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Commuting quantum transfer-matrix approach to intrinsic fermion system:
Correlation length of a spinless fermion model
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The quantum transfer-matrix approach to integrable lattice fermion systems is presented. As a simple case
we treat the spinless fermion model with repulsive interaction in critical regime. We derive a set of nonlinear
integral equations which characterize the free energy and the correlation length of^cj

†ci& for an arbitrary
particle density at any finite temperatures. The correlation length is determined by solving the integral equa-
tions numerically. Especially in the low-temperature limit this result agrees with the prediction from conformal
field theory with high accuracy.@S0163-1829~99!13827-X#
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I. INTRODUCTION

Exact evaluations of physical quantities at finite tempe
tures pose serious difficulties even for integrable mod
One has to go much beyond mere diagonalization o
Hamiltonian; summation over the eigenspectra must be
formed.

The string hypothesis1–4 brought the first breakthroug
and success. It yields a systematic way to evaluate sev
bulk quantities including specific heats, susceptibilities, a
so on.

More recently, the quantum transfer-matrix~QTM!
method has been proposed to overcome some difficultie
which the standard approach is not applicable.5–28 One re-
duces the original problem to finding the largest eigenva
of the QTM which acts on a fictitious system of sizeN ~re-
ferred to as the Trotter number!, which should be sentN
˜` ~Trotter limit!. As this procedure is sometimes difficu
we integrate its procedure with another ingredient, the in
grable structure of the underlying model. This allows for t
introduction of commuting QTM’s which are labeled by th
complex parameterx.14 A set of auxiliary functions, includ-
ing the QTM itself, satisfy certain functional relations. W
shall choose these functions such that they have an analy
property called ANZC ~analytic, nonzero, and consta
asymptotics; see Sec. III! in a certain strip on the complexx
plane. This admits the transformation of the functional re
tions into a closed set of integral equations. For all ca
known up to now, the Trotter limitN˜` can be taken ana
lytically in the integral equations. We thus have seen a
markable reduction from the problem of combinatorics~sum-
mation over the eigenspectra! to the study of analytic
structures of suitably chosen auxiliary functions.

This scenario has been applied to many models of ph
cal interest.14–27 In particular the correlation lengths, calcu
lation of which has been one of the major difficulties in t
string hypothesis, are explicitly evaluated in the spin mod
For an example of the success achieved, we refer to a re
analysis on the quantum-classical crossover phenomen
PRB 600163-1829/99/60~8!/5186~16!/$15.00
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the masslessXXZ model in the ‘‘attractive’’ regime.23,24

We extend these studies to lattice fermion systems.
formulation is fully general for one-dimensional~1D! fer-
mion systems which are integrable in the sense of the Ya
Baxter ~YB! equation. As a concrete example, we take
spinless fermion model with repulsive interactions in t
gapless regime. This simple example already manifests s
fundamental differences from the spin models, and yield
sound basis for future studies on more realistic fermion s
tems such as the Hubbard model.

As in Refs. 17–20, one may first perform Jordan-Wign
~JW! transformations to the fermion models, and further co
vert the resultant quantum spin models into 2D classical v
tex models. These procedures have been successful in st
of the bulk quantities. In evaluating correlation lengths, ho
ever, this is no longer true. As an example, which will
discussed in the main body of this paper, let us take a
mion one-particle Green’s function̂cj

†ci& and its correspon-
dent^s j

1s i
2& in the spin model. Obviously they are relate

but quite different by nonlocal terms due to the JW transf
mation. At zero temperature (T50), using conformal map-
ping, one evaluates the scaling dimensions from finite s
corrections to the energy spectra. As the Hamiltonians
equivalent through the JW transformations, it is norma
difficult to discriminate between the energy spectra of
fermions and those of the spins. The difference lies only
the boundary conditions. Nevertheless, even after JW tra
formation one can explicitly calculate the correct scaling
mensions only by incorporating the proper fermion statist
at the very last stage~see Appendix B!. At finite temperature
(T.0), the QTM approach gives the correlation function
the spectral decomposition form as(kuAku2(Lk /L1) j 2 i 21.
HereLk denotes thekth largest eigenvalue of the QTM, an
Ak is a certain matrix element. Once the JW transformat
is performed, it is difficult to trace the difference in the st
tistics in this framework. Then one hardly recognizes t
difference in the eigenvalues of the QTM between the s
models and the fermion models. A simple prescription h
not yet been found, in contrast to the above-mentioned c
at T50.
5186 ©1999 The American Physical Society
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Let us recall the quantum inverse scattering method ba
on the graded YB relation,29,30by which the integrability and
other algebraic structures of the fermion systems have b
discussed successfully.29–35 This formulation has a sever
problem when applied to the finite temperature case.
must treat the quantum and auxiliary spaces on the s
footing when constructing the QTM. Conversely, in t
graded YB relation the quantum space is the fermion F
space, while the auxiliary space is the~graded! vector space.

To overcome these difficulties, we adopt another
proach to fermion systems, which was invented qu
recently.36–38In this method, we consider anR operator con-
sisting of the fermion operators alone, together with its ‘‘s
pertransposition.’’ This time both quantum and auxilia
spaces are fermion Fock spaces. Therefore, we can, fo
stance, exchange their roles with no difficulty. Actually,
careful introduction of the supertrace and interchange o
with the normal trace to the partition function, we can der
a commuting QTM for the fermion systems.

The resultant QTM preserves genuine fermion statist
In other words, the selection rule is already built in algeb
ically. This proper treatment of the statistics results in
change of the analytic structure for the QTM. In the ‘‘phys
cal strip,’’ the QTM has only one additional zero which cha
acterizes ‘‘excited free energy’’ at finiteT, while in the cor-
responding spin model there appear two such ze
Consequently, one observes aT-dependent oscillating behav
ior of one-particle Green’s function, as well as the differen
in the correlation length between the fermion model and
corresponding spin model. These are smoothly connecte
the expected values at the conformal field theory~CFT!
limit, T˜0 ~see Appendix B!.

This paper is organized as follows. In Sec. II, we w
present the commuting QTM formulation of the spinless f
mion model atT.0. The fermionicR operator, together with
its ‘‘supertransposition’’R̃, play fundamental roles. The ana
lytic structure of the QTM and the auxiliary functions a
discussed in Sec. III, which leads to the nonlinear integ
equations~NLIE’s! characterizing the correlation length. Th
limit T˜0 is treated analytically at ‘‘half-filling’’ (ne
50.5), which recovers the prediction from CFT. We al
perform numerical investigations on NLIE’s and the corre
tion length for one-particle Green’s function. To our know
edge, this is the first exact computation of the correlat
length for various interaction strengths, electron filling, a
for a wide range of temperatures. In Sec. IV, we commen
alternative forms of NLIE’s derived from different choice o
the auxiliary functions. They are akin to the standard ‘‘th
modynamic Bethe ansatz equations’’ from the string hypo
esis, and thus may be of interest in their own right. Details
calculations and supplementary knowledge on CFT are s
marized in the appendixes.

II. COMMUTING QUANTUM TRANSFER MATRIX
FOR THE SPINLESS FERMION MODEL

In this section we formulate the commuting QTM for th
spinless fermion model. The formulation is based on rec
developments in the study of the integrability of lattice fe
mion systems.36–38 The central role is played by an operat
solution of the YB equation called the fermionicR operator.
ed
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The ‘‘transfer matrix’’ can be constructed from theR opera-
tor, which generates the left-shift operator, the fermio
Hamiltonian, and other conserved operators. Here and
Sec. II A, we briefly describe the method.

