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The quantum transfer-matrix approach to integrable lattice fermion systems is presented. As a simple case
we treat the spinless fermion model with repulsive interaction in critical regime. We derive a set of nonlinear
integral equations which characterize the free energy and the correlation Iengd:lficgf for an arbitrary
particle density at any finite temperatures. The correlation length is determined by solving the integral equa-
tions numerically. Especially in the low-temperature limit this result agrees with the prediction from conformal
field theory with high accuracyS0163-18209)13827-X

. INTRODUCTION the masslesXXZ model in the “attractive” regimé&>24
We extend these studies to lattice fermion systems. Our
Exact evaluations of physical quantities at finite temperaformulation is fully general for one-dimensionélD) fer-
tures pose serious difficulties even for integrable modelsmion systems which are integrable in the sense of the Yang-

One has to go much beyond mere diagonalization of Baxter (YB) equation. As a concrete example, we take the

Hamiltonian; summation over the eigenspectra must be pe's_pinless fermion model with repulsive interactions in the

formed. gapless regime. This simple example already manifests some

The string hypothesls* brought the first breakthrough fundamental differences from the spin models, and yields a

and success. It vields a svstematic wav to evaluate severs und basis for future studies on more realistic fermion sys-
Sy Y y (fgms such as the Hubbard model.

bulk quantities including specific heats, susceptibilities, an As in Refs. 17—20, one may first perform Jordan-Wigner

So on. . (JW) transformations to the fermion models, and further con-

More recently, the quantum transfer-matriélQTM)  yert the resultant quantum spin models into 2D classical ver-
method has been proposed to overcome some difficulties, {@x models. These procedures have been successful in studies
which the standard approach is not applicabfé.One re-  of the bulk quantities. In evaluating correlation lengths, how-
duces the original problem to finding the largest eigenvaluever, this is no longer true. As an example, which will be
of the QTM which acts on a fictitious system of silke(re-  discussed in the main body of this paper, let us take a fer-
ferred to as the Trotter numbemwhich should be senN  mion one-particle Green’s functicfe;c;) and its correspon-
—oo (Trotter limit). As this procedure is sometimes difficult, dentwj*gi*) in the spin model. Obviously they are related,
we integrate its procedure with another ingredient, the inteput quite different by nonlocal terms due to the JW transfor-
grable structure of the underlying model. This allows for themation. At zero temperaturel €0), using conformal map-
introduction of commuting QTM’s which are labeled by the ping, one evaluates the scaling dimensions from finite size
complex parametex.** A set of auxiliary functions, includ- corrections to the energy spectra. As the Hamiltonians are
ing the QTM itself, satisfy certain functional relations. We equivalent through the JW transformations, it is normally
shall choose these functions such that they have an analyticdifficult to discriminate between the energy spectra of the
property called ANZC (analytic, nonzero, and constant fermions and those of the spins. The difference lies only in
asymptotics; see Sec. )lin a certain strip on the complex  the boundary conditions. Nevertheless, even after JW trans-
plane. This admits the transformation of the functional relaformation one can explicitly calculate the correct scaling di-
tions into a closed set of integral equations. For all casemensions only by incorporating the proper fermion statistics
known up to now, the Trotter limiN—o can be taken ana- at the very last stagesee Appendix B At finite temperature
lytically in the integral equations. We thus have seen a re{T>0), the QTM approach gives the correlation function in
markable reduction from the problem of combinatof®sm-  the spectral decomposition form &&|A.|?(A/A,) 7L
mation over the eigenspectrdo the study of analytic HereA, denotes théth largest eigenvalue of the QTM, and
structures of suitably chosen auxiliary functions. Ay is a certain matrix element. Once the JW transformation

This scenario has been applied to many models of physiis performed, it is difficult to trace the difference in the sta-
cal interest*~?" In particular the correlation lengths, calcu- tistics in this framework. Then one hardly recognizes the
lation of which has been one of the major difficulties in thedifference in the eigenvalues of the QTM between the spin
string hypothesis, are explicitly evaluated in the spin modelsmodels and the fermion models. A simple prescription has
For an example of the success achieved, we refer to a recenot yet been found, in contrast to the above-mentioned case
analysis on the quantum-classical crossover phenomena at T=0.
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Let us recall the quantum inverse scattering method basethe “transfer matrix” can be constructed from tReopera-
on the graded YB relatiof?*°by which the integrability and tor, which generates the left-shift operator, the fermionic
other algebraic structures of the fermion systems have bedaramiltonian, and other conserved operators. Here and in
discussed successfuffy-® This formulation has a severe Sec. Il A, we briefly describe the method.
problem when applied to the finite temperature case. We To extend the method to the finite temperature case uti-
must treat the quantum and auxiliary spaces on the sam&zing the Trotter formula, it is necessary to look for another
footing when constructing the QTM. Conversely, in thetransfer matrix which generates thight-shift operator and
graded YB relation the quantum space is the fermion Fockhe Hamiltonian. In Sec. |IB, we shall argue how to con-
space, while the auxiliary space is ttggaded vector space. struct the desired transfer matrix by considering the super-

To overcome these difficulties, we adopt another apiransposition of th&R operator.
proach to fermion systems, which was invented quite Based on these two kinds of the transfer matrices, we
recently®*=38|n this method, we consider @operator con- devise the QTM for the fermion model in Sec. IIC. The
sisting of the fermion operators alone, together with its “su-QTM constitutes a one-parameter commuting family, which
pertransposition.” This time both quantum and auxiliary is a consequence of the global YB relation. The YB relation
spaces are fermion Fock spaces. Therefore, we can, for imlso enables us to diagonalize the QTM by means of the
stance, exchange their roles with no difficulty. Actually, by algebraic Bethe ansatz. The free energy and the correlation
careful introduction of the supertrace and interchange of itength are expressed in terms of the eigenvalues of the QTM.
with the normal trace to the partition function, we can derive
a commuting QTM for the fermion systems. A. Fermionic R Operator

The resultant QTM preserves genuine fermion statistics.
In other words, the selection rule is already built in algebra-
ically. This proper treatment of the statistics results in a L
change of the analytic structure for the QTM. In the “physi H::jzl Hijons

We define the spinless fermion model by the Hamiltonian

cal strip,” the QTM has only one additional zero which char- (2.2
acterizes “excited free energy” at finif€ while in the cor-

responding spin model there appear two such zeros. t 1 1
Consequently, one observe3-alependent oscillating behav- Hj,j+1==§ CJTCj+1+ CJT+1CJ +2A(n;— 5 (nj+l_ 5) ]

ior of one-particle Green’s function, as well as the difference
in the correlation length between the fermion model and 'thf?vvherec;r andc; are the fermionic creation and annihilation
corresponding spin model. These are smoothly connected igperators at th¢th site satisfying the canonical anticommu-
the expected values at the conformal field the¢BFT) tation relations
limit, T—0 (see Appendix B

