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Evolution of one-particle and double-occupied Green functions for the Hubbard model,
with interaction, at half-filling with lifetime effects within the moment approach
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We evaluate the one-particle and double-occupied Green functions for the Hubbard model at half-filling
using the moment approach of Nolting@Z. Phys.255, 25 ~1972!; Grund Kurs: Theoretische Physik. 7 Viel-

Teilchen-Theorie~Verlag Zimmermann-Neufang, Ulmen, 1992!#. Our starting point is a self-energy,S(kW ,v),

which has a single pole,V(kW ), with spectralweight,a(kW ), and quasiparticle lifetime,g(kW ) @J. J. Rodrı´guez-
Núñez and S. Schafroth, J. Phys. Condens. Matter10, L391 ~1998!; J. J. Rodrı´guez-Núñez, S. Schafroth, and

H. Beck, Physica B~to be published!; ~unpublished!#. In our approach,S(kW ,v) becomes the central feature of

the many-body problem and due to three unknownkW parameters we have to satisfy only the first three sum
rules instead of four as in the canonical formulation of Nolting@Z. Phys. 255, 25 ~1972!; Grund Kurs:
Theoretische Physik. 7 Viel-Teilchen-Theorie~Verlag Zimmermann-Neufang, Ulmen, 1992!#. This self-energy
choice forces our system to be a non-Fermi liquid for any value of the interaction, since it does not vanish at

zero frequency. The one-particle Green function,G(kW ,v), shows the fingerprint of a strongly correlated

system, i.e., a double peak structure in the one-particle spectral density,A(kW ,v), vs v for intermediate values

of the interaction. Close to the Mott insulator-transition,A(kW ,v) becomes a wide single peak, signaling the
absence of quasiparticles. Similar behavior is observed for the real and imaginary parts of the self-energy,

S(kW ,v). The double-occupied Green function,G2(qW ,v), has been obtained fromG(kW ,v) by means of the

equation of motion. The relation betweenG2(qW ,v) and the self-energy,S(kW ,v), is formally established and

numerical results for the spectral function ofG2(kW ,v), x (2)(kW ,v)[2(1/p)limd˜01Im@G2(kW ,v)#, are given.
Our approach represents the simplest way to include~1! lifetime effects in the moment approach of Nolting, as
shown in the paper, and~2! Fermi or/and marginal Fermi liquid features as we discuss in the conclusions.
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I. INTRODUCTION

After the discovery of the high-Tc materials,1 the study of
correlations has gained interested due to the fact that the
the belief2 that the normal properties of these materials co
be explained in the framework of the Hubbard model3,4

since electron correlations are strong, i.e., the on-
electron-electron repulsionsU are much larger than the en
ergies associated to the hybridization of atomic orbitals
longing to different atoms.5 We consider the study of corre
lations in the Hubbard model as a rewarding task since it
shed light on still unsolved points of the novel materials. F
example, at high temperatures (Tc 302130 K! these HTSC
cuprates, which are poor conductors, become supercond
ors. This feature is strange indeed because the Coulom
pulsion is strong. Contrary to the predictions of the Fer
liquid theory, the resistivity atT.Tc and optimum doping is
linear in temperature, i.e.,R'T.6 This suggests a very stron
scattering of elementary excitations. A discussion of the p
sible breakdown of Fermi liquid theory is given in Ref. 7.
the present work we explore the effects of having a n
Fermi liquid behavior into the one-particle Green functi
and double-occupied Green function.

