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Recurrent variational approach to the two-leg Hubbard ladder
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We applied the recurrent variational approach to the two-leg Hubbard ladder. At half filling, our variational
ansatz was a generalization of the resonating valence-bond state. At finite doping, hole pairs were allowed to
move in the resonating valence-bond background. The results obtained by the recurrent variational approach
were compared with results from density matrix renormalization group.@S0163-1829~99!00332-X#
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I. INTRODUCTION

In the hope to get a better understanding of strongly
teracting systems, there has been considerable interest in
der systems.1 These ladder systems have proven to be a
oretical wonderland, both analytically2 and numerically.3

However, much of the analytic work done on ladders h
been in weak coupling~or perturbatively in some parameter!,
namely because there are very few analytic methods
strong coupling. Exact diagonalization, Monte Carlo, a
density matrix renormalization group methods have been
primary tools for studying these systems at strong coupl
Each of these methods has both strengths and weakn
when considering the lattice sizes, temperatures, and
plings one can consider.

With the ability to fabricate these materials,4 ladders are
not just a theoretical playground. For example,
(VO)2P2O7, there are well separated two-leg ladders co
posed of VO4.5 Also, the cupratelike material SrCu2O3 con-
sists of weakly coupled CuO2 two-leg ladders,6 and the ma-
terial Sr2Cu3O5 consists of weakly coupled CuO2 three-leg
ladders.7

Recently, a powerful analytic method was developed
deal with strongly coupled quasi-one-dimensional system
the recurrent variational approach~RVA!.8–10This method is
similar in spirit to Wilson’s numerical renormalizatio
group11 and White’s density matrix renormalization grou
~DMRG!.12 The key idea in all of these methods is to bu
up the system by adding on sites at the boundary. Howe
the real power of the RVA is that, though analytic, the ph
ics of the problem is taken into account in an unbiased w
and elucidated quite clearly. For example, the importance
different configurations in the ground-state wave function
determined without any outside assumptions, and the phy
of these configurations is made clear. For a review of
RVA, see Ref. 10.
PRB 600163-1829/99/60~8!/5169~10!/$15.00
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In this paper, we apply the RVA to the two-leg Hubba
ladder at strong coupling and small dopings. Though a c
siderable amount of work has been done on the Hubb
ladder and many of its properties are known, we are unaw
of any work that has put this information together and co
structed a ground-state wave function. Our goal in this pa
is to provide a simple physical picture of what the grou
state might look like and to go ahead and construct a grou
state wave function.

The Hamiltonian of the two-leg Hubbard ladder is give
by

H52t(
i,s

~ci,s
† ci1x̂,s1h.c.!2t'(

i,s
~ci,s

† ci1ŷ,s1H.c.!

1U(
i

ni,↑ni,↓ , ~1!

where ci,s
† creates a fermion at sitei with spin s, ni,s

5ci,s
† ci,s , t is the hopping matrix element along the chain,t'

is the hopping matrix element perpendicular to the ch
~i.e., along the rung!, and U is the on-site Coulomb repul
sion. Sitei has coordinates (x,y) with 1<x<N andy51,2.
It will also be convenient to introduce the following tw
operators:

D i,j
† 5ci,↑

† cj,↓
† 1cj,↑

† ci,↓
† , ~2!

which creates a singlet across sitesi and j , and

D i
†5ci,↑

† ci,↓
† , ~3!

which creates a doubly occupied site.
The rest of the paper is organized as follows. In Sec.

we consider the half-filled case. In Sec. III, we consider
Hubbard ladder at small dopings. In Sec. IV, we present
results for the ground-state energies and compare w
5169 ©1999 The American Physical Society
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DMRG. Finally, in Sec. V we summarize our results a
present some concluding remarks.

II. HALF-FILLED HUBBARD LADDER

We begin with the half-filled ladder. What are the ingr
dients necessary to construct a wave function that capt
the physics of the half-filled Hubbard ladder? A trail of clu
has been laid by previous works. First of all, we know tha
strong coupling the half-filled Hubbard model is equivale
to the Heisenberg model. Secondly, it is known that the tw
leg Heisenberg ladder~and Hubbard ladder! have a spin gap
and short-range spin correlations. Furthermore, it has b
shown that the resonating valence bond~RVB! state captures
the essential physics of the two-leg Heisenberg ladder13,8

Hence, the RVB picture should capture the essential phy
of the half-filled Hubbard ladder at strong coupling. Thu
we propose a generalization of the RVB state as our va
tional ansatz.