This paper is organized as follows. In Sec. Il, we will {c;.cb=1{c].cf}=0, {cf.c}=0d. (2.2
present the commuting QTM formulation of the spinless fer- o -
mion model afr>0. The fermionicR operator, together with W& assume a periodic boundary conditiBC) on the fer-

its “supertransposition'R, play fundamental roles. The ana- mion operators,
lytic structure of the QTM and the auxiliary functions are o=t ol=c 2.3
discussed in Sec. lll, which leads to the nonlinear integral L+17 %1 ML+l M- :
equationgNLIE's) characterizing the correlation length. The The parameters and A are real coupling constants. In the

limit T—0 is treated analytically at “half-filling” .  present paper we consider the repulsive critical region 0
:05), which recovers the pl’edICtlon from CFT. We aISO$A<1, O<t, and introduce the parametrization

perform numerical investigations on NLIE’s and the correla-

tion length for one-particle Green’s function. To our knowl- a

edge, this is the first exact computation of the correlation Ai=cos2y, 0<27y=<s. (2.4
length for various interaction strengths, electron filling, and

for a wide range of temperatures. In Sec. IV, we comment ofin the subsequent sections, we shall also use the parameter
alternative forms of NLIE’s derived from different choice of p, defined by

the auxiliary functions. They are akin to the standard “ther-

modynamic Bethe ansatz equations” from the string hypoth- T

esis, and thus may be of interest in their own right. Details of Po=5 - (2.5
calculations and supplementary knowledge on CFT are sum-

marized in the appendixes. Hereafter we set=1 for simplicity.

Model (2.1) is exactly solved by the Bethe ansatz method.
Since the Hamiltonia2.1) preserves the number of the par-
ticles, we can add the “chemical potential” term without
breaking the integrability

Il. COMMUTING QUANTUM TRANSFER MATRIX
FOR THE SPINLESS FERMION MODEL

In this section we formulate the commuting QTM for the

. . . . L
spinless fermion model. The formulation is based on recent 1
developments in the study of the integrability of lattice fer- Hchemicaf:f“jzl nj— 2]
mion systems®~*8The central role is played by an operator
solution of the YB equation called the fermiorfcoperator. ~ We consider only the case=0 for a while.

(2.6
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The several physical properties including the integrabilitywhere the dual fermion Fock space is spanned,t§| and
of the fermion mode(2.1) has been discussed by transform- (1|, with

ing it into the XXZ model

L
1
_ = E: X X y .y z 7
_4J:1{O'JO'J+1+O'JO']+1+AO'JO']+1}

(2.7

through the JW transformation. However, it was recently dis-

covered that we can treat the fermion mo¢ll) only with

a<0|c;r1:01 a<1|’:a<olca- (2.16

We also assume
a<0|o>a:a<1|1>a:1- (2.17
The supertracg2.15 corresponds to the PBC for the fer-

the fermion operators. We shall summarize the method imnion operatorg2.3), thanks to the property

what follows.

First let us consider a two-dimensional fermion Fock Str,{R. (v)---

spaceV;, a basis of which is given by
0);,  1);:=c]0);,

Define the fermionidR operator acting on the tensor pro
uct of the fermion Fock spaceg®V, by

Rik(v)=a(v){—njne+(1—n))(1—ny}+b(v){n;(1—ny)

Ral(v)}: Stra{Ral(V)RaL(V) s RaZ(V)}-
(2.18
Hereafter we call Eq(2.14) the transfer matrix for simplic-

ity.
As in the case with the integrable spin models, the YB
equation(2.12) ensures the commutativity of the transfer ma-

d- trices (2.14),

[T(v),T(v')]=0. (2.19

The expansion of the transfer matfix 15 with respect to

+(1—nj)nk}+c(v)(c;rck—cjcl), (2.9  the spectral parameteris given by
where 27 L 5
T(v)=T(0){ 1+ = H+—-A|lv+0O(v9);, (2.20
. . sin 27y 4
sinn(v+2) sinypv
a(v)=—gp 27 b(v)=g 27’ c(v):=1. which follows from the relationship
(2.10
. o dRaj(v)
A basis ofV;®Vy is given by Qv aj-1= sz sinonaiPai-1| Hj-1jt 7 A
10);©5/0):=[0),  [1);@4]0):=c]]0), (223
(2.11 Note that the operatof (0)=Str,{P, - - - Pa1} is the left-

0); @4 1)=ci]0), [1);®@¢1)=c/ci|0),

and we can calculate the matrix elements of E29) if =x;:1T(0) (X (2.22
necessary. We shall keep the operator f¢219) as much as

possible and avoid the use of the matrix elements, becausene can easily prove relatiq@.22) utilizing the property of
the former is more transparent. TReoperator(2.9) satisfies the permutation operator,

the YB equatiof’®

shift operator,

T(0)x; =c; or ¢).

c; or cf).

(2.23

Paj+1Paj Xj=Xj11Pajr1Paj (Xj=
RiAU—V)R13(U)Roa(V) = Roz(V)R1g(U) Rix(U—V).

(2.12

Equation(2.12) is an operator identity, and one should care-
fully use the anti-commutation relatiori2.2) to confirm its

B. Supertransposed fermionicR operator

y ! In this section, we shall consider another transfer matrix
validity. which generates the right-shift operator. For this purpose we
It is one of the fundamental properties of tReoperator  first define the super-transposition &ir an arbitrary opera-
Rij(v) that R;;(0)="P; is the permutation operator for the tor X; i(v) in the form

fermion operators,

X;(v)=A(v)(1—nj)+D(v)n;+B(v)c;+C(v)c]

(2.29

ij::(l—nj)(l—nk)—njnk-}— CjTCk—CjCE,
(2.13

Pix;=XPyc (Xj=¢j or cf). >y

XS3(v) =A(v)(1=ny) +D(v)n;+B(v)c/ ~ C(v)c; .
(2.25

We can define an analog of the transfer matrix by

T(v)=St{Ra (V) - - Rar(V)}- (214 Here A(v) andD(v) [B(v) andC(v)] are assumed to be

Here the supertrace of an arbitrary operaXds defined by ~ Grassmann eve(odd) operators.
Now applying the supertransposition $6 both sides of

StraX:=2(0|X|0)a— 2(1|X|1)4, (2.15  the YB equation(2.12, we obtain



PRB 60

RIAWR I U—V)Ros(V) = Rod V)R 52 (U— V)R S3(u),

(2.2

where we have used a property of the supertransposition

[Ric(WR(VIB=RFVIR(u)  (k#1). (227
Then changing suffixes and spectral parameters as

1-3, 2—1, 3-2,

(2.28

U——Vv, VvV—=UuU—v,

we obtain the following type of the YB equation

R U= V) Ryx(U)Roa(V) = Ros(V) Rag(U) Ry U—V),
(2.29

where

Ri(v) =R 2 (=v)=a(=v){=njnt(1-n)(1-ny)}

+b(=Vv){n;(1—n)+(1—njny
—c(—v)(cjci+cjey).

(2.30

Although the newR operatorﬁjk(v) iS not symmetric
[Rik(v) #Ryj(v)], it is still possible to prove the relation

RiU=V)Rix(U)Rog(V) = Rog(V) Rag(U) Ryx(U—V).
(2.3)

Using ﬁa,-(v), we define another transfer matrix by

T(v)=St{Rar (V) - - - Raa(V)}. (2.32

Then the commutative properties of the transfer matrices fol-

low from the YB equation$2.29 and (2.31),

[T(v),T(v)]=[T(v),T(v")]=0. (2.33

The relations

PajPaj-16=Xj-1PajPaj-1 (X;=Cj or c]),
(2.39
hold, where

Pic=Rix(0)=(1—nj)(1—ny) —njn—(c]cf+c;cy).

