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Evolution of one-particle and double-occupied Green functions for the Hubbard model,
with interaction, at half-filling with lifetime effects within the moment approach
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We evaluate the one-particle and double-occupied Green functions for the Hubbard model at half-filling
using the moment approach of Noltifg. Phys.255 25 (1972; Grund Kurs: Theoretische Physik. 7 Viel-
Teilchen-Theorid¢Verlag Zimmermann-Neufang, Ulmen, 19920ur starting point is a self-energﬁ,(lz,w),
which has a single pole)(k), with spectralweight, a(k), and quasiparticle lifetimey(k) [J. J. Rodyuez-

Nunez and S. Schafroth, J. Phys. Condens. Mdtfen 391 (1998; J. J. Rodiguez-Ninez, S. Schafroth, and

H. Beck, Physica Bto be publishel (unpublishedi]. In our approachs. (k,w) becomes the central feature of

the many-body problem and due to three unknd?/vparameters we have to satisfy only the first three sum
rules instead of four as in the canonical formulation of NoltjZg Phys.255 25 (1972; Grund Kurs:
Theoretische Physik. 7 Viel-Teilchen-Thedpierlag Zimmermann-Neufang, Ulmen, 1932This self-energy
choice forces our system to be a non-Fermi liquid for any value of the interaction, since it does not vanish at
zero frequency. The one-particle Green functi@(k,»), shows the fingerprint of a strongly correlated
system, i.e., a double peak structure in the one-particle spectral dekdityy), vs o for intermediate values

of the interaction. Close to the Mott insulator-transitiwlﬂz,w) becomes a wide single peak, signaling the
absence of quasiparticles. Similar behavior is observed for the real and imaginary parts of the self-energy,
E(IZ,w). The double-occupied Green functio@e(d,w), has been obtained fron@(lz,w) by means of the
equation of motion. The relation betwe&@(q,w) and the self-energys (K, w), is formally established and
numerical results for the spectral function®§(k, ), x‘?(k,w)=— (1/7)lims_ o+ IM[G,(K,w)], are given.

Our approach represents the simplest way to incldgiéfetime effects in the moment approach of Nolting, as
shown in the paper, an@®) Fermi or/and marginal Fermi liquid features as we discuss in the conclusions.
[S0163-182699)03528-9

. INTRODUCTION Nolting® for the spectral densityA(k, »). It is well known in
the literatur@ that the moment approach in the spherical
ﬁgproximation—when the narrowing band fact@(k), is

t k-dependent-alwaysgives a gap in the density of states
09). If the chemical potential happens to be in this gap,

After the discovery of the high-, materialst the study of
correlations has gained interested due to the fact that there
the belief that the normal properties of these materials could(D

be explained in the framework of the Hubbard moﬂ"el,_ then wealwayshave an insulator. It has been argued that the

since electron correlat_lons are strong, ie., the On's't‘\away to cure this unrealistic gap is to have a better approxi-
electron-electron repulsiorid are much larger than the en- . . -
mation for the narrowing band factdB(k).

ergies associated to the hybridization of atomic orbitals be . : .
longing to different atom3.We consider the study of corre- We have followed a different path which COI’]SIS'[_)S I pro-
lations in the Hubbard model as a rewarding task since it wilPosing a single pole structure in the self-energyk, ).
shed light on still unsolved points of the novel materials. ForClosing the gap for small and intermediate values of
example, at high temperature®.(30— 130 K) these HTSC U/W (W is the bandwidth andV=8t in two dimensiong
CuprateS, which are poor ConductorS, become Supercondué%_ not the Only I’ationality beh|nd our CaICUIation. It iS We”
ors. This feature is strange indeed because the Coulomb rdocumentetf~*that correlations give rise to lifetime contri-
pulsion is strong. Contrary to the predictions of the Fermibutions that conspire against the very definition of quasipar-
liquid theory, the resistivity at > T. and optimum doping is ticles at the chemical potential. For a discussion of this point
linear in temperature, i.eR~T.° This suggests a very strong we refer the reader to Fig. 2 wherelm[3(K,w)] VS  is
scattering of elementary excitations. A discussion of the posalways finite forw/t=0 for wave vectors along the diagonal
sible breakdown of Fermi liquid theory is given in Ref. 7. In of the Brillouin zone. By constructioEqg. (2)], we are
the present work we explore the effects of having a nonworking with a non-Fermi liquid picture for low energies.
Fermi liquid behavior into the one-particle Green function ~For a discussion of this point we refer the reader to Fig. 2
and double-occupied Green function. where— Im[E(IZ,w)] VS w is always finite forw/t=0 for all