A key property of the RVB state is that it is the exa
solution to the 232 Heisenberg plaquette. Therefore, w
base our generalized RVB state on the exact solution to
232 Hubbard plaquette. Since the 232 plaquette will serve
as the basis for our ansatz, we discuss it in detail below

It should be noted that the 232 plaquette has been th
basis for other work.14–16 In these approaches, the ladder
first broken up into plaquettes and each plaquette is dia
nalized. Then some method~contractor renormalization
group,14 exact diagonalization,15 or perturbation theory16! is
used to essentially ‘‘glue’’ the plaquettes back together int
ladder. These approaches, especially Refs. 14 and 15
similar to the real-space renormalization group methods
have been used on lattice models.17

In our approach we donot break up the ladder into
plaquettes; rather, we use the 232 plaquette as a way to
generalize the RVB state for the Hubbard model. The R
state for the Heisenberg model is a nonperturbative st
which is ~lattice! translationally invariant and consists of si
glets between all pairs of nearest-neighbor sites. Our ge
alized RVB state is also a nonperturbative,~lattice! transla-
tionally invariant state consisting of singlets between
pairs of nearest-neighbor sites. However, our general
RVB state for the Hubbard model also includes doubly
cupied sites. In the Heisenberg model, these doubly occu
states have already been integrated out, giving an effec
spin-spin interactionJ. The key idea of our approach is tha
using the 232 plaquette, the RVB and generalized RV
states can be generatedrecursively. ~This will be discussed in
more detail below.!

FIG. 1. Ground-state wave function for the 232 half-filled
plaquette. A circled link represents a singlet bond.~See text for a
full explanation of each state.!
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A. The 232 Plaquette

The ground state of the 232 plaquette is given by

uc0&5uw0&1a1 uw1&1a2 uw2&1a3 uw3&

1a4 uw4&1a5 uw5&, ~4!

where

uw0&5D (1,1),(1,2)
† D (2,1),(2,2)

† u0&,

uw1&5D (1,1),(2,1)
† D (1,2),(2,2)

† u0&,

uw2&5D (1,1)
† D (1,2)

† u0&1D (2,1)
† D (2,2)

† u0&,

uw3&5D (1,1)
† D (2,1)

† u0&1D (1,2)
† D (2,2)

† u0&,
~5!

uw4&5D (1,1),(1,2)
† D (2,1)

† u0&1D (1,1),(1,2)
† D (2,2)

† u0&

1D (2,1),(2,2)
† D (1,1)

† u0&1D (2,1),(2,2)
† D (1,2)

† u0&,

uw5&5D (1,1),(2,1)
† D (1,2)

† u0&1D (1,1),(2,1)
† D (2,2)

† u0&

1D (1,2),(2,2)
† D (1,1)

† u0&1D (1,2),(2,2)
† D (2,1)

† u0&.

uc0& is shown schematically in Fig. 1.
We will be mainly interested in the caset5t' . In Table I

we list the values of the parameters for several values oU
~with t5t'51).

Notice that the solution to the 232 plaquette~with t
5t') hasD4 symmetry. (D4 is the symmetry group of the
square.! However, the ground state doesnot transform in the
scalar representation ofD4; it transforms in theB2 represen-
tation of D4 . (B2 is the one-dimensional representation th
changes sign upon rotation by 90° and reflection about
diagonals.! B2 coincides with the standarddx22y2 symmetry.
The B2 representation is what forbids some configuratio
as those shown in Fig. 2, from appearing in the ground-s
wave function.

A few more words are in order about the ground-st
wave function. Notice thata1521 @i.e., the weight of the
horizontal singlets is equal to~minus! the weight of the ver-
tical singlets#. This is the RVB mechanism–the system low
ers its energy by resonating between horizontal and vert
singlets; a1 is the ‘‘RVB parameter.’’ Also, notice tha
ua2u,ua3u5O(a4

2). This will play a role in constructing the
ansatz for the half-filled ladder.

TABLE I. Values of the parameters for the half-filled 232
plaquette~with t5t'51), which give the exact ground state.