(2.35

Using relations(2.34), one can confirm that the operator

T(0) provides the right-shift operator, i.e.,

T(0)x;=x,_1T(0) (xj=¢; or ¢]). (2.3
In other wordsT(0) is the inverse off(0),
T(0)T(0)=1. (2.37)

Furthermore, from the relationship

- dRaj(v) 27 - - 1
Paj+1™qy :_Mpa,j+lpaj Hjrajt 74
v=0

(2.38
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the expansion of the transfer matiiXv) with respect to the
spectral parameter is given by

27
sin2n

v+O(v2)}.
(2.39

- - L
T(V)=T(0)[1— H+ ZA

C. Commuting quantum transfer matrix

Expansions(2.20 and (2.39 with relation (2.37) are
combined into a formula

47
sin2n

T(WT(—u)=1+

L
H+ ZA) u+0(u?).
(2.40

This facilitates the investigation the finite temperature prop-
erties of the spinless fermion mod&.1) via the Trotter
formula

exp{—ﬁ

H+ ;A”: lim [T(upn)T(—up) V2,

N— o0

Bsin2ny

UNT T 0N

(2.4)
Here an(evern integerN, called the Trotter number, repre-
sents the number of sites in the fictitious Trotter direction
and g is the inverse temperatuyg@=1/T.

The free energy per site, for instance, is given by

f=—lim lim iIn THT(upy)T(—uy) V- EA_
L—o N—oow LB 4
(2.42

However, as is the case with the corresponding spin model,

the eigenvalues of (uy) T(—uy) are infinitely degenerate in
the limit N— .

Therefore, it is a formidable task to take the trace in this
limit. To avoid this difficulty, we transform the term

T T(up) T(—up) V2 in Eq. (2.42 as follows:

Tr[T(uN)TF( - UN)]le
N/2
:Trml_zll StraZm,amel[RaZm,L(uN) e 'RaZm,l(uN)

><7~3:;12m,1,|_(_UN)' : 'ﬁazm,l,l(_UN)],
L N/2
:StrJ];[l Tr]'nl—:[l RaZm'j(uN)RaZm—lvj(_uN)'

(2.43

We now introduce a fundamental object in the present ap-

proach called the QTM

TQTM(UN,V)::TrJ ,Tj(uN,V), (244)

where the monodromy operat@j(uy,v) is defined by
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N2 ~ sinhyp(x*+iuy) | N2
Tj(uN,v)zsz:[l Ra, j(VFUNR,, i(V—Uy). ¢ (0= —go— |
(2.495 N (2.53
Using the YB equation§2.12) and(2.29, we can show that Q(x) :=H sinh7(x—Xx;).
the monodromy operator satisfies the global YB relation i=1

Here we have changed the spectral parameter fvota x

Roav=v) Ti(Un V) TolUn V') defined byv=ix for later convenience. Note that we have

=To(un,v" )Ty (uy,V)Ro(Vv—V'). (2.46  also included the contribution from the chemical potential
) _ _ ) term (2.6) in the expressioli2.52).

Accordingly the QTM constitutes a commuting family The associated Bethe ansatz equatBAE) is given by
[Torm(un, V), Tomm(Un,v')]=0. (2.47) b (X)p_(x—2i)\N?

We remark that the trace in the definition of the QTR44) ¢ (X) ¢y (X+2i)

implies the antiperiodic boundary condition for the Fermion Ne )

operators in the Trotter directicfi,i.e., = (—1)N2*NegBu ] Q(x; _Zf) . (2.54
Cay,y ™ "Cap Cay,, ™ 7 Cay- (248

Compared with theXXZ model, we observe an extra factor
_ 1\N2+Ng ;i ; _
The free energy per sit€2.42 is then represented in (T1) in Egs.(2.52 and(2.54 which reflects the fer
terms of the QTM as mionic nature of the present system. In particularNi2
+Ne=1 (mod 2), Eqs(2.52 and(2.59 are clearly differ-

1 1 ent from the corresponding ones for tkXZ model. Actu-
f=—1lim lim mln Str[TQTM(uN,O)]'-—ZA. ally the second largest eigenvalue lies in the sedtqr
L—o N—e =N/2—1, while the first largest one is in the sectg

(2.49 =N/2. Therefore, the correlation lengé{ Eq. (2.51)] exhib-
its the manifest difference between the fermion sys(2r)

Since the two limits in Eq(2.49 are exchangeabFeff we  oidthe spin syster®.7).

take the limitL—oo first. Because there is a finite gap be-

tween the first and the second largest eigenvalue of the QTM
for finite temperature, we can write ll. NLIE AND THE EXACT ENUMERATION

OF CORRELATION LENGTH

fo— E lim InA,— %A, (2.50 A. Analyticities of auxiliary functions and NLIE’s
N—co In order to proceed further, one needs to clarify the ana-
lytic property of the QTM. For this purpose, we perform

where A, is the first largest eigenvalue of the QTM, numerical investigations by fixing the Trotter numbfi-

Torm(un,;0). From now oA denotes théth largest eigen-

. . nite.
;’alu?_ of th? QTM. Thle ccl))rrelatlon Ientg%x_)f t:]e correfl:;lrt_‘lor:c_ ; First we give the description for the largest eigenvalue
unc 'On<ci C) can also be represented in terms of the firs sector, which is naturally identical to the correspondiigZ

and second largest eigenvaluks as model. There ar&l,=N/2 BAE roots. Only at “half-filling”
do they distribute exactly on the real axis symmetrically with
) (2.51) respect tox=0, while for the general particle density they
bend in the complex plane. The QTM has\ zeros in

) ) . . Imxe[—po,Pol: N/2 zeros locate on the smooth curve
In this way the calculation of certain thermal quantities re-jyx—2 and the otheN/2 zeros are on the curve -
duces to the evaluation of the eigenvalues of the QTM in the_ > Thys there is a strip Ime [ —1,1] where the QTM is

Ao
3 lim In A,

N— oo

Trotter limit (N—oe). _ _ _ analytic and nonzero. We call this the “physical strip.”

For finite N, it is possible to diagonalize QTM2.44) Next consider the excited state relevant to the second
by means of the algebraic Bethe ansatsee Appendix A largest eigenvalue. In contrast to thé&XZ model, we find
The eigenvalue is then given by that two complex eigenvalues are degenerate in magnitude.