We will use the moment approach~or sum rules! of
PRB 600163-1829/99/60~8!/5366~9!/$15.00
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Nolting8 for the spectral density,A(kW ,v). It is well known in
the literature9 that the moment approach in the spheric

approximation—when the narrowing band factor,B(kW ), is
not k-dependent—alwaysgives a gap in the density of state
~DOS!. If the chemical potential happens to be in this ga
then wealwayshave an insulator. It has been argued that
way to cure this unrealistic gap is to have a better appro

mation for the narrowing band factor,B(kW ).
We have followed a different path which consists in pr

posing a single pole structure in the self-energy,S(kW ,v).
Closing the gap for small and intermediate values
U/W (W is the bandwidth andW58t in two dimensions!,
is not the only rationality behind our calculation. It is we
documented10–12that correlations give rise to lifetime contr
butions that conspire against the very definition of quasip
ticles at the chemical potential. For a discussion of this po

we refer the reader to Fig. 2 where2Im@S(kW ,v)# vs v is
always finite forv/t50 for wave vectors along the diagon
of the Brillouin zone. By construction@Eq. ~2!#, we are
working with a non-Fermi liquid picture for low energies.

For a discussion of this point we refer the reader to Fig
where2Im@S(kW ,v)# vs v is always finite forv/t50 for all
the wave vectors along the diagonal of the Brillouin zone.
5366 ©1999 The American Physical Society
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construction, we are working with a non-Fermi liquid pictu
at low energies.

This paper is organized as follows. In Sec. II, we pres
our model Hamiltonian and our self-energy proposal,
which we try to justify our bold choice, as one step forwa
to understand the physics behind the moment approac
Nolting. This led us to come up with an ansatz which is n
zero at zero frequency, i.e., our system is not a Fermi liq
for any value of the interaction. We could argue that o
ansatz is valid for energy scales not too close to the chem
potential. However, our Ansatz has to become exact in
limit of U/W@1. In Sec. III, we present our results whic
consist of the real and imaginary parts of the self-energy,
spectral functions of the one-particle and double-occup
Green functions along the diagonal of the Brillouin zone,
different values of the interaction. We have used a sys
size of 32332. In Sec. IV we present our conclusions a
the future trends.

II. MODEL HAMILTONIAN AND SELF-ENERGY ANSATZ

The model we study is the Hubbard Hamiltonian

H5t iW, jWciWs
†

cjWs1
U

2
niWsniWs̄2mciWs

†
ciWs , ~1!

whereciWs
† (ciWs) are creation~annihilation! electron opera-

tors with spins. niWs[ciWs
†

ciWs . U is the local interaction,m
the chemical potential and we work in the grand canon
ensemble. We have adopted Einstein convention for repe
indices, i.e., for theNs sites iW, the z nearest-neighbor site
~NN! jW and for spin up and down (s52s̄561). t iW, jW5
2t, for NN and zero otherwise.

Let us propose for the self-energy,S(kW ,v), the following
single pole ansatz:

S~kW ,v!5rU1
a~kW !

v2V~kW !2 ig~kW !
, a~kW !,g~kW !PRe.

~2!

With our choice for S(kW ,v), we have that the real an
imaginary parts of the self-energydo satisfy the Kramers-
Kronig relations,13 since it is analytic in one of half of the
complex plane. In fact, the physical solution to the probl
is whena(kW )>0, as it can be checked by finding the roots
G(kW ,v) in the complex plane. We postpone the discussion
this point for the conclusions. The ansatz given in Eq.~2! has
some similarity with the Hubbard-I solution.14 However, we
have neglected any frequency dependence in the damp
Our calculations show thatg(kW ) is kW -independent but
stronglyU-dependent.

The validity of Luttinger theorem15 has been discussed i
Ref.16. We argue that most likely the Luttinger theorem
not going to hold because we have a non-Fermi liquid s
tem. Our choice ofrU in Eq. ~2!, the Hartree shift, is very
convenient since it redefines an effective chemical poten
meff5m2rU. This effective potential is zero at half-filling
r51/2, sincem5U/2 there. Then,v50 means that we are
at the chemical potential. We want to explicitly state that o
t
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choice @Eq. ~2!# has the advantage of requiring only thre
sum rules to be satisfied, instead of four as in the now nor
procedure of Nolting8 which starts from the spectral func
tion, A(kW ,v), itself. We add that ifg(kW )50, then we go
back to Nolting’s canonical results. In this case17

a~kW !5r~12r!U2, V~kW !5~12r!U1B~kW !,

B~kW !5B1F~kW !, ~3!

