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Optical properties of metallodielectric photonic crystals
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We present a systematic examination of the optical properties of photonic crystals consisting of metallic
particles~plasma spheres! arranged periodically in a host dielectric medium. We calculate exactly the trans-
mission and absorption coefficients of light incident on a slab of the material as functions of the frequency of
the incident light and analyze the results by reference to the properties of a single sphere and to the frequency
band structure of the corresponding infinite crystal. We examine the dependence of the above coefficients on
the fractional volume occupied by the spheres and on the thickness of the slab. Finally we compare our results
with those of the Maxwell Garnett effective-medium theory and in this way we establish the limitations of the
latter. We show in particular that multipole interactions which the Maxwell Garnett theory does not take into
account lead to significant structure in the transmission/absorption spectra.@S0163-1829~99!15131-2#
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I. INTRODUCTION

Composite films consisting of small metallic particles d
tributed periodically or randomly in a host dielectric mediu
have optical properties which are strikingly different fro
those of the bulk metal and have been for many years
object of many experimental and theoretical investig
tions,1–4 mainly because of the possible technological ap
cations, e.g. as coatings for solar energy absorbers.5

The theoretical problem of light scattering by a spheri
body, which is large enough to be describable by a mac
scopic dielectric functioneS(v), and is situated in a homo
geneous medium of different dielectric functione(v) has
been solved by Mie6 and Debye7 at the beginning of this
century. When the wavelength of light is much larger th
the diameter of the sphere, one obtains the following form
for its ~dipolar! polarizability:8

a~v!5
3v
4p

eS2e

eS12e
, ~1!

wherev is the volume of the sphere.
When one deals with a periodic distribution of identic

particles in a host medium, and for the case when the
tance between the spheres is much smaller than the w
length of light, the optical properties of the composite m
dium are usually described by an appropriate dielec
function in the manner of Maxwell Garnett.9 Usually, the
metallic spheres are replaced by Drude plasma spheres
eS(v) of Eq. ~1! is approximated by

eS~v!512
vp

2

v~v1 i t21!
, ~2!

wherevp stands for the bulk plasma frequency of the me
andt is the relaxation time of the conduction band electro
To obtain the electric dipole moment induced on an in
vidual sphere, in accordance with Eqs.~1! and~2!, one needs
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to calculate thelocal field at the given sphere, which on
does, using the Clausius-Mossotti equation~one assumes tha
the spheres are centered on a cubic lattice!. Once the local
field has been calculated, and the dipole moment induced
a single sphere obtained through Eq.~1!, the polarization of
the composite medium and the corresponding dielectric fu
tion of this medium, denoted byē(v), is calculated using
standard formulas of electrostatics. We obtain

ē2e

ē12e
5 f

eS2e

eS12e
, ~3!

wheref is the fractional volume occupied by the spheres. T
above equation is referred to in the literature as the Maxw
Garnett ~MG! equation. The electrostatic~dipole! approxi-
mation underlying the derivation of Eq.~3! remains valid for
a random distribution of particles, but a formula for the d
electric function of the composite medium is more difficu
to obtain in that case.10

In recent years a number of methods have been develo
which allow one to solve, more or less exactly, Maxwel
equations in a photonic crystal consisting of dielectric
metallic spheres~large enough to be describable by a real
complex dielectric function! arranged periodically in a hos
medium of different dielectric function. The considerable a
tivity in this area of research is motivated to a large deg
by the possibility of having non-absorbing materials w
~absolute! photonic gaps; i.e., regions of frequency ov
which light cannot exist within the crystal,11,12 which in turn
promises interesting technological applications.13,14 Among
the methods suggested for the calculation of the freque
band structure of a photonic crystal, the so-called on-s
methods are numerically efficient and at the same time al
the calculation of the transmission, reflection, and absorp
coefficients of light, of given frequency, incident on a slab
the photonic crystal.3,15,16 It is, therefore, now possible to
calculate exactly the above-mentioned coefficients for a s
of a crystal~e.g., metal spheres in a host dielectric mediu!
5359 ©1999 The American Physical Society
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5360 PRB 60V. YANNOPAPAS, A. MODINOS, AND N. STEFANOU
and compare with the respective results of an effecti
medium theory. We have, in fact, already shown15 that for
small values off the MG equation is accurate enough at lo
frequencies~below the first Bragg gap! for a non-absorbing
cubic crystal of dielectric spheres embedded in a medium
different dielectric constant.

