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Fractal analysis of anomalous low-frequency dispersion irXX,BaCuOs; compounds(X=La-Y)
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The anomalous low-frequency dispersion process observed in perovskite cera3iBaC(Q, X
=La-Y) is described by a fractal model. The interpretation is given in terms of the Dissado-Hill-Jonscher
theory and is based on a cluster description of the structural ordering and fluctuation in carrier-dominated
dielectrics. The relationship of the mechanism to that of power-law noise in electrical systems is identified and
its dynamical and structural interpretation explored. Particular features of several ceramics related to super-
conductor compounds are describg8i0163-18209)09931-2

I. INTRODUCTION II. DIELECTRIC RESPONSE OF CERAMIC COMPOUNDS

. The orthorhombic phase 1:2:3 of YRau,0,_ exhibits a
The electronic structure of strongly correlated copper-_ ... | f90 K. S d h -
oxide superconductors such aBa,CuO;_, (X=La-Y) critical temperature o K. Superconductor characteristics
. . 7X - were also found in rare-earth compounds such as
has been an enduring problem in the last 15 y&&td.o-

gether with these superconductors, another phase from t%(eBaZC%O7‘X(X:La_Y)' On the other hand, the phase

compoundsX;BaCu aso sppears. These ceramic com- L 0 BECUB0CLECY el 10 e apperec A1
pounds do not show a superconductivity transition and havi P grokipma

been characterized as insulators. There are still numero&ii(aln difference between them lying in their cation radius
0

. - : . La®")>p(Y3"). The dielectric response in the frequency
unresolved questions such as their dielectric response in t main of these ceramic compounds is reported
frequency domain. P b X

The susceptibilityy(w) = x' (@) —jx"(w) of these com- Dielectric properties were measured by an automatized

and computer-controlled vectorial impedance meter HP
pounds shows a peak at the loss compongf(i), together 4227A. The relative dielectric constaat(w) and relative

With an increage in the real componegt(w), corrgspond- loss factore”(w) were measured in the frequency range
ing to a relaxation process. The measurements give such loiﬁ“—l(f’ Hy

peaks with a non-Debye shégie From Figs. 1 and 2 it can be seen thdt decays on

increasing the frequency from 4@ 1P Hz. Thee” maxi-

1) mum, associated with the delay of spatial charge polarization
forms, is absent because of the rather low frequency at which
it occurs (€ 10% Hz).

X cx'cw P w<o.

—AEm w>w, (2

X’OCXHOC(X)

where the frequency. may be identified with the frequency
of maximum loss andh andp are constants that lie between
zero and unity:*°

In this paper, a general fractal model is described and
applied to explain this behavior. First it is assumed that the
two power lawqdEqgs.(1) and(2)] arise, basically, from hop-
ping charge carriers. Secondly the mathematical background
is developed to describe effective-charge displacements, be-
tween binding sites, in terms of the waiting-time distribution 1 — T T

. = L 10
for anisotropic displacementlow-frequency limi} and over 4 5 6
. . . . 10 10 10
a fractal structurg(high-frequency limit. Finally, using a
. 2 N . . frequency (Hz)
fractal lattice that mimics the binding site net, the model is
applied to the ceramic compoundsX,8aCuQ, X FIG. 1. Relative dielectric constant ) and relative loss factor
=La-Y). (") vs frequency log(LsBaCuQ).
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at timet, if it was atrg at timet=0. The generalized master
equation(GME) for P(r,t) is

JP(r,t) t
;t :fodt’cﬁ(t—t’); [V(r—r")P(r',t")

e(w)

=V(r'=r)P(r,t")], 3)

whereV(r—r")¢(t—t') are time-dependent transition rates

(the spatial and temporal dependence were decouplét)

is called the memory function and takes into account the
memory effect of this kind of non-Debye relaxation

0
10

10" 10° 10° process® By making the nearest-neighbor approximation for

frequency (Hz) V(r—r"), applying an electric fieldE in the x direction, and

FIG. 2. Relative dielectric constant () and relative loss factor taking the continuum limit of Eq(3) it follows that

(") vs frequency log(¥BaCuQ).

JP dP(r,t’
PO

ot

(rt) [ )
= st DovEpr ) - o
Taking into account the two slopes of the permittivity 0 @
(Figs. 1 and 2 which are characteristic of systems in which
the contribution of polarization comes from hopping chargeThe frequency-dependent diffusion coefficient can be de-
carriers'? it is assumed that hopping charge carriers are thejved from linear-response thedfy'®as
dominant polarization species in td¢BaCuQ, compounds.