whereB(kW ) is the narrowing band factor. ThekW -independent
narrowing band factor,B, is calculated in closed form in Ref
8. It is a self-consistent quantity, though. ThekW -dependent
narrowing band factor,F(kW ), has been evaluated recently b
Herrmann and Nolting18 using a two-pole ansatz with th
two poles located at the same energies than the poles o
one-particle Green function. This treatment, beyond
spherical treatment of Nolting,8 can be mapped into the ca
culations of Kishore and Granato19 with appropiate identifi-
cation of our parameters in the paramagnetic phase. T
approach gives a Mott metal-insulator transition. All th
means that the metal-insulator transition~MMIT ! is embed-
ded into the Hubbard model and it does not require of li
time effects to accomplish this. However, once more, li
time effects are a natural element of the many-body phy
for intermediate and strongly correlated electron syste
where the concept of quasiparticle does not apply any lon
The interested reader is addressed to Refs. 7 and 20–22

However, we have a metal forU<Uc5W, since a metal
is defined byN(v50)Þ0 @see Eq.~231! of Ref. 23#. In a
previous paper,20 we have shown that the density of states
v/t50 is different from zero forU<Uc . This type of metal
we call astrange metal. Furthermore, we have said in th
Introduction of our paper that our approach is valid for e
ergy not too close to the chemical potential. Work is
progress to consider Fermi and marginal Fermi liquid beh
ior close to the chemical potential, i.e.,

S~kW ,v!5
a~kW !

v2V~kW !2 ig~kW !vn
, ~4!

with n50,1.24

By definition the one-particle Green function,G(kW ,v), in
terms ofS(kW ,v), is given as

G~kW ,v!5
1

v2«kW2S~kW ,v!
, ~5!

where«kW522t@cos(kx)1cos(ky)#2m1rU. Also, we will re-
quire the one-particle spectral density,A(kW ,v), which is de-
fined as

A~kW ,v!52
1

p
lim

d˜01

Im G~kW ,v1 id!. ~6!

Using Eqs.~2!–~6!, we arrive to the following expression
for the spectral density:
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A~kW ,v!5
21

p

a~kW !g~kW !

„~v2«kW !~v2VkW !2a~kW !…21g2~kW !~v2«kW !
2

. ~7!
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Using the first three sum rules of Nolting8 for the the spectra
function of Eq.~6! we obtain the following equations:

E
2`

1`

A~kW ,v!dv[M0~kW !51,

E
2`

1`

vA~kW ,v!dv[M1~kW !5«kW ,

E
2`

1`

v2A~kW ,v!dv[M2~kW !5«k
212rU«k

21rU2, ~8!

where theMi(kW )’s, i 50,1,2, are the first three moments8

For example, the first moment (i 50) is the area below the
curve of A(kW ,v) vs v, the second moment (i 51) is the
center of gravity of the spectral function and the second
der moment~or third moment,i 52) is related to the width
of the spectral function,A(kW ,v). So, damping effects ar
controlled by the second order sum rule. We do not use
fourth moment or sum rule because we have th
kW -dependent unknown parameters~our way of working is
different to the one of Nolting since in the latter we have
use four moments. The difference lies in the fact that
starts with the one-particle spectral density!. We could guess
that in order to extend the canonical formalism of Nolting
include lifetime effects, starting from his two pole ansatz,
should have to postulate the following structure forG(kW ,v):

G~kW ,v!5
a1~kW !

v2v1~kW !1 ig~kW !
1

a2~kW !

v2v2~kW !1 ig~kW !
, ~9!

from where we see that we would need five moments or s
rules because we have five parameters to determine,
a i(kW ), v i(kW ), g(kW ), with i 51,2. With the proposal@Eq. ~2!#
we have only three parameters to calculate.