In the present paper we shall examine in some detail
optical properties of systems consisting of metallic sphe
with a relative dielectric function given by Eq.~2!, arranged
periodically~to begin with! in a nonabsorbing dielectric me
dium. We aim to clarify the physical picture underlying th
optical processes under consideration, and by the way es
lish the limitations of an effective-medium approach as r
resented by the MG equation.

II. FREQUENCY BANDS AND TRANSMISSION
COEFFICIENTS

We assume that identical spheres are centered on the
tice of a fcc crystal. We view the crystal as a stack of lay
~planes of spheres! parallel to the~001! surface. For given
ki , the component of the reduced wave vector parallel to
~001! surface which lies in the surface Brillouin zone~SBZ!
of the given surface, we can calculate the real freque
lines, kz5kz(v,ki), using the method described in Ref. 1
The details of the method and a computer program for
implementation can be found in Ref. 17. A frequency li
gives thez component of the wave vector@normal to the
~001! plane# as a function of the frequencyv, for the given
ki . The regions ofv over which kz is real define corre-
sponding frequency bands, and regions over whichkz is
complex define corresponding frequency gaps~stop gaps!.
The corresponding solutions of Maxwell’s equations@eigen-
modes of the electromagnetic~EM! field in the infinite crys-
tal# are Bloch waves: the electric-field component of the E
field ~a similar equation is obeyed by the magnetic fie!
satisfies the equation

E~r1Rn!5exp~ ik•Rn!E~r !, ~4!

where Rn is a vector of the fcc space lattice, andk
5„ki ,kz(v;ki)…. Whenkz is real we have a propagating s
lution, and whenkz is complex we have an evanescent wa
which grows exponentially asz˜` or as z˜2`. In the
infinite crystal, of course, only propagating waves have a
existence. Using the periodicity of the band structure in
kz direction, i.e.,v(kz1ub3u;ki)5v(kz ;ki) whereb3 is the
primitive vector of the reciprocal lattice normal to the~001!
plane, we define the reducedk-zone appropriate to this sur
face as follows: k5(ki ,kz), with ki in the SBZ and
2ub3u/2<kz,ub3u/2.

In Fig. 1~a! we show the frequency bands forki50 @dis-
persion curves along the normal to the~001! plane# of a
particular fcc crystal. The crystal consists of identical plas
spheres with a radiusS550 Å, and a dielectric function de
fined by Eq.~2! with \vp59.2 eV which corresponds to th
plasma frequency of bulk silver.10 We assume, to begin with
that the spheres are nonabsorbing, i.e.,t5`. We choose to
plot the energy\v versus a normalized wave vector comp
nentkza/2p, wherea5275.65 Å is the lattice constant of th
crystal which for the given value ofS corresponds to a frac
tional volume occupied by the spheresf 50.1. The medium
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between the spheres~host medium! has a relative dielectric
constante52.37~gelatine!. All the bands shown in Fig. 1~a!
are doubly degenerate and couple with light incident n
mally on a slab of the crystal parallel to the~001! surface.
The continuous lines represent the frequency bands in
selected frequency region which result from the exact ca
lation as described above. There exist other@not shown in
Fig. 1~a!#, nondegenerate bands which do not couple w
normally incident light; this is because the electric field
the corresponding eigenmodes of the EM field is carried
waves with wave vector components parallel to the surf
ki1g5gÞ0, which cannot be matched with similarly prop
gating waves outside the crystal, for such do not exist@here
we denote byg the two-dimensional reciprocal-lattice vec
tors corresponding to the surface under consideration;
~001! surface in the present case#. The existence of these
optically inactive modes has been noted by a number
authors.15,16,18,19The broken lines in Fig. 1~a! show the dis-
persion curves one obtains from the effective-medi
theory, i.e.,

v5
c0

Aē
kz , ~5!

wherec0 is the velocity of light in vacuum andē is given by
Eq. ~3!. The nondegenerate bands obtained@but not shown in
Fig. 1~a!# by the exact treatment cannot be obtained by
effective-medium theory. We shall give an example of su
dispersion curves later on.