We will use the moment approactor sum ruley of  the wave vectors along the diagonal of the Brillouin zone. By
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construction, we are working with a non-Fermi liquid picture choice[Eq. (2)] has the advantage of requiring only three

at low energies. sum rules to be satisfied, instead of four as in the now normal
This paper is organized as follows. In Sec. Il, we presenprocedure of Noltinfj which starts from the spectral func-

our model Hamiltonian and our self-energy proposal, intion, A(k,w), itself. We add that ify(k)=0, then we go

which we try to justify our bold choice, as one step forwardpack to Nolting’s canonical results. In this c&se
to understand the physics behind the moment approach of

Nolting. This led us to come up with an ansatz which is not

zero at zero frequency, i.e., our system is not a Fermi liquid a(k)=p(1-p)U? Q(k)=(1-p)U+B(k),
for any value of the interaction. We could argue that our
ansatz is valid for energy scales not too close to the chemical B(K)=B+F(K), 3

potential. However, our Ansatz has to become exact in the

limit of U/W>1. In Sec. Ill, we present our results which \yhereB(Kk) is the narrowing band factor. Theindependent
consist of the real and imaginary parts of the self-energy, anflarrowing band facto, is calculated in closed form in Ref.
spectral functions of the one-particle and double-occupie% It is a self-consistent quantity, though. TRelependent
Green functions along the diagonal of the Brillouin zone, for ™ - ' ’

different values of the interaction. We have used a systerfafowing band facto (k), has been evaluated recently by

size of 32¢32. In Sec. IV we present our conclusions and€rmann and Noltin§ using a two-pole ansatz with the
the future trends. two poles located at the same energies than the poles of the

one-particle Green function. This treatment, beyond the
spherical treatment of Noltinycan be mapped into the cal-
culations of Kishore and Grandfowith appropiate identifi-

IIl. MODEL HAMILTONIAN AND SELF-ENERGY ANSATZ

The model we study is the Hubbard Hamiltonian cation of our parameters in the paramagnetic phase. Their
approach gives a Mott metal-insulator transition. All this
U means that the metal-insulator transitiddMIT ) is embed-
H :tf,fcit,rcfa*' S NN~ MC}(,CFU’ (1)  ded into the Hubbard model and it does not require of life-
time effects to accomplish this. However, once more, life-

where Cit (c,) are creationannihilation) electron opera- lime effects are a natural element of the many-body physics
o + ) ) _ for intermediate and strongly correlated electron systems
tors with spina. nj,=c; Ci,. U is the local interactionk  here the concept of quasiparticle does not apply any longer.
the chemical potential and we work in the grand canonicalrhe interested reader is addressed to Refs. 7 and 20—22.
ensemble. We have adopteci Einstein convention for repeated However, we have a metal fad<U.=W, since a metal
indices, i.e., for theNg sitesi, the z nearest-neighbor sites is defined byN(w=0)+0 [see Eq.231) of Ref. 23. In a
(NN) f and for spin up and downo(= —o=+ 1). tij= previous papef’ we have shown that the density of states at
—t, for NN and zero otherwise. wl/t=0 is different from zero fod=<U,. This type of metal
we call astrange metal Furthermore, we have said in the
Introduction of our paper that our approach is valid for en-
ergy not too close to the chemical potential. Work is in
progress to consider Fermi and marginal Fermi liquid behav-

