, for impu-
rities with numbers from 1 to 6. One can show that any ot
location of singlets at the same impurities, like~1,3!, ~2,5!,
and ~4,6!, has larger energy.

We mention first that the contribution to the energy fro
all other impurities like 7,8 . . . is thesame at all configura
tions of singlets of six chosen impurities. Suppose now t
J12@J34,J56. Then all otherJik connecting the six impuri-
ties are also less thanJ12. Indeed, if one of them were large
it would be used to form a singlet instead ofJ12. Thus, any
rearrangement of the pairs within six impurities that destr
singlet~1,2! increases the total energy. In the same way o
can show that rearrangement of singlets in the system of
impurities 3,4,5,6 also increases the total energy. The s
consideration can be done for any even number of imp
ties. Thus, the solution of the above geometric problem gi
the ground state of the system.

B. Solution of geometric problem
and distribution function of excitation energies

We start with the simplest mean-field approximatio
Suppose we are at the stage where all pairs with distance
thanR are removed and we want to find the residual impur
densityn(R). The crucial point of the mean-field approxim
tion is that we neglect correlations in the positions of t
remaining impurities except that they cannot be closer to
another thanR.

We start with the two-dimensional case. Let us draw
circle around each impurity with the radiusR. There will be
no other impurities inside the circles. Now increase the ra
from R to R1dR and calculate how many impurities occ
in the rings betweenR andR1dR. The total number of these
impurities gives the decrease ofN(R), where N(R)
5Sn(R) andS is the total area of the system. Thus, one g
the equation

dN~R!52N~R!2pRñ~R!dR. ~6!

Hereñ(R) is the density of the impurities outside the circle
It is slightly larger thann(R) ~see below!, but in the simplest
mean-field approximation we ignore this difference.

It is convenient to introduce the dimensionless coordin
X5Apn0R and the normalized number of particles~or den-
sity! r(X)5n/n0[N/N0. Heren05n(0) is the initial con-
centration of particles. The differential equation forr(X) at
ñ5n has the form

dr522Xr2dX. ~7!

The solution of this equation with the conditionr(0)51 is
d
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r2~X!5
1

11X2 , ~8!

wherer2(X) is the two-dimensional density. Similar calcu
lations for the three- and one-dimensional cases give

rd~X!5
1

11Xd . ~9!

HereX5(4p/3n0)1/3R at d53 andX52n0R at d51. This
distribution has been obtained by Rosso8 for d53. One can
show that at smallX the above results are exact, includingXd

corrections. Bhatt9 has pointed out that it is not exact at larg
X. We believe that the exact distribution has the followi
form at largeX:

rd~X!5
1

bdXd , ~10!

where the coefficientbdÞ1 and it depends on the dimen
sionality of spaced. It follows from Eq.~10! that the average
densityn(R) is independent ofn0 at large values ofR and it
is of the order ofR2d. This is because the average distan
between impurities cannot be smaller thanR by definition,
and there are no reasons for it to be substantially larger t
R. That is why we believe that Eq.~10! is exact at largeX.
Our computer modeling confirms this point and it gives
the valuesbd .

We propose an improved mean-field approach wh
takes into account the fact that the densityñ outside the
circles is slightly larger than the average densityn(R), be-
cause there are no impurities inside the circles. For exam
at d52, one gets

ñ5
N

S2NpR2a
, ~11!

whereNpR2a is the excluded area insideN circles. We have
introduced a free parametera,1, which takes into accoun
the overlap of the circles. Its value can be extracted fr
comparison with numerical computations.

Equation~11! can be generalized for anyd to get a dif-
ferential equation inrd ,

drd

dXd
52

rd
2

12adrdXd
. ~12!

The solution is given by the following transcendental equ
tion:

Xd5
12rd

bd

bdrd
~13!

with bd5ad11. It is worth mentioning that if we would
neglect the ‘‘circles’’ overlapping (bd[2), then the solution
of Eq. ~13! is

rd~X!5
1

Xd1A11X2d
, ~14!
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FIG. 2. Residual density of impurities as a function ofX. ~a! shows the results of numerical computations ford51,2,3 and the result of
a simple mean-field approximation Eq.~9!. ~b!–~d! displays the ratio ofrd as obtained by numerical computations tord found using the
interpolated formula Eq.~16! for d51 –3. The insets show the asymptotic behavior of the numerical data~triangles! and the interpolated
formula ~solid line!.
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which is an underestimate for large distances. In the gen
case, for 1,bd,2, the analytical solution of the transce
dental equation~13! can be obtained only for large and sma
values ofX,

rd'5 12Xd1
32bd

2
X2d1•••, X!1,

1

bdXd S 12S 1

bdXdD bd

1••• D , X@1.