We assume that atr51/2 the chemical potential,m
5U/2. The density of states which results of the two po
ansatz for the one-particle Green function, in the spher
approximation of Nolting,8 always has a gap. This solutio
~always a gap! is known in the literature as the Hubbard
solution25 which has been critized since many years ago
Laura Roth,26 among others. We call the attention to Ref.
where the authors point out to the fact that thekW -dependence
has to be included inB(kW ). A recent calculation by
Kirchhofer28 is performed at the mean field level for th
kW -dependence of the band narrowing factor, when the
Hubbard bands are separated. In a more elaborated cal
tion based on the Mori’s formalism29 for the one-particle
Green function, Kirchhofferet al.28,30 obtain three peaks in
the spectral density,A(kW ,v), which respects particle-hol
symmetry. In the end, they get a Mott metal insulator tra
sition, for U/t55. Here we are including lifetime effects a
r-
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a crucial ingredient in the formulation beyond a mean-fie
treatment. Kirchhofer28,30 also considers the presence of a
tiferromagnetism fluctuations in an empirical way. We cou
extend Kirchhofferet al.’s calculations using the numerica

values of the dynamical spin susceptibility,x(qW ,v), in the
spin-fermion model of superconductivity of Pines, Chubuk
and others.31 The dynamical spin susceptibility has been o
tained from nuclear magnetic resonance experiments in
high-Tc cuprates. In Sec. III, we present our numerical
sults and their interpretation.

III. NUMERICAL RESULTS AND THEIR
INTERPRETATION

In Figs. 1~a!, 1~b!, and 1~c! we present thespectral den-

sity, A(kW ,v), vs v along the diagonal of the Brillouin zon

@kW52p(n,n)/32# for U/W51/2, 2/3, and 1, respectively
We are working with a finite system of periodicity of 3
332. For U/W51/2 we have a double-peaked structu
with visible lifetime effects~the Dirac delta functions of
Nolting now have width!. This is a feature of correlated elec
tron systems as it has been discussed in the work
Schneideret al.9 for the case ofU,0. The physics is differ-
ent but the peak structure is similar. ForU/W52/3 we still
observe the double peak structure but lifetime effects
stronger. Finally, forU/W51, the double peak structure i
practically washed out. As we see, lifetime effects are v
much pronounced for the larger values ofU/W presented,
i.e., for U/W51.0. The two peaks ofA(kW ,v) vs v are sepa-
rated approximately by a distance o
A@«kW2VkW2g(kW )#214g(kW )«kW.

We would like to compare the results of our approa
with the ones of Ref. 28. The work of Kirchhofer is based
a different approach, i.e., Mori’s continuous fraction. W
recall that the Mori’s continuous fraction forG(kW ,v) is
based on a cumulant expansion with as many poles as
keep terms. This cumulant expansion is approximated
Kirchhofer28 by the one-particle Green’s function itsel
Closing the continuous fraction withG(kW ,v) itself is equiva-
lent to group together the poles. As a result we get bra
cuts, rather than isolated poles, ending up with a square
expression forG(kW ,v).

From these considerations it is easy to obtain three st
tures inA(kW ,v). The central one, close to the chemical p
tencial, is a delta function, i.e.,ao(kW )d(v2«kW), with a
weight which depends ofU. Kirchhofer28 has calculated
Uc as that value ofU for which ao(kW )50. When construct-
ing the correlated density of states, N(v)
52(1/p)limd˜O1(kW Im@G(kW ,v1 id)#, this shows the low-
ering of the van Hove singularity with increasingU in a 2D
discrete Hubbard Hamiltonian.
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FIG. 1. ~a!–~c! A(n,n,v) vs v along the diagonal of the Bril-
louin zone for three different values of interaction, namely,U/W
51/2, 2/3, and 1. Our system has a periodicity of 32332. We are
at half-filling, r51/2. As we work in two dimensions, the band
width is W58t. The wave vector along the diagonal is defined

kW[(2p/32)(n,n).
From these considerations we cannot conclude that a t

peak inA(kW ,v) @ao(kW )Þ0# is equivalent to a third peak in
the correlated density of states. In fact, if we adopt a flat f
density of states (U50), we can interpret the results of ou
papers and the one of Kirchhofer28 as the superposition o
two bands, each of weight 1/2, forU50, around the chemi-
cal potential (v5m). With interaction (UÞ0) these two
symmetric bands start to displace in opposite directions
frequencies, giving origin to the lower and the upper Hu
bard bands~for U>Uc). In consequence, three peaks

A(kW ,v)28 basically produces our density of states, and
ones of the so-called Hubbard-III like approximation of Re
32 and 19.