U a1 a3 a5 a2 a4

8 21.0 20.0762 20.3306 2a3 2a5

16 21.0 20.0221 20.1807 2a3 2a5

24 21.0 20.0101 20.1229 2a3 2a5

FIG. 2. States that theB2 representation prevents from appea
ing in the ground-state wave function of the half-filled plaquette
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B. The Ladder

In the approximation where we use the configurations
the 232 plaquette as the basis of our ansatz, a typical c
figuration for the ladder is shown in Fig. 3. Within this a
proximation, the ground state will still be a superposition
all possible configurations of the type shown in Fig.
Therefore, it seems like working with this kind of state w
be a formidable task. Fortunately, the RVA gives us
straightforward way of dealing with such a state–generat
recursively. Specifically, the RVA builds the ground state
a ladder withN1n rungs using the knowledge of the groun
states of a ladder withN,N11, . . . ,N1n21 rungs. This is
achieved by recursion relations that express the ground
uN1n& in terms of the ground states$uN1 i &% with i
50, . . . ,n21.8,10

Using these ingredients, we consider the following ans
for the half-filled Hubbard ladder

uN12& 5 uf0&N12uN11&1auf1&N12uN11&

1 buf2&N11,N12uN&1guf3&N11,N12uN&

1 juf4&N11,N12uN&1huf5&N11,N12uN&

1 duf6&N,N11,N12uN21&

1 «uf7&N,N11,N12uN21&, ~6!

which is shown schematically in Fig. 4.18 For completeness
the states in terms of the operators in Eqs. 2 and 3 are g
in Appendix A.

A few words are in order about the configurations in o
ansatz.~i! b, the weight of the horizontal bond~relative to
the vertical bond!, is the ‘‘RVB parameter.’’ For a true RVB
state, we would haveb521. Although we do not expec
b521, from work on the Heisenberg model the variation
parameters were shown to evolve smoothly with syst
size;8 we expectubu5O(1). ~ii ! Suppose we iterate the re
cursion relations once. Thenuf0& and uf1& ~and alsouf5&)

FIG. 3. Typical configuration appearing in the ground-st
wave function of the half-filled ladder.

FIG. 4. The RVA ansatz for the half-filled Hubbard ladder. No
that links or sites connected with a circle represent a singlet bo
f
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generate the terms shown in Fig. 5. In the ground state of
232 plaquette, the states in Fig. 5~b! have weightO(a), the
states in Fig. 5~c! have weightO(a2), and the states in Fig
5~d! do not appear. Since we expect the parameters to ev
smoothly,8 we expect h'2a2. (h is behaving as a
‘‘counter-term’’; it’s job is to subtract off thea2 contribution
from uf1&.! ~iii ! Even though we no longer haveD4 symme-
try, initial calculations showed that the states in Fig. 2~b! do
not appear in the ground state of the Hubbard ladder.~This is
another indication that the parameters evolve smoothly fr
the 232 case to the ladder.! Therefore, we do not conside
them in what follows. ~iv! Since the configurations
uf6&N,N11,N12 and uf7&N,N11,N12 appear as intermediat
states for the resonances shown in Fig. 6, it is necessar
include these states in the ansatz to give us an RVB s
This can easily be seen by comparing the weights of
coefficients as shown in Table II~see below!.

In order to compute the values of the coefficients, we tr
them as variational parameters and minimize the grou
state energy with respect to these parameters. The gro
state energy and other quantities appear as recursion
tions. It will be useful to define

EN5^NuHNuN&,

DN5^N21uN^f0uHNuN&,

CN5^N21uN^f1uHNuN&,
~7!

ZN5^NuN&,

YN5^N21uN^f0uN&,

XN5^N21uN^f1uN&.

They are supplemented by the initial conditions

Z051, Y050, X050,
~8!

E050, D050, C050.

To determine the values for the variational parameters
a given~finite! value ofN, we iterate the recursion relation
and minimize the quantityEN /ZN numerically. The actual

d.

FIG. 5. States generated byuf0& and uf1& ~and alsouf5&) by
running the recursion relations once.

FIG. 6. Other ‘‘resonances,’’ which play an important role
the RVB picture.
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recursion relations are quite unwieldly; we have relega
them, as well as their derivation, to Appendix A.