~15!

We performed computer simulations of this problem
the one-, two-, and three-dimensional cases. The results
shown in Fig. 2~a! together with the simple mean-field ap
proximation of Eq.~9!. We found that fitting our numerica
data using Eq.~13! shows excellent agreement if we choo
b151.67, b251.49, b351.15. It would be natural to think
that the simple mean-field approach witha50 becomes ex-
act for large values ofd.

Unfortunately, Eq.~13! does not have an analytical solu
tion for all X and so it is not convenient for our purpose. W
found that the simple interpolated formula
ral

r
re

rd~X!5
1

Xd1A11~bd21!2X2d
, ~16!

which resembles Eq.~14!, describes the residual density we
for the whole range of distances. The comparison of t
formula with the results of computer modeling is shown
Figs. 2~b!–2~d! for d51,2,3. Below we use only Eq.~16!
with the values ofbd obtained above.

III. CALCULATION OF J„R…

A. Three-dimensional case

The spin-spin interaction constant is the splitting ene
between the ground states for total spinS51 andS50,

2J5Eg
S512Eg

S50[3Su
121Sg

1 ,

for the hydrogenlike molecule, where nuclei are represen
by two impurities. Hereafter, we use effective atomic un
~a.u.! which means that all distances are measured in unit
the effective Bohr radiusaB5\2e/m* e2, and energies in
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units of m* e4/\2e2, wherem* is the effective carrier mas
ande is the dielectric constant.

We propose a simple interpolated formula for the e
change constant based on the most accurate numerical c
lations of the hydrogen molecule17 and the following
asymptotic expression18 for largeR:

2J~R!'1.636R5/2exp~22R!. ~17!

We foundJ(0) from the data for the singlet-triplet split
ting of the helium atom,21

2J~0!50.770 a.u.

The numerical data17 show that the behavior of the logarithm
of the exchange constant for smallR is well described by a
second-order polynomial.

To obtain the interpolated formula we match the seco
derivative of ln„J(R)…. In two regions it has the following
behavior:

]2ln~J!

]R2
'H 22Ã, R<1

2
5

2R2
, R@1,

~18!

whereÃ is the matching constant. The simplest formula th
satisfies both conditions is

]2ln~J!

]R2
52

2Ã

114/5ÃR2
. ~19!

After integrating twice we obtain

ln~J!5 ln„J~0!…2gR2
5

2
ARarctan~AR!1

5

4
ln~11A2R2!,

~20!

whereA andg are connected by equation

A5A4Ã/55
4~22g!

5p
. ~21!

This interpolated formula has one fitting parameterg and the
correct asymptotic behavior.

The parameterg has to be chosen to match small d
tances in an optimal way. The least-square method giveg
50.1. The final equation is

2J3~R!50.770~110.23R2!5/4

3exp@20.1R21.210Rarctan~0.484R!#.

~22!

For further calculations we need the inverse functionR(J) as
well. Because of the exponential character of the excha
constant, the inverse function depends on energy logarith
cally. Therefore, we performed interpolation for the functi
R(x), wherex5 ln„J(0)/J…. The result is

R35
x

2
1

3.5x

11
3.5x

1.6910.68ln~11x!

. ~23!
-
cu-

d

t

ge
i-

The interpolated curves and all available data are show
Fig. 3~a!.