At this stage it is interesting to look for the physical orig
of the frequency gap appearing in the diagram of Fig. 1~a!,
extending fromv'3.68 eV tov'4.24 eV, in terms which
are familiar in the energy band structure of electrons in
dinary crystals. For the qualitative analysis we have in mi
the effective-medium approach is sufficient. Using Eq.~2!
with t5`, we can write Eq.~3! in the form

FIG. 1. ~a! The photonic band structure associated with t
~001! surface of a fcc crystal of nonabsorbing plasma spheresS
550 Å, \vp59.2 eV,t5`) in gelatine (e52.37) with f 50.1, for
ki50. ~b! The corresponding transmittance curve for light incide
normally on a slab of the above crystal, 16-layers thick. The so
~broken! lines in both figures refer to the exact~effective-medium!
treatment.
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ē5CS A

BD 2

1
Cv1

2@e2~A/B!2#

v1
22v2

[ẽ1e r~v!, ~6!

where

v1[vp /B,

C[~112 f !/~12 f !,

A2[e@112e~12 f !/~112 f !#,

B2[11e~21 f !/~12 f !. ~7!

The physical meaning of Eq.~6! is made obvious as follows
We recall that the polarizationP of the composite medium is
given by

P5e0~ ē21!E, ~8!

wheree0 is the dielectric constant of vacuum. In the prese
case the polarization has two components. The first com
nent corresponds to the first term of Eq.~6!. This does not
depend on the frequency, and clearly the eigenmodes o
EM field corresponding to it will be described by a line
dispersion curve

v5
c0

Aẽ
kz . ~9!

One can easily verify that whenf 50, the second term in Eq
~6! vanishes and the first term becomesẽ5 ē. The second
term in Eq. ~6! is formally identical with an atomic reso
nance term. We note that whenf 50, we obtain from Eqs.
~7! thatv15vp /A112e which is the dipole resonance of a
isolated sphere according to Eq.~1!. According to Eqs.~7!
the interaction between the spheres shifts by a small am
the above resonance. Naturally this atomiclike resona
widens into a band of resonant states, but evidently the w
of this band is very small and we can neglect it. If we we
to disregard the coupling of this atomiclike band with t
band of propagating states described by Eq.~9!, we would
obtain the flat band

v5v1 . ~10!

The bands given by Eqs.~9! and ~10! are shown by broken
lines in Fig. 2. In reality the eigenmodes of the EM fie
result from a hybridization of states~of the samek) in the
two bands and in this way a hybridization-induced gap op
up as shown by the solid lines representing the true~hybrid-
ized! eigenmodes of the EM field. We remember that the
curves are obtained from Eq.~5!. It is worth noting that
hybridization is accomplished in the effective-medium tre
ment, by the way the dielectric functionē enters into Eq.~5!,

namely asAē, which in turn mixes in a particular manner th
two terms of Eq.~6!. Finally we note that the above remark
apply to those bands which are obtained by the effect
medium treatment.

Often, frequency gaps in photonic crystals, say dielec
spheres arranged periodically in a dielectric host mediu
are the result of destructive interference between pl
waves in the host medium scattered by the different sphe
t
o-
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th

s

e

-

-

c
,
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Such gaps, known as Bragg gaps, cannot be reproduce
the MG theory. In the present case of metallodielectric cr
tals, the physical picture is somewhat different in the se
that the wavefield is better described by dipolar fields ab
the spheres which interact weakly between them a
strongly with the propagating states given by Eq.~9! with
which they hybridize in the manner described above to o
the gap shown in Fig. 2. In relation to this gap the ex
treatment amounts to an improved calculation of the lo
field acting on each sphere, but otherwise is similar to
picture underlying the MG approximation. The differen
between the exact treatment and the MG one is more ap
ent at the bottom of the gap~see Fig. 1!, where the presence
of the pole in Eq.~6! makes the final result very sensitive
the method of calculation. We may add that the perio
structure is incidental in either approach~it is not necessary
for the appearance of the gap!, but it makes the calculation
possible.