Both of them are characterized N,=N/2—1 BAE roots
located on a smooth curve near the real axis. The distribution
Q0+ 20) of the BAE roots for the one and that for the other are sym-
- o Bul2 metric with respect to the imaginary axis. As to the zeros of
M) =1 () b (x=21) Q(x) " (252 the QTM,N—2 zeros are on the smooth curvesim*2.
The locations of the two “missing zeros” are vital in the
NI2N Q(x—2i) —Bul2 evaluation of the excited states. For k& Z model, both of
Ao(X):=(—1) e¢,(x)¢+(x+2|)We e them enter into the physical strip. Especially with vanishing
external fieldh, they are on the real axis and are symmetric
where with respect to the imaginary axis. With the increasenpf

A(X)=N1(X)+ (%),
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low for taking the Trotter limit analytically. Thereby one
arrives at the final expressions totally independent of ficti-
25 tious parameteN,
7B sin2
3 Ina(x)=— /377 T LFsinaAx)
4ncoshz(x—i
£ 7 COSR; (X—iy1)
1 —F*InAX+2i —i(y1+ 72))
. . Burpo
+ —0+i(1—- +——
os | 27 F(X—0+i(1—1y,)) 2 (po—1)’
. . 3.3
00 05 1 1.5 2
e In a TBSN2T | end
—— *
FIG. 1. The trajectories of the additional ze#b are depicted in na(x) T . n2A00
the casep,=3 andN=100. With the decrease &, 6’ moves 47;coshz—(x+|y2)
downward, whereas it never comes into the physical strip.
they are away from the real axis, but still stay in the physical Bup
strip preserving the symmetry. — 2 Fx— 6—i(1— _ _PHPo
We find a different situation for the Fermion model. At mA (1=72)) 2(po—1)°
half-filling, corresponding ttv= 0 in the XXZ model, one of Where
them is located at, on the real axis, while the other is at
6+ipo and 6o~ 6y . That is, only one zero appears in the e
physical strip. Away from half-filling, the zero in the physi- A*B(x):= f_ A(x—y)B(y)dy,
cal strip (we call it ) moves upward while the othe®()
moves downward. Nevertheless, we find tl#atemains in " sinh(po— 2)k
the physical strip whileg’ never comes in. From now on we F(x) :=—f 0 e kxdk, (3.4
consider the case Re>0 (Ref’>0). Then the trajectories 2m )~ 2 costksini(po—1)k
of #', for example, are depicted in Fig. 1. ) )
We assume all these features are valid in the Trotter limit Fx) __'_f“c sinh(pg—2)k o ikxgk
N—o. Then a set of nonlinear integral equations can be 2 ) —.. 2k costk sinh(py— 1)k '

derived as in the case of theéXZ model!® We define aux-

iliary functions Here, the integral ir(x) is the principal value. The location

of zero ¢ satisfies a subsidiary condition

Ny(X+i—iyy) o
= = O0—i+iyy)=—1. 3.
a(x) 7\2(X+|—|’)/1) ’ Q’l(x) 1+a(x)! a( 71) ( 5)
(3,)) Taking the Trotter limitN— after settingx=0 in Eg.
- No(X—i+iy,) - — (C13), we derive that the “first excited free energy” per site
a(X) = A(X) =1+ a(X). fis
N(X—i+i7ys) 2

wherey,, andy, are small positive quantities introduced for
the convenience in numerical calculations. Note that these
functions have asymptotic values

fom = 5INAx(0)~ FA=eo— ZKxInAizy)

L A=)~ —Intanbes —i
— —K=x — R _] —
0 {exp((—W+477)i+/3u) for x— —o GKHINU(—iyy) — gintanhz=—iz5, (36
a(x)= .
exp((m—4n)i+pu) for x—e, (3.23 wheree, is the ground-state energy defined in E920) and
1
_ exp((m—4n)i—Bu) for x——w K(X)::—ﬂ-x' (3.7
a(x)= exp((—m+4n)i—Bu) for x—ox. 3.25 4 cosh-

Immediately seen from the above analyticity argumentTogether with the NLIE for the largest eigenvalue, summa-
a(x),A(x) [a(x),A(x)] are analytic, nonzero, and have rized in Appendix C, these relations characterize the corre-
constant asymptotic valug&NZC) in a certain strip in the lation length& of one-particle Green’s functio(cjT c)atT
lower (uppep half plane including real axis. The above defi- >0 completely{see Eq(2.51)].

nitions, together with the knowledge of zeros f(x), fix We remark that in derivations of above relations one does
the NLIE among these auxiliary functions. We defer the de-not need precise information like roots distributions of the
tail derivation to Appendix C. The resultant expressions al-BAE. Only ANZC properties of the QTM and the auxiliary
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functions are sufficient. Thus the structure is rather robust,
and permits one to introduce small free parameterand

v,. In the next two subsections, we present analytical and
numerical studies on these equations and the correlatioandF, andF, are their complex conjugate. In this limit, the

length of one-particle Green’s function, which are main re-finite T correction part, In\s(x) [see Eq(C14b] reads
sults in this paper.

2 _[2 o
Fz(x)::;F(;x+ 2i—i(y1+y,)

7T.
In Afn(x)~5|+

2—7] -2 e(fr/2)xfg
B. Low temperature property of NLIE (p=0) ™

w2 B sin 2y
We study the low-temperature behavior for the half-filling

casew =0 utilizing the dilogarithm trick’® which enables us

to obtain the first low temperature correction without solving

the NLIE. As in the case of the largest eigenvalue sector,

_’_e(77'/2)XJ>OO efy{e(TrIZ)ileAJr(y)

—o0

la(x)| and|a(x)| exhibit a crossover behavior

la(x)],|a(x)|<1 for |x|<K,
_ (3.9
la()[,la(x)[~1 for [x|>K,
where
T 2y

Thus one carefully takes into account of contributions near
“Fermi surfaces’ = K. For this purpose, we introduce the

shifted variables and scaling functions

2
la.(x):=In a(i;xilc),

I§+(x)::lnc<t<t%xth), (3.10

— 7
9-=§(0—IC).

and similarly for capital functiong!, 2A, AL, andKi. In
T—0, these satisfy the truncated equations

la, (x)=—e X (™ML F x| AL (X)—Fo* 1A, (X)

+2wif(2(x—?)+i(1—yl)>, (3.113

o

la, (x)=—e X (M2 Fix|A, (X)—Fp* 1A, (X)
.f(Z — )

—2mi | —(x=0)~=i(1=v2) |,

la_(x)=—e * (MM F x|A_(x)—F,*IA_(X)
(3.110

(3.119

+ 27 F(—0),

la_(x)=—e X (™72 F x| A_(x)—F,*IA_(X)
— 27 F(—»), (3.119

where

(3.12

4o (72 72|K+(Y)}dy

+ e—('n'/2)xfoo e—y{e—(w/2)iy1|A_(y)

— oo

+e<ﬂ’2>i72|/1(y)}dy). (3.13

Thanks to the subsidiary condition for the additional zéro
[Eq. (3.5], we have

S F F(E ~0)+i(1- )IA d
e = — —(2=0)+i(1= ) |IA.(2)dz

— o0

. (3.19

— J“”’ F(%(Z—g)—i(l— 72))|K+(Z)d2

—0o0

For further simplification, we definB .. by

Di::f (|A:(X)d_Xla:(X)‘HA:(X)d_XIar(X)

— oo

d — d —
—Iat(x)d—XIAi(x)—Iai(x)d—XlAt(x))dx
_faz(x)
as(—=»)
+f_gt(°°)
a.(—=»)

Obviously, they are equal to special values of Roger's
dilogarithm L,

In(1+a) Ina

a 1+a

In(1+a) Ina)| —
—_— da. (3.15

a 1+a,

D.=2L

a(«) )
1+a.(»)

gt(oc) )
1+a.(»)
E«—w>)

