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Phonon-modulated electron-electron interactions
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The phonon modulation of electron-electron interactions are calculated for solids described by tight-binding
models. In some cases the interaction can be larger than the usual electron-phonon effects.
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I. INTRODUCTION

H0=—w; CJTM,UC]-UJrE wqaaaq, (2)
The traditional derivation of the electron-phonon interac- Joo a
tion in solids includes the electron-ion interaction, which is 2 &3 dr
suitably screened by the conduction electrbhgn tight- \/:E %[Pi(rl_Rn)_CECnpe(rl_Rn)]
binding models, another contribution is the phonon modula- nm ry—ry]
tion of the hopping termi-®> There is another interaction .
which we introduce here. It arises from the phonon modula- X[pi(r2—=Rm) = CCmpe(r2—Rm) 1, 3

tion of the electron-electron interactions. We show that this
interaction can be sizable in solids whose conduction bands
are described by tight-binding models.
There have been numerous papers on electron-electron
interactionamediatedby phonong:’ Those papers calculated 3
the interaction between two electrons by exchanging a pho- 1:f d>rpe(r), ®)
non. Here the process is different. The electrons interact by
the Coulomb interactiom?/R, but the distancd? is modu-  wherep; ((r) are the charge densities due to the ion cores
lated by the ion vibrations. and conduction electrons. The operat@g, refer to elec-
The model is a neutral tight-binding systéror this first  trons andag to phonons. The following steps are used to
calculation, the simplest possible model is adopted. There iderive an electron-electron interaction. Fourier transform the
one atomic site per unit cell, so all sites have identical symCoulomb interaction
metry. The ion cores are considered closed shell and possess
s-wave symmetry. Similarly, the conduction electron orbitals e S
on each ion site also are assumed to - g 2 V(e T, ©®)
poss@sE/e symme ri—rl] Q%
try. If the ion cores have a valence ofthen charge neutral-
ity requires that the average number of conduction electronghere() is the volume of the crystal and(q) =4mre?/q>.
on each site is als@. All of the atoms in the system have Next perform the integrals ovet3r1,2 which brings us to the
conducting electrons. So the average charge on an atom siigeraction
is zero. Conduction electrons can hop from a site to the
neighboring sites. It is assumed the electron orbitals on an 1

Z=J d3rpi(r), (4)

2

ion move with the ion core during the phonon vibration. V=3a an v(q)e'd R~ Rm)[p,(q) — CICrpe(a)]
This model was conceived to apply to graphite. Consid- &
ering only the orbitals withp, symmetry, therz=1. There X[Bi(—Q)—C%Cm};e(—Q)], 7

is an average of one electron per atomic site, and the ion

cores also have a charge of one. The present model does nghere).;(q) are the Fourier transforms of the charge den-
fit graphite, which has two atoms per unit ctlhlso, the sities. Let the atomic positioRn=R§1°)+Qn, WhereRE,O) is
graphite energy bands have small Fermi surfaces and a linegfe equilibrium position an®, is the atomic displacement
dispersion. A future paper will discuss this model in relationy, e 1o the phonons. For the moment it is assumed there is
to graphite, and also to carbon nanotub@e present paper only one atom per unit cell. We extend the results to several
is intended to derive the general formalism, and to show thakioms in a cell in a later paper. Expand the exponent in

the phonon modulated electron-electron interactions can bﬁowers ofQ and retain only the linear term. Express the
significant in tight-binding systems. electron number operators in terms of collective coordinates

IIl. THE HAMILTONIAN Cgcnzz+% S p(q)eaRY @)
Z0
The Hamiltonian is ‘
=> Cl.0.Ckos 9
HeHot V. @ p(@=2 CirqCi ©
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1 The effective Coulomb interaction is denoted Mg . It

4. (RO_ R .
V=54 v(g)e'® Fn " Ra[1+ig-(Qn—Qm)] can be expressed as the Hubbbglus the off-site interac-
anm tion Uy,
~ 2. - - _
pr(a)*— NPT(Q)Pe(q)qE;;O p(qy)e'9Fa Mg=U+Uyq, (19
1

1~ g -RO4ig,.RO U =E e'dRav(R,), (20
+WPE(Q)2§ p(Gy)p(gp)eliarRa +it R |, S "
142

where V(R,) is the electron-electron interaction between
ZT(Q)=7Ji(Q)—ZEe(Q)- (10 sites separated bR, . In this case, the electron-electron in-

. teractions can be written in the usual form
The symbolp+(q) denotes the Fourier transform of the total

average charge density on a lattice site. It vanishep=d _ _ _ _ i _

due to charge neutrality. The above expressionfoontains ee_U},—“ [yt 0 15y Eq: Ugp(@p(~q).

several types of interactions. The most important three are (21

electron-electron \(¢o), electron-phonon \(.,), and the The first term is the Hubbard interaction on the same site,

phonon-modulated electron-electroN(). For the latter while the second term comprises the extended Hubbard

two we expand the ion vibratio® in terms of phonon co- model, for interaction between different sites.

ordinates, The interactionVeep is the new term that provides a con-
tribution to the interaction between electrons and phonons.