The flat bands above the gap, shown in Fig. 1~a!, are due
to higher multipole resonances of the individual spheres,
cannot be obtained by the effective-medium approximati
The eigenmodes of the EM field corresponding to the
bands are strongly localized at the spheres and hybri
very weakly with the extended states. There is an infin
number of such bands, but only those corresponding to
angular momentum cutoffl max54 that we used in our cal
culation are shown in Fig. 1~a!. The first flat band above the
gap corresponds tol 52, the next two flat bands correspon
to l 53 and the next two tol 54. It is seen that, in the
present case, apart from the flat bands and the nondegen
ones mentioned above, the effective-medium approxima
describes adequately the frequency band structure of the
finite crystal.

In Fig. 3 we show all the bands~including the nondegen
erate ones! in the region about thel 53 resonance. The non
degenerate bands, which as we have already mentione
not couple with normally incident light, are shown by dotte
lines. In theC4v symmetry environment associated with no
mal incidence on the~001! surface of a cubic crystal, the
sevenfold-degeneracy of anl 53 resonance of a single
sphere, splits into two doubly degenerate resonances

FIG. 2. The hybridization-induced gap in the photonic ba
structure of Fig. 1. The solid~broken! lines show the hybridized
~unhybridized! bands, calculated in the effective-medium appro
mation.
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5362 PRB 60V. YANNOPAPAS, A. MODINOS, AND N. STEFANOU
three nondegenerate ones. The former give rise~in the crys-
tal! to two doubly degenerate bands denoted by solid line
Fig. 3, and the latter give rise to the above mentioned n
degenerate bands. We observe that only the degenerate b
hybridize with the band of continuum states which der
from Eq. ~9!, as expected from a group-theoretical analys
giving rise to small frequency gaps.

Next to the frequency band structure in Fig. 1, we sh
the transmission coefficient of light incident normally on
slab of the crystal consisting of 16 planes of spheres par
to the ~001! surface. The medium on either side of the sl
has the same dielectric constante52.37 as between the
spheres of the slab. Again the agreement between the e
results ~solid line! and the effective-medium ones~broken
line! is good, except in the region of the flat bands above
gap. As expected, the transmission coefficient practic
vanishes for frequencies within the frequency gap of the
finite crystal which extends fromv'3.68 eV tov'4.24 eV.
But the transmittance of a finite slab is not unity~or a nearly
constant quantity! for the allowed~in the infinite crystal!
frequencies. In both the exact and the effective-medi
treatments one observes the oscillations in the transmitta
one expects from the inteference of waves multiply reflec
between the surfaces of the slab;15,16 the peaks in the trans
mittance occurring when the effective half wavelength of
EM field in the slab,p/kz , times an integer equals approx
mately the thickness,D, of the slab. In the present caseD
.Na/2, whereN is the number of layers in the slab an
therefore, one expects transmittance peaks whenkza/2p
.(n/N), wheren51,2, . . . ,N21. This is demonstrated in
Fig. 4. It must be noted that, for givenv, kz for the exact
result~solid line! is obtained from the exact dispersion cur
as explained at the beginning of this section, whereas in
effective-medium treatment~broken line! kz is obtained from
Eq. ~5!. Since the two dispersion curves are not exactly
same, in a plot of transmittance versus frequency the tra
mittance peaks obtained in the effective-medium treatm
will be displaced relative to those obtained in the exact tre
ment. However, in both cases the density of peaks~the num-
ber of peaks per unit frequency! increases considerably in th