Let us propose for the self-energSI(IZ,w), the following
single pole ansatz:

. |2 . . . . . .
S (K.w)= pU-t af )_ (R, (R) < Re. ior close to the chemical potential, i.e.,
w—Q(k)—iy(k)
v . a(K)
. . = z(kyw): - . - 1 (4)
With our choice for2(k,w), we have that the real and o—Q(K)—iy(k)o"

imaginary parts of the self-energjo satisfy the Kramers- hn=012*
Kronig relations'? since it is analytic in one of half of the WIth n=0,17 _ L
complex plane. In fact, the physical solution to the problem By definition the one-particle Green functioB(k, w), in

is whena(K)=0, as it can be checked by finding the roots ofterms ofS(k, ), is given as

G(Iz,w) in the complex plane. We postpone the discussion of

this point for the conclusions. The ansatz given in €jhas R 1

some similarity with the Hubbard-I solutidffi.However, we Gk o)=—7—=—, (5)

have neglected any frequency dependence in the damping. w—eg—2(Kw)

Our calculations show thaty(IZ) is IZ-independent but wheresi=—2t[cosk,)+cosky)]—u+pU. Also, we will re-

strongly U-dependent. quire the one-particle spectral densify(k, »), which is de-
The validity of Luttinger theorem has been discussed in fined as

Ref.16. We argue that most likely the Luttinger theorem is

not going to hold because we have a non-Fermi liquid sys-

tem. Our choice opU in Eq. (2), the Hartree shift, is very AK,w)=— i lim ImG(K,w+i9). (6)

convenient since it redefines an effective chemical potential, T ot

mei=m— pU. This effective potential is zero at half-filling,

p=1/2, sincex=U/2 there. Thenw=0 means that we are Using Eqgs.(2)—(6), we arrive to the following expression

at the chemical potential. We want to explicitly state that ourfor the spectral density:
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AK )= -1 a(k)y(k) -
’ T (0—eQ)(0—Qp)—a(k)?+ Y?(K)(0—ep)?

Using the first three sum rules of Noltihfpr the the spectral a crucial ingredient in the formulation beyond a mean-field

function of Eq.(6) we obtain the following equations: treatment. Kirchhoféf*° also considers the presence of an-
tiferromagnetism fluctuations in an empirical way. We could
j”’A(E w)dw=M(K) =1 extend Kirchhofferet al’s calculations using the numerical
—o ' ° ’ values of the dynamical spin susceptibilily(ﬁ,w), in the
spin—fermié)ln model of superconductivity of Pines, Chubukov
te - - and others: The dynamical spin susceptibility has been ob-
f,w wA(k,0)do=M,(k) =&, tained from nuclegr magneticr:) resonan?:e ex);/)eriments in the

high-T. cuprates. In Sec. lll, we present our numerical re-
o0 . . sults and their interpretation.

f w?A(Kk,w)do=M,(K)=eZ+2pUsi+pU2% (8

Il. NUMERICAL RESULTS AND THEIR

where theMi(IZ)’s, i=0,1,2, are the first three momefits.
INTERPRETATION

For example, the first moment=£0) is the area below the

curve of A(k,w) Vs w, the second momenti£1) is the .
center of gravity of the spectral function and the second or- In Figs. 1a), 1(b), and 1c) we present thepectral den-

der moment(or third momentj=2) is related to the width Sy, A(K, ), vs » along the diagonal of the Brillouin zone

