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Phonon-modulated electron-electron interactions
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The phonon modulation of electron-electron interactions are calculated for solids described by tight-binding
models. In some cases the interaction can be larger than the usual electron-phonon effects.
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I. INTRODUCTION

The traditional derivation of the electron-phonon intera
tion in solids includes the electron-ion interaction, which
suitably screened by the conduction electrons.1,2 In tight-
binding models, another contribution is the phonon modu
tion of the hopping term.3–5 There is another interactio
which we introduce here. It arises from the phonon modu
tion of the electron-electron interactions. We show that t
interaction can be sizable in solids whose conduction ba
are described by tight-binding models.

There have been numerous papers on electron-elec
interactionsmediatedby phonons.6,7 Those papers calculate
the interaction between two electrons by exchanging a p
non. Here the process is different. The electrons interac
the Coulomb interactione2/R, but the distanceR is modu-
lated by the ion vibrations.

The model is a neutral tight-binding system.3 For this first
calculation, the simplest possible model is adopted. Ther
one atomic site per unit cell, so all sites have identical sy
metry. The ion cores are considered closed shell and pos
s-wave symmetry. Similarly, the conduction electron orbit
on each ion site also are assumed to possesss-wave symme-
try. If the ion cores have a valence ofZ, then charge neutral
ity requires that the average number of conduction electr
on each site is alsoZ. All of the atoms in the system hav
conducting electrons. So the average charge on an atom
is zero. Conduction electrons can hop from a site to
neighboring sites. It is assumed the electron orbitals on
ion move with the ion core during the phonon vibration.

This model was conceived to apply to graphite. Cons
ering only the orbitals withpz symmetry, thenZ51. There
is an average of one electron per atomic site, and the
cores also have a charge of one. The present model doe
fit graphite, which has two atoms per unit cell.4 Also, the
graphite energy bands have small Fermi surfaces and a li
dispersion. A future paper will discuss this model in relati
to graphite, and also to carbon nanotubes.5 The present pape
is intended to derive the general formalism, and to show
the phonon modulated electron-electron interactions can
significant in tight-binding systems.

II. THE HAMILTONIAN

The Hamiltonian is

H5H01V, ~1!
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H052w(
j ds

Cj 1d,s
† Cj s1(

q
vqaq

†aq , ~2!

V5
e2

2 (
nm

E d3r 1d3r 2

ur12r2u @r i~r12Rn!2Cn
†Cnre~r12Rn!#

3@r i~r22Rm!2Cm
† Cmre~r22Rm!#, ~3!

Z5E d3rr i~r !, ~4!

15E d3rre~r !, ~5!

wherer i ,e(r ) are the charge densities due to the ion co
and conduction electrons. The operatorsCj s refer to elec-
trons andaq to phonons. The following steps are used
derive an electron-electron interaction. Fourier transform
Coulomb interaction

e2

ur12r2u
5

1

V (
q

v~q!eiq•(r12r2), ~6!

whereV is the volume of the crystal andv(q)54pe2/q2.
Next perform the integrals overd3r 1,2 which brings us to the
interaction

V5
1

2V (
q,nm

v~q!eiq•(Rn2Rm)@ r̃ i~q!2Cn
†Cnr̃e~q!#

3@ r̃ i~2q!2Cm
† Cmr̃e~2q!#, ~7!

wherer̃e,i(q) are the Fourier transforms of the charge de
sities. Let the atomic positionRn5Rn

(0)1Qn , whereRn
(0) is

the equilibrium position andQn is the atomic displacemen
due to the phonons. For the moment it is assumed ther
only one atom per unit cell. We extend the results to seve
atoms in a cell in a later paper. Expand the exponen
powers ofQ and retain only the linear term. Express th
electron number operators in terms of collective coordina

Cn
†Cn5Z1

1

N (
qÞ0

r~q!eiq•Rn
(0)

~8!

r~q!5(
k,s

Ck1q,s
† Ck,s , ~9!
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V5
1

2V (
q,nm

v~q!eiq•(Rn
(0)

2Rm
(0))@11 iq•~Qn2Qm!#

3F r̃T~q!22
2

N
r̃T~q!r̃e~q! (

q1Þ0
r~q1!eiq1•Rn

(0)

1
1

N2
r̃e~q!2(

q1q2

r~q1!r~q2!e~ iq1•Rn
(0)

1 iq2•Rm
(0)

!G ,

r̃T~q!5 r̃ i~q!2Zr̃e~q!. ~10!