B. Two-dimensional case with in-plane impurities

We are unaware of any calculations ofJ(R) for the two-
dimensional case. We have considered a general prob
when the motion of the electrons is confined to a plane,
the Coulomb impurities are at distancesh1 and h2 outside
the plane. However, in this paper only the calculations
in-plane impurities (h15h250) are presented. The resul
for the general case will be published elsewhere.22

The case of the in-plane impurities corresponds to a
hydrogenlike molecule with the Hamiltonian

FIG. 3. Interpolated formulas~solid lines! for J(R) in the three-
and two-dimensional cases as given by Eqs.~22! and ~27!. For the
3D case the crosses show numerical results of Ref. 17. For the
case the crosses show our numerical results atR51 and R50.
Dashed lines show the corresponding asymptotic formulas wh
are valid at largeR. The solid lines in the insets show the behavi
of the inverse functionR vs ln„J(0)/J… as given by interpolated
formulas ~23! and ~28!. The crosses in the insets have the sa
meaning as in the main figures.
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Ĥ52
D1

2
2

D2

2
2 (

j ,i 51

2 1

A~xi6a!21yi
2

1
1

A~x12x2!21~y12y2!2
1

1

R
. ~24!

WhenR@1, the singlet-triplet splitting constant is calcu
lated by making use of the semiclassical approach18–20 ~see
Appendix A!. We obtained the following result:

2J~R!530.413R7/4exp~24R!. ~25!

To provide the pointR50 we performed variational calcu
lations for the two-dimensional helium atom. We found th
~see Appendix B!

E~1S!5211.635 a.u.,

E~3S!528.193 a.u., ~26!

2J~0!53.567~61%! a.u.

Finally, we performed numerical calculations based
the method described in Ref. 20 for the pointR51. Using
the same method as in the 3D case, we get the follow
interpolated formulas forJ(R) andR„ln(J0 /J)…:

2J2~R!53.567~111.81R2!7/8

3exp†20.3R22.355R arctan~1.346R!‡,

~27!

R25
x

4
1

3x

11
3x

0.5010.28ln~11x!

,

~28!

x5 ln„J~0/J!….

These results are shown in Fig. 3~b!.

IV. CONCLUSION

We obtained an analytical expression~16! for the dimen-
sionless density of impurities which form singlet pairs with
distance larger thanR. We have also calculated the streng
of the spin-spin interactionJ and obtained analytical expres
sions for the functionR(J) for the three-dimensional~23!
and the two-dimensional~28! cases. Combining Eq.~16!
with Eqs.~23! or ~28! one can calculate an analytical expre
sion for the density of singlet pairsn(E)/2 that has a singlet
triplet energy splitting smaller thanE52J. At finite tem-
peratureT the pairs withE,T are destroyed by a therma
motion. Therefore, at a given temperature the functionn(E)
at E5T gives the density of free spins in the system wh
contribute to the Curie susceptibility. Thus, we obtain
analytical expression for the density of free spinsn(T).

We have also calculated the distribution function of ex
tation energy in a logarithmic scale. It is defined as follow

F„ln~«!…5
1

2

d n

d ln~«!
[

n0

2

d r

d R

d R

d ln~«!
, ~29!
t

n

g

-

-
:

where«5E/„2J(0)…[J/J(0).
The analytical expression forF„ln(«)… based on Eqs.~16!,

~23!, and~28! is quite cumbersome. In the two limits of larg
and small energies~or small and large distances! the behav-
ior of F in the leading order is

F2D

n0
'H 10.56pn0aB

2 ln~1/«!, «˜1

16

1.49pn0aB
2 @ ln~1/«!#23, «˜0;

~30!

F3D

n0
'H 128pn0aB

3@ ln~1/«!#2, «˜1

9

1.15pn0aB
3 @ ln~1/«!#24, «˜0.

~31!

Our results forr(T)5n(T)/n0 are shown by the full lines
in Figs. 4~a! and 4~b! for the two-dimensional and the three
dimensional cases. We choose two different dimension
densitiesn0 for each case. They arepn0aB

250.1 and 0.025
for 2D and 4pn0aB

3/350.004 and 0.016 for 3D.
The dependence of the dimensionless distribution fu

tion F/n0 for the two-dimensional and the three-dimension
cases for the same two donor densitiesn0 is presented in
Figs. 4~c! and 4~d! by the full lines.

The most important features of both functions are the lo
logarithmic tails in the regions of low temperature and lo
energy. Similar behavior has been obtained by Bhatt
Lee.10 Note thatr(T) decreases with increasing densityn0.
This is not the case for the distribution function. Larger de
sity corresponds to larger distribution functionF at large
energies. This is because the derivativen0

21dn/dR is larger
for larger densityn0 at smallR. However, the dimensionles
distribution functionF(ln«) is normalized to 1/2. That is why
the functions for different densities cross each other at so
energy. Thus, at small energies the larger distribution fu
tion corresponds to smaller density.