Q.= XQAQéQeiQ~Rf10), (11) The remainder of the paper discusses the self-energy of an

electron from this interaction.

XQ 2|\/|w S AQ=aQ+aT,Q, (12) I1l. EXCHANGE MATRIX ELEMENTS
One contribution to the phonon modulation of the
1 electron-electron interactions is the exchange terms. This
Vee:E q;) Mgp(a)p(—a), (13 contribution seems to be the largest. The first step is to elimi-

nate an electron interacting with itself to write

Mq=2 v(a+Glpe(a+G)?, 19 pqp(-g-Q= 3 cI

C C C
py+d,5 ki —gq—Q,s,K{,S5~pq 8"
p1ks1S; 1 1 K1 2 K552 7 P15,

B ~ ~ Note thatg#0, g# —Q. The only available pairing of any
PQ_% (Q+GIV(Q+G)pe(Q+C)pr(Q+C), (19 operators is to take the exchange terms. The exchange pair-
ing is to write this as

i n
Vep=r > XoAop(—Q)(&q-Po), (16)
PTG T ere P(@P(~a=Q)== 2 Cp-qs,Co, 5 [Mpya* Mo, -g-a].

= (q+G)v(g+G)ps(q+G)2, (179 The two terms in brackets come from the two different ways
G of exchange pairing. The summation over the wave vegtor
can now be evaluated, which defines an effective matrix el-

[ .
Veepzﬁ % XQ(gQ.Lq)AQp(q)p(_q_Q). (18) ement

U(k,Q)=&q [Sk+Q)—S(K)], (22
In the present notation, the vectgris confined to the first
Brillouin zone, and the summation over reciprocal-lattice d3q
vectors G extends the wave vector to larger values. The S(k)= J(Z )3q gPe(d) N g (23

electron-phonon interacio¥l,, has the usual form. It is the i )

usual term, which is calculated. The factor &k Q) gives a Each matrix element has two terms. The square of the matrix

deformatio'n-t e interaction due 0 two fe%turég) The element has four terms. They correspond to the four dia-
yp grams in Fig. 1. The evaluation of the functi&k) is dis-

function P is a vector which points in the directid®, (2) cussed in the Appendix. To a good approximation it can be
since pr(q) vanishes at zero wave vector, the qua”“tyexpressed as

v(q)p(Q) goes to a constant at zero wave vector. Usually )

the interaction is nearly constant due to the screening from S(k) = — eke kI, (24)

electron-electron interactions. Here it is also due to Coulomb 2

interactions, although the formal screening has not yet been )

included. Our major interest is in the last term which de- U(k,Q)=— &QIEQD (25)
scribes phonon-modulated electron-electron interactions. ' 2 '
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FIG. 2. RPA contributions to the correlation part of the phonon-
modulated electron-electron interactions.

mb?’D? qu Q3dQ
FIG. 1. Four contributions to the exchange part of the phonon- B (Zﬂ)szﬁZCn 0 siA(Qb) ’
modulated electron-electron interaction.

(32

3E,,(4N,) 3
The constantl depends upon the nature of the electron A= 1l? (33
charge distributiorp,, and has a value near to unity. This 2mVoCry
simple approximation foS(k) makesU(k,Q) independent
of k. The resulting interaction now has the form of a defor- _ f”’z 2°dz
mation potential which is just half of the exchange energy o sird(z)

~1.98, (34)

whereN.=nyV, is the average number of electrons in the
Veep= 2 MPAp(—Q), (26) unit cell of volumeV,. The upper limit on thelQ integral is
Q eithergg or 2kg, whichever is smallest. For most values of
N, then X>qg so thatqg is used.
ME=DXqéo Q, (27 Most insulators have elastic constants on the order of
C,1~ 50 GPa. Choosing a lattice constantasf 0.35 nm,

ek then the ratio ofg,, /(C,,Vg)~4. If N;.=1 then\=0.20.
D=——"1. (28)  This value is increased i€, is reduced. The value of is
2m similar to what is often found using the linear electron-