of the spectral functionA(Kk,»). So, damping effects are [k=2m(n,n)/32] for U/W=1/2, 2/3, and 1, respectively.
controlled by the second order sum rule. We do not use th¥Ve are working with a finite system of periodicity of 32
fourth moment or sum rule because we have three<32. ForU/W=1/2 we have a double-peaked structure,
IZ-dependent unknown parameteicur way of working is W|th_ visible I|fet|me_ effect_s(t_he Dirac delta functions of
different to the one of Nolting since in the latter we have toNOIt'ng now have W'dtm Thisis a fe_ature of C(_)rrelated elec-
use four moments. The difference lies in the fact that hd/On Systems gas It has been discussed in the work  of
starts with the one-particle spectral densitye could guess Schneideet al" for the case Of‘! <.0' The physics is dn‘f(_er-
that in order to extend the canonical formalism of Nolting to €Nt Put the peak structure is similar. ROfW=2/3 we still
include lifetime effects, starting from his two pole ansatz, we®PServe the double peak structure but lifetime effects are

. - stronger. Finally, fold/W=1, the double peak structure is
should have to postulate the following structure &k, »): practically washed out. As we see, lifetime effects are very

g ¢ much pronounced for the larger values @WfW presented,
alf ) — + az_)( ) —, (9 i.e., forU/W=1.0. The two peaks oﬁ(lz,w) VS w are sepa-
w—w1(K)+iy(k)  o—w(k)+iyk) rated approximately by a distance of

G(k,w)=

- - 1\ 12 o\ -
from where we see that we would need five moments or sunﬁ/[sk_ﬂk_ Y174y (K ek

rules because we have five parameters to determine, i.e.,,t\r’]\/ﬁ]g"gﬁé‘i 2'}(“;;? gg"']rphage g;lf J}?Eﬁ'éi h%ffeorui; Sgg;%ags
a(K), ;(K), y(K), with i=1,2. With the proposdEq. (2)] =" 2o 1Ne W

a different approach, i.e., Mori’'s continuous fraction. We
we have only three parameters to calculate.

We assume that ap=1/2 the chemical potentialy recall that the Mori's continuous fraction f(ﬁs(lz,m) is
—U/2. The density of states which results of the two poleP@S€d on a cumulant expansion with as many poles as we

ansatz for the one-particle Green function, in the sphericalf?ep termz. This cumulant expansion ',S appro_xmqted by
approximation of Nolting, always has a gap. This solution Kirchhofe® by the one-particle Grieens function itself.
(always a gapis known in the literature as the Hubbard-I Closing the continuous fraction wit(k, ») itself is equiva-
solutiorf® which has been critized since many years ago byent to group together the poles. As a result we get branch
Laura Roth?® among others. We call the attention to Ref. 27 cuts, rather than isolated poles, ending up with a square root

where the authors point out to the fact that kxdependence ~ expression foG(k,w). _
has to be included inB(IZ) A recent calculation by From these considerations it is easy to obtain three struc-

Kirchhofer® is performed at the mean field level for the tures inA(k,«). The central one, close to the chemical po-
k-dependence of the band narrowing factor, when the twdencial, is a delta function, i.e.qo(k) 5(w—eg), with a
Hubbard bands are separated. In a more elaborated calculeight which depends of). Kirchhofer® has calculated
tion based on the Mori's formalisth for the one-particle U, as that value ofJ for which a,(k)=0. When construct-
Green function, Kirchhoffeet al?®2° obtain three peaks in ing the correlated density of states, N(w)
the spectral densityA(k,w), which respects particle-hole = —(Um)lims_ o+ S IM[G(K,w+i )], this shows the low-
symmetry. In the end, they get a Mott metal insulator tran-ering of the van Hove singularity with increasityin a 2D
sition, for U/t=5. Here we are including lifetime effects as discrete Hubbard Hamiltonian.
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FIG. 1. (8—(c) A(n,n,w) vs w along the diagonal of the Bril-
louin zone for three different values of interaction, namé&iyW
=1/2, 2/3, and 1. Our system has a periodicity ok®2. We are

From these considerations we cannot conclude that a third
peak inA(IZ,w) [ao(lz)¢0] is equivalent to a third peak in
the correlated density of states. In fact, if we adopt a flat free
density of statesly=0), we can interpret the results of our
papers and the one of Kirchhoféras the superposition of
two bands, each of weight 1/2, fof=0, around the chemi-
cal potential = ). With interaction (J+#0) these two
symmetric bands start to displace in opposite directions in
frequencies, giving origin to the lower and the upper Hub-
bard bands(for U=U_). In consequence, three peaks in

A(K, )% basically produces our density of states, and the
ones of the so-called Hubbard-Ill like approximation of Refs.
32 and 19.