The values of the variational parameters for various v
ues ofU ~with t5t'51) are shown in Table II. The result
were obtained on a 2332 ladder. Notice that~i! ubu5O(1),
and we have produced an RVB state.~ii ! uhu5O(a2), andh
is indeed behaving as a counterterm.~iii ! udu,u«u'a/3.
Therefore, these configurations are non-negligible, sugg
ing that the resonances shown in Fig. 6 are important to
RVB picture.

III. THE DOPED HUBBARD LADDER

Now, we consider the doped Hubbard ladder. In Ref.
was shown that hole pairs moving through an RVB ba
ground captures the essential physics of thet2J ladder at
small dopings. Since thet2J model is the largeU limit of
the Hubbard model, we expect this picture to hold for t
Hubbard model at largeU and small dopings. Therefore, w
consider an ansatz of hole pairs moving through our ge
alized RVB background for the Hubbard ladder at small d
ings.

Since the structure of the hole pairs is based on the e
solution to the 232 plaquette with 2 holes, we consider th
232 case in detail below.

A. The 232 Plaquete with Two Holes

The ground state of the 232 plaquette with 2 holes is
given by

uc0
h&5uw0

h&1b1 uw1
h&1b2 uw2

h&1b3 uw3
h&, ~9!

where

uw0
h&5D (1,1),(1,2)

† u0&1D (2,1),(2,2)
† u0&,

uw1
h&5D (1,1),(2,1)

† u0&1D (1,2),(2,2)
† u0&,

~10!
uw2

h&5D (1,1),(2,2)
† u0&1D (2,1),(1,2)

† u0&,
ss

u
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i

n
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d
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st-
e
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uw3
h&5D (1,1)

† u0&1D (1,2)
† u0&1D (2,1)

† u0&1D (2,2)
† u0&.

uc0
h& is shown schematically in Fig. 7.
In Table III we list the values of the parameters for se

eral values ofU ~with t5t'51).
Notice that the solution to the 232 case~with t5t') has

D4 symmetry. However, now the ground state transforms
the scalar representation ofD4. Recalling that the ground
state of the half-filled ladder transforms in theB2 represen-
tation, we see that the operator that creates a hole pair o
the undoped system hasdx22y2 symmetry.19 These facts con-
tinue to be true for low doping in larger ladders. Also, noti
that b35O(a) wherea is from the half-filled ladder. This
will play a role in writing our ansatz for the doped ladder

B. The Ladder

In the approximation where we use the configurations
the generalized RVB state as well as the hole pair confi
rations, a typical configuration for the doped ladder is sho
in Fig. 8. In this approximation, the ground state will still b
a superposition of all such configurations shown in Fig.
Fortunately, we can generate such a staterecursively. Spe-
cifically, we build the ground state of a ladder withN1n
rungs andP1m holes using the knowledge of the groun
states of a ladder withN,N11, . . . ,N1n21 rungs and
P,P11, . . . ,P1m holes. This is achieved by recursion r
lations that express the ground stateuN1n,P1m& in terms
of the ground states$uN1 i ,P1 j &% with i 50, . . . ,n21 and
j 50, . . . ,m.9,10

Using the above ingredients, we consider the followi
ansatz for the doped Hubbard ladder

FIG. 7. Ground-state wave function for the 232 plaquette with
two holes.
uN12 P11&5uf0&N12uN11 P11&1auf1&N12uN11 P11&1buf2&N11,N12uNP11&1guf3&N11,N12uNP11&

1juf4&N11,N12uNP11&1huf5&N11,N12uNP11&1duf6&N,N11,N12uN21 P11&

1«uf7&N,N11,N12uN21 P11&1uf0
h&N12uN11 P&1luf1

h&N11,N12uNP&1zuf2
h&N11,N12uNP&

1muf3
h&N,N11,N12uN21 P&1nuf4

h&N,N11,N12uN21 P&, ~11!
ec-
the
f
be

tz,
the
will
which is shown schematically in Fig. 9. For completene
the states in terms of the operators in Eqs.~2! and ~3! are
given in Appendix B.

A few words are in order about the configurations in o
ansatz.~i! The ansatz contains the configurations for t
RVB state, as well as the configurations for holes bound
pairs. The hole pair states are based on the exact solutio
the 232 plaquette with 2 holes, and our ansatz reprodu
this exact solution. ~ii ! The states uf3

h&N,N11,N12 and
,

r

n
to
s

uf4
h&N,N11,N12 extend over three rungs. These states are n

essary to allow the hole pairs to move smoothly through
RVB background.~iii ! Note that physically, the picture o
hole pairs moving through an RVB background can only
appropriate for low dopings.