To extend the method to the finite temperature case
lizing the Trotter formula, it is necessary to look for anoth
transfer matrix which generates theright-shift operator and
the Hamiltonian. In Sec. II B, we shall argue how to co
struct the desired transfer matrix by considering the sup
transposition of theR operator.

Based on these two kinds of the transfer matrices,
devise the QTM for the fermion model in Sec. II C. Th
QTM constitutes a one-parameter commuting family, wh
is a consequence of the global YB relation. The YB relati
also enables us to diagonalize the QTM by means of
algebraic Bethe ansatz. The free energy and the correla
length are expressed in terms of the eigenvalues of the Q

A. Fermionic R Operator

We define the spinless fermion model by the Hamilton

Hª(
j 51

L

Hj , j 11 ,
~2.1!

Hj , j 11ª
t

2 H cj
†cj 111cj 11

† cj12DS nj2
1

2D S nj 112
1

2D J ,

wherecj
† andcj are the fermionic creation and annihilatio

operators at thej th site satisfying the canonical anticomm
tation relations

$cj ,ck%5$cj
† ,ck

†%50, $cj
† ,ck%5d jk . ~2.2!

We assume a periodic boundary condition~PBC! on the fer-
mion operators,

cL11
† 5c1

† , cL115c1 . ~2.3!

The parameterst and D are real coupling constants. In th
present paper we consider the repulsive critical region
<D,1, 0,t, and introduce the parametrization

Dªcos 2h, 0,2h<
p

2
. ~2.4!

In the subsequent sections, we shall also use the param
p0 defined by

p0ª
p

2h
. ~2.5!

Hereafter we sett51 for simplicity.
Model ~2.1! is exactly solved by the Bethe ansatz metho

Since the Hamiltonian~2.1! preserves the number of the pa
ticles, we can add the ‘‘chemical potential’’ term withou
breaking the integrability

Hchemicalªm(
j 51

L S nj2
1

2D . ~2.6!

We consider only the casem50 for a while.
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The several physical properties including the integrabi
of the fermion model~2.1! has been discussed by transform
ing it into theXXZ model

H5
1

4 (
j 51

L

$s j
xs j 11

x 1s j
ys j 11

y 1Ds j
zs j 11

z % ~2.7!

through the JW transformation. However, it was recently d
covered that we can treat the fermion model~2.1! only with
the fermion operators. We shall summarize the method
what follows.

First let us consider a two-dimensional fermion Fo
spaceVj , a basis of which is given by

u0& j , u1& jªcj
†u0& j ,

cj u0& j50. ~2.8!

Define the fermionicR operator acting on the tensor pro
uct of the fermion Fock spacesVj ^ sVk by

Rjk~v !ªa~v !$2njnk1~12nj !~12nk!%1b~v !$nj~12nk!

1~12nj !nk%1c~v !~cj
†ck2cjck

†!, ~2.9!

where

a~v !ª
sinh~v12!

sin 2h
, b~v !ª

sinhv
sin 2h

, c~v !ª1.

~2.10!

A basis ofVj ^ sVk is given by

u0& j ^ su0&kªu0&, u1& j ^ su0&kªcj
†u0&,

~2.11!
u0& j ^ su1&kªck

†u0&, u1& j ^ su1&kªcj
†ck

†u0&,

and we can calculate the matrix elements of Eq.~2.9! if
necessary. We shall keep the operator form~2.9! as much as
possible and avoid the use of the matrix elements, beca
the former is more transparent. TheR operator~2.9! satisfies
the YB equation37,38

R12~u2v !R13~u!R23~v !5R23~v !R13~u!R12~u2v !.
~2.12!

Equation~2.12! is an operator identity, and one should ca
fully use the anti-commutation relations~2.2! to confirm its
validity.

It is one of the fundamental properties of theR operator
Ri j (v) thatRi j (0)5Pi j is the permutation operator for th
fermion operators,

Pjkª~12nj !~12nk!2njnk1cj
†ck2cjck

† ,
~2.13!

Pjkxj5xkPjk ~xj5cj or cj
†!.

We can define an analog of the transfer matrix by

T~v !ªStra$RaL~v !•••Ra1~v !%. ~2.14!

Here the supertrace of an arbitrary operatorX is defined by

StraXªa^0uXu0&a2a^1uXu1&a , ~2.15!
-

in

se

-

where the dual fermion Fock space is spanned bya^0u and
a^1u, with

a^0uca
†50, a^1uªa^0uca . ~2.16!

We also assume

a^0u0&a5a^1u1&a51. ~2.17!

The supertrace~2.15! corresponds to the PBC for the fe
mion operators~2.3!, thanks to the property

Stra$RaL~v !•••Ra1~v !%5Stra$Ra1~v !RaL~v !•••Ra2~v !%.

~2.18!
Hereafter we call Eq.~2.14! the transfer matrix for simplic-
ity.

As in the case with the integrable spin models, the Y
equation~2.12! ensures the commutativity of the transfer m
trices ~2.14!,

@T~v !,T~v8!#50. ~2.19!

The expansion of the transfer matrix~2.15! with respect to
the spectral parameterv is given by

T~v !5T~0!H 11
2h

sin 2h SH1
L

4
D D v1O~v2!J , ~2.20!

which follows from the relationship

dRa j~v !

dv U
v50

Pa, j 215
2h

sin 2h
Pa jPa, j 21SHj 21,j1

1

4
D D .

~2.21!

Note that the operatorT(0)5Stra$PaL•••Pa1% is the left-
shift operator,

T~0!xj5xj 11T~0! ~xj5cj or cj
†!. ~2.22!

One can easily prove relation~2.22! utilizing the property of
the permutation operator,

Pa, j 11Pa j xj5xj 11Pa, j 11Pa j ~xj5cj or cj
†!.

~2.23!

B. Supertransposed fermionicR operator

In this section, we shall consider another transfer ma
which generates the right-shift operator. For this purpose
first define the super-transposition stj for an arbitrary opera-
tor Xj (v) in the form

Xj~v !5A~v !~12nj !1D~v !nj1B~v !cj1C~v !cj
†

~2.24!
by

Xj
stj~v !ªA~v !~12nj !1D~v !nj1B~v !cj

†2C~v !cj .
~2.25!

Here A(v) and D(v) @B(v) and C(v)] are assumed to be
Grassmann even~odd! operators.

Now applying the supertransposition st1 to both sides of
the YB equation~2.12!, we obtain
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R 13
st1~u!R 12

st1~u2v !R23~v !5R23~v !R 12
st1~u2v !R 13

st1~u!,

~2.26!
where we have used a property of the supertransposition

@Rjk~u!Rj l ~v !#stj5R j l
stj~v !R jk

stj~u! ~kÞ l !. ~2.27!

Then changing suffixes and spectral parameters as

1˜3, 2˜1, 3˜2,
~2.28!

u˜2v, v˜u2v,

we obtain the following type of the YB equation

R12~u2v !R̃13~u!R̃23~v !5R̃23~v !R̃13~u!R12~u2v !,
~2.29!

where

R̃jk~v !ªR k j
stk~2v !5a~2v !$2njnk1~12nj !~12nk!%

1b~2v !$nj~12nk!1~12nj !nk%

2c~2v !~cj
†ck

†1cjck!. ~2.30!

Although the newR operatorR̃jk(v) is not symmetric

@R̃jk(v)ÞR̃k j(v)#, it is still possible to prove the relation

R̃12~u2v !R̃13~u!R23~v !5R23~v !R̃13~u!R̃12~u2v !.
~2.31!

Using R̃a j(v), we define another transfer matrix by

T̃~v !ªStra$R̃aL~v !•••R̃a1~v !%. ~2.32!