To clarify the role of the functionsJ(R), which have been
found here, we have calculated the density of free spinsr(T)
and the distribution functionF„ln(«)… for a simplified func-
tion Js(R) used in Ref. 10,

Js~R!5J~0!exp~22R/aB! for 3D,

~32!

Js~R!5J~0!exp~24R/aB! for 2D.

In these calculations we used our residual densityr(R). The
results are shown in Fig. 4 by the dashed lines. One can
that the difference is large. The distribution function for o
more accurate form of the exchange constant became
rower and the decline in the beginning is steeper. This com
from the different behaviors at small distances.

It is interesting to compare the numerical scaling calcu
tions by Bhatt and Lee10 with our method of calculation
n(R). We have found that at the smallest density used
Ref. 10 both methods give similar results, but for larger d
sities there is a small deviation. We think that both metho
are exact in the limit of small densities, but the method
Bhatt and Lee works in a wider range, because they take
account the renormalization of weak bonds caused by t
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FIG. 4. Dimensionless density of free spinsr(T) as a function of logarithm of temperature and dimensionless distribution functionF/n0

of the singlet-triplet excitations as a function of logarithm of energy in the two-dimensional case~a!,~b! and the three-dimensional cas
~c!,~d!. The values of dimensionless densitypn0aB

2 at ~a! and ~b! are 0.025 and 0.1. The values of dimensionless density 4pn0aB
3/3 at ~c!

and~d! are 0.004 and 0.016. The solid lines show the final results of our calculations. The dashed lines show the results obtained
function J(R) as given by Eqs.~32!. In all cases larger densities are shown by thicker lines.
o

rc
h
a
is
.

tfu

nc-
re,
pin

-
ue,
strong neighbors. However, the great advantage of
method is that it gives an analytical expression forn(E).

ACKNOWLEDGMENTS

This work was supported by the Australian Resea
Council and by the Seed Grant of the University of Uta
A.L.E. and V.V.F. are grateful to the Center for Theoretic
Physics in Trieste for hospitality during the work on th
project. A.L.E. is grateful to R. Bhatt, D. Mattis, and B
Sutherland for helpful discussions. I.P. acknowledges frui
discussions with M. Kuchiev and G. Gribakin.

APPENDIX A: EXCHANGE CONSTANT
FOR THE 2D HYDROGENLIKE MOLECULE

The exchange constant for the Hamiltonian~24! is deter-
mined by

2J5~Eg
S512Eg

S50![~EA2ES!, ~A1!

where

ĤCS5ESCS , ~A2!
ur

h
.
l

l

ĤCA5EACA . ~A3!

Because of the Fermi statistics, the two-electron wave fu
tion is antisymmetric with respect to permutation. Therefo
the symmetric coordinate wave function corresponds to s
S50 and the antisymmetric one corresponds toS51.

Let us consider the more general Hamiltonian

Ĥ52
D1

2
2

D2

2
1Va~r11a!1Va~r21a!

1Vb~r12a!1Vb~r22a!1
1

ur12r2u
1

1

R
, ~A4!

whereVa and Vb are effective potentials of interaction be
tween the electron and the corresponding atomic resid
which is of the Coulomb type far from the atoms:Va,b
˜21/r , r 2˜`. The electron energy

E52a2/22b2/221/R

is accurate up to terms;1/R2. Herea2/2 andb2/2 are elec-
tron binding energies in the given ‘‘atom.’’
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WhenR@1, the most appropriate method for determin
tion of the energy term splitting due to the spin-spin inter
tion is the Gor’kov-Pitaevskii method.18–20

SinceJ(R) is exponentially small asR˜`, CA andCS
are solutions of the same Schro¨dinger equation, and there
fore, with exponential accuracy their combinations

C1,25
CS6Ca

A2

are also the solutions of the same Schro¨dinger equation with
the Hamiltonian~A4!. They correspond to the states of ‘‘dis
tinguishable’’ particles when, e.g., forC1(r 1,r 2), the first
electron is principally located near the first ion atx52a and
the second electron near the second ion withx5a. HereR
[2a is the distance between ‘‘nuclei,’’ which we place
the points6a on thex axis. In the main region of the elec
tron distribution, the wave functionsC1,2 are products of the
atomic single-particle wave functions with the asympto
behavior of the radial atomic wave functions of the electr
in the Coulomb field of the atomic residue being determin
by the formulas

wa~r !5Aar 1/a21/2e2ar , wb~r !5Abr 1/b21/2e2br .
~A5!