—-2L —
l+a.(—=)

a.(—»)
1+a4—wJ_2

(3.1

In(1— In
(1-y) L Iny
y 1-y
We then apply the dilogarithm trick to Eq8.1139—(3.119.
For example, we take the first two equations. After differen-

tiating, we multiply them bylA, (x) and |K+(X), respec-
tively, and take the summation. We call resultant equality

1 (x
E(x)::—zfody
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(A). Next multiply Egs.(3.11a and (3.11b by [IA (X)]’

COMMUTING QUANTUM TRANSFER-MATRIX APPROACH . ..

and[IA_ (x)]’, respectively, and take the summation. Let us

call the outcom&B). Finally we subtrac{B) from (A) and

integrate ovex. The left-hand side of the equality is nothing
Remarkably on the right-hand side, most compli-

butD, .
cated terms like

f|A+< )2(—_” A (y)dx dy

f|A+(x)F (X— y) +(y)d xdy, (3.17)
and
dIA+(x)
f ax T2x- YIA (y)dx dy, (3.18

cancel each other. After rearrangement, we obtain

A ()

Ay ()

D, + 2 F(0)In—
_ J 2e-Y[e™DiniA_(y)+e~"DinIA  (y)]dy

o 2 _
+8i f, F(;(x— 0)+i(1— yl))IA+(x)dx

—8if F

%(x—@—i(l—w))l&(x)dx, (3.19

wherea, (—)=a,(—»)=0 is used. Similarly, from Eq.

(3.110 and(3.11d, we have

A_(o) (= .
—o0)In= = Ve~ (" A
)nAi(oo) che (e UA_(y)

D_+27iH

+e(™inia_(y)]dy,
(3.20

Applying Egs.(3.19 and(3.20, together with Eqs(3.14), to
Eq. (3.13,

2
IN Ag(X)~ E| + m{ e(w/z)x< —47%4D,
+ 271 F()In= (OO))
Ai(»)
— X2 (oo)

Now that the asymptotic values are easily found,

Tm—4n
F(o)=—F(—=)= (m—27)"
a,(»)=a_(x)=el"" 47, (3.22

5193
a_(x)=a.(=)=e 747,
we can explicitly evaluate Eq3.21) atx=0,
In Ag(x=0)= — —i<3+— + 70, (3.23
6BVE BVela 4] 2

where £(x) + £(1—x) = 7?/6 is also applied. Here is in-
troduced in Eq(B6) and the Fermi velocity is also de-
rived in Eq.(B13) for n,=0.5. The first term is identical to
the largest eigenvalue sector, and it reproduces a conformal
anomaly term withc=1. Comparing them, one concludes
that

Az
—~e
1

ikp—1/¢

(3.29

where kg denotes the “Fermi momentum.” Note thég
= /2 in the half-filling case. Consequently the inverse cor-
relation length is given as

aT 1+a
Vg 4

,1:

: (3.2

These are nothing but the expected results from (3J€€ Eq.
(B14)]. This fact represents the consistency of both our result
and validity of CFT mapping in the finite-temperature prob-
lem at low temperatures.

C. Numerical analyses on NLIE's

Having verified consistency at the specific limits, we now
perform numerical analyses on the NLIE'’s for a wide range
of temperatures, electron fillings, and interaction strengths.
To keep the electron filling constant, we adopt the
temperature-dependent chemical potential which are deter-
mined by the curve

d(n(T,u(T) _ d ( at ) L

daT T dT\ du T (326

The NLIE’s are numerically solved by the iteration method.
In each iteration steps, convolution parts are treated by the
fast fourier transformatioFFT). As a technical remark, we
call an attention to proper re-scaling of auxiliary functions
for the FFT; one needs to modify the integrands such that
these asymptotic values vanish. From the asymptotics in Egs.
(3.29 and(3.2b), we introduce

A(x)/A() for x=0
BOV=| qwyai(—) for x<0, 2D

and similarly for others. We also rewrite the NLIE’s in terms
of B(x), which now has zero asymptotic values. For ex-
ample,
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B sin(27) of T. On the other hand, data far,=0.4 show a strong
Ina(x)=— - +FxInB(x) dependency on; thereforen,=0.4 belongs to proper “in-
41 coshy (x—iy1) teracting class’(see Fig. 7. It seems this crossover occurs
nearny,~0.25, but it is not yet conclusive. We hope to clarify
B 2A(0) this in a future communication.
—F*InB(X+2i —i(y,+ yz))+}'(x)lnm Finally we plot the correlation length of the transverse
( spin-spin correlatiorzi(rj+ oj ) without external fieldFig. 8)
2A() for comparison withn,=0.5 of spinless fermion models
— F(X+2i—i(y1+ y,)In= (Fig. 9). In addition to the difference between their limiting
2A(— o) values afT—0, one clearly sees the difference in the depen-
+ 21 Fx— 0+i(1— yp)+ B (329 denceofeTonT.
In addition, one must be careful in the branch cuts of the IV. SUMMARY AND DISCUSSION

logarithms. In the above, Bi()/2((—<0) and so on must be

understood as We have proposed the QTM approach to integrable lattice

fermion systems at any finite temperatures. The fermiéic

(o) sinh( Bul2—2in) ) operator, together with its supertransposit%nwhere the
A(—o0) =In| = Sinh( Bul2+ 2i +(m—4n)i. fermion statistics is embedded naturally, play the crucial role
7 i77) s P
(3.29 in this _approach. Consequently, we have observed a signifi-
cant difference between the fermion model and that of the
Under these arrangements, the iteration method works in spin model. In principle, we can apply this approach to any
stable manner. We plot the temperature dependence of thetegrable 1D fermion systems. The application to the Hub-
correlation lengthéT in Fig. 2 for various fillings keeping bard model is in progress.
the interaction strength constaft= cos(/6). Here we comment on the “attractive regime™0, A
The extrapolated valueB—0 agree with the predictions <O in Eq.(2.1), which we have not been concerned with in
from CFT within a few percent, even far away from “half- this paper. In theXXZ model without an external magnetic
filling” ( n,=0.5). The curves are going down gradually field, one may recall the remarkable difference between the
with the decrease of electron dengity. As further informa-  repulsive (antiferromagnetic case and the attractivderro-
tion, the chemical potentigk(T) determined by Eq(3.26  magneti¢ one?>?*In the repulsive regime, the eigenvalues
and the locations of the additional zetbare depicted in related to the correlatio(wj*ai’ ) or (o{a}) are character-
Figs. 3 and 4, respectively. The zefomoves on a smooth ized by two real additional zeros which are symmetric with
curve and its curvature increases with the decreasg, ofn respect to the imaginary axis. This symmetry is never broken
fact, we find that it moves t6=i whenn,,T—0. (See also at any temperatures. On the other hand, in the attractive re-
the analytic argument for the noninteracting fermion case irgime, “level crossing” occurs successively. One may at-
Fig. 10 for w=1.0) We also calculate the “Fermi momen- tribute this to the change of the distribution patterns of the
tum” ke=ImIn A,/A; [cf. Eq.(3.24]. (Here the inverse pe- additional zeros. It will be interesting to see if similar phe-
riod of oscillatory behavior at arbitrary is referred to akg nomena occur for the spinless fermion model in the attractive
as in the case of =0.) The figure clearly shows the tem- regime.
perature dependency &E. In the low-temperature limiT Finally we refer to another formulation of NLIE’s derived
— 0, it converges to the expected valkp=n,7, which ~ from the different choice of the auxiliary functions. The
indicates the significance of the Fermi surface for oneNLIE's have a close connection with the “TBA” or
particle excitations in the Luttinger liquid a&=0.2' with ~ “excited-states TBA” equations from the standard *“string
the increase of, the auxiliary functions cease to exhibit a hypothesis.”
sharp crossover behavipEq. (3.8)], which roughly corre-
sponds to a broadening of the Fermi distributionTatO.
The particle excitations are enhanced within the wide range
near the Fermi surface, which yield the shiftlgf (see Fig.
5). We remark that such &dependent oscillatory behavior o421
has been reported for the longitudinal correlation function of =~ o3¢
ferromagnetic Heisenberg modél Although physical ori-
gins are different for these two cases, the explicit determina-&
tion of T dependency is important.
Figures 6 and 7 present the temperature dependence of th
correlation length for various interaction strengths for fixed