The symbolr̃T(q) denotes the Fourier transform of the tot
average charge density on a lattice site. It vanishes atq50
due to charge neutrality. The above expression forV contains
several types of interactions. The most important three
electron-electron (Vee), electron-phonon (Vep), and the
phonon-modulated electron-electron (Veep). For the latter
two we expand the ion vibrationQ in terms of phonon co-
ordinates,

Qn5(
Q

XQAQĵQeiQ•Rn
(0)

, ~11!

XQ
2 5

\

2MvQN
, AQ5aQ1a2Q

† , ~12!

Vee5
1

2V (
qÞ0

Mqr~q!r~2q!, ~13!

Mq5(
G

v~q1G!r̃e~q1G!2, ~14!

PQ5(
G

~Q1G!v~Q1G!r̃e~Q1G!r̃T~Q1G!, ~15!

Vep5
i

V (
Q

XQAQr~2Q!~ ĵQ•PQ!, ~16!

Lq5(
G

~q1G!v~q1G!r̃e~q1G!2, ~17!

Veep5
i

V (
qQ

XQ~ ĵQ•Lq!AQr~q!r~2q2Q!. ~18!

In the present notation, the vectorq is confined to the first
Brillouin zone, and the summation over reciprocal-latti
vectors G extends the wave vector to larger values. T
electron-phonon interacionVep has the usual form. It is the
usual term, which is calculated. The factor of (ĵQ•Q) gives a
deformation-type interaction due to two features:~1! The
functionP(Q) is a vector which points in the directionQ, ~2!

since r̃T(q) vanishes at zero wave vector, the quant

v(q) r̃T(Q) goes to a constant at zero wave vector. Usua
the interaction is nearly constant due to the screening f
electron-electron interactions. Here it is also due to Coulo
interactions, although the formal screening has not yet b
included. Our major interest is in the last term which d
scribes phonon-modulated electron-electron interactions.
re

e

y
m
b
en
-

The effective Coulomb interaction is denoted asMq . It
can be expressed as the HubbardU plus the off-site interac-
tion Uq ,

Mq5U1Uq , ~19!

Uq5 (
nÞ0

eiq•RnV~Rn!, ~20!

where V(Rn) is the electron-electron interaction betwe
sites separated byRn . In this case, the electron-electron in
teractions can be written in the usual form

Vee5U(
j

@nj↑1nj↓1n↑nj↓#1
1

2N (
q

Uqr~q!r~2q!.

~21!
The first term is the Hubbard interaction on the same s
while the second term comprises the extended Hubb
model, for interaction between different sites.

The interactionVeep is the new term that provides a con
tribution to the interaction between electrons and phono
The remainder of the paper discusses the self-energy o
electron from this interaction.

III. EXCHANGE MATRIX ELEMENTS

One contribution to the phonon modulation of th
electron-electron interactions is the exchange terms. T
contribution seems to be the largest. The first step is to eli
nate an electron interacting with itself to write

r~q!r~2q2Q![ (
p1k1s1s2

Cp11q,s1

† Ck12q2Q,s2

† Ck1 ,s2
Cp1 ,s1

.

Note thatqÞ0, qÞ2Q. The only available pairing of any
operators is to take the exchange terms. The exchange
ing is to write this as

r~q!r~2q2Q!˜2 (
p1s1

Cp12Q,s1

† Cp1 ,s1
@np11q1np12q2Q#.

The two terms in brackets come from the two different wa
of exchange pairing. The summation over the wave vectoq
can now be evaluated, which defines an effective matrix
ement

U~k,Q!5 ĵQ•@S~k1Q!2S~k!#, ~22!

S~k!5E d3q

~2p!3
qvqr̃e~q!2nk1q . ~23!

Each matrix element has two terms. The square of the ma
element has four terms. They correspond to the four d
grams in Fig. 1. The evaluation of the functionS(k) is dis-
cussed in the Appendix. To a good approximation it can
expressed as

S~k!52
e2kF

2p
kI , ~24!