In Figs. 2a), 2(b), and Zc) we show the imaginary part of

the self-energy— Im[3(k,w)], vs » along the diagonal of
the Brillouin zone for the same values bffW of Fig. 1.
Again we observe that for increasing valuesiw, damp-

ing effects are stronger in the self-energy, as is the case in
the one-particle spectral functidsee Figs. (@), 1(b), and
1(c)]. In addition, we do not observe any Fermi liquid de-
pendence(in frequency of the imaginary part of the self-
energy aroundv=0. This is due to our choice of our ansatz
[Eq. (2)]. We could include Fermi or marginal Fermi liquid
behavior close to the chemical potential as it is suggested in
Sec. IV. However, within the present work, we could say
that our approximation is valid for frequencies not too close
to the chemical potential. Certaintly, for small values of
U/W, we should have some Fermi liquid behaviat least in
2D), like an imaginary self-energy going to zero as positive
power of w at the chemical potentiaf.

There are dynamical mean-field thetpumerical results
which suggest the presence of a third peak around the chemi-
cal potential in the correlated density of states. However, the
results on this so-calledollective single-band Kondo effect
is not a well established fact as it will be shown below. This
third peak is located in between the so-called lower and up-
per Hubbard band®. According to our knowledge, the cal-
culations of Ref. 23 do not show the spectral functions which
are the central issue of the present paper. From the point of
view developed in our paper, i.e., one single-pole structure
for the self-energy, we are lead to two pole-structure for the
spectral functionA(IZ,w). As we have just said, the dynami-
cal function discussed by Georgesal?®® is the density of
statesN(w), and this shows well defined structures, with a
central peak which defines the Kondo effect. Another study
of the dynamical mean-field approximation has been per-
formed by Pruschket al3* for various dopings. These au-
thors do not get the collective single-band Kondo effect at
half-filling (p=1/2) but for other dopings. Naturally there is
a contradiction between the results of Ref. 23 and the ones of
Ref. 34. In consequence, the appearance of the Kondo peak
is not a fully established fact in the published literature. In
addition, a recent paper by Fisfieperforms a critical study
of the Mott metal-insulator transition in infinity dimensions
(d=o0) concluding that it is absent. His conclusions are
reached after discussing the very premises of drex

at half-filling, p=1/2. As we work in two dimensions, the band- theory. In particular, we mention two relevant points.

width is W=_8t. The wave vector along the diagonal is defined as

k=(2#/32)(n,n).

(2) If the limit of infinity dimensions is taken on a Bravais
lattice, the free one-particle density of states has an infinity



5370 S. SCHAFROTH AND J. J. RODRBUEZ-NUNEZ

Uit =4.0 32X32

-Im[Zn,n,m)]

-Im[Z(n,n,w)

(b)

-ImZ(n,n,w)]

g 10 0 10 20
(©) ot

FIG. 2. (a)—(c)
Brillouin zone. Same parameters of Fig. 1.

width. As a consequence of that, it does have a Mott meta

insulator transitiors®

—ImX(n,n,w)] vs w along the diagonal of the

PRB 60

random variables, to fully frustate antiferromagnetic order-
ing. Then, as he proves, the Bethe and the fully frustated
lattice, have no well defined thermodynamical limit, and

hence no well defined one-particle density of stafes.