Indeed, for larger the potential isU;21/r , and the single-
particle wave function of the electron obeys the equation

2
D

2
w2

1

r
w52

a2

2
w.

It has the asymptotic solution~A5! up tow/r 2 accuracy. The
coefficientsAa,b are determined by the behavior of the wa
functions of the electron inside the atoms.

It is possible to show20 that

2J522E FC2

]C1

]x1
2C1

]C2

]x1
G

x15x2

dx2 dy1 dy2 .

~A6!

Our main purpose is to find the wave functionC1,2.
Let us suppose thatC1,2 has the form

C1~rW1 ,rW2!5fa~ urW11aW u!fb~ urW22aW u!x~rW1 ,rW2!,
~A7!

C2~rW1 ,rW2!5fa~ urW21aW u!fb~ urW12aW u!x~rW2 ,rW1!,

wherefa,b have the behavior of Eqs.~A5! andx is a slowly
varying function ofr 1 andr 2. SubstitutingC1 into the wave
equation and neglecting the second derivatives ofx, we ob-
tain
-
-

n
d

a
]x

]x1
2b

]x

]x2
1F 1

A~x12x2!21~y12y2!2

1
1

2a
2

1

a2x1
2

1

a1x2
Gx50. ~A8!

Equation~A8! is valid under the conditions

ux1,2u<a,y12[uy12y2u!Aa,

~A9!

Ra,Rb@1, Rua2bu!1.

The general solution of Eq.~A8! is

F„C1~x1 ,x2!,C2~x,x1 ,x2 ,y12!…50, ~A10!

where C1 ,C2 are integrals of the motion of the ordinar
differential equations:

dx1

a
52

dx2

b
52

dx

x F 1

A~x12x2!21y12
2

1
1

2a
2

1

a2x1
2

1

a1x2
G21

.

Hence

x~x1 ,x2 ,y12!

5

expS 2
x1

2aa D @A~x12x2!21y12
2 2x11x2#1/~a1b!

@a2x1#1/a@a1x2#1/b

3 f S x1

a
1

x2

b D , ~A11!

where the unknown functionf (u) is determined from the
fact thatx˜1 whenx1˜2a, x2 is arbitrary, or whenx2

˜a andx1 is arbitrary. Finally, after expandingurW6au.ua
6xu1y12

2 /2ua6xu in the exponent, we obtain

C1~rW1 ,rW2!5AaAb~a1x1!~22a!/2a~a2x2!~22b!/2b

3expF2a~a1b!1bx22ax12
ay1

2

2~a1x1!

2
by2

2

2~a2x2!
Gx~rW1 ,rW2!, ~A12!
x~x1 ,x2 ,y12!55 ea1x1/2aaF 2a

a2x1
G 1/a

a2a/(a1b)bFb~a1x1!1a~a1x2!

a1x2
G 1/bF A~x12x2!21y12

2 2x11x2

A@b~a1x1!1a~a1x2!#21~ay12!
21b~a1x1!1a~a1x2!

G 1/~a1b!

e2a2x2/2abF 2a

a1x2
G 1/b

b2b/(a1b)aFb~a2x1!1a~a2x2!

a2x1
G 1/aF A~x12x2!21y12

2 2x11x2

A@b~a2x1!1a~a2x2!#21~by12!
21b~a2x1!1a~a2x2!

G 1/~a1b!
.

~A13!
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Here the upper expression is given forx11x2<0 and the
lower expression forx11x2>0.

Substituting Eq.~A12! in Eq. ~A6!, and differentiating
only the exponential, we obtain

2J512~a1b!E
2a

a

@C1C2#x15x25x d x d y1d y2 .

~A14!

Introducing the notationsm5a1b andn5b2a and taking
into consideration the fact that at the approximation~A9!
it-
lle
o
o
p

A@~b1a!~a2x!#21~by12!
21~b1a!~a2x!