Using the relatiorz (w) =g 1+ x(w)], ¥’ andy” can be D(w)=Dod(w)=— (1) 01 »)) (5)
obtained from the experimental values of the dielectric con-
stante’ and the relative loss facter”. In this way, using and the dielectric susceptibility’is
Egs.(1) and(2), the resulting values of indexgsandn are
p=0.81+0.08 andn=0.67+0.07 on LgBaCuQ and p x(®)=j(Ne?/KT)Do[ p(w) w]. (6)

=0.64+0.06 andn=0.89+0.09 on Y,BaCuQ. . .
andn on %,Bacuq Now, R(r,t) denotes the probability to reach sitein the

time interval ¢,t+dt), 8(t) the probability to remain on a
site for a timet after arrival, andy(t) the probability of a
charge carrier arriving at=0 to make a transition betweén

The anomalous low-frequency dispersi@frD) is identi- andt+dt. Then,
fied with the behavior of the perovskite ceramics
X,BaCuG, (X=La and Y). In these systems, a mechanically
rigid lattice forms a regular array of binding sites for ions,
most of which are occupied. This large occupancy factor
allows the ions to interact with one another so as to modify t
the regularity of the intersite spacing of the substrate poten- P(r,t)=f B(t—t")R(r,t)dt’, (8
tial. As a result, the translational reproducibility will be de- 0
stroyed over a distande., which defines a positional corre- .
lation length for the cluster of ions formed. In the static _ _ o e VI
structure the ions will reside in potential wells and vibrate RO~ Ro(r, ) rz Vir=r )fo #(t=tOR(r, Tt
around equilibrium sites mainly determined by the substrate 9)
lattice; therefore cooperative motions can be established. . o i o

An applied electric field will polarize the system by the vyhereRo(r,t) is the initial condition which is a delta_funp-
hopping of ions to sites at a lower potential. In these clustefion 8(r —ro) 8(t—0). Note that because of normalization
systems a distinction must be drawn between ion hoppinév(r__r’)zl- ] )
over a range., which can be either less than or greater than 10 give the connection with the GME, the Laplace trans-
the cluster correlation length.. In the former case, the form is applied to the above expressions:
vibrations of the ion at the acceptor site are correlated with

Ill. THE FRACTAL MODEL

t
ﬂ<t>=1—fo¢(t’>dt', @)

those of the rest of the cluster of which the donor site is part. Blw)=[1-(w)]lo, (10
Therefore, in this case, ion hopping constitutes a displace-
ment of charge inside the cluster, which thereby becomes a P(r,0)=p(w)R(r,»), (11)

polarized corporate entity. In the latter case, the motions of
the ion are correlated with those of the acceptor rather than , ,
with those of the donor cluster, both of which become R(r,w)—&(r—O)zZ VI =r)y(o)R(r", ), (12
charged3-1° '

The transport is assumed to take place between localizethere w is the Laplace-transformed variable using the for-
statesr, r’, which are commonly present in insulators. mula for the transform of a convolution. Wherrg, the
P(r,t) denotes the probability of finding a charge carrier at above equations yield the relation
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P(r,w)=2 V(r—r")(w)P(r',v). (13 (r3(t))= 2, (r3gy(t), (21)
! n=0
The Laplace transform of the GME, E(B), can be written  whereg,(t) is the probability of performing exactly steps
as(if r#ro) for t and(r2) is the rms displacement of a random walkrof
steps on a fractal, which is given ¥y(r2)«n?Pw, D, is the
wP(r,0)=—¢(0)P(r,0)+ d(w) X, V(r—1")P(r', o), random walk dimension. The Laplace transform of the
r!

(r(t)) is given by
(r’(0)=[1- ()0l (a+1)[-Iny(w)] *

(14
where Eq.(9) was used. Now if Eq(13) is inserted into Eq.

(14) the following relation between the memory function _ _ (2_2)
¢(t) and the waiting-time distributiogi(t) is obtained: wherea=2/D,, andI'(x) is the gamma function. Consider-
ing In Y{w)~i{w)—1 EQ.(22) becomes
d(w)=o(0)/[1-H(o)]. (15 ) -
(r(w)=T(a+1)[1-¢(o)] . (23)
Fractal time process Now, taking into account(w)=1—AwPt and writing
The intercluster motion is considered first as a fractal-time (r2(w))oc @01 (24)
process. In a fractal-time process the distribution of waiting _ _
time can be described by the average number of ewétls  according to Eqs(5) and(6) it follows that
e it
within time t and can be written as (©)7D ()] 0% 0Xr(w)) 0 o= 25