Then the commutative properties of the transfer matrices
low from the YB equations~2.29! and ~2.31!,

@T~v !,T̃~v8!#5@ T̃~v !,T̃~v8!#50. ~2.33!

The relations

P̃a jP̃a, j 21xj5xj 21P̃a jP̃a, j 21 ~xj5cj or cj
†!,

~2.34!

hold, where

P̃jkªR̃jk~0!5~12nj !~12nk!2njnk2~cj
†ck

†1cjck!.
~2.35!

Using relations~2.34!, one can confirm that the operato
T̃(0) provides the right-shift operator, i.e.,

T̃~0!xj5xj 21T̃~0! ~xj5cj or cj
†!. ~2.36!

In other words,T̃(0) is the inverse ofT(0),

T~0!T̃~0!51. ~2.37!

Furthermore, from the relationship

P̃a, j 11

dR̃a j~v !

dv
U

v50

52
2h

sin 2h
P̃a, j 11P̃a jSHj 11,j1

1

4
D D ,

~2.38!
l-

the expansion of the transfer matrixT̃(v) with respect to the
spectral parameterv is given by

T̃~v !5T̃~0!H 12
2h

sin 2h SH1
L

4
D D v1O~v2!J .

~2.39!

C. Commuting quantum transfer matrix

Expansions~2.20! and ~2.39! with relation ~2.37! are
combined into a formula

T~u!T̃~2u!511
4h

sin 2h SH1
L

4
D Du1O~u2!.

~2.40!

This facilitates the investigation the finite temperature pro
erties of the spinless fermion model~2.1! via the Trotter
formula

expF2bSH1
L

4
D D G5 lim

N˜`

@T~uN!T̃~2uN!#N/2,

uN52
b sin 2h

2hN
. ~2.41!

Here an~even! integerN, called the Trotter number, repre
sents the number of sites in the fictitious Trotter directi
andb is the inverse temperatureb51/T.

The free energy per site, for instance, is given by

f 52 lim
L˜`

lim
N˜`

1

Lb
ln Tr@T~uN!T̃~2uN!#N/22

1

4
D.

~2.42!

However, as is the case with the corresponding spin mo
the eigenvalues ofT(uN)T̃(2uN) are infinitely degenerate in
the limit N˜`.

Therefore, it is a formidable task to take the trace in t
limit. To avoid this difficulty, we transform the term
Tr@T(uN)T̃(2uN)#N/2 in Eq. ~2.42! as follows:

Tr@T~uN!T̃~2uN!#N/2

5Tr )
m51

N/2

Stra2m ,a2m21
@Ra2m ,L~uN!•••Ra2m,1~uN!

3R̃a2m21 ,L~2uN!•••R̃a2m21,1~2uN!#,

5Str)
j 51

L

Trj )
m51

N/2

Ra2m , j~uN!R̃a2m21 , j~2uN!.

~2.43!

We now introduce a fundamental object in the present
proach called the QTM

TQTM~uN ,v !ªTrj Tj~uN ,v !, ~2.44!

where the monodromy operatorTj (uN ,v) is defined by



on

e-
T

,

rs

re
th

e
ial

r

na-
m

lue

ith
y

e

ond

ude.

tion
m-
of

e

ng
ric

5190 PRB 60SAKAI, SHIROISHI, SUZUKI, AND UMENO
Tj~uN ,v !ª )
m51

N/2

Ra2m , j~v1uN!R̃a2m21 , j~v2uN!.

~2.45!

Using the YB equations~2.12! and~2.29!, we can show that
the monodromy operator satisfies the global YB relation

R21~v2v8!T1~uN ,v !T2~uN ,v8!

5T2~uN ,v8!T1~uN ,v !R21~v2v8!. ~2.46!

Accordingly the QTM constitutes a commuting family

@TQTM~uN ,v !,TQTM~uN ,v8!#50. ~2.47!

We remark that the trace in the definition of the QTM~2.44!
implies the antiperiodic boundary condition for the Fermi
operators in the Trotter direction,38 i.e.,

caN11
52ca1

, caN11

† 52ca1

† . ~2.48!

The free energy per site~2.42! is then represented in
terms of the QTM as

f 52 lim
L˜`

lim
N˜`

1

Lb
ln Str@TQTM~uN,0!#L2

1

4
D.

~2.49!

Since the two limits in Eq.~2.49! are exchangeable,5,6 we
take the limitL˜` first. Because there is a finite gap b
tween the first and the second largest eigenvalue of the Q
for finite temperature, we can write

f 52
1

b
lim

N˜`

ln L12
1

4
D, ~2.50!

where L1 is the first largest eigenvalue of the QTM
TQTM(uN,0). From now onLk denotes thekth largest eigen-
value of the QTM. The correlation lengthj of the correlation
function ^cj

†ck& can also be represented in terms of the fi
and second largest eigenvaluesL2 as

j2152 lim
N˜`

lnUL2

L1
U. ~2.51!

In this way the calculation of certain thermal quantities
duces to the evaluation of the eigenvalues of the QTM in
Trotter limit (N˜`).

For finite N, it is possible to diagonalize QTM~2.44!
by means of the algebraic Bethe ansatz39 ~see Appendix A!.
The eigenvalue is then given by

L~x!5l1~x!1l2~x!,

l1~x!ªf1~x!f2~x22i !
Q~x12i !

Q~x!
ebm/2, ~2.52!

l2~x!ª~21!N/21Nef2~x!f1~x12i !
Q~x22i !

Q~x!
e2bm/2,

where
M

t

-
e

f6~x!ªS sinhh~x6 iuN!

sin 2h D N/2

,

~2.53!

Q~x!ª)
j 51

Ne

sinhh~x2xj !.

Here we have changed the spectral parameter fromv to x
defined byv5 ix for later convenience. Note that we hav
also included the contribution from the chemical potent
term ~2.6! in the expression~2.52!.

The associated Bethe ansatz equation~BAE! is given by

S f1~x!f2~x22i !

f2~x!f1~x12i ! D
N/2

52~21!N/21Nee2bm)
k51

Ne Q~xj22i !

Q~xj12i !
. ~2.54!

Compared with theXXZ model, we observe an extra facto
(21)N/21Ne in Eqs.~2.52! and ~2.54! which reflects the fer-
mionic nature of the present system. In particular, ifN/2
1Ne[1 (mod 2), Eqs.~2.52! and~2.54! are clearly differ-
ent from the corresponding ones for theXXZ model. Actu-
ally the second largest eigenvalue lies in the sectorNe
5N/221, while the first largest one is in the sectorNe
5N/2. Therefore, the correlation lengthj @Eq. ~2.51!# exhib-
its the manifest difference between the fermion system~2.1!
and the spin system~2.7!.

III. NLIE AND THE EXACT ENUMERATION
OF CORRELATION LENGTH

A. Analyticities of auxiliary functions and NLIE’s

In order to proceed further, one needs to clarify the a
lytic property of the QTM. For this purpose, we perfor
numerical investigations by fixing the Trotter numberN fi-
nite.

First we give the description for the largest eigenva
sector, which is naturally identical to the correspondingXXZ
model. There areNe5N/2 BAE roots. Only at ‘‘half-filling’’
do they distribute exactly on the real axis symmetrically w
respect tox50, while for the general particle density the
bend in the complexx plane. The QTM hasN zeros in
Im xP@2p0, p0#: N/2 zeros locate on the smooth curv
Im x;2, and the otherN/2 zeros are on the curve Imx;
22. Thus there is a strip ImxP@21,1# where the QTM is
analytic and nonzero. We call this the ‘‘physical strip.’’