. . honon interactioV,,.
The one-phonon self-energy is ndusing a four-vector no- P ep

tation)
IV. CORRELATION MATRIX ELEMENTS

) D2 2, 5 Another contribution to the self-energy of the electron is
ZeeplK,ikn)= F %‘4 Xa(éq- Q°G(k+Q)D(Q) discussed in this section. This self-energy of an electron is
also calculated in the one-phonon approximation. It uses the
No+1-ng(k+Q) same basic interactioW., but evaluates another Feynman
diagram shown in Fig. @). The dashed line is the phonon,
and solid lines are electrons. The closed bubble is a polar-
ization contribution from the electrons. Higher-order dia-
grams are shown in Fig.(). They utilize the electron-
electron interaction to sum a similar set of bubble diagrams.
energy function

:ﬁDZJ d°Q (£5-Q)7
(2m)®  @q

ikn_8k+Q_wQ

. No+ne(k+Q)
ikn_8k+Q+ wQ '

The strength of the electron-phonon interaction is determinea—he result of all of these terms gives the self-
by the dimensionless quantily defined as

__h 7(a.Q
3 2 0= NAgE B wg JKHATQDQ)
_ fdQ (£ Q? Q
=— 3 2 0(ek— &xiq)- (29 P
(21) { (a) } @5
1-(Mq+U/R)P(q) |’

The value of this coupling constant is estimated using the

Wigner-Seitz model for the unit cell. In the approximation of T =[Z (L4l - 72
a spherical unit cell, of radiugr, the LA (longitudinal (0.Q)=[&o (L a1
acoustical modes are approximated as dp n(p)=n(p+q)

(2m)2 idntep—epiq

P(q)= 2 G(p)G(p+a)= f

C
2_ 711 .
pP®Q= b2 Sif(Qb), (30 The factor of M4+ U/2) shows that screening is due only to

the charge fluctuations. The spin fluctuations do not enter.

This result is expected since phonons are a type of charge
b= (31) fluctuation? Our treatment of the Hubbard model is valid
only for small and intermediate values &f, where the
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random-phase approximatigRPA) is still valid. For large 1
values ofU then the Hubbard interaction cannot be treated as kB 2 Im{X(k,E)}
a perturbation, but is included id,. '

The angular factor ?{Q-Lq) in the matrix element has kgT 1
become7(q,Q) in the self-energy. This change occurs be- “5MN vK W2
cause in the evaluation of the correlation function Q

X[B(k+Q,E+wq)
(¢9'Lo) (o' Lg){(Ci(T)p(a,T)p(—q—Q,7y) +B(k+Q,E—-wg)]. (41)

Xp(q',72)p(— ' +Q,m)CP)). (36) At small excitation energies the inverse lifetime from
electron-electron interactions goes &k,E)=A(k)(E

The same self-energy contribution occurs with four combi-— )2 so that the above lifetime from the phonon-modulated
nations of €,9): (9,—9),(q+Q,—q—Q), (9,—q electron-electron interactions is
—Q), (q+Q,—q). Adding them together provides the ex-
pression for7(q,Q). 1 kgT

The self-energy expressi@85) has a formal resemblance (kE)_ MN VEq ;A(kJr QUE-u?+wd]. (42
to the self-energy from the usual electron-phonon interaction ’ Q
Vep. The self-energy has an electron Green’s functiopr@  This expression seems to be small. The factor of ion mass in
phonon Green’s functiorD, and a screened interaction the denominator ensures that the result is a small contribu-
TP/(1—M'P). The important difference is that there is a tion. Of the two terms on the right, one ha&- «)? which
summation over two independent wave vectasQ). This  vanishes at the Fermi surface. The other has the phonon en-
feature makes the final evaluation very different from theGFQIESwQ canceling, so that the ion mass remains and gives

usual expression. . o ~asmall result. In summary, this term is negligible.
Another interesting feature of this expression is that it is

similar to the RPA expression for the correlation energy of V. TWO DIMENSIONS
the electron gas
The most interesting effects of the phonon-modulated
electron-electron interaction come in lower dimension. The
> —D(Q)E (k+Q), (370  primary application is to a single sheet of graphite. Another
important application is to single-wall carbon nanotubes
(SWNT), which are formed by rolling a graphite sheet into a
tube. A graphite sheet is two dimensional, while the SWNT
Sik+Q)=——— 2 7(9,Q)G(k+g+Q) are intermediate between one and two dimensfons.
The above derivation needs to be modified for graphite
P(q) due to the presence of a unit cell with two different atom
(39 sites. As shown in Ref. 4 for the electron-phonon interaction
1-(Mq+U/2)P(a) in graphite, having two sites per cell introduces various
phase factors into the matrix element without changing its
The only difference from the usual correlation energy is thebasic dependence upon wave vector. Here we shall discuss a
presence of a slightly different matrix element. For this termmodel two-dimensional solid with one atom per unit cell.
in the electron self-energy, the phonon modulation of the |n two dimensions the wave vectors of the phon@) (
electron-electron interaction can be considered to be a pheind electronsd, ,q, + Q) are two dimensional. The sum-
non modulation of the correlation energy. mation overq is three dimensional. It is useful to eliminate
The next step is to do the summations over the frequencihe dependence upan up front by evaluating
variables. In this step it is useful to employ a Lehmann rep-
resentation for the correlation energy