In

0.6

0.325

0222 "

Nne. Naturally in the limitn,,T—0, ¢T does not depend 0.108

significantly on the interaction strength; it merely behaves as o
ET~velm~n, (see Appendix B This fact is typical for . . . ctproditon
noninteracting cases. Although our model inherits strong % 02 04 08 08 1

correlations, Fig. 6 indicates that=0.1 is already well de- T

scribed by the “noninteracting approximation,” and also  FIG. 2. The temperature dependence of the correlation lefigth
shows that this approximation is applicable in the wide rangéor p,=6.
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0.5

kd 7

y N 0 02 0.4 0.6 08 1
T T

FIG. 3. The temperature dependence of the chemical potential |G, 5. The temperature dependence of the Fermi momentum
for pg=6. ke for po=6.

The idea is as follows. First we embed the QTM itselfinto N 72(X) =K*In(1— 77)(1— 73)(X)
a more general family called functions, and explore func-

tional relations among thenT(systemg Then we define the +In tanhqz(x— gl)tanhi(x_ 92)) + i,

Y functions by a certain ratio of th& functions, and also 4 4

derive functional relations for theifthe Y system. The ana- (4.1
lytical properties of these functions lead to the NLIE’s which

determine the free energy and the correlation length. As con- In 773(x) =K*In(1+ 7,)(1— x?)(X),

cerns the largest eigenvalue sector, Thizinctions coincide

with those in Ref. 21. Therefore the derived NLIE’s for the

free energy are identical to the TBA equations of ¥¥Z In k=K*In(1-17)(x)+In
model#?! In contrast, for the second-largest eigenvalue sec- .
tor we find the essential difference between the fermionvhere 6, and 6, are determined from
model and the corresponding spin model. For example, we
explicitly write the NLIE’s (is the excited-state TBA equa- 583 sine 0,
tiong) for pp=5 andu=0 as .

he il
tan4(x 0,) +§I,

LT
2 smhg 0,
7 (4.2
SAsing _ K*In(1+ 7,) (1 2)(0,+1)=0.
N7 (x) = = ————+KxIn(1+75) (x) + i,
2 coshgx The meaning of the functiong; and the quantitie®; are

similar to those in Ref. 21. Although the above expressions
are quite different from those in Sec. Ill, the numerical result

1 T T T T T 06

08

06 |

E
0.4 ,
n=01 ——
n=0.2 --=----
ozr g R
o T=1 +
- T=0.5 x
T=0.2 »
o T=001 O
oo 02 04 ais 0.8 ; 1.2 ¥ y
Re T
FIG. 4. The trajectory of the additional zetoinside the physi- FIG. 6. The temperature dependence of the correlation length

cal strip. for ng=0.1.
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Po=3
po=4 -------
Po=5

Paab e
CFT predictqlun

. . L
0 L L L 0 0.2 0.4 0.6 0. 1
0 0.2 0.4 0.6 . 1 T 8

T
FIG. 7. The temperature dependence of the correlation length FIG. 9. The temperature dependence of the correlation length at
for n,=0.4. half-filling.

shows a good agreement. The detailed derivations of above 7j(uy ,v)=A(v)(1—n,—)+B(v)cj+C(v)ch+ D(v)n;,
equations will be described in a separate communic4tion.

j = 112’ (A2)
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The authors are grateful to A. Kuniba and M. Wadati for 10N relations among the operatokgv), . .. .D(v),

helpful comments and continuous encouragement. M.S. , ,
thanks H. Asakawa for discussions. J.S. thanks Anigar, A(V)B(V') = a(v'-v) B(v/)A(v)— c(v'—v) B(V)A(V')
b % '

R. Martinez, B. M. McCoy, and C. Scheeren for useful dis- b(v'—v) (v —=v)
cussions. This work was in part supported by a Grant-in-Aid (A3a)
from the Ministry of Education, Science, Sports and Culture
of Japan. a(v—v’)
D(v)B(v')=——————B(v')D(v)
b(v—v')

APPENDIX A: DIAGONALIZATION OF THE QUANTUM
TRANSFER MATRIX

c(v—v") ,
Here we shall diagonalize the QTK2.44 by means of b(v—v’) BOVID(VY), (A3b)
the algebraic Bethe ansatz. First let us recall that the mono-
dromy operator2.45 satisfies the global Yang-Baxter rela- B(v)B(v')=B(v')B(v). (A3c)
tion

To derive these relations, one should pay attention to the fact

Roy(v—v")T1(un, V) To(uy,v") that B(v) and C(v) anti-commute with the Fermion opera-

B , , torsc; andc; .

=To(un, V') To(Un V) Roa(V = V7). (A1) The commutation relation@3a)—(A3c) are quite similar
Writing the monodromy operator as to the corresponding ones for teXZ model® In fact, re-

lations (A3a) and (A3c) are identical. The second relation

. (A3b), however, is different: there appears an overall “mi-
nus” sign on the right-hand side

Now we define the reference state by

0.75

07 | N/2

19):=11 10)a,, &4l 1)a,,

=1
(Ad)

er

At
| 1>a2m—1‘_ca2m—1| o>a2m—1'

0.62

Then, using the relations

0.6

0.585 f
0573 ¥~

ﬁaZm—l'j (v—uy)] 1>32m—1

Pg=6
cft prediction

085 - L . L - =—a(—v+uN)nj|1>a2mfl

02 0.4 0.6 0.8 1

T

+b(—v+uy)(1—n)l1 +¢c;|0)

FIG. 8. The correlation length fdio; o) of the corresponding N MWz 1t Cil0)a,,
XXZ model with zero magnetic field. (Ab)
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and APPENDIX B: T<1 BEHAVIOR AND PREDICTION
FROM CFT

Raym (VT UN)[0)a, =a(v+un)(1-n))|0)a, We summarize the known results of the correlation func-

tion at T=0 and itsT<1 behavior predicted from CF¥:*!

Let us start with the zero-temperature case. The one-particle
(AB) Green’s function shows an oscillatory behavior due to the
Fermi surfacé?