Next consider the excited state relevant to the sec
largest eigenvalue. In contrast to theXXZ model, we find
that two complex eigenvalues are degenerate in magnit
Both of them are characterized byNe5N/221 BAE roots
located on a smooth curve near the real axis. The distribu
of the BAE roots for the one and that for the other are sy
metric with respect to the imaginary axis. As to the zeros
the QTM,N22 zeros are on the smooth curves Imx;62.

The locations of the two ‘‘missing zeros’’ are vital in th
evaluation of the excited states. For theXXZ model, both of
them enter into the physical strip. Especially with vanishi
external fieldh, they are on the real axis and are symmet
with respect to the imaginary axis. With the increase ofh,
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they are away from the real axis, but still stay in the physi
strip preserving the symmetry.

We find a different situation for the Fermion model. A
half-filling, corresponding toh50 in theXXZ model, one of
them is located atu0 on the real axis, while the other is a
u081 ip0 and u0;u08 . That is, only one zero appears in th
physical strip. Away from half-filling, the zero in the phys
cal strip ~we call it u) moves upward while the other (u8)
moves downward. Nevertheless, we find thatu remains in
the physical strip whileu8 never comes in. From now on w
consider the case Reu.0 (Reu8.0). Then the trajectories
of u8, for example, are depicted in Fig. 1.

We assume all these features are valid in the Trotter li
N˜`. Then a set of nonlinear integral equations can
derived as in the case of theXXZ model.15 We define aux-
iliary functions

a~x!ª
l1~x1 i 2 ig1!

l2~x1 i 2 ig1!
, A~x!ª11a~x!,

~3,1!

ā~x!ª
l2~x2 i 1 ig2!

l1~x2 i 1 ig2!
, Ā~x!ª11 ā~x!.

whereg1, andg2 are small positive quantities introduced f
the convenience in numerical calculations. Note that th
functions have asymptotic values

a~x!5H exp„~2p14h!i 1bm… for x˜2`

exp„~p24h!i 1bm… for x˜`,
~3.2a!

ā~x!5H exp„~p24h!i 2bm… for x˜2`

exp„~2p14h!i 2bm… for x˜`.
~3.2b!

Immediately seen from the above analyticity argume
a(x),A(x) @ ā(x),Ā(x)# are analytic, nonzero, and hav
constant asymptotic values~ANZC! in a certain strip in the
lower ~upper! half plane including real axis. The above de
nitions, together with the knowledge of zeros forL(x), fix
the NLIE among these auxiliary functions. We defer the d
tail derivation to Appendix C. The resultant expressions

FIG. 1. The trajectories of the additional zerou8 are depicted in
the casesp053 and N5100. With the decrease ofT, u8 moves
downward, whereas it never comes into the physical strip.
l

it
e

e

t,

-
l-

low for taking the Trotter limit analytically. Thereby on
arrives at the final expressions totally independent of fi
tious parameterN,

ln a~x!52
pb sin 2h

4h cosh
p

2
~x2 ig1!

1F* ln A~x!

2F* ln Ā„x12i 2 i ~g11g2!…

12p iF„x2u1 i ~12g1!…1
bmp0

2~p021!
,

~3.3!

ln ā~x!52
pb sin 2h

4h cosh
p

2
~x1 ig2!

1F* ln Ā~x!

2F* ln A„x22i 1 i ~g11g2!…

22p iF„x2u2 i ~12g2!…2
bmp0

2~p021!
.

where

A* B~x!ªE
2`

`

A~x2y!B~y!dy,

F~x!ª
1

2pE2`

` sinh~p022!k

2 coshk sinh~p021!k
e2 ikxdk, ~3.4!

F~x!ª
i

2pE2`

` sinh~p022!k

2k coshk sinh~p021!k
e2 ikxdk.

Here, the integral inF(x) is the principal value. The location
of zerou satisfies a subsidiary condition

a~u2 i 1 ig1!521. ~3.5!

Taking the Trotter limitN˜` after settingx50 in Eq.
~C13!, we derive that the ‘‘first excited free energy’’ per si
f 2 is

f 252
1

b
ln L2~0!2

1

4
D5e02

1

b
K* ln A~ ig1!

2
1

b
K* ln Ā~2 ig2!2

1

b
ln tanh

pu

4
2 i

p

2b
, ~3.6!

wheree0 is the ground-state energy defined in Eq.~C20! and

K~x!ª
1

4 cosh
px

2

. ~3.7!

Together with the NLIE for the largest eigenvalue, summ
rized in Appendix C, these relations characterize the co
lation lengthj of one-particle Green’s function̂cj

† ci& at T
.0 completely@see Eq.~2.51!#.

We remark that in derivations of above relations one d
not need precise information like roots distributions of t
BAE. Only ANZC properties of the QTM and the auxiliar
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functions are sufficient. Thus the structure is rather rob
and permits one to introduce small free parametersg1 and
g2. In the next two subsections, we present analytical
numerical studies on these equations and the correla
length of one-particle Green’s function, which are main
sults in this paper.

B. Low temperature property of NLIE „µ50…

We study the low-temperature behavior for the half-fillin
casem50 utilizing the dilogarithm trick,40 which enables us
to obtain the first low temperature correction without solvi
the NLIE. As in the case of the largest eigenvalue sec
ua(x)u and uā(x)u exhibit a crossover behavior

ua~x!u,uā~x!u!1 for uxu,K,
~3.8!

ua~x!u,uā~x!u;1 for uxu.K,

where

Kª2

p
ln

pb sin~2h!

2h
. ~3.9!

Thus one carefully takes into account of contributions n
‘‘Fermi surfaces’6K. For this purpose, we introduce th
shifted variables and scaling functions

la6~x!ª ln aS 6
2

p
x6KD ,

l ā6~x!ª ln āS 6
2

p
x6KD , ~3.10!

ūª
p

2
~u2K!.

and similarly for capital functionsA, Ā, A6 , and Ā6 . In
T˜0, these satisfy the truncated equations

la1~x!52e2x1(p/2)ig11F1* lA1~x!2F2* lĀ1~x!

12p iFS 2

p
~x2 ū !1 i ~12g1! D , ~3.11a!

l ā1~x!52e2x2(p/2)ig21F1* lĀ1~x!2F̄2* lA1~x!

22p iFS 2

p
~x2 ū !2 i ~12g2! D , ~3.11b!

la2~x!52e2x2(p/2)ig11F1* lA2~x!2F̄2* lĀ2~x!

12p iF~2`!, ~3.11c!

l ā2~x!52e2x1(p/2)ig21F1* lĀ2~x!2F2* lA2~x!

22p iF~2`!, ~3.11d!

where

F1~x!ª
2

p
FS 2x

p D ,
~3.12!
t,

d
on
-

r,

r

F2~x!ª
2

p
FS 2

p
x12i 2 i ~g11g2! D .

andF̄1 andF̄2 are their complex conjugate. In this limit, th
finite T correction part, lnLfn(x) @see Eq.~C14b!# reads

ln L fn~x!;
p

2
i 1

2h

p2b sin 2h
S 22pe(p/2)x2 ū

1e(p/2)xE
2`

`

e2y$e(p/2)ig1lA1~y!

1e2(p/2)ig2lĀ1~y!%dy

1e2(p/2)xE
2`

`

e2y$e2(p/2)ig1lA2~y!

1e(p/2)ig2lĀ2~y!%dyD . ~3.13!

Thanks to the subsidiary condition for the additional zerou
@Eq. ~3.5!#, we have

e2 ū5p2
2i

p F E
2`

`

FS 2

p
~z2 ū !1 i ~12g1! D lA1~z!dz

2E
2`

`

FS 2

p
~z2 ū !2 i ~12g2! D lĀ1~z!dzG . ~3.14!