D
N(t)=t™, (18 Note that +-aD; plays the role ofn in Eq. (2) and it can

whereD;, is called the fractal dimension of the process. ~ only take values in the interv0,1].
Letg,(t) be the probability thath events happen at tinte

Then the Laplace-transformed quantify(w) is given by IV. RESULTS
(0)= (L) P 0)]"[1- ¢ o)]. (17) From the experimental data and the _proposed m ook
I v v o Eqg. (20)] the following values are obtained for the fractal
The Laplace transform of the number of events within time gimension D,: La,BaCuG:D,=0.81+0.08 and
can be written as Y,BaCuQ;D,=0.64+0.06. The definition ofp indicates
w0 that for large values op intercluster exchange fluctuations
_ _ _ carry the effective charge over long paths, affecting many
N(w) nZO (@) =l)lol1=y(w)]. (18 clusters as transport develops. Then, the greater valups of

in La,BaCuQ indicate near perfect transport, while the low
value ofp in Y,BaCuQ indicates poor transport.
In terms of burst and gaf’sD, can be identified by a
Cantor set, i.e., dividing the closed interyal1] into pieces
_+-1-D of length 1b, then removing some of them and preserving
Pp(t)=t t. (19 , i g
only N pieces, and so on to infinity. This giveB,
Then, to write down the asymptotic dielectric response for a=In N/Inb, N=7, andb=11 for La,BaCuQ andb=21 for
fractal time process at low frequencies the memory functiory ,BaCuQ.
#(w)xw Pt and the dielectric susceptibility are obtained The corresponding values fdb,, [see Eq.(25)] are

In order to recover Eq(16), N(w)*w' Pt, which is ob-
tained wheny(w)=1—Aw®! for a smallw. At long times,
this is equivalent to the asymptotic form

from Egs.(15) and(6), respectively. La,BaCuQ:D,=4.9+1.3 and YBaCuQ:D,=11.6+5.8.
. The definition ofn indicates that small values of corre-
x(w)*xo "t (20) spond to a highly irregular clustéarger values oD,,), and
Note thatD, plays the role op in Eq. (1) and it can only take large values ofn corresp_ond to a highly ordered cluster.
values in the interva0,1]. Then, the low value oh in La,BaCuQ corresponds to a

highly irregular cluster, such as in the case when an intersti-
tial ion is present, while greater values ofin Y,BaCuG
indicate a highly ordered cluster structure.

The displacement of charge within the cluster and the Although a deterministic fractal is not a disordered me-
regression of these displacements, which includes the contriium, diffusion on a fractal exhibits anomaliédue to ob-
bution to the response from the relaxation of the cluster postacles such as holes, bottlenecks, dangling ends,stui-
larization, were analyzed. The cluster is considered to have lar to those present in disordered media.
fractal structure on length scales between the size of its The renormalization schefieé?®is used for the calcula-
building blocks and the size of the whole clustér,(. The  tion of the exact values dd,, for the fractal lattices shown in
fractal structure mimics some of the characteristics of perovFig. 3.
skite ceramic lattice geometry. Let us consider the mean transit timaeeded to traverse

The rms(r?(t)) displacement of a charge carrier for a a lattice unit from one vertex to anothdd, [see Fig. 8)].
time t over a fractal cluster is given by This is done by exploiting the Markov property of the ran-

Fractal time process on fractal structures
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5D=5T'+4C+E,

5E=5T'+4D.

The solution isT’'=(%)?T, which is the rescaling of time

T for a diffusion process on the lattice upon the rescaling of
length by a factor of 2(* cosa+cosp) [see Fig. &)].
Then, it follows that

0

(@) Dy=2In(%)/InN[2(1+ cosa+cosB)].

a

A model for the anomalous low-frequency dispersion pro-
cess that directly relates the mechanism to the disordered
structure arising from partial occupancy of binding sites in a
material network has been used. This structure is described
FIG. 3. (a) The lattice unit.(b) The rescaled fractal unitc) by a cluster array with low-frequency dispersion arising from
Section of the latticéc) showing anglesr and 8. the transport of effective-charge displacements when the
bound species are constrained to move only in the network.
dom walk on the fractd® Thus, T equals the time to exit the The two power-law regimes in the frequency domain have
first lattice unit, plusA, the mean transit time needed to leave peen identified with effective charge transport on the cluster
the rescaled unit from then on. Using the same reasoning fafize, and the intercluster macroscopic size scales with their
the timesA, B, C, D andE (the mean exit times starting respective indices defining their appropriate structural order.
from the decimated nodgs
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