To compute the values of the coefficients in our ansa
we treat them as variational parameters and minimize
ground-state energy with respect to these parameters. It
be useful to define
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EN,P5^NPuHNuNP&,

DN,P5^N21 PuN^f0uHNuNP&,

CN,P5^N21 PuN^f1uHNuNP&,
~12!

ZN,P5^NPuNP&,

YN,P5^N21 PuN^f0uNP&,

XN,P5^N21 PuN^f1uNP&.

They are supplemented by the initial conditions

ZN,P5N51, YN,P5N50, XN,P5N50,

EN,P5N50, DN,P5N50, CN,P5N50, ~13!

FN,P,P50 for F5Z,Y,X,E,D,C.

To determine the values for the variational parameters
given ~finite! values ofN and P, we iterate the recursion
relations and we minimize the quantityEN,P /ZN,P . The ac-
tual recursion relations are quite unwieldly; we have r
egated them, as well as their derivation, to Appendix B.

What is the nature of the state we have constructed
order to answer this question, we plotb, l, andz vs doping.
These parameters contain most of the physics of our an
b is the ‘‘RVB parameter’’;l andz are the weights of the
hole pair configurations. The results were obtained on
332 ladder.

First, consider Fig. 10~a!. b begins atO(21) and in-
creases~i.e., becomes less negative! with doping until a criti-
cal doping,xc , where it vanishes. Beyond this doping,b is
positive. This has also been found for thet2J ladder.9 Upon
doping, the hole pairs cause destructive interference wh
degrades the RVB mechanism. Forx.xc , this destructive
interference has drivenb positive, and it is no longer appro
priate to think of our state as describing hole pairs mov
through an RVB background.9

Similar to the t-J ladder, the difference betweenx,xc
and x.xc can be attributed to two different internal stru
tures of the hole pairs. Forx,xc , the hole pairs have a

TABLE II. Values of the variational parameters for a 2332
half-filled ladder witht5t'51.

U a b g j h d «

8 .3296 2.8710 2.0782 2.2877 2.0938 .1031 .1031
16 .1848 2.8800 2.0243 2.1606 2.0299 .0639 .0639
24 .1265 2.8817 2.0113 2.1097 2.0142 .0451 .0451

FIG. 8. Typical configuration appearing in the ground-st
wave function of the doped ladder.
r

-

In

tz.

2

h

g

dx22y2 structure relative to the RVB background. Forx
.xc , the hole pairs have ans-wave-like symmetry relative
to their background.9

Now, consider Figs. 10~b! and 10~c!. First of all, notice
that l.z. This shows the importance of the diagonal fru
trating bonds for all dopings.20 Also, notice thatl andz both
reach their maximum atx5 1

2 . At x5 1
2 the system is essen

tially a large scale reproduction of the 232 plaquette with 2
holes.9 Indeed, the values ofl andz at x5 1

2 are similar to
their values for the 232 plaquette.

IV. GROUND-STATE ENERGIES

First, we show results for energy per site vsU in Fig. 11.
For comparison, DMRG results are presented for the sa
set of parameters. In our DMRG runs, we kept up to 3
states with a maximum discarded weight of 1.8831024 for
U54; all higher values ofU had lower discarded weights.21

At half-filling, as we would expect, our ansatz is mo
accurate for largeU and larget' . The ground-state energ
per site for a 2332 half-filled ladder as a function ofU for
varioust' is shown in Fig. 11~a!. For U58 andt'51, the
energy from the RVA agrees with DMRG to within 90% an
improves asU or t' is increased. Up to aboutU510, longer
bonds~extending over at least 3 rungs! are coming into play.
These states should be included in the ansatz to further
prove the overlap with the ground state. AtU516 andt'
51, our ansatz gives a ground-state energy within 94%
the DMRG result.