To close this point, we can affirmatively state that our
approach is definitively different from the one of Georges,
Kotliar, Krause, and Rozenbérgmore about this latérWe
could argue that one missing element in our approach could
be that we are not considering the presence of antiferromag-
netic (AF) fluctuations. This could give rise to an additional
depletion of the density of states in between the two Hubbard
bands® In any case, as we can conclude from our previous
discussion, theollective single-band Kondo effeista con-
troversial issue and we cannot perform a definitive compari-
son with thed=oc approximation.

The fact that we have a two peak structureAi('iZ,w)
does not lead necessarily to a central peal{w), sepa-
rated from the other two structures. For example, from Fig.
31 of George®t al?® we cannot conclude the presence of a
third peak in the spectral function since their self-energy is
featureless. From our one-peak self-energy we can surely

answer that the one-particle spectral density has a two-pole

structure. We can definitively say that our correlatdd, w)
andN(w) are similar to a Hubbard-Ill like solution, as it has
been shown by lkeda, Larsen, and Matttfckand
Kishore-Granatd® The only difference with the results of
this papers is that we have included lifetime effects in the
moment approach of Noltin®. Just recently, Rodguez-
NUnez et al*° have rederived the Hubbard-IlI like approxi-
mation of Refs. 32 and 19 and explicitly shown the Mott
metal-insulator transition, for a flat density of states. The
MIT occurs forU=W=8t. On spite of our differences with
the results of Ref. 23, we agree with the results of Ref. 34.

Their Fig. 6a)%* shows the spectral functioy(k,w) or

A(Iz,w), for U=4 andp=n/2=1/2. Our results agree quite
well with the ones presented by Prusctétel.®* two peaks
along the diagonal of the Brillouin zone, with different
weights.

In Figs. 3a), 3(b), and 3c) we report results for the real

part of the self-energy, FRE(IZ,w)], vs w along the diagonal
of the Brillouin zone for the same values of interaction of
Fig. 1. ForU/W=1/2,2/3 we see a more or less regular
pattern. However, folJ/W=1, lifetime effects lead to big

effects in R@E(Iz,w)]. For example, the curves are no
longer regularly displaced with respect to one another. Also,
the frequency range increases appreciably and the heights of
the curves decrease. Let us comment that the numerical form
of the real part of the self-energy clearly shows that the
Kramers-Kronig relations for the self-energy are satisfied, in
order to have the roots of the one-particle Green function on
the same side of the complex plane. Analytically, it can be
proved too. The only requirement coming out of these cal-

culations, with our ansatz, is tha(k)=0 (Ref. 41 (see the
Appendi®. As a(k) X y(K)<0, theny(k)<0. This consid-

Ieratlon we have checked in further numerical calculations

with lattice sizes of 6% 64. Due to these new findings, we

(2) The d== relies on a free semicircular density of correct the results of Ref. 20 since the solutions we found

states, which is realized for a lattice where the hopping mathere must satisfy the conditions established here k)
trix elements are distarindependentGaussian distributed =0 and y(k)<0
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Brillouin zone. Same parameters as previously.

Figures 4a), 4(b), and

n,w)] vs n along the diagonal of the

4c) show the imaginary part of the

double-occupied Green function;- Im[Gg(IZ,w)], VS
along the diagonal of the Brillouin zone for the same valuesyhereg= — o. In Eq. (10) (|Z,w) means the Fourier trans-

of interaction as before
by

. Let us recall tﬂag(lz,w) is given
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FIG. 4. (8—(c) —Im[G,(n,n,w)] vs w along the diagonal of
the Brillouin zone. Same parameters as before.