For further simplification, we defineD6 by

D6ªE
2`

` S lA6~x!
d

dx
la6~x!1 lĀ6~x!

d

dx
lā6~x!

2 la6~x!
d

dx
lA6~x!2 l ā6~x!

d

dx
lĀ6~x! Ddx

5E
a6(2`)

a6(`) S ln~11a!

a
2

ln a

11aDda

1E
ā6(2`)

ā6(`) S ln~11ā!

ā
2

ln ā

11ā
D dā. ~3.15!

Obviously, they are equal to special values of Roge
dilogarithmL,

D652LS a6~`!

11a6~`! D12LS ā6~`!

11ā6~`!
D

22LS a6~2`!

11a6~2`! D22LS ā6~2`!

11ā6~2`!
D ,

~3.16!

L~x!ª2
1

2E0

x

dyF ln~12y!

y
1

ln y

12yG .
We then apply the dilogarithm trick to Eqs.~3.11a!–~3.11d!.
For example, we take the first two equations. After differe
tiating, we multiply them bylA1(x) and lĀ1(x), respec-
tively, and take the summation. We call resultant equa
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~A!. Next multiply Eqs.~3.11a! and ~3.11b! by @ lA1(x)#8

and@ lĀ1(x)#8, respectively, and take the summation. Let
call the outcome~B!. Finally we subtract~B! from ~A! and
integrate overx. The left-hand side of the equality is nothin
but D1 . Remarkably on the right-hand side, most comp
cated terms like

2E lA1~x!
dF2~x2y!

dx
lĀ1~y!dx dy

52E lA1~x!F2~x2y!
dlĀ1~y!

dy
dx dy, ~3.17!

and

E dlĀ1~x!

dx
F̄2~x2y!lA1~y!dx dy, ~3.18!

cancel each other. After rearrangement, we obtain

D112p iF~`!ln
A1~`!

Ā1~`!

5E
2`

`

2e2y@e(p/2)ig1lA1~y!1e2(p/2)ig2lĀ1~y!#dy

18i E
2`

`

FS 2

p
~x2 ū !1 i ~12g1! D lA1~x!dx

28i E
2`

`

FS 2

p
~x2 ū !2 i ~12g2! D lĀ1~x!dx, ~3.19!

wherea1(2`)5ā1(2`)50 is used. Similarly, from Eq.
~3.11c! and ~3.11d!, we have

D212p iF~2`!ln
A2~`!

Ā2~`!
5E

2`

`

2e2y@e2(p/2)ig1lA2~y!

1e(p/2)ig2lĀ2~y!#dy,

~3.20!

Applying Eqs.~3.19! and~3.20!, together with Eqs.~3.14!, to
Eq. ~3.13!,

ln L fn~x!;
p

2
i 1

2h

2p2b sin 2h
H e(p/2)xS 24p21D1

12p iF~`!ln
A1~`!

Ā1~`!
D

1e2px/2S D212p iF~2`!ln
A2~`!

Ā2~`!
D J . ~3.21!

Now that the asymptotic values are easily found,

F~`!52F~2`!5
p24h

4~p22h!
,

a1~`!5ā2~`!5e(p24h) i , ~3.22!
s

-

a2~`!5ā1~`!5e(2p14h) i ,

we can explicitly evaluate Eq.~3.21! at x50,

ln L fn~x50!5
p

6bvF
2

p

bvF
S 1

a
1

a

4 D1
p

2
i , ~3.23!

whereL(x)1L(12x)5p2/6 is also applied. Herea is in-
troduced in Eq.~B6! and the Fermi velocityvF is also de-
rived in Eq.~B13! for ne50.5. The first term is identical to
the largest eigenvalue sector, and it reproduces a confo
anomaly term withc51. Comparing them, one conclude
that

L2

L1
;eikF21/j, ~3.24!

where kF denotes the ‘‘Fermi momentum.’’ Note thatkF
5p/2 in the half-filling case. Consequently the inverse c
relation length is given as

j215
pT

vF
S 1

a
1

a

4 D , ~3.25!

These are nothing but the expected results from CFT@see Eq.
~B14!#. This fact represents the consistency of both our re
and validity of CFT mapping in the finite-temperature pro
lem at low temperatures.

C. Numerical analyses on NLIE’s

Having verified consistency at the specific limits, we no
perform numerical analyses on the NLIE’s for a wide ran
of temperatures, electron fillings, and interaction streng
To keep the electron filling constant, we adopt t
temperature-dependent chemical potential which are de
mined by the curve

d^ne~T,m~T!!&
dT

5
d

dT S ] f

]m D
T

50. ~3.26!

The NLIE’s are numerically solved by the iteration metho
In each iteration steps, convolution parts are treated by
fast fourier transformation~FFT!. As a technical remark, we
call an attention to proper re-scaling of auxiliary functio
for the FFT; one needs to modify the integrands such t
these asymptotic values vanish. From the asymptotics in E
~3.2a! and ~3.2b!, we introduce

B~x!ªHA~x!/A~`! for x>0

A~x!/A~2`! for x,0,
~3.27!

and similarly for others. We also rewrite the NLIE’s in term
of B(x), which now has zero asymptotic values. For e
ample,
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ln a~x!52
pb sin~2h!

4h cosh
p

2
~x2 ig1!

1F* ln B~x!

2F* ln B̄„x12i 2 i ~g11g2!…1F~x!ln
A~`!

A~2`!

2F„x12i 2 i ~g11g2!…ln
Ā~`!

Ā~2`!

12p iF„x2u1 i ~12g1!…1bm. ~3.28!

In addition, one must be careful in the branch cuts of
logarithms. In the above, lnA(`)/A(2`) and so on must be
understood as

ln
A~`!

A~2`!
5 lnS 2

sinh~bm/222ih!

sinh~bm/212ih! D1~p24h!i .

~3.29!

Under these arrangements, the iteration method works
stable manner. We plot the temperature dependence o
correlation lengthjT in Fig. 2 for various fillings keeping
the interaction strength constantD5cos(p/6).

The extrapolated valuesT˜0 agree with the prediction
from CFT within a few percent, even far away from ‘‘hal
filling’’ ( ne50.5). The curves are going down gradua
with the decrease of electron densityne . As further informa-
tion, the chemical potentialm(T) determined by Eq.~3.26!
and the locations of the additional zerou are depicted in
Figs. 3 and 4, respectively. The zerou moves on a smooth
curve and its curvature increases with the decrease ofne . In
fact, we find that it moves tou5 i whenne ,T˜0. ~See also
the analytic argument for the noninteracting fermion case
Fig. 10 for m51.0.! We also calculate the ‘‘Fermi momen
tum’’ kF5Im ln L2 /L1 @cf. Eq. ~3.24!#. ~Here the inverse pe
riod of oscillatory behavior at arbitraryT is referred to askF
as in the case ofT50.! The figure clearly shows the tem
perature dependency ofkF . In the low-temperature limitT
˜ 0, it converges to the expected valuekF5nep, which
indicates the significance of the Fermi surface for o
particle excitations in the Luttinger liquid atT50.41 With
the increase ofT, the auxiliary functions cease to exhibit
sharp crossover behavior@Eq. ~3.8!#, which roughly corre-
sponds to a broadening of the Fermi distribution atT.0.
The particle excitations are enhanced within the wide ra
near the Fermi surface, which yield the shift ofkF ~see Fig.
5!. We remark that such aT-dependent oscillatory behavio
has been reported for the longitudinal correlation function
ferromagnetic Heisenberg model.24 Although physical ori-
gins are different for these two cases, the explicit determ
tion of T dependency is important.