U~k,Q!52
e2kF

2p
QI[QD. ~25!
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The constantI depends upon the nature of the electr
charge distributionr̃e , and has a value near to unity. Th
simple approximation forS(k) makesU(k,Q) independent
of k. The resulting interaction now has the form of a defo
mation potential which is just half of the exchange energ

Veepx5(
Q

MQ
(x)AQr~2Q!, ~26!

MQ
(x)5DXQĵQ•Q, ~27!

D52
e2kF

2p
I . ~28!

The one-phonon self-energy is now~using a four-vector no-
tation!

Seepx~k,ikn!5
D2

b (
Q

XQ
2 ~ ĵQ•Q!2G~k1Q!D~Q!

5
\D2

2r E d3Q

~2p!3

~ ĵQ•Q!2

vQ
FNQ112nF~k1Q!

ikn2«k1Q2vQ

1
NQ1nF~k1Q!

ikn2«k1Q1vQ
G .

The strength of the electron-phonon interaction is determi
by the dimensionless quantityl defined as

l5
D2

r E d3Q

~2p!3

~ ĵQ•Q!2

vQ
2

d~«k2«k1Q!. ~29!

The value of this coupling constant is estimated using
Wigner-Seitz model for the unit cell. In the approximation
a spherical unit cell, of radiusqR , the LA ~longitudinal
acoustical! modes are approximated as

rvQ
2 5

C11

b2
sin2~Qb!, ~30!

b5
p

2qR
, ~31!

FIG. 1. Four contributions to the exchange part of the phon
modulated electron-electron interaction.
-

d

e

l5
mb2D2

~2p!2kF\2C11
E

0

qR Q3dQ

sin2~Qb!
, ~32!

l5
3Ery~4Nc!

1/3

2p4V0C11

I 0I 2 ~33!

I 05E
0

p/2 z3dz

sin2~z!
'1.98, ~34!

whereNc5n0V0 is the average number of electrons in t
unit cell of volumeV0. The upper limit on thedQ integral is
eitherqR or 2kF , whichever is smallest. For most values
Nc then 2kF.qR so thatqR is used.

Most insulators have elastic constants on the order
C11' 50 GPa. Choosing a lattice constant ofa50.35 nm,
then the ratio ofEry /(C11V0)'4. If Nc51 then l50.20.
This value is increased ifC11 is reduced. The value ofl is
similar to what is often found using the linear electro
phonon interactionVep .

IV. CORRELATION MATRIX ELEMENTS

Another contribution to the self-energy of the electron
discussed in this section. This self-energy of an electron
also calculated in the one-phonon approximation. It uses
same basic interactionVeep but evaluates another Feynma
diagram shown in Fig. 2~a!. The dashed line is the phonon
and solid lines are electrons. The closed bubble is a po
ization contribution from the electrons. Higher-order di
grams are shown in Fig. 1~b!. They utilize the electron-
electron interaction to sum a similar set of bubble diagram
The result of all of these terms gives the self-energy funct

S~k!5
\

2MNAb2 (
qQ

T ~q,Q!

vQ
G~k1q1Q!D~Q!

3F P~q!

12~Mq1U/2!P~q!G , ~35!

T ~q,Q!5@ ĵQ•~Lq1L2q2Q!#2,

P~q!5
2

Ab (
p
G~p!G~p1q!52E d2p

~2p!2

n~p!2n~p1q!

iqn1«p2«p1q
.

The factor of (Mq1U/2) shows that screening is due only
the charge fluctuations. The spin fluctuations do not en
This result is expected since phonons are a type of cha
fluctuation.8 Our treatment of the Hubbard model is val
only for small and intermediate values ofU, where the

-

FIG. 2. RPA contributions to the correlation part of the phono
modulated electron-electron interactions.



a

e

bi

x-

e
tio

n
a

he

i
o

th
rm
th
h

nc
ep

m

ed

s in
ibu-

en-
ves

ted
he
er
es
a
T

ite
m
ion
us
its
ss a

-
e

e a

ou-
rm
of

PRB 60 5279PHONON-MODULATED ELECTRON-ELECTRON INTERACTIONS
random-phase approximation~RPA! is still valid. For large
values ofU then the Hubbard interaction cannot be treated
a perturbation, but is included inH0.