'2~b1a!~a2x!,

the formula~A14! transforms to

2J~a,b,R!5R2/a12/b21/me2mR@D~a,b,R!1D~b,a,R!#,

~A15!

whereD(a,b,R) is the following function:
D~a,b,R!54ApAa
2Ab

2 S m

2 D 21/m

GS 21m

2m D S 22m/a
m

a D 2a/mb

3E
0

1exp@2~12x!/a2nRx#~11x!2/b22/a11/m~12x!2/a21/m

~12xn/m!111/m
dx. ~A16!
or-
dent
hese

e

he

r-
In the casea5b it is independent ofR:

D0~a![2 D~a,a,R!

58ApAa
4 S 1

4a D 1/2a

GS a11

2a D
3E

0

1

exp~2t/a!~22t !1/2at3/2a dx, ~A17!

and

2J~a,a,R!5D0~a!R7/2aexp~22aR!. ~A18!

For the two-dimensional hydrogen molecule (a52, Aa

54/A2p) it gives

J~2,2,R!530.413R7/4exp~24R!. ~A19!

APPENDIX B: TWO-DIMENSIONAL HELIUM ATOM

1. Variational method

To find J(0) one should consider the singlet-triplet spl
ting of two impurities which are at a distance much sma
than the Bohr radius of one impurity state. The motion
electrons is restricted by the plain, so this is as a ‘‘tw
dimensional helium atom.’’ In this case the variational a
proach is the most appropriate. The Hamiltonian is

Ĥ52
D1

2
2

D2

2
2

Z

r 1
2

Z

r 2
1

1

r 12
, ~B1!

and Schro¨dinger’s variational principle is

E5min
E CĤC dt

N
, ~B2!

where
r
f
-
-

N5E C2 dt.

The most important thing is the correct choice of the co
dinate system. Namely, it is better to choose as indepen
variables those that the potential energy depends on. T
are the three sides of the triangler 1 ,r 2 ,r 12 between the
nucleus and two electrons.25 The Hamiltonian and, as we
expect, the wave functions forS terms do not depend on th
orientation of the triangle in the space:

C~rW1 ,rW2!5C~r 1 ,r 2 ,u!5C~r 1 ,r 2 ,2u!, ~B3!

r 12
2 5r 1

21r 2
222r 1r 2 cos~u!. ~B4!

Therefore, the volume elementdt is

dt5r 1r 2 dr1 dr2 df du58p
r 1r 2r 12dr1 dr2 dr12

A4r 1
2r 2

22~r 1
21r 2

22r 12
2 !2

.

Finally, we introduce the ‘‘elliptic’’ coordinates

s5r 11r 2 ,

t5r 12r 2 , ~B5!

u5r 12,

which reflect the symmetry of two-particle eigenfunction: t
wave function has to be an even function oft for total spin
S50, and an odd function oft for S51. Thus,

dt5
p~s22t2!u

A~s22u2!~u22t2!
ds dt du. ~B6!

The factorp can be omitted, and if we take into conside
ation the fact that

C2~s,t,u!5C2~s,2t,u!, CĤC~s,t,u!5CĤC~s,2t,u!,

we can restrict the integration region by the inequalities:



ne-
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0<t<u<s<`, ~B7!

~or t<u<s, 0<t<s<`!. ~B8!

The potential energy in the new coordinates is

^Cu2
Z

r 1
2

Z

r 2
1

1

r 12
uC&5^Cu2

4Zs

s22t2
uC&

1^Cu
1

u
uC&5V11V2

~B9!

and the mean value of the kinetic energy is

K5^Cu2
D1

2
2

D2

2
uC&

5
1

2E @~¹1C!21~¹2C!2# dt

5E
0

`

dsE
0

s

duE
0

uS u~s22t2!

A~s22u2!~u22t2!

3F S ]C

]s D 2

1S ]C

]t D 2

1S ]C

]u D 2G
12

]C

]u F sAu22t2

s22u2

]C

]s
1tAs22u2

u22t2

]C

]t G D dt.

~B10!

2. Ground state of He

For the ground state we use the trial wave function in
form

C5
1

2
~e2(a1r 11a2r 2)1e2(a2r 11a1r 2)!5e2as cosh~bt !,

a5~a11a2!/2, ~B11!

b5~a12a2!/2,

and we also introduce the parameterg5(b/a)2.
After calculating all necessary integrals, we obtain

N215
~2a!4

p

~12g!2

11~12g!2
,

K/N5a2
11g1~12g!3

11~12g!2
,

~B12!