Figures 6 and 7 present the temperature dependence o
correlation length for various interaction strengths for fix
ne . Naturally in the limit ne ,T˜0, jT does not depend
significantly on the interaction strength; it merely behaves
jT;vF /p;ne ~see Appendix B!. This fact is typical for
noninteracting cases. Although our model inherits stro
correlations, Fig. 6 indicates thatne50.1 is already well de-
scribed by the ‘‘noninteracting approximation,’’ and als
shows that this approximation is applicable in the wide ran
e

a
he

n
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e

f

a-

the

s

g

e

of T. On the other hand, data forne50.4 show a strong
dependency onD; thereforene50.4 belongs to proper ‘‘in-
teracting class’’~see Fig. 7!. It seems this crossover occu
nearne;0.25, but it is not yet conclusive. We hope to clari
this in a future communication.

Finally we plot the correlation length of the transver
spin-spin correlation̂s j

1s j
2& without external field~Fig. 8!

for comparison withne50.5 of spinless fermion model
~Fig. 9!. In addition to the difference between their limitin
values atT˜0, one clearly sees the difference in the depe
dence ofjT on T.

IV. SUMMARY AND DISCUSSION

We have proposed the QTM approach to integrable lat
fermion systems at any finite temperatures. The fermioniR

operator, together with its supertranspositionR̃, where the
fermion statistics is embedded naturally, play the crucial r
in this approach. Consequently, we have observed a sig
cant difference between the fermion model and that of
spin model. In principle, we can apply this approach to a
integrable 1D fermion systems. The application to the Hu
bard model is in progress.

Here we comment on the ‘‘attractive regime’’t.0, D
,0 in Eq. ~2.1!, which we have not been concerned with
this paper. In theXXZ model without an external magneti
field, one may recall the remarkable difference between
repulsive~antiferromagnetic! case and the attractive~ferro-
magnetic! one.23,24 In the repulsive regime, the eigenvalue
related to the correlation̂s j

1s i
2& or ^s j

zs i
z& are character-

ized by two real additional zeros which are symmetric w
respect to the imaginary axis. This symmetry is never bro
at any temperatures. On the other hand, in the attractive
gime, ‘‘level crossing’’ occurs successively. One may
tribute this to the change of the distribution patterns of
additional zeros. It will be interesting to see if similar ph
nomena occur for the spinless fermion model in the attrac
regime.

Finally we refer to another formulation of NLIE’s derive
from the different choice of the auxiliary functions. Th
NLIE’s have a close connection with the ‘‘TBA’’ or
‘‘excited-states TBA’’ equations from the standard ‘‘strin
hypothesis.’’

FIG. 2. The temperature dependence of the correlation lengj
for p056.
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The idea is as follows. First we embed the QTM itself in
a more general family calledT functions, and explore func
tional relations among them (T systems!. Then we define the
Y functions by a certain ratio of theT functions, and also
derive functional relations for them~theY system!. The ana-
lytical properties of these functions lead to the NLIE’s whi
determine the free energy and the correlation length. As c
cerns the largest eigenvalue sector, theT functions coincide
with those in Ref. 21. Therefore the derived NLIE’s for th
free energy are identical to the TBA equations of theXXZ

model.4,21 In contrast, for the second-largest eigenvalue s
tor we find the essential difference between the ferm
model and the corresponding spin model. For example,
explicitly write the NLIE’s ~is the excited-state TBA equa
tions! for p055 andm50 as

lnh1~x!52

5b sin
p

5
x

2 cosh
p

2
x

1K* ln~11h2!~x!1p i ,

FIG. 3. The temperature dependence of the chemical potentim
for p056.

FIG. 4. The trajectory of the additional zerou inside the physi-
cal strip.
n-

c-
n
e

ln h2~x!5K* ln~12h1!~12h3!~x!

1 lnS tanh
p

4
~x2u1!tanh

p

4
~x2u2! D1p i ,

~4.1!

ln h3~x!5K* ln~11h2!~12k2!~x!,

ln k5K* ln~12h2!~x!1 lnS tanh
p

4
~x2u2! D1

p

2
i ,

whereu1 andu2 are determined from

i

5b sin
p

5
u1

2 sinh
p

2
u1

1K* ln~11h2!~u11 i !2p i 50,

~4.2!
K* ln~11h2!~12k2!~u21 i !50.

The meaning of the functionsh j and the quantitiesu j are
similar to those in Ref. 21. Although the above expressio
are quite different from those in Sec. III, the numerical res

FIG. 5. The temperature dependence of the Fermi momen
kF for p056.

FIG. 6. The temperature dependence of the correlation len
for ne50.1.
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shows a good agreement. The detailed derivations of ab
equations will be described in a separate communication42
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APPENDIX A: DIAGONALIZATION OF THE QUANTUM
TRANSFER MATRIX

Here we shall diagonalize the QTM~2.44! by means of
the algebraic Bethe ansatz. First let us recall that the mo
dromy operator~2.45! satisfies the global Yang-Baxter rela
tion

R21~v2v8!T1~uN ,v !T2~uN ,v8!

5T2~uN ,v8!T1~uN ,v !R21~v2v8!. ~A1!

Writing the monodromy operator as

FIG. 7. The temperature dependence of the correlation len
for ne50.4.

FIG. 8. The correlation length for^s j
1s i

2& of the corresponding
XXZ model with zero magnetic field.
ve

S.

-
d
e

o-

Tj~uN ,v !5A~v !~12nj !1B~v !cj1C~v !cj
†1D~v !nj ,

j 51,2, ~A2!

and substituting this into Eq.~A1!, we obtain the commuta
tion relations among the operatorsA(v), . . . ,D(v),

A~v !B~v8!5
a~v82v !

b~v82v !
B~v8!A~v !2

c~v82v !

b~v82v !
B~v !A~v8!,

~A3a!

D~v !B~v8!52
a~v2v8!

b~v2v8!
B~v8!D~v !

1
c~v2v8!

b~v2v8!
B~v !D~v8!, ~A3b!

B~v !B~v8!5B~v8!B~v !. ~A3c!

To derive these relations, one should pay attention to the
that B(v) andC(v) anti-commute with the Fermion opera
tors cj andcj

† .
The commutation relations~A3a!–~A3c! are quite similar

to the corresponding ones for theXXZ model.39 In fact, re-
lations ~A3a! and ~A3c! are identical. The second relatio
~A3b!, however, is different: there appears an overall ‘‘m
nus’’ sign on the right-hand side

Now we define the reference state by

uV&ª )
m51

N/2

u0&a2m
^ su1&a2m21

,

~A4!
u1&a2m21

ªca2m21

† u0&a2m21
.

Then, using the relations

R̃a2m21 , j~v2uN!u1&a2m21

52a~2v1uN!nj u1&a2m21

1b~2v1uN!~12nj !u1&a2m21
1cj u0&a2m21

~A5!

th FIG. 9. The temperature dependence of the correlation leng
half-filling.
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and

Ra2m , j~v1uN!u0&a2m
5a~v1uN!~12nj !u0&a2m

1b~v1uN!nj u0&a2m
2cj u1&a2m

,

~A6!

we find that

A~v !uV&5~a~v1uN!b~2v1uN!!N/2uV&, ~A7!

D~v !uV&5~2b~v1uN!a~2v1uN!!N/2uV&. ~A8!

Hence the stateuV& is an eigenstate of the QTM~2.44! with
the eigenvalue

L0~v !5S sinh~v1uN12!sinh~2v1uN!

sin22h
D N/2

1S 2
sinh~v1uN!sinh~2v1uN12!

sin22h
D N/2

.

~A9!

An eigenstate withNe ‘‘particles’’ can be constructed by
multiplying the operatorsB(v j ) to the reference state

uC&ª)
j 51

Ne

B~v j !uV&. ~A10!