The angular factor (ĵQ•Lq) in the matrix element has
becomeT (q,Q) in the self-energy. This change occurs b
cause in the evaluation of the correlation function

~ ĵQ•Lq!~ ĵQ•Lq8!^Ck~t!r~q,t1!r~2q2Q,t1!

3r~q8,t2!r~2q81Q,t2!Ck
†!&. ~36!

The same self-energy contribution occurs with four com
nations of (q,q8): (q,2q),(q1Q,2q2Q), (q,2q
2Q), (q1Q,2q). Adding them together provides the e
pression forT (q,Q).

The self-energy expression~35! has a formal resemblanc
to the self-energy from the usual electron-phonon interac
Vep . The self-energy has an electron Green’s functionG, a
phonon Green’s functionD, and a screened interactio
TP/(12M 8P). The important difference is that there is
summation over two independent wave vectors (q,Q). This
feature makes the final evaluation very different from t
usual expression.

Another interesting feature of this expression is that it
similar to the RPA expression for the correlation energy
the electron gas

S~k!52
\

2MNb (
Q

1

vQ
D~Q!Sc8~k1Q!, ~37!

Sc8~k1Q!52
1

Ab (
q
T ~q,Q!G~k1q1Q!

3F P~q!

12~Mq1U/2!P~q!G . ~38!

The only difference from the usual correlation energy is
presence of a slightly different matrix element. For this te
in the electron self-energy, the phonon modulation of
electron-electron interaction can be considered to be a p
non modulation of the correlation energy.

The next step is to do the summations over the freque
variables. In this step it is useful to employ a Lehmann r
resentation for the correlation energy

Sc8~k1Q,ik1 iQn!5E d«8

2p

B~k1Q,«8!

ikn1 iQn2«8
, ~39!

S~k,ik !5
\

2MN (
Q

1

vQ
E d«8

2p
B~k1Q,«8!

3FNQ1nF~«8!

ik1vQ2«8
1

NQ112nF~«8!

ik2vQ2«8
G . ~40!

At high temperature, whereNQ'kBT/\vQ , the largest term
in the scattering time is
s

-

-

n

s
f

e

e
o-

y
-

1

t~k,E!
522 Im$S~k,E!%

5
kBT

2MN (
vq

1

vQ
2

3@B~k1Q,E1vQ!

1B~k1Q,E2vQ!#. ~41!

At small excitation energies the inverse lifetime fro
electron-electron interactions goes asB(k,E)5L(k)(E
2m)2 so that the above lifetime from the phonon-modulat
electron-electron interactions is

1

t~k,E!
5

kBT

MN (
vq

1

vQ
2

L~k1Q!@~E2u!21vQ
2 #. ~42!

This expression seems to be small. The factor of ion mas
the denominator ensures that the result is a small contr
tion. Of the two terms on the right, one has (E2m)2 which
vanishes at the Fermi surface. The other has the phonon
ergiesvQ

2 canceling, so that the ion mass remains and gi
a small result. In summary, this term is negligible.

V. TWO DIMENSIONS

The most interesting effects of the phonon-modula
electron-electron interaction come in lower dimension. T
primary application is to a single sheet of graphite. Anoth
important application is to single-wall carbon nanotub
~SWNT!, which are formed by rolling a graphite sheet into
tube. A graphite sheet is two dimensional, while the SWN
are intermediate between one and two dimensions.9

The above derivation needs to be modified for graph
due to the presence of a unit cell with two different ato
sites. As shown in Ref. 4 for the electron-phonon interact
in graphite, having two sites per cell introduces vario
phase factors into the matrix element without changing
basic dependence upon wave vector. Here we shall discu
model two-dimensional solid with one atom per unit cell.

In two dimensions the wave vectors of the phonon (Q)
and electrons (q' ,q'1Q) are two dimensional. The sum
mation overq is three dimensional. It is useful to eliminat
the dependence uponqz up front by evaluating

F~q'!5E dqz

2p
v~q!r̃e~q!2. ~43!

In order to understand what this integral does, we tak
simple example. Assume thatr̃e51/(11q2/a2) in which
case the integral is easy. The symbolq now denotes a two-
dimensional~2D! wave vector

F~q!52pe2F1

q
2

2q213a2

2~q21a2!3/2G . ~44!