FIG. 3. The photonic band structure associated with the~001!
surface of a fcc crystal of nonabsorbing plasma spheres (S550 Å,
\vp59.2 eV,t5`) in gelatine (e52.37) with f 50.1, for ki50,
in the region about thel 53 resonance. The solid~dotted! lines
refer to the doubly degenerate~nondegenerate! bands.
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immediate vicinity of the frequency gap, and much more
one approaches the gap from below because of the flatne
the corresponding dispersion curve. Both these effects
apparent in Fig. 1. It is also evident from what we said abo
in relation to Fig. 4 that the number of transmittance peak
any given frequency region will increase proportionally
the thickness of the slab.

III. ABSORBANCE

The absorbance of light by a slab of the composite ma
rial we have been considering is a quantity of great imp
tance in many technological applications. We have so
suppressed it by puttingt5` in Eq. ~2!. In reality \t21

'0.2 eV or even greater. Absorption is associated ma
with the resonantly oscillating dipoles of the spheres a
therefore most of it occurs mainly within a relatively sho
range of frequencies aboutv1. However, the existence of th
frequency gap in the same region means that light does
propagate through the crystal when its frequency lies wit
the gap~the intensity of light decays exponentially into th
crystal for these frequencies!, and if it cannot enter into the
crystal, it can not be absorbed either. It follows from t
above that absorption will be significant at the edges of
gap, immediately below it and immediately above it. It a
pears that the higher (l .1) resonances above the gap~see
Fig. 1! do not contribute significantly to absorption. We u
derstand this as follows. In Fig. 5 we show the absorba
for increasing values oft21, in the region of thel 52 reso-
nance. Whent21 is very small~a! we clearly see sharp ab
sorption peaks associated with thel 52 resonance. Ast21

increases,~a! to ~b! to ~c! to ~d!, the sharp resonances wide
and eventually are submerged into the tail of the dipolel
51) contribution to the absorbance. States of higherl ex-
hibit a similar behavior.

Let us first demonstrate the close relation between abs
tion and transmission. This is more clearly seen at low
sorbance; we therefore put\t2151024 eV and calculate the
transmission and absorption coefficients of light incide
normally on a slab consisting of 4 and 32 planes of sphe
taking into account only the dipole contribution. The resu
are shown in Fig. 6. The solid lines show the transmiss

FIG. 4. The transmittance curve of Fig. 1~b!, plotted as function
of kza/2p, in a region below the band gap. The solid~broken! line
refers to the exact~effective-medium! treatment.
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coefficient over an extended region of frequencies. In
insets we show the transmission~solid lines! and the absorp-
tion ~broken lines! coefficient over the limited region of fre
quency where absorption occurs. A relatively large transm
sion coefficient implies that a relatively large fraction of lig
has gone through the slab, which implies a correspondin
high probability of it being absorbed. The insets in Fig.
show quite clearly that the absorbance peaks coincide
the transmission peaks. It is also evident that the magnit
of these peaks decays rapidly away from the gap edges
we have already explained in the previous section, the n
ber per unit energy of these peaks increases in the vicinit
the gap edges, more so near to the lower edge, and in

FIG. 5. Absorbance of light incident normally on a slab of
lattice planes parallel to the~001! surface of a fcc crystal, consistin
of plasma spheres (S550 Å, \vp59.2 eV, f 50.1) in gelatine (e
52.37). The absorbance is shown in the energy region of the
band of Fig. 1~a!, associated with quadrupole resonant states,
different values of the relaxation time@~a! \t2151024 eV; ~b!
\t2151023 eV; ~c! \t2151022 eV; ~d! \t2150.2 eV#. Note the
different scales for the different figures.