Indeed, using the standard argument of the algebraic B
ansatz,39 we can show that state~A10! becomes the eigen
state of the QTM if the spectral parametersv j fulfill the
Bethe ansatz equations

Fsinh~2v j1uN!sinh~v j1uN12!

sinh~v j1uN!sinh~2v j1uN12!G
N/2

52~21!N/21Ne)
k51

Ne sinh~v j2vk12!

sinh~v j2vk22!
. ~A11!

The corresponding eigenvalue of the QTM~2.44!,

TQTM~uN ,v !uC&5L~v !uC&, ~A12!

is given by

L~v !5S sinh~v1uN12!sinh~2v1uN!

sin22h
D N/2

3)
j 51

Ne sinh~v2v j22!

sinh~v2v j !
1~21!N/21Ne

3S sinh~v1uN!sinh~2v1uN12!

sin22h
D N/2

3)
j 51

Ne sinh~v2v j12!

sinh~v2v j !
. ~A13!
he

APPENDIX B: T!1 BEHAVIOR AND PREDICTION
FROM CFT

We summarize the known results of the correlation fun
tion at T50 and itsT!1 behavior predicted from CFT.39,41

Let us start with the zero-temperature case. The one-par
Green’s function shows an oscillatory behavior due to
Fermi surface,41

^c†~x!c~0!&;cos~kFx!/x2n. ~B1!

The scaling dimensionn is evaluated from the energy spe
tra in the finite-size system,

n5
1

4Z~KF!2
~nN!21Z~KF!2~nD !2. ~B2!

Here Z(KF) is the dressed charge, andKF denotes the
‘‘Fermi surface’’ satisfying

Z~x!1
1

2pE2K F

KF
R~x2y!Z~y!dy51,

~B3!

R~x!5
2 sin 4h

cosh 2x2cos 4h
.

nD and nN are ~half-!integers constrained by a selectio
rule, nD5nN/2 mod 1. For the one-particle Green’s fun
tion, they are given bynD51/2 andnN51. Thus the criti-
cal exponenthF is defined as

hFª2n5
1

2 S Z~KF!21
1

Z~KF!2D . ~B4!

The dressed chargeZ(KF) is explicitly evaluated for two
special cases39:

Z~KF!5H 1 for ne50 ~KF50!

Aa/2 for ne50.5 ~KF5`!,
~B5!

wherea is

a5
p

p22h
. ~B6!

Then the critical exponenthF is given by

hF5H 1 for ne50

1/a1a/4 for ne50.5.
~B7!

In the scaling limit where CFT is valid, the correlatio
functions atT!1 are recovered by the replacement

x˜
vF

pT
sinh

pTx

vF
. ~B8!

in the denominator in Eq.~B1!. HerevF denotes the Ferm
velocity

vFª
1

2pr~x!

]«~x!

]x U
x5KF

. ~B9!

Note thatr(x) and «(x) are the density function and th
dressed energy defined by
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r~x!1
1

2pE2K F

KF
R~x2y!r~y!dy5

sin 2h

p~cosh 2x2cos 2h!
,

~B10!

«~x!1
1

2pE2K F

KF
R~x2y!«~y!dy52

sin22h

cosh 2x2cos 2h
1m.

Thus the long-distance behavior of one-particle Gree
function is given by

^c†~x!c~0!&;cos~kFx!x2phFuxuT/vF. ~B11!

Consequently the correlation length atT!1 is identified
with

j5
vF

phFT
. ~B12!

The Fermi velocity~B9! is analytically calculated for the
casesne!1 andne50.5:

vF5H ;pne for ne!1

p sin 2h/4h for ne50.5.
~B13!

Therefore, we obtain the explicit correlation length~B12! for
these two special cases.

jT5H ;ne for ne!1

sin 2h/@4h~1/a1a/4!# for ne50.5.
~B14!

We have also verified the extrapolations from the NLIE
agree with prediction~B12!.

Finally we remark on the spin correlation. The main co
tribution to the transverse correlation function simply deca
algebraically,

^s1~x!s2~0!&;1/x2n8, ~B15!

that has no oscillation term. Heren8 takes theidentical form
~B2!. However, we have to usenN51 and nD50 this
time. The difference in selection rules for these intege
which originates from the difference in statistics, leads t
conclusion

nÞn85
1

4Z~KF!2
~B16!

The corresponding correlation length is given by Eq.~B12!,
replacinghF by hS5 1

2 @Z(KF)#2. One thus obtains differen
correlation lengths simply according to the selection rule

APPENDIX C: DERIVATION OF NLIE’s

For simplicity in notation we define

c~x!ªa~x1 ig1!, C~x!ª11c~x!,
~C1!

c̄~x!ªa~x2 ig2!, C̄~x!ª11 c̄~x!.

That is, we forget additional shifts for a moment.
We identify the analytic strips
’s

-
s

,
a

Q~x!: Im xP~22p0,0!,

f2~x!: Im xP@0,2p0!, ~C2!

f1~x!: Im xP~22p0 ,0#.

The following identities are direct consequence of t
definitions:

L~x1 i !5C~x!
Q~x2 i !

Q„x2~2p021!i …
f2~x1 i !

3f1„x2 i ~2p023!…e2bm/2,
~C3!

L~x2 i !5~21!N/21NeC̄~x!
Q„x2~2p021!i …

Q~x2 i !

3f1~x2 i !f2@x1 i ~2p023!#ebm/2.

Now we consider the second largest eigenvalue caseNe
5N/221. We are in a position to utilize the knowledge
zeros ofL2(x).

Consider the integral

E
C

d

dz
ln L2~z!eikzdz,

where C encircles the edges of ‘‘square:
@z1 ,z2#ø@z2 ,z3#ø@z3 ,z4#ø@z4 ,z1# in a counterclockwise
manner, wherez152`2 i , z25`2 i , z35`1 i , and z45
2`1 i . There is one zero ofL2(x) in the region insideC.
Thus Cauchy’s theorem is applied after proper modificat
as in Eq.~D4!:

2p ieiku5E
2`

` d

dx
ln L2~x2 i !eik(x2 i )dx

2E
2`

` d

dx
ln L2~x1 i !eik(x1 i )dx. ~C4!

One substitutes Eq.~C3! into the above equation and derive
identities among the Fourier components of logarithmic
rivatives ofQ, C, andC̄. Explicitly, we have

dl̂Q@k#52
ek(p021)dl̂C@k#2ek(p011)dl̂C̄@k#

4 sinh~p021!k coshk

1
ek(2p021)dl̂f2@k#1ekdl̂f1@k#

2 coshk

2
p iek(p01 iu)

2 sinh~p021!k coshk
. ~C5!

In the above we adopt a notation

dl̂C@k#ªE
2`

` d ln C~x!

dx
eikxdx, ~C6!

etc., as the Fourier component of the logarithmic derivativ
On the other hand, from definition~C1!, we have
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dl̂c@k#52dl̂f2@k# ekp0 sinh~p021!k

22dl̂f1@k# e2(2p022)k sinhk

22dl̂Q@k# e2(p021)k sinh~p022!k, ~C7!

and similarly fordl̂ c̄@k#.
One substitutes Eq.~C5! into Eq. ~C7! to obtain a closed

equation among the Fourier modes of the auxiliary functio
Using the explicit form forf6 , we obtain

dl̂c@k#522p i
N

2

sinhuNk

coshk
1dl̂C

sinh~p022!k

2 coshk sinh~p021!k

2dl̂C̄
e2ksinh~p022!k

2 coshk sinh~p021!k

12p iek1 iku
sinh~p022!k

2 coshk sinh~p021!k
. ~C8!