3 (k)=—

2MNB 5

dag, ~
F(@0)= [ Seviaipda? @3

de’ B(k+ ! -
3/ (k+Q,ik+iQp) = e’ B(k+Q,e") . (39 Ir'1 order to understand what~th|s integral doe;, we. take a
27 ik W +HiQn—g’ simple example. Assume that.=1/(1+q? a?) in which
case the integral is easy. The symljahow denotes a two-
dimensional(2D) wave vector
3 (k,ik)= E f——Bw+Qs)
2MN 1 29°+3a?

2me? —|.
(q) ™ o} 2(q2+a2)3/2

(44)

No+ne(e’ No+1—ng(e’
><QF()_}_Q r(e’)

40
40 The first term in brackets is the usual two-dimensional Fou-

rier transform of the Coulomb interaction. The second term

At high temperature, whemdo~kgT/% wq, the largest term is from pZ2 and modulates this interaction at large values of
in the scattering time is the wave vector. The two interactions of interest are

ik+wg—e’ ik—wg—e'
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approximation. The interaction comes from the phonon

Mf% F(q+G), (45 modulation of the electron-electron interactions. In two di-
mensions the effective coupling constant is estimated to be
large.

Le=2 (9+G)F(q+G), (46)
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where A is the area of the 2D system. The same matrix
elementF(q) enters both the electron-electron interactions
and the phonon-modulated electron-electron interaction. In Here we evaluate the functiod®(k), which is defined in
the above notation, the vectogsG,Q are now all two di-  three dimensions as

APPENDIX

mensional.

The self-energy of an electron in two dimensions is cal- d3q 5
culated with this interaction. Again the largest contribution is S(k)= J 3qv(q)pg(q)nkm. (A1)
the exchange interaction. Proceeding as we did in three di- (2)

mensions, the two-dimensional exchange matrix element isy yector function of a vector must point in the direction of
the vector. So defing§(k) =kS(k) where

g
S(k)=f F(a)Nk+q~DK, (49)
am? sto==[ L qv@iz@ (A2)
== “Qvid) p2(A)Nk+q-
o4&k o k2 (2m)? h
3 7 60 The first example is to evaluate setting to one the factors of
~ e i — 2142 i —
where the first factor i is exact ofp,=1, and the factor of Pe- USiNgv(a)=4me/q” gives that k=k/ke)
I~1 corrects for the fact that the charge density is not one. 2 1 1+
The deformation constard is larger in two dimensions, S(k)=— €K 14x2— —(1-x?)2In X } (A3)
compared to three dimensions, by the factor of 8/3. Sihce 4arx? 2X 1-x
is squared in calculating, this provides a much larger in-
teraction in two dimensions compared to three. The expres- 2 ekg
sion for\ in two dimensions is S(0)=- 3 4 (A4)
DA, f d’Q (£5-Q° 2
= d(e—erig). (5D __lek
M) 2m? e S(ke)=—5— (A5)

It is evaluated using a circular unit cell, with the result The result varies from 2/3 of the exchange energy=a to
1/2 atk=kg. The electron-phonon interaction is most im-
s N2, (52) portant for electrons at the Fermi surface, whierekg, so

97 M g € that we use this value. It is changed somewhat by including
the orbital charge densities. They are assumed to have the
ag sir?( ) form
Il—fo a—smz msina)]’ (53 .
- ~2

2 sin ay) me, (AB)
and sinfr)=1/\2N,, whereN.~1 is the number of conduc-
tion electrons in each unit cell. This valueofis larger than e’kg
the corresponding expression in three dimensions. The ratio Ske)= - ﬁl' (A7)
Ey/M c§~ 1, wherec, is the speed of sound. The integtal
is a function ofN, andNﬁI 1 Is typically in the range of 1/4 2B(1+pB) B\ 1
to 1/3. Thus in two dimensions we find that-0.3—0.4. T Ton-1 - 1+ }
The phonon modulation of the electron-electron interaction
is a significant process in two dimensions. In a later paper we 232 B |22
calculate the value of for layered electron gases as found in T on=-2 1- ( 1+8 ' (A8)

the superconducting cuprates.
In summary, we have introduced an electron-phonon inwhereB:a2/4k2, and g is expected to be a large number.
teraction in conducting solids described by the tight-bindingThe function is normalized such thetg)—1 asg—x.
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