FIG. 6. Transmittance of light incident normally on a slab of
~a! and 32~b! lattice planes parallel to the~001! surface of a fcc
crystal consisting of plasma spheres (S550 Å, \vp59.2 eV,
\t2151024 eV, f 50.1) in gelatine (e52.37). In the insets we
show the transmittance~solid line, read left axis! and absorbance
~broken line, read right axis! in the immediate vicinity of the band
gap edges. The results shown are obtained in the dipole approx
tion (l max51).
e
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ly

th
de
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portion to the thickness of the slab. For the thinner slab~4-
layers thick! there is no transmission peak above the g
within the absorption range aboutv1, and therefore there is
not an absorbance peak either. For the same slab there
number of such peaks immediately below the gap. In
case of the thicker slab~32-layers thick!, the number of
transmission/absorption peaks below the gap, and within
absorption range aboutv1, increases considerably, and on
sees the first two transmission/absorption peaks appea
above the gap.

In Fig. 6 we have deliberately used a rather small value
\t2151024 eV, in order to demonstrate the close relati
between absorption and transmission. Let us next see w
happens for a more realistic value oft; we put \t2150.2
eV. When\t21 becomes comparable with the energy inte
val between the peaks shown in Fig. 6, the peaks lose t
discreteness, merging into broader peaks, with tails exte
ing into what was~in the absence of absorption! a frequency
gap. This is quite clearly seen by comparing the absorba
of the 4-layers and 32-layers slabs in Fig. 7 (\t2150.2 eV!,
with the absorbance of the same slabs in Fig. 6 (\t21

51024 eV!. The asymmetry between the high and low fr
quency peaks of the absorbance curves of Fig. 7 follo
immediately from our analysis of the corresponding curv
of Fig. 6. According to that analysis we expect this asymm
try to be less pronounced as the thickness of the slab
creases, and this is what one sees in Fig. 7. At this stage
should emphasize that for the slabs considered~the values of
the various parameters are summarized in the figure c
tions!, there is no noticeable difference in the absorban
curves between the exact treatment and the effective-med
approximation. Absorption occurs over a range of frequ
cies aboutv1 @the dipole resonance of the sphere defined
Eqs. ~7!#, as shown in Fig. 7, but there is no significa
absorption due to other bands~corresponding tol -pole reso-
nances, withl .1, of the sphere! as suggested in Ref. 3.

We have assumed so far that light is incident normally
the slab. A similar analysis can be carried through for a
angle of incidence, or equivalently for any value ofki pro-

vided ukiu,vAē/c0 ~see, e.g., Ref. 15!. When kiÞ0 the
nondegenerate bands, not shown in Fig. 1~a!, which are in-
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a-

FIG. 7. Absorbance of light incident normally on a slab ofN
lattice planes parallel to the~001! surface of a fcc crystal consistin
of plasma spheres (S550 Å, \vp59.2 eV, \t2150.2 eV, f
50.1) in gelatine (e52.37).
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5364 PRB 60V. YANNOPAPAS, A. MODINOS, AND N. STEFANOU
active for ki50, develop into bands which becomegradu-
ally more active~couple with the externally incident light! as
ukiu increases. However, their effect is marginal and
effective-medium treatment remains valid for practical p
poses for the system considered in this section.

IV. FURTHER LIMITATIONS OF THE
EFFECTIVE-MEDIUM APPROXIMATION

The effective-medium treatment, which effectively r
places the metallic spheres by interacting dipoles, bre
down when higher (l .1) than the dipolar (l 51) terms
need to be taken into account for the description of the
field about a sphere. This happens when the size of
spheres is large enough to activate absorption byl -pole
(l .1) resonances of the individual sphere, or when
fractional volume of the spheres increases. We note
similar deviations from the effective-medium treatment ha
been established for two-dimensional arrays of meta
spheres.20

In Fig. 8~a! we show the frequency band structure of a f
crystal of nonabsorbing metal spheres (S550 Å, \vp59.2
eV, t5`) in gelatine (e52.37) with a fractional volume
occupied by the spheresf 50.3 ~corresponding to a lattice
constanta5191.12 Å!, for ki50. Since the spheres ar
closer to each other as compared with the case examine
Sec. II (f 50.1), the band which arises from the interacti
between dipole resonances of neighboring spheres is bro
and hybridizes more strongly with the continuum states
the homogeneous effective background@Eq. ~9!#. As a result
of the stronger hybridization, a larger gap opens up and
higher-multipole (l .1) flat bands now fall into the gap
region. Moreover, due to the larger overlap between reso
states of adjacent spheres, these flat bands are broader th
the case off 50.1. We note that only doubly degenera
bands and up tol max54 are shown in the figure. Figure 8~b!
shows the corresponding transmittance curve, for light in
dent normally on a slab of the material 16-layers thick. O