By inverse transformation and integration overx we arrive at
the NLIE’s. Note that the integration constant is determin
by the asymptotic values in Eqs.~3.2a! and ~3.2b!.

After introducing the shiftsg1,2, one obtains the identica
NLIE’s in the main text, except for ‘‘driving terms,’’ as we
have not yet taken the Trotter limitN˜`. To be precise, the
driving term for lna(x) is

N

2E2`

` sinhuNk

k coshk
eik(x2 ig1)dk. ~C9!

Due to the combination ofuN52b sin 2h/2hN andN enter-
ing above, the Trotter limit is carried out analytically. The
one ends up with Eq.~3.3!.

The expression for the eigenvalue is derived in a sim
way. One first notes the ‘‘inversion identity’’

L̃2~x1 i !L̃2~x2 i !52c~x!C~x!C̄~x!, ~C10!

where

c~x!ª
f1~x2 i !f2~x1 i !

f1~x1 i !f2~x2 i !
~C11!

and

L̃2~x!5
L2~x!

tanh
p

4
~x2u!f1~x12i !f2~x22i !

~C12!

is introduced to exclude the zeros ofL2(x) and to compen-
sate for the divergence ofL2(x) at x˜6`.

Then the left-hand side is ANZC in a strip ImxP
@21,1# and also the right-hand side is ANZC in a narro
strip including the real axis. One thus can solve Eq.~C10!,
and obtain the expression

ln L2~x!5 ln Lgs~x!1 ln L fn~x!, ~C13!

where
s.

d

r

ln Lgs~x!ª2
N

2E2`

` sinhkuN sinh~p021!k

k coshk sinhp0k
e2 ikxdk

1 ln f1~x12i !f2~x22i !, ~C14a!

ln L fn~x!ªK* ln A~x1 ig1!1K* ln Ā~x2 ig2!

1 ln tanh
p

4
~x2u!2

p i

2
. ~C14b!

Taking the Trotter limitN˜` after settingx50, and using
the identity

lim
N˜`

ln f1~2i !f2~22i !52
b

2
D, ~C15!

we derive the first excited free energy as Eq.~3.6!.
Next we consider the largest eigenvalue sectorNe5N/2.

In this case, the spinless fermion model shares the s
equations with theXXZ model. Then the following NLIE’s
have been already derived in Ref. 15:

ln a0~x!52
pb sin~2h!

4h cosh
p

2
~x2 ig1!

1F* ln A0~x!

2F* ln Ā0„x12i 2 i ~g11g2!…1
bmp0

2~p021!
,

~C16!

ln ā0~x!52
pb sin~2h!

4h cosh
p

2
~x1 ig2!

1F* ln Ā0~x!

2F* ln A0„x22i 1 i ~g11g2!…2
bmp0

2~p021!
,

where auxiliary functionsa0, etc., are defined in a simila
way to Eq.~3.1!. Note that their asymptotic valuesuxu˜`
are explicitly written as

a0~x!5exp~bm!, ā0~x!5exp~2bm!. ~C17!

Through the above NLIE’s,L1(x) is described as

ln L1~x!5 ln Lgs~x!1K* ln A0~x1 ig1!1K* ln Ā0~x2 ig2!.

~C18!
Taking the Trotter limitN˜`, we obtain the free energy pe
site f as

f 52
1

b
ln L1~0!2

1

4
D5e02

1

b
K* ln A0~ ig1!

2
1

b
K* ln Ā0~2 ig2!, ~C19!

wheree0 is the well-known ground-state energy per site,

e052E
2`

`

K~x!
sin22h

cosh 2hx2cos 2h
1

1

4
D. ~C20!

Though we do not analyze Eqs.~C16! and ~C19! here, they
are implicitly used in the evaluation of the correlation leng
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APPENDIX D: FREE FERMION MODEL

Here we consider the free energy and the correla
length for the free fermion modelD50 (2h5p/2) in Eq.
~2.1!. In this case we havef6(x64i )5(21)N/2f6(x) and
Q(x64i )5(21)NeQ(x) from Eq. ~2.53!. Then Eq.~2.52!
simplifies to

L~x!5%~x!
Q~x12i !

Q~x!
, ~D1!

where

%~x!ªf2~x22i !f1~x!e(1/2)bm

1~21!N/2f1~x12i !f2~x!e2(1/2)bm. ~D2!

We can easily show that

L~x1 i !L~x2 i !5~21!Ne%~x1 i !%~x2 i !. ~D3!

The right-hand side is a known function, which is a distin
feature of the free fermion model. It is convenient to mod
the functionL(x) as

L̃~x!5
L~x!

f1~x12i !f2~x22i !
, ~D4!

satisfying

L̃~x1 i !L̃~x2 i !5~21!(N/2)1Ne@c~x!1c~x!21

12 cosh~bm!#, ~D5!

wherec(x) was already defined in Eq.~C11!.
First we consider the free energy characterized by

largest eigenvalueL1(x). It lies in the sectorNe5N/2. The
Bethe ansatz root$xj

(1)% j 51
j 5N/2 , Im xj

(1)P@21,1# are symmet-
ric with respect to the imaginary axis. The function%(x) in
Eq. ~D2! hasN zeros in ImxP@22,2#: N/2 zeros$xj% j 51

N/2 are
in the physical strip ImxP@21,1#, and the others$xj8% j 51

N/2

are out of the strip. As%(x) has a property

%~x12i !um5~21!N/2%~x!u2m , ~D6!

we have

FIG. 10. The trajectories of the additional zeros for the fr
fermion model. The lower zerou never goes over the physical strip
while the upper oneu8 never comes into the strip. In the casem
51.0, both zeros moves tou,u85 i at the low-temperature limit.
n

t

e

xj8um5xj u2m12i . ~D7!

From the BAE ~2.54!, $xj
(1)% are completely equivalent to

$xj%. Thereby one can shows from Eq.~D1! thatL1(x) does
not possess any zeros in the physical strip.

Since the functionL̃1(x) is ANZC ImxP@21,1#, we
have

ln L̃1~x!5$K* ln@X1X2112 cosh~bm!#%~x!. ~D8!

Using the relations

lim
N˜`

c~x!5expS b

cosh
px

2
D ,

~D9!
lim

N˜`

L̃~0!5 lim
N˜`

L~0!,

we obtain the free energy per sitef as

f 52
1

b
lim

N˜`

ln@L1~0!#52
1

pbE0

p/2

ln@2 cosh~b cosz!

12 cosh~bm!#dz, ~D10!

in agreement with Ref. 43.
Next we consider the correlation lengthj for ^cj

†ci&. The
BAE roots $xj

(2)% j 51
N/221 relevant to the second largest eige

value are identical with$xj
(1)% j 51

N/2 , except that the larges
magnitude onexN/2

(1)5u is absent. ThenL2(x) possesses the
additional zerou in the physical strip. In the Trotter limit,u
is given by

u5
2

p
sinh21S b

p2 ibm D . ~D11!

The corresponding zerou8 through property~D7! is

u85
2

p
sinh21S b

p1 ibm D12i . ~D12!

The zerou (u8) never goes over~never comes into! the
physical strip~see Fig. 10!.

Consequently,L2(x) can be expressed as

FIG. 11. The temperature dependence of the correlation len
for the free fermion model.
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uL2~x!u5UL1~x!tanh
p

4
~x2u!U. ~D13!

Thus we have the correlation lengthj for ^cj
†ci& as

1

j
52 lnUtanhF1

2
sinh21S b

p2 ibm D GU 5
1

2 Fsinh21S p1 ibm

b D1sinh21S p2 ibm

b D G . ~D14!

In Fig. 11 we plot the results@Eq. ~D14!# for some fixed particle densities.
S
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