It should be noted that for the Heisenberg ladder,
RVB state gives a ground-state energy within 96% of tr
ground-state energy, obtained from DMRG.8 A recent

TABLE III. Values of the parameters for the 232 plaquette
with two holes~with t5t'51), which gives the exact ground stat

U b1 b2 b3

8 1.0 1.2470 0.3569
16 1.0 1.3131 0.2100
24 1.0 1.3420 0.1483

FIG. 9. The RVA ansatz for the doped Hubbard ladder.
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DMRG study of different ladder models found that the Hu
bard model and Heisenberg model begin to agree only
rather largeU (U'16).22 Therefore, it is not surprising tha
the RVB picture becomes as good for the Hubbard mode
it is for the Heisenberg model atU'16.

Figure 11~b! shows the ground-state energy of the RV
ansatz as a funtion ofU for various t' for a doping ofx

FIG. 10. ~a! b vs doping,x, for a 2332 ladder atU58 ~solid
line!, U512 ~dashed line!, and U516 ~dashed-dotted line!. ~b!
Same as~a! for l. ~c! Same as~a! for z.
-
r

s
51

8 on a 2332 ladder. Again, we show energies obtain
from DMRG for the same set of parameters. ForU516 and
t'51, the two energies agree to only within 77% and im
proves slightly ast' is increased. For example, atU516 and
t'52, the overlap of energies increases to 87%. Further

FIG. 11. ~a! Ground-state energy per site at half filling (x50)
vs U for t'51 ~solid line!, t'52 ~dashed line!, t'53 ~dashed-
dotted line!. For comparison, DMRG results~shown as3) are pre-
sented for the same set of parameters.~b! Same as~a! except for
x5

1
8 . ~c! Same as~a! except forx5

1
4 .
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crepancies occur when the doping is increased tox51/4 @see
Fig. 11~c!#.

The differences in ground-state energies occur due to
importance of ‘‘pair-breaking’’ configurations, like thos
shown in Fig. 12. The weights of these types of states
crease as we move away from half-filling. Consequently
further improve the RVA ansatz, such states must be
cluded in the wave function. Note also that our ansatz wo
be essentially exact for the case where hole pairs are
localized on a rung. For thet2J model with Jrung
@Jchain ,t, pairs are well localized along a rung, and t
ground state is essentially a product of rung singlets and r
hole pairs. However, for the Hubbard model at strong c
pling ~i.e., U@t' ,t), this is not the case. Holes would a
ways rather occupyadjacentrungs, even fort'@t, since this
minimizes the Coulomb energy from doubly occupied sit
To see this consider a 232 plaquette with 2 holes; lett
!t' and t,t'!U. With 1 particle on each rung~i.e., one
hole on each rung!, the ground-state energy is approximate
22t' ; with both particles on the same rung~i.e., both holes
on the same rung!, the ground-state energy is approximate
2J524t'

2 /U. Therefore, at large U, the particles wou
rather occupy adjacent rungs.~See Fig. 13.!

The situation we have with the doped ladder is similar
what we had for the half-filled ladder in the early stages
this paper. We found that without the statesuf6& and uf7&,
which extend over three rungs~see Fig. 4!, the RVA did not
accurately reproduce the ground state even at extremely l
U. However, once we includeduf6& and uf7&, the results
from the RVA improved drastically. Based on these resu
we expect the RVA to greatly improve by including th
states shown in Fig. 12.

In Fig. 14, we plot energy per site vs doping for a
332 ladder forU58 andU516 ~with t'51) in order to
better understand the region of validity of our RVA ansa
Again, we see good agreement with DMRG results at h
filling. However, as soon as we dope, configurations l
those shown in Fig. 12 are also important.

It is interesting to note that the idea of hole pairs movi
through the RVB background seems to more accurately
resent the ground state of thet-J model than the Hubbard
model. Using the well-known relation at strong coupling,J
'4t2/U, the RVA agrees to within 92% of the true groun

FIG. 12. ‘‘Pair-breaking’’ configurations that are playing
rather large role in the ground state of the doped Hubbard ladd

FIG. 13. Fort!t' , hopping along the rung dominates. By pu
ting the particles~or holes! on adjacent rungs, we can have th
situation shown in~a!. However, by putting both particles~or holes!
on the same rung, we get the situation shown in~b!, which is ener-
getically unfavorable.
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state energy of thet-J ladder forJ50.5 (U58) at a doping
of x5 1

8 . There are two ways to interpret this; either thet-J
model supports pairing better than the Hubbard model, or
must view the hole pairs in the Hubbard model as havin
larger size~i.e., larger coherence length!.