The first term in brackets is the usual two-dimensional F
rier transform of the Coulomb interaction. The second te
is from r̃e

2 and modulates this interaction at large values
the wave vector. The two interactions of interest are
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Mq5(
G

F~q1G!, ~45!

Lq5(
G

~q1G!F~q1G!, ~46!

Vee5
1

2A (
q

Mqr~q!r~2q!, ~47!

Veep5
i

A (
qQ

XQ~ ĵQ•Lq!AQr~q!r~2q2Q!, ~48!

where A is the area of the 2D system. The same ma
elementF(q) enters both the electron-electron interactio
and the phonon-modulated electron-electron interaction
the above notation, the vectorsq,G,Q are now all two di-
mensional.

The self-energy of an electron in two dimensions is c
culated with this interaction. Again the largest contribution
the exchange interaction. Proceeding as we did in three
mensions, the two-dimensional exchange matrix elemen

S~k!5E dq

~2p!2
qF~q!nk1q'Dk, ~49!

D52
4

3

e2kF

p
I , ~50!

where the first factor inD is exact ofr̃e51, and the factor of
I'1 corrects for the fact that the charge density is not o
The deformation constantD is larger in two dimensions
compared to three dimensions, by the factor of 8/3. SincD
is squared in calculatingl, this provides a much larger in
teraction in two dimensions compared to three. The exp
sion for l in two dimensions is

l5
D2A0

M E d2Q

~2p!2

~ ĵQ•Q!2

vQ
2

d~«k2«k1Q!. ~51!

It is evaluated using a circular unit cell, with the result

l5
32

9p

Ery

Mcs
2

Nc
2I 2I 1 , ~52!

I 15E
0

a0
da

sin2~a!

sin2F p sin~a!

2 sin~a0!G
, ~53!

and sin(a0)51/A2Nc, whereNc'1 is the number of conduc
tion electrons in each unit cell. This value ofl is larger than
the corresponding expression in three dimensions. The r
Ery /Mcs

2'1, wherecs is the speed of sound. The integralI 1

is a function ofNc , andNc
2I 1 is typically in the range of 1/4

to 1/3. Thus in two dimensions we find thatl;0.320.4.
The phonon modulation of the electron-electron interact
is a significant process in two dimensions. In a later paper
calculate the value ofl for layered electron gases as found
the superconducting cuprates.

In summary, we have introduced an electron-phonon
teraction in conducting solids described by the tight-bind
x
s
In

-

i-
s

e.

s-

tio

n
e

-
g

approximation. The interaction comes from the phon
modulation of the electron-electron interactions. In two
mensions the effective coupling constant is estimated to
large.
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APPENDIX

Here we evaluate the functionS(k), which is defined in
three dimensions as

S~k!5E d3q

~2p!3
qv~q!r̃e

2~q!nk1q . ~A1!

A vector function of a vector must point in the direction
the vector. So defineS(k)5kS(k) where

S~k!5
1

k2E d3q

~2p!3
k•qv~q!r̃2

2~q!nk1q . ~A2!

The first example is to evaluate setting to one the factors
r̃e . Usingv(q)54pe2/q2 gives that (x5k/kF)

S~k!52
e2kF

4px2 F11x22
1

2x
~12x2!2 lnU11x

12xUG , ~A3!

S~0!52
2

3

e2kF

p
, ~A4!

S~kF!52
1

2

e2kF

p
. ~A5!

The result varies from 2/3 of the exchange energy atk50 to
1/2 at k5kF . The electron-phonon interaction is most im
portant for electrons at the Fermi surface, wherek5kF , so
that we use this value. It is changed somewhat by includ
the orbital charge densities. They are assumed to have
form

r̃e
25

1

~11q2/a2!2n
, ~A6!

S~kF!52
e2kF

2p
I , ~A7!

I 5
2b~11b!

2n21 F12S b

11b D 2n21G
2

2b2

2n22 F12S b

11b D 2n22G , ~A8!

whereb5a2/4kF
2 , andb is expected to be a large numbe

The function is normalized such thatI (b)˜1 asb˜`.
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