In Figs. 2~a!, 2~b!, and 2~c! we show the imaginary part o

the self-energy,2Im@S(kW ,v)#, vs v along the diagonal of
the Brillouin zone for the same values ofU/W of Fig. 1.
Again we observe that for increasing values ofU/W, damp-
ing effects are stronger in the self-energy, as is the cas
the one-particle spectral function@see Figs. 1~a!, 1~b!, and
1~c!#. In addition, we do not observe any Fermi liquid d
pendence~in frequency! of the imaginary part of the self
energy aroundv50. This is due to our choice of our ansa
@Eq. ~2!#. We could include Fermi or marginal Fermi liqui
behavior close to the chemical potential as it is suggeste
Sec. IV. However, within the present work, we could s
that our approximation is valid for frequencies not too clo
to the chemical potential. Certaintly, for small values
U/W, we should have some Fermi liquid behavior~at least in
2D!, like an imaginary self-energy going to zero as positi
power ofv at the chemical potential.33

There are dynamical mean-field theory23 numerical results
which suggest the presence of a third peak around the ch
cal potential in the correlated density of states. However,
results on this so-calledcollective single-band Kondo effec
is not a well established fact as it will be shown below. Th
third peak is located in between the so-called lower and
per Hubbard bands.23 According to our knowledge, the cal
culations of Ref. 23 do not show the spectral functions wh
are the central issue of the present paper. From the poin
view developed in our paper, i.e., one single-pole struct
for the self-energy, we are lead to two pole-structure for
spectral function,A(kW ,v). As we have just said, the dynam
cal function discussed by Georgeset al.23 is the density of
states,N(v), and this shows well defined structures, with
central peak which defines the Kondo effect. Another stu
of the dynamical mean-field approximation has been p
formed by Pruschkeet al.34 for various dopings. These au
thors do not get the collective single-band Kondo effect
half-filling (r51/2) but for other dopings. Naturally there
a contradiction between the results of Ref. 23 and the one
Ref. 34. In consequence, the appearance of the Kondo p
is not a fully established fact in the published literature.
addition, a recent paper by Fisher35 performs a critical study
of the Mott metal-insulator transition in infinity dimension
(d[`) concluding that it is absent. His conclusions a
reached after discussing the very premises of thed[`
theory. In particular, we mention two relevant points.

~1! If the limit of infinity dimensions is taken on a Bravai
lattice, the free one-particle density of states has an infin

s
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width. As a consequence of that, it does have a Mott me
insulator transition.36

~2! The d[` relies on a free semicircular density o
states, which is realized for a lattice where the hopping m
trix elements are distantindependent, Gaussian distributed

FIG. 2. ~a!–~c! 2Im S(n,n,v)] vs v along the diagonal of the
Brillouin zone. Same parameters of Fig. 1.
l-

-

random variables, to fully frustate antiferromagnetic ord
ing. Then, as he proves, the Bethe and the fully frusta
lattice, have no well defined thermodynamical limit, a
hence no well defined one-particle density of states.37,38

To close this point, we can affirmatively state that o
approach is definitively different from the one of George
Kotliar, Krause, and Rozenberg23 ~more about this later!. We
could argue that one missing element in our approach co
be that we are not considering the presence of antiferrom
netic ~AF! fluctuations. This could give rise to an addition
depletion of the density of states in between the two Hubb
bands.39 In any case, as we can conclude from our previo
discussion, thecollective single-band Kondo effectis a con-
troversial issue and we cannot perform a definitive comp
son with thed[` approximation.