(cT(x)c(0))~ cog kex)/x?~, (B1)

AW)[Q)=(a(v+uyb(—v+un)"4Q), (A7)  The scaling dimension is evaluated from the energy spec-
tra in the finite-size system,

+b(v+un)nj|0)a, —¢jl1)a,

we find that

D(V)|Q)=(—b(v+uya(—v+uy)VQ). (A8)

Hence the statf)) is an eigenstate of the QTK2.44 with A= M—]CZ(AN)ZJFZ(/CF)Z(AD)Z- (B2)
the eigenvalue (Ke)
Here Z(Kg) is the dressed charge, arid:- denotes the
sinp(v+uy+2)sing(—v+uy) |\ “Fermi surface” satisfying

AO(V)Z( sinf2y

i ! f}CF R Z(y)dy=1
. 00+ 5] 1 ROCYZ)dy=1

(B3)

N siny(v+uy)siny(—v+uy+2)
sinf2y

2sin4y
RX)= ———.
(A9) cosh X —cos 4y

AD and AN are (half-)integers constrained by a selection
rule, AD=AN/2mod 1. For the one-particle Green’s func-
tion, they are given bAD=1/2 andAN=1. Thus the criti-
cal exponentyg is defined as

An eigenstate withN, “particles” can be constructed by
multiplying the operator8(v;) to the reference state

Ne
|«1r>=:j]=]l B(v))|Q). (A10)

1

77F::2A:§(Z(/CF)2+ 2). (B4)
Indeed, using the standard argument of the algebraic Bethe 2(Ke)

ansatz’ we can show that statg\10) becomes the eigen- The dressed chargg(Kr) is explicitly evaluated for two
state of the QTM if the spectral parameters fulfill the special casés

Bethe ansatz equations

1 for ng=0 (Kg=0)

. . Z(Kg)= B5
sin7(—vj+up)sin7(v;+uy+2)|"? Ke)=| a2 for ng=05 (Ke=), B
sing(vj+uy)sinn(—v;+uy+2) wherea is

N .
° sinp(vi—vi+2)
— _ (— 1 \N/2+Ng A B S T
(-1 kll sinp(vj—v—2)" (ALD) — (B6)
The corresponding eigenvalue of the QTR 44), Then the critical exponenyg is given by
Tom(Un V)W) =A (W) W), (A12) o b Or Ne=0 87)
la+ald  for ng=0.5.
is given by
In the scaling limit where CFT is valid, the correlation
AW) (sin n(v+uyt2)sinyg(—v+uy) NI2 functions atT<1 are recovered by the replacement
V)=
in2 \% mTX
simem X— —= sinh—. (B8)
Ng . i VE
sinp(v—v;—2) /24N ) _ ) )
1l ——F/———+(-1 € in the denominator in Eq:B1). Herevg denotes the Fermi
=1 sinp(v-vj) velocity
X(sin p(v+uy)sing(—v+uy+2) |V 1 s(x)
sirf27 VET2mp(0 x| (B9
x=Kg

Ne o . . .
S'”_W(V VJ+2)_ (A13)  Note thatp(x) and &(x) are the density function and the
j=1 sinnp(v—-v)) dressed energy defined by
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N 1 fKF R dy= sin 2y
p(X)+ 5 s (x=y)p(y)dy= 7(cosh X—cos 27
(B10)

sirf2y

1 (K
2(0+ zf_KFRw—y)s(y)dF " coshx—cos2y

Thus the long-distance behavior of one-particle Green’s

function is given by
(ct(x)c(0))~cog kex)x ™ T7FXITIVE, (B11)

Consequently the correlation length a1 is identified
with

VE

& (B12)

- Tl

The Fermi velocity(B9) is analytically calculated for the
case <1 andn,=0.5:

~ 7N
VF= 7 Sin 2yldn

for n.<1

for n,=0.5. (B13

Therefore, we obtain the explicit correlation lengBi2) for
these two special cases.

~ng for ng<l

sin2n/[4n(lla+ ald)] (14

fT:[ for n,=0.5.
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Q(X):  Imxe(—2po0),
¢-(x):  Imxe[0,2pp), (€2
¢+ (x):  Imxe(—2py,0].

The following identities are direct consequence of the
definitions:

Q(x—1i)
Q(x—(2po—
X ¢, (x—i(2pg—3))e P72,

A(X+i)=¢€(x) 1)i)d)_(X+i)

(C3
Q(x—(2po—1)i)
Q(x—i)

X ¢ (x—i)$_[x+i(2po—3) ]2

A(x—i)=(—1)N2+Neg(x)

Now we consider the second largest eigenvalue dgse
=N/2—1. We are in a position to utilize the knowledge of
zeros ofA,(x).

Consider the integral

f iInA (z)e'*%dz
C dZ 2 d

where C encircles the edges of ‘“square:”
[21,2,]U[25,23]U[23,24]U[24,2,] in a counterclockwise

We have also verified the extrapolations from the NLIE'smanner, where,=—o—i, z,=0—1i, zz=c+i, andz,=

agree with predictior{B12).

—oo+i. There is one zero ol ,(x) in the region inside’.

Finally we remark on the spin correlation. The main con-Thus Cauchy’s theorem is applied after proper modification
tribution to the transverse correlation function simply decay$s in Eq.(D4):

algebraically,

(0¥ (X))o (0))~ 132, (B15)

that has no oscillation term. Here’ takes thadenticalform
(B2). However, we have to useN=1 and AD=0 this

. = d e
2miek?= f_ TN Az(x—i)e' Ddx

= d Lo
—J d—XInAz(eri)e'k(X*"dx. (C4)

time. The difference in selection rules for these integers,
which originates from the difference in statistics, leads to aOne substitutes EC3) into the above equation and derives

conclusion

[

= 2 (B16)

The corresponding correlation length is given by Hg{L2),
replacingzg by 7s=3[Z(Kg)]?. One thus obtains different

correlation lengths simply according to the selection rules.

APPENDIX C: DERIVATION OF NLIE’s

For simplicity in notation we define
o(X)=a(x+iyy), €(X)=1+c(X),
(Cy)

(X)=a(X—iyy), €(X)=1+c(X).

That is, we forget additional shifts for a moment.
We identify the analytic strips

identities among the Eourier components of logarithmic de-
rivatives ofQ, €, and¢. Explicitly, we have

_~

ekPo- Dl el k] — ekPo* DAl ¢l k]
IQ[k]=—

4 sinf(py— 1)k coshk

ek@ro~ gl _[k]+ekdl ¢, [K]

2 coshk
iek(Potio
~ 2sini(py— 1)k coshk (€9
In the above we adopt a notation
» dIing(x) .
dle[k]:= f T()e'kxdx, (C6)

etc., as the Fourier component of the logarithmic derivatives.
On the other hand, from definitiof€C1), we have
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dic[k]=2d1¢_[Kk] ekPo si —1)k N (= sinhkuy sinh(py—1)k .
dicliJ=2dlo-{k] 7 sinftpo=1) '”Ags(x)‘:_ﬁf kcthksriEEO k) e dk
—2d1 ¢, [K] e~ (2P0~ 2K ginhk o Po
I, (x+2i)b_(x—2i), (C14a