K,0)=(T L7, o(INio(7)ic (0w, (10

form of the spatial-temporal correlation function andthe
usual time ordering of the operators. Using the equation of
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motion technique for the one-particle Green function, IV. CONCLUSIONS AND FUTURE TRENDS
G(K, ), we obtain thaG(k,w) andG,(Kk,) are related as . . . e
fol(lovt)s)"‘z (k) 2(k,@) We have investigated the dynamical quantiti@gék,w),

RIS (K,w)], —IM3(K,0)] and —IM[G,(K,w)], VS w
(w—ep)G(K,w)=1+UGyK,). (11)  along the diagonal of the Brillouin zone, for three values of
. . _ . the interaction, namelyJ/W=1/2,2/3,1. In all these quanti-
We observe th"?‘t there IS a big peak in the mtervalties we observe that the role of correlations and lifetime ef-
we[=2,~1] which is most likely due to the peak in foqq s fundamental. For example, for valuesdJsiW~1 the

A(k,w). However, the right peak atk(ow/W)=(m,7,  gne-particle spectral density becomes almost one-peak, while
~1/3) increases with interaction. At the same time, we see

that the left frequency peak&0) start to line up for small —Im[X(k,w)] becomes a wider inverted Lorentzian.

momenta but they almost vanish fér=(3/4,3/4) and Re[?(k’w)]’ for U/W=1 has lost all sign of regularity.
m(1,1): A(k,») becomes featureless for large valuesWaiw. Our

treatment ofG(k,») and G,(Kk,) is not perturbative since
X(z)(g,w)z_i lim Im[GZ(IZ,eri&)] (12) we jmpose sum rules tA(k,w) to find 3(k,w) and
T ot G,(k,w) is found from the equation of motion technique
: . . [Eqg. (1D)].
is the spectral density for the double-occupied Green func- The choice of self-energhEq. (2)] is an attempt to shed

tion. We see from Fig. 4 that there is negative contribution 0 ome light on Nolting’s approach to which E) reduces

this spectral density, which is due to the presence of the o 17 . .
factor w—s; in front of the one-particle spectral density, When »(k)=0."" Nolting’s study (when looked upon with

A(k,w). In addition, the factoro—sj is controlling the c.)ur.opucs, |.e.,y(k)=0,a|n R?f' 17 is also a non—Ferml

height of the peaks iny®(K,w). For example, when Ilqwd. Our ansatz f_orE(k,w) is rather pher!omenologl'cal,
(K. w)=0 is because this factor is zerg(K.v) is since we _have not invoked any microscopic m_echanlsm to

x (k) ' K@ postulate if Eq. (2)]. However, we have been guided by the

given by single pole structure of Nolting without Iifetim%effects. This

. - structure has been fleshed out in a recent papAtso, we

Ux®(K,0)= (o= XAK ), (13 have relied on the calculations of Kishore and Graffato

which is identically zero for the noninteracting electron gasWhich represent a non-Fermi liquid approach for the self-

sinceA(IZ,w) is a Dirac delta function at the same argumentle:nerg.y‘l. Thé)s;. Lnte_reste:l th a nice mtetrplrec;ca'tuon fth.nﬁn'
of the quantity in front of it. So, any deviation from zero is a ermi liquid behavior of the expenmental data of figh-

. . : > temperature cuprates, please see Ref. 43. Work is in
signature of an interacting system. Contrary Agk,@),  hrogres?* to include Fermi liquid features close to the

which is always positivex(®(k,w) can be negative. The chemical potential. According to our belief, these types of

only requirement is thé considerations are much harder to be tackled with the proce-
. dure of Nolting, i.e., two poles in the one-particle spectral
f X(Z)(E,w)dw:p, (14) function,A(IZ,w). For example, the self-energy proposals of
—o Normanet al,** for the overdoped and underdoped regimes

of the cuprate superconductors, can be numerically solved

where p is the electron density/spin. This can be easily or the attractive Hubbard mod#lfor d-wave superconduc-

checked calculating the first moment or moment of zeroth. it here off-diaconal Green functions are called for
order for the double-occupied Green function. The relation' /'Y W lag uncti :

between the self-energy and the double-occupied Greenf L'jIIOmV\I: WeSW'Ill (t:toTpl\?ri orurnrllumer:g:ag re;t#?hw::hrthel?nes
function is the following: 0 €, Scaiellar, Nazarenko, a agottd.neir resutts