The fact that we have a two peak structure inA(kW ,v)
does not lead necessarily to a central peak inN(v), sepa-
rated from the other two structures. For example, from F
31 of Georgeset al.23 we cannot conclude the presence o
third peak in the spectral function since their self-energy
featureless. From our one-peak self-energy we can su
answer that the one-particle spectral density has a two-
structure. We can definitively say that our correlatedA(kW ,v)
andN(v) are similar to a Hubbard-III like solution, as it ha
been shown by Ikeda, Larsen, and Mattuck32 and
Kishore-Granato.19 The only difference with the results o
this papers is that we have included lifetime effects in
moment approach of Nolting.20 Just recently, Rodrı´guez-
Núñez et al.40 have rederived the Hubbard-III like approx
mation of Refs. 32 and 19 and explicitly shown the Mo
metal-insulator transition, for a flat density of states. T
MIT occurs forU5W[8t. On spite of our differences with
the results of Ref. 23, we agree with the results of Ref.
Their Fig. 6~a!34 shows the spectral function,N(kW ,v) or
A(kW ,v), for U54 andr5n/251/2. Our results agree quit
well with the ones presented by Pruschkeet al.:34 two peaks
along the diagonal of the Brillouin zone, with differen
weights.

In Figs. 3~a!, 3~b!, and 3~c! we report results for the rea
part of the self-energy, Re@S(kW ,v)#, vsv along the diagonal
of the Brillouin zone for the same values of interaction
Fig. 1. For U/W51/2,2/3 we see a more or less regul
pattern. However, forU/W51, lifetime effects lead to big
effects in Re@S(kW ,v)#. For example, the curves are n
longer regularly displaced with respect to one another. A
the frequency range increases appreciably and the heigh
the curves decrease. Let us comment that the numerical f
of the real part of the self-energy clearly shows that
Kramers-Kronig relations for the self-energy are satisfied
order to have the roots of the one-particle Green function
the same side of the complex plane. Analytically, it can
proved too. The only requirement coming out of these c
culations, with our ansatz, is thata(kW )>0 ~Ref. 41! ~see the
Appendix!. As a(kW )3g(kW )<0, theng(kW )<0. This consid-
eration we have checked in further numerical calculatio
with lattice sizes of 64364. Due to these new findings, w
correct the results of Ref. 20 since the solutions we fou
there must satisfy the conditions established here, i.e.,a(kW )
>0 andg(kW )<0.
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Figures 4~a!, 4~b!, and 4~c! show the imaginary part of the
double-occupied Green function,2Im@G2(kW ,v)#, vs v
along the diagonal of the Brillouin zone for the same valu
of interaction as before. Let us recall thatG2(kW ,v) is given
by

FIG. 3. ~a!–~c! Re@S(n,n,v)# vs n along the diagonal of the
Brillouin zone. Same parameters as previously.
s

G2~kW ,v![^Tt@ciW,s~t!niW,s̄~t !;cjW,s
†

~0!#& (kW ,v) , ~10!

where s̄52s. In Eq. ~10! (kW ,v) means the Fourier trans
form of the spatial-temporal correlation function andTt the
usual time ordering of the operators. Using the equation

FIG. 4. ~a!–~c! 2Im@G2(n,n,v)# vs v along the diagonal of
the Brillouin zone. Same parameters as before.
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motion technique for the one-particle Green functio
G(kW ,v), we obtain thatG(kW ,v) andG2(kW ,v) are related as
follows:42

~v2«kW !G~kW ,v!511UG2~kW ,v!. ~11!