V1 /N524aZ,

V2 /N5
a

2

~12g!2

11~12g!2 S 3p

4
1F~g! D ,

F~g!5E
0

1 22u21gu2~122u2!

A12u2~12gu2!5/2
du, ~B13!
a

whereN,V1 ,V2 , andK are defined by Eqs.~B2!, ~B9!, and
~B10! correspondingly. Here, in order to findV2 we used the
values of the following integrals:

E
0

1

cosh~bt!@12t2#71/2dt

5
p

2 H I 0~b! ~see Ref. 23, 3.534.2!

I 1~b!/b,

E
0

`

xn21e2x
I n~cx!

cn
dx5~21!n21

]n21

]pn21

3F ~p1Ap22c2!2n

Ap22c2 G
p51

~see Ref. 24, 2.15.3!.

Thus, the energy is

E~a,g!5a2
11g1~12g!3

11~12g!2

2aF4Z2
1

2

~12g!2

11~12g!2 S 3p

4
1F~g! D G .

~B14!

We can also rewrite it in the form

E~a,g!5a2f ~g!2ag~g!. ~B15!

The minimum value of the energy is realized for values ofa
andg, which satisfy the equations

]E

]a
50,

]E

]g
50,

or

2a f ~g!2g~g!50, a f 8~g!2g8~g!50.

Eliminating a, we get the equation ing,

f 8~g!

f ~g!
22

g8~g!

g~g!
50. ~B16!

It has the solutiong50.11436.
Then,

a53.4059,

~B17!

ES5211.760.

The corresponding values ofa1 anda2 are

a15a~11Ag!54.5576,

a25a~12Ag!52.2541. ~B18!

For comparison we also represent the results for the o
parameter wave functionC5e2a1(r 11r 2)5e2as:
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E~a!5a22aS 82
3p

8 D ,

~B19!

]E

]a
50⇒a542

3p

16
53.4109,

E5211.635. ~B20!

Thus, the difference between these two ground state ene
~B17! and ~B19! is 1%.

3. Term 3S of He

Taking into consideration the screening effect of the e
trons, we construct our trial wave function from an antisy
metric combination of the 1s electron in a field of the charg
Z1[a1/2 and the orthogonal 2s electron state in a field o
the chargeZ2[3a2/2:

w10~r !5exp~2a1r !,
~B21!

w20~r !5exp~2a2r !S 12
a11a2

2
r D ,

C~r 1 ,r 2!5w10~r 1!w20~r 2!2w10~r 2!w20~r 1!. ~B22!

Or rewriting in s, t variables,

C~s,t !5e2as@at cosh~bt !1~as22!sinh~bt !#,
~B23!

a5
a11a2

2
,

~B24!

b5
a12a2

2
.

Performing a procedure similar to, though more tedious th
the 1S case, we obtain the following results (l5b/a):

E~a,l!5a2
K

N
2a

V11V2

N
,

v

T

D

-

ies

-
-

n,

N5
2p

~2a!4

2l211

~12l!4~11l!2
,

~B25!

K/N52
l42l314l222l11

2l211
,

V1 /N58
3l22l11

2l211
,

V2 /N52
1

16

~12l!4~11l!2@F~l!2171p/16#

2l211
.

~B26!

Here

F~l!5E
0

1 f~u,l!

~12l2u2!9/2A12u2
du,

~B27!

w~u,l!516u6~122 u2!l6124u6~122 u2!l5

1~45u4224u8!l41~162u42144u6!l3

112u2~113 u226 u4!l2

16 u2~423 u2!l13224 u229 u4.

From minimizingE(a,l) we find

l50.742 17, a52.309 98, ~B28!

which correspond to the effective chargesZ152.0122 and
Z250.8934. For these values ofl anda we get the energy

EA528.193 45. ~B29!

It is worthwhile to note that for the wave function withZ1
52 andZ251 the energyE528.190 62 is only higher by
0.03%.

Thus the exchange constant for the 2D helium atom is

J5EA2ES53.567 ~61%! a.e. ~B30!
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