are performed for the 3D single band Hubbard model,

E(IZ ) though. For example, their QMC resulfsig. 4) show a clear
UG,(K,w)= e ) (15  gap forU/t=12, p=1/2, andT=0.25 for a 4<4x 4 lattice.
(w—ef—3(k,)) In addition, their quasiparticle dispersidRig. 5 for the

same parameters as previously shows two well defined

Equation(15) is an exact relationship and it can be usedbrancesEl(IZ) and E,(K), which are equivalent to our two

to keep control of the approximations made in the self-
energy and the double-occupied Green functions, as it habranches. We have presented our restflg. 1) along the

been discussed in Ref. 40. Needless to say that to approg—'agon""I of the Brillouin zone, frork=(0,0) (' poiny to
mate 3 (k,w) is equivalent to have an approximation for k=(m,m) (M poinf). We get qualitative agreement with the
- . X .__ones of QMC/ME results of Ref. 45. We have already said
Ga(k,w) andylce versa. In consequence, simple approXiMag,ar our results compare reasonably well with the spectral
tions for G,(k,w) are not always equivalent to simple ap- function of Ref. 34 see their Fig. @)] which is a calculation
proximations forG(k,w) [or 3(k,w)] or vice versa. For performed in infinity dimensions.
example, a single pole ansatwithout lifetime effects in A single pole structure inS(K,») goes beyond the
G,(k,w) leads to the Hubbard-I solution as it has been disHubbard-I approximation, since the Hubbard-lI approxima-
Cussed in Ref 40. To gO beyond the Hubbard'l SOIUtion fol’tion iS aISO equiva'ent to Choose a Sing'e pOIEGE(R,O))
GZ(IZ,w) we have to use Eq$5) and(15). (without lifetime effect$. This can easily be checked due to
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the exact relationship given in E¢L5). However, by com-
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From Eq.(Al) the poles of the one-particle Green function

paring the results for the moments without lifetime effectsare given by the roots of the following equation:

we find thata(K) ~ p(1— p)U? which proves that our choice

for E(Iz,w) is, at least, a second order expansiotJinThis

is in agreement with the theoretical findings of the Appendix,
since a(k)=0. Thus, «(k) is almostk-independent. Simi-

larly, we find thaty(IZ)sO is independent of, but strongly

dependent olJ. In consequence, our numerical study proves z. =
that our ansatz is the easiest way to include lifetime effects
and to consider Fermi and/or marginal Fermi liquid behavior

22— (e + Q(K) +iy(K)z— a(K)+ (Q(K) +iy(K)eg=0.
(A2)

Solving Eq.(A2) we get that the two roots are

et Q(K) +iy(K) = (eg— Q(K) —i y(K))?+ 4a(K)
: .

(A3)

in the original proposal of the moment approach of Nolting.We have to find the real and imaginary parts of the two roots.
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2 2
X2+y2+x W2+y2—x
X1= 2 v Y1= - ) . (Ab)

acknowledged. In particular, we thank Professor Beck folComparing Eqs(A3) and (A4) we conclude

bringing Ref. 28 to our attention. We acknowledge Mari

Dolores Gar@ Gonzéez for a reading of the manuscript.
APPENDIX: POLES OF THE ONE-PARTICLE
GREEN FUNCTION

With the self-energy ansatz given by E@), the one-
particle Green function becomes
w—Q(K)—iy(k)

(0—eQ)(@—Q(K)— a(k)—iy(k)(0—ef)
(A1)

G(K,w)=

x=(gi— Q(K)?+4a (k) — y2(K); y=29(K)(Q(K)—&g).
(A6)
In consequencez.. are given by

CO(K) FegExg+i(y(k)Tyy)
+ 2 .

(A7)

If we require that our roots be on the upper half-complex
plane, we must impose thazl(lZ)tylzo. Carrying out the

calculations we arrive to the result that(lZ)zO, which
proves the statement advanced in Sec. Ill.
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