We observe that there is a big peak in the inter
vP@22,21# which is most likely due to the peak i
A(kW ,v). However, the right peak at (kW ,v/W)5(p,p,
'1/3) increases with interaction. At the same time, we
that the left frequency peaks (v,0) start to line up for small
momenta but they almost vanish forkW5p(3/4,3/4) and
p(1,1):

x (2)~kW ,v![2
1

p
lim

d˜01

Im@G2~kW ,v1 id!# ~12!

is the spectral density for the double-occupied Green fu
tion. We see from Fig. 4 that there is negative contribution
this spectral density, which is due to the presence of
factor v2«kW in front of the one-particle spectral densit
A(kW ,v). In addition, the factorv2«kW is controlling the
height of the peaks inx (2)(kW ,v). For example, when
x (2)(kW ,v)50 is because this factor is zero.x (2)(kW ,v) is
given by

Ux (2)~kW ,v!5~v2«kW !3A~kW ,v!, ~13!

which is identically zero for the noninteracting electron g
sinceA(kW ,v) is a Dirac delta function at the same argume
of the quantity in front of it. So, any deviation from zero is
signature of an interacting system. Contrary toA(kW ,v),
which is always positive,x (2)(kW ,v) can be negative. The
only requirement is that42

E
2`

1`

x (2)~kW ,v!dv5r, ~14!

where r is the electron density/spin. This can be eas
checked calculating the first moment or moment of zer
order for the double-occupied Green function. The relat
between the self-energy and the double-occupied Gr
function is the following:

UG2~kW ,v!5
S~kW ,v!

„v2«kW2S~kW ,v!…
. ~15!

Equation~15! is an exact relationship and it can be us
to keep control of the approximations made in the se
energy and the double-occupied Green functions, as it
been discussed in Ref. 40. Needless to say that to app
mate S(kW ,v) is equivalent to have an approximation f
G2(kW ,v) and vice versa. In consequence, simple approxim
tions for G2(kW ,v) are not always equivalent to simple a
proximations forG(kW ,v) @or S(kW ,v)] or vice versa. For
example, a single pole ansatz~without lifetime effects! in
G2(kW ,v) leads to the Hubbard-I solution as it has been d
cussed in Ref. 40. To go beyond the Hubbard-I solution
G2(kW ,v) we have to use Eqs.~5! and ~15!.
,

l

e

c-
o
e

,
t

h
n
en

-
as
xi-

-

-
r

IV. CONCLUSIONS AND FUTURE TRENDS

We have investigated the dynamical quantities,A(kW ,v),

Re@S(kW ,v)#, 2Im@S(kW ,v)# and 2Im@G2(kW ,v)#, vs v
along the diagonal of the Brillouin zone, for three values
the interaction, namely,U/W51/2,2/3,1. In all these quanti
ties we observe that the role of correlations and lifetime
fects is fundamental. For example, for values ofU/W'1 the
one-particle spectral density becomes almost one-peak, w

2Im@S(kW ,v)# becomes a wider inverted Lorentzia
Re@S(kW ,v)#, for U/W51 has lost all sign of regularity
A(kW ,v) becomes featureless for large values ofU/W. Our
treatment ofG(kW ,v) andG2(kW ,v) is not perturbative since
we impose sum rules toA(kW ,v) to find S(kW ,v) and
G2(kW ,v) is found from the equation of motion techniqu
@Eq. ~11!#.

The choice of self-energy@Eq. ~2!# is an attempt to shed
some light on Nolting’s approach to which Eq.~2! reduces
when g(kW )50.17 Nolting’s study ~when looked upon with
our optics, i.e.,g(kW )50, in Ref. 17! is also a non-Fermi
liquid. Our ansatz forS(kW ,v) is rather phenomenologica
since we have not invoked any microscopic mechanism
postulate it@Eq. ~2!#. However, we have been guided by th
single pole structure of Nolting without lifetime effects. Th
structure has been fleshed out in a recent paper.17 Also, we
have relied on the calculations of Kishore and Granat19

which represent a non-Fermi liquid approach for the se
energy. Those interested in a nice interpretation of n
Fermi liquid behavior of the experimental data of hig
temperature cuprates, please see Ref. 43. Work is
progress24 to include Fermi liquid features close to th
chemical potential. According to our belief, these types
considerations are much harder to be tackled with the pro
dure of Nolting, i.e., two poles in the one-particle spect
function,A(kW ,v). For example, the self-energy proposals
Normanet al.,44 for the overdoped and underdoped regim
of the cuprate superconductors, can be numerically sol
for the attractive Hubbard model,24 for d-wave superconduc
tivity, where off-diagonal Green functions are called for.