V. CONCLUDING REMARKS

To summarize, we applied the recurrent variational a
proach to the two-leg Hubbard ladder. Our results were
qualitative agreement with previous results on the Heis
berg andt-J ladders. For the half-filled ladder, the genera
ized RVB state became more accurate in the paramete
gime where the Hubbard and Heisenberg ladders were sh
to coincide. However, comparison of the RVA with DMR
for the doped ladder indicates that hole pairs moving throu
an RVB background is incomplete. ‘‘Pair-breaking’’ con
figurations are also necessary to capture the essential p
ics.

As we saw, the strength of the RVA is the ease in wh
we could extract the physics. We were able to see the imp
tance of the configurations in our ansatz quite easily. F
thermore, the RVA has a natural way in which to inclu
longer bonds in the ansatz to more accurately represen
ground-state wave function. The importance of such ad
tional states to the physics of the ladder is not easily pro
with other techniques.

Generalized RVB states similar to ours have been con
ered previously for the half-filled Hubbard ladder.23 Fano
et al. were even able to produce an ansatz coming wit
98% of the true ground state energy for a~half filled! 234
ladder atU516. ~Their ansatz included diagonal bonds
length A5.! However, none of these works considered t
doped case. Using the approach in Ref. 17~in terms of dimer
coverings!, it appears to be a formidable task to consid
doping. This is one of the strengths of the RVA; doping
handled rather easily. Even though our results for the do
ladder showed that hole pairs moving through an RVB ba

r.

FIG. 14. Ground-state energy per site vs doping for a 2332
ladder ~with t5t'51) for U58 ~solid line! and U516 ~dashed-
dotted line!. For comparison, DMRG results forU58 (3) andU
516 ~* ! are shown.
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ground is incomplete, the RVA offers a straightforward w
to improve the situation, namely include ‘‘pair-breaking
configurations~shown in Fig. 12! in the ansatz.

Another ~and probably better! way to improve the situa-
tion for the doped ladder is to consider a matrix prod
ansatz.24,25A matrix product ansatz can be generated by fi
order recursion relations.25 In the RVA, the size of the hole
pairs are fixed.~In our case, the hole pairs had a size of o
lattice spacing.! However, by construction, the matrix prod
uct ansatz takes into account hole pairs ofarbitrary size. We
leave this~and other possibilities! for future work.
t
t

e
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APPENDIX A: THE HALF-FILLED LADDER

The states in the ansatz for the half-filled ladder of Eq.~6! are given by

uf0&N125D (N12,1),(N12,2)
† u0&N12 ,

uf1&N125D (N12,1)
† u0&N121D (N12,2)

† u0&N12 ,

uf2&N11,N125D (N11,1),(N12,1)
† D (N11,2),(N12,2)

† u0&N11,N12 ,

uf3&N11,N125D (N11,1)
† D (N11,2)

† u0&N11,N121D (N12,1)
† D (N12,2)

† u0&N11,N2
,

~A1!

uf4&N11,N125D (N11,1),(N12,1)
† D (N11,2)

† u0&N11,N121D (N11,1),(N12,1)
† D (N12,2)

† u0&N11,N12

1D (N11,2),(N12,2)
† D (N11,1)

† u0&N11,N121D (N11,2),(N12,2)
† D (N12,1)

† u0&N11,N12 ,

uf5&N11,N125D (N11,1)
† D (N12,2)

† u0&N11,N121D (N11,2)
† D (N12,1)

† u0&N11,N12 ,

uf6&N,N11,N125D (N,1),(N12,2)
† D (N11,1),(N12,1)

† D (N,2)
† u0&N,N11,N121D (N,1),(N12,2)

† D (N11,1),(N12,1)
† D (N11,2)

† u0&N,N11,N12

1D (N,2),(N12,1)
† D (N11,2),(N12,2)

† D (N,1)
† u0&N,N11,N121D (N,2),(N12,1)

† D (N11,2),(N12,2)
† D (N11,1)

† u0&N,N11,N12 ,

uf7&N,N11,N125D (N,1),(N12,2)
† D (N,2),(N11,2)

† D (N11,1)
† u0&N,N11,N121D (N,1),(N12,2)

† D (N,2),(N11,2)
† D (N12,1)

† u0&N,N11,N12

1D (N,2),(N12,1)
† D (N,1),(N11,1)

† D (N11,2)
† u0&N,N11,N121D (N,2),(N12,1)

† D (N,1),(N11,1)
† D (N12,2)

† u0&N,N11,N12 .