—2dIQ[k] e~ (Po= Dk sinh(py—2)k, (C7)
and similarly fora\lc_[ K]. IN Agp(X) :=K*InA(X+17yq1)+KxInA(X—ivy,)
One substitutes EqC5) into Eq. (C7) to obtain a closed T i
equation among the Fourier modes of the auxiliary functions. +In tanhz(x— -~ (Cl4b
Using the explicit form for¢.. , we obtain
Taking the Trotter limitN— o after setting<=0, and using
. N sinhuyk sinh(pg—2)k the identity
I[k]=—27m = ———+ "(Po—2)
2 coshk 2 coshk sinh(py—1)k

_ esinh(py—2)k N“moc Ing.(2i)¢_(— 2')——'8 A, (C19
—di 2 coshk si —1)k R
costk sinf(po—1) we derive the first excited free energy as E}6).
sinh(py—2)k Next we consider the largest eigenvalue sedtge N/2.
2 Costk sinh(pg— 1)k (C8 In this case, the spinless fermion model shares the same
0 equations with the<XZ model. Then the following NLIE’s

By inverse transformation and integration owexe arrive at have been already derived in Ref. 15:

the NLIE’s. Note that the integration constant is determined 7BSiN27)

by the asymptotic values in Eq&.23 and(3.2h. Inag(x)=— U +F*In2p(X)
After introducing the shiftsy, ,, one obtains the identical 49 COS Tr(x—i )

NLIE’s in the main text, except for “driving terms,” as we K hz_ "

have not yet taken the Trotter linfit—oc. To be precise, the

+2might ke

driving term for Ina(x) is — F*InQAg(X+2i —i (y1+ y2))+ ﬂ’
2(po—1)
= sinhuyk ke (C16
(x=i71) i
f K coshk © vdk ©9 Inag(X)=— B Sz ) +F*In2o(x)

77 .
Due to the combination afy= — 8 sin 29/2x»N andN enter- 4n coshz—(x+ 172)

ing above, the Trotter limit is carried out analytically. Then 8
one ends up with Eq3.3). —Ex i (vt MPo
The expression for the eigenvalue is derived in a similar Ao =2 +i(ya+ y2)~ 2(po—1)’

way. One first notes the "inversion identity where auxiliary functionsi,, etc., are defined in a similar

~ - _ _ way to Eq.(3.1). Note that their asymptotic valugs|— oo
Ap(X+DA(x=1) == (X)) &(x),  (C10  are explicitly written as

where ao(X)=expBu), ao(x)=exp—Bu).  (C17)
G (X—1)Pp_(X+1) Through the above NLIE'sA(x) is described as
X):= " " Cll
YO= 5 o (=) (1D | o
INA1(X)=InAgdx) +K*InAo(X+iyy) +KxInRAo(X—iyy).
and (C19
Taking the Trotter limitN— oo, we obtain the free energy per
- Ap(X) sitef as
Ax(x)= (C12

a
tanh—(x—0) ¢, (X+2i)p_(x—2i) 1 1 1 ,
4 f:—EInAl(O)—ZAzeO—EK*InQLO(lyl)
is introduced to exclude the zeros &f(x) and to compen- 1
sate for the divergence of,(x) at x— *o. — ZK*InAo(—iyy), (C19
Then the left-hand side is ANZC in a strip b B
[—1,1] and also the right-hand side is ANZC in a narrow yhere ¢ is the well-known ground-state energy per site,
strip including the real axis. One thus can solve Eg{l0),

and obtain the expression o sinf2y
€=~ f_wK(X) cosh 2px—cos 25 4A (€20

IN Ax(x)=InAgdx)+InAg(x), (C13
Though we do not analyze Eq&C16) and (C19 here, they
where are implicitly used in the evaluation of the correlation length.
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FIG. 10. The trajectories of the additional zeros for the fi
fermion model. The lower zer never goes over the physical stri
while the upper on&’ never comes into the strip. In the cage
=1.0, both zeros moves #,6' =i at the low-temperature limit.

APPENDIX D: FREE FERMION MODEL

Here we consider the free energy and the correlatiori1

length for the free fermion model =0 (2= /2) in Eq.
(2.1). In this case we have ., (x*=4i)=(—1)"?¢. (x) and
Q(x*4i)=(—1)NeQ(x) from Eq. (2.53. Then Eq.(2.52
simplifies to

A(X)=Q(X)%, (D1)
where
e(X) = (x—2i) ¢ (x)elH2Pr
+(= 1)V (x+2i)p_(x)e”V2Be (D2
We can easily show that
Ax+D)A(x—i)=(—1)Nep(x+i)o(x—i). (D3)

The right-hand side is a known function, which is a distinct
feature of the free fermion model. It is convenient to modify

the functionA(x) as

_— A(x)
A= T2 e =21 Ca
satisfying
Ax+i)A(x=i)= (1) N2 Nef y(x) + yp(x) "
+2 coshiBu)], (D5)

where #/(x) was already defined in EGC11).

First we consider the free energy characterized by
largest eigenvalud ;(x). It lies in the sectoN,=N/2. The
Bethe ansatz rodix{"} 2}, Imx{" e[ - 1,1] are symmet-
ric with respect to the |mag|nary axis. The functignx) in
Eq.(D2) hasN zeros in Inx e[ — 2,2]: N/2 zeros{x; }J ] are

in the physical strip Inxe[—1,1], and the otherix }'\”2
are out of the strip. Ap(x) has a property
e(x+2i)],=(=1)N%e(x)| (D6)

we have
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ree FIG. 11. The temperature dependence of the correlation length
p, for the free fermion model.

X[ =xj| -, +2i. (D7)

From the BAE(2.54, {x{")} are completely equivalent to
X;}. Thereby one can shows from Efp1) thatA,(x) does
ot possess any zeros in the physical strip.

Since the functionA;(x) is ANZC Imxe[—1,1], we
have

INA1(x)={K*In[X+X"1+2 costi fu)]}(x). (D8)
Using the relations
nlllinm P(X)=exp| p
cosh=—
2
5 (D9)
lim A(0)=lim A(0),
N— e N— o
we obtain the free energy per sitas
1 1 2
——Iim In[A(0)]=——; In[2 coshi B cosy)
N— o 7718 0
+2coshipu)]lde, (D10

in agreement with Ref. 43.

Next we consider the correlation lengghfor <c ci). The
BAE roots {x{?)})*4"* relevant to the second Iargest eigen-
value are identical WIﬂ‘{X(l)}]lel, except that the largest
magnitude one<§q1,)2— 0 is absent. Them ,(x) possesses the
additional zerod in the physical strip. In the Trotter limig
is given by

the 2
0= — sinhl( : ) . (D11)
T T—1Lu
The corresponding zeré' through property(D7) is
0'= % g ht +2i D12
= —sin Tign) t2 (D12

The zero# (0') never goes ovefnever comes infothe
physical strip(see Fig. 10
ConsequentlyA,(x) can be expressed as
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Thus we have the correlation lengghfor <c]-Tci) as

—=—1n

COMMUTING QUANTUM TRANSFER-MATRIX APPROACH . ..

5201
|A2(x)|=‘Al(x)tanh;—T(x— a)‘. (D13)
! sinhl(%!ﬁ'u) +sinhl(w—l‘#”. (D14)

1 B
§ tan)‘{zsmh 1(7T_—|B,LL)

E

In Fig. 11 we plot the resultdEq. (D14)] for some fixed particle densities.
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