Now, we will compare our numerical results with the on
of Ulmke, Scalettar, Nazarenko, and Dagotto.45 Their results
are performed for the 3D single band Hubbard mod
though. For example, their QMC results~Fig. 4! show a clear
gap forU/t512, r51/2, andT50.25 for a 43434 lattice.
In addition, their quasiparticle dispersion~Fig. 5!45 for the
same parameters as previously shows two well defi
brances,E1(kW ) andE2(kW ), which are equivalent to our two
branches. We have presented our results~Fig. 1! along the
diagonal of the Brillouin zone, fromkW5(0,0) (G point! to
kW5(p,p) (M point!. We get qualitative agreement with th
ones of QMC/ME results of Ref. 45. We have already s
thar our results compare reasonably well with the spec
function of Ref. 34@see their Fig. 6~a!# which is a calculation
performed in infinity dimensions.

A single pole structure inS(kW ,v) goes beyond the
Hubbard-I approximation, since the Hubbard-I approxim
tion is also equivalent to choose a single pole inG2(kW ,v)
~without lifetime effects!. This can easily be checked due
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the exact relationship given in Eq.~15!. However, by com-
paring the results for the moments without lifetime effe
we find thata(kW )'r(12r)U2 which proves that our choice
for S(kW ,v) is, at least, a second order expansion inU. This
is in agreement with the theoretical findings of the Append
sincea(kW )>0. Thus,a(kW ) is almostkW -independent. Simi-
larly, we find thatg(kW )<0 is independent ofkW , but strongly
dependent onU. In consequence, our numerical study prov
that our ansatz is the easiest way to include lifetime effe
and to consider Fermi and/or marginal Fermi liquid behav
in the original proposal of the moment approach of Noltin

ACKNOWLEDGMENTS

We thank CONICIT-Venezuela~Project No. F-139!, the
Brazilian Agency CNPq, FAPERGS-Brazil, and the Sw
National Science Foundation for financial support. Intere
ing discussions with Professor H. Beck, Professor M
Figueira, Professor E. Anda, and Dr. M.H. Pedersen are f
acknowledged. In particular, we thank Professor Beck
bringing Ref. 28 to our attention. We acknowledge Ma´a
Dolores Garcı´a Gonza´lez for a reading of the manuscript.

APPENDIX: POLES OF THE ONE-PARTICLE
GREEN FUNCTION

With the self-energy ansatz given by Eq.~2!, the one-
particle Green function becomes

G~kW ,v!5
v2V~kW !2 ig~kW !

~v2«kW !„v2V~kW !…2a~kW !2 ig~kW !~v2«kW !
.

~A1!
er
d

ui

J.

,

,

s
ts
r
.
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.
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From Eq.~A1! the poles of the one-particle Green functio
are given by the roots of the following equation:

z22„«kW1V~kW !1 ig~kW !…z2a~kW !1„V~kW !1 ig~kW !…«kW50.
~A2!

Solving Eq.~A2! we get that the two roots are

z65
«kW1V~kW !1 ig~kW !6A

„«kW2V~kW !2 ig~kW !…214a~kW !

2
.

~A3!

We have to find the real and imaginary parts of the two roo
For this we follow the standard procedure making

Ax1 iy5x11 iy1 , ~A4!

from where we get that

x15SAx21y21x

2 D 2

; y15SAx21y22x

2 D 2

. ~A5!

Comparing Eqs.~A3! and ~A4! we conclude

x[„«kW2V~kW !…214a~kW !2g2~kW !; y[2g~kW !„V~kW !2«kW….
~A6!

In consequence,z6 are given by

z65
V~kW !1«kW6x11 i „g~kW !6y1…

2
. ~A7!

If we require that our roots be on the upper half-comp
plane, we must impose thatg(kW )6y1>0. Carrying out the
calculations we arrive to the result thata(kW )>0, which
proves the statement advanced in Sec. III.
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