FIG. 8. ~a! The photonic band structure associated with
~001! surface of a fcc crystal of nonabsorbing plasma spheresS
550 Å, \vp59.2 eV,t5`) in gelatine (e52.37) with f 50.3, for
ki50. ~b! The corresponding transmittance curve for light incide
normally on a slab of the above crystal, 16-layers thick. The s
~broken! lines in both figures refer to the exact~effective-medium!
treatment.
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now, can see the transmission resonances associated wit
higher-multipole bands extending over a broad frequency
gion within the dipole gap. When absorption is switched
(\t2150.2 eV! these higher-multipole resonances are ma
fested as additional absorption peaks, as shown in Fig. 9

We must also remember that we have assumed throug
the paper that the spheres are arranged periodically in sp
and in particular we have assumed that the spheres are
tered on the sites of a fcc lattice. Similar results are expec
for any other cubic lattice. But for lattices of lower symmet
the effective-medium treatment we have presented will
be valid. A single dielectric function can not describe t
optical properties of crystals of lower symmetry as is w
known.21 While it may be possible to develop an effectiv
medium treatment to calculate the principal values of
dielectric tensor~two for uniaxial crystals: rhombohedral, te

FIG. 10. ~a! The photonic band structure associated with t
~001! surface of an orthorhombic (a:b:c51:1.5:2) crystal of non-
absorbing plasma spheres (S550 Å, \vp59.2 eV, t5`) in ge-
latine (e52.37) with f 50.1, forki50. ~b! and~c! show the trans-
mittance of light polarized in thex and y direction, respectively,
incident normally on a 16-layers thick slab of the above crystal. T
solid lines in the figures are exact results. The broken lines
obtained using the effective-medium formulas~3! and ~5!.

t
d

FIG. 9. Absorbance of light incident normally on a slab of 1
lattice planes parallel to the~001! surface of a fcc crystal consistin
of plasma spheres (S550 Å, \vp59.2 eV, \t2150.2 eV, f
50.3) in gelatine (e52.37). The solid~broken! line corresponds to
the exact~effective-medium! treatment.
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tragonal, and hexagonal systems, and three for biaxial
tems: triclinic, monoclinic, and orthorhombic systems!, we
do not know that such a method exists at the present t
and we cannot therefore say anything on this matter here.
simply mention that an effective-medium treatment for
general two-dimensional periodic system has recently b
proposed by Haleviet al.22 Our exact method works, o
course, for any periodic arrangement of spheres and in o
to demonstrate this we show in Fig. 10, the frequency b
structure and the corresponding transmittance curves~for x
andy polarized incident light! for an orthorhombic crystal. It
is evident from this figure thatx and y polarized incident
light is coupled to different bands~nondegenerate in thi
case!. One can easily recognize the nondegenerate ba
two below and two above the hybridization gap which c
respond roughly to the doubly degenerate bands~one above
and one below the gap! obtained in an effective-medium
treatment based on Eqs.~3! and ~5!. These equations ar
s-

e
e

n

er
d

s,
-

obviously inappropriate in the present case and the co
sponding bands are shown here only for comparison p
poses. Of course, in the long wavelength limit~energy going
to zero! the exact bands~solid lines! converge towards eac
other and to the effective-medium band~broken line!.

Finally, we should mention that in practical applicatio
the metallic particles~spheres! are rarely identical, and thei
arrangement in space is not always periodic. Although
main effect of disorder~at least of a mild one! is likely to be
a broadening of the absorption peaks, a systematic treatm
of disorder is a difficult mathematical problem and we sh
deal with it in a subsequent publication.
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