To derive the recursion relations, the following inner products are necessary:

N12^f0uf0&N1252, N12^f1uf1&N1252, N11,N12^f2uf2&N11,N1254,

N11,N12^f3uf3&N11,N1252, N11,N12^f4uf4&N11,N1258, N11,N12^f5uf5&N11,N1252,

N,N11,N12^f6uf6&N,N11,N12516, N,N11,N12^f7uf7&N,N11,N12516,

^N11uN12^f0uf2&N11,N12uN&5~21!^N11uf0&N11uN&, ~A2!

^N11uN12^f1uf5&N11,N12uN&5^N11uf1&N11uN&,

^N11uN12^f0uf6&N,N11,N12uN21&5~21!^N11uf4&N,N11uN21&,

^NuN11,N12^f4uf7&N,N11,N12uN21&5~24!^Nuf0&NuN21&.

Using these inner products, a straightforward calculation gives the following~coupled! recursion relations:

ZN125~212a2!ZN1122bYN1112ahXN111~4b212g218j212h2!ZN1~16d2116«2216jd!ZN2128j«YN

18d«YN21 ,
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YN1252ZN112bYN1128jdZN2114d«YN21 ,

XN1252aZN111hXN11 ,
~A3!

EN125~212a2!EN111~28t'a12Ua2!ZN1122bDN1112ahCN111~8tj14t'ab!YN111~24t'h28taj

12Uah!XN111~4b212g218j212h2!EN1~232tbj14Ug2216tgj18Uj2216tjh14Uh2!ZN1~16tbd

28t«18ta2«116tb«18tg«28Uj«18th«28td!YN18tadXN1~32tb«116Ud2116U«2132tbd116tgd

216Ujd116thd132t'adj!XN2128j«DN1~16d2116«2216dj!EN2118d«DN211~8Ud«216t'ad«!YN21 ,

DN1252EN1124t'aZN112bDN1114tjYN1122t'hXN111~24t«24td!YN14tadXN1~16tbd18tgd28Ujd

18thd116tb«!ZN2128jdEN2114d«Dn2114Ud«YN21 ,

CN1252aEN111~24t'12Ua!ZN1112t'bYN111~24tj1Uh!XN111hCN11116t'jdZN2128t'd«YN2114ta«YN .

APPENDIX B: THE DOPED LADDER

For the doped ladder@see Eq. ~11!#, uf0&N12 , uf1&N12 , uf2&N11,N12 , uf3&N11,N12 , uf4&N11,N12 , uf5&N11,N12 ,
uf6&N,N11,N12, anduf7&N,N11,N12 are the same as the half-filled case, and

uf0
h&N125u0&N12 ,

uf1&N11,N125D (N11,1),(N12,2)
† u0&N11,N121D (N12,1),(N11,2)

† u0&N11,N12 ,

uf2&N11,N125D (N11,1),(N12,1)
† u0&N11,N121D (N11,2),(N12,2)

† u0&N11,N12 , ~B1!

uf3&N,N11,N125D (N,1),(N12,1)
† D (N11,2),(N12,2)

† u0&N,N11,N121D (N,2),(N12,2)
† D (N11,1),(N12,1)

† u0&N,N11,N12 ,

uf4&N,N11,N125D (N,1),(N12,1)
† D (N,2),(N11,2)

† u0&N,N11,N121D (N,2),(N12,2)
† D (N,1),(N11,1)

† u0&N,N11,N12 .

To derive the recursion relations, we use the inner products from the half-filled case as well as the the following:

N12^f0
huf0

h&N1251, N11,N12^f1
huf1

h&N11,N1254, N11,N12^f2
huf2

h&N11,N1254,

N,N11,N12^f3
huf3

h&N,N11,N1258, N,N11,N12^f4
huf4

h&N,N11,N1258,
~B2!

^N11P11uN12^f0uf3
h&N,N11,N12uN21P&5~21!^N11P11uf1

h&N,N11uN21P&,

^NPuN11,N12^f1
huf4

h&N,N11,N12uN21P&5~22!^NPuf0&NuN21P&.

Using these inner products, a straightforward calculation gives the following~coupled! recursion relations:

ZN12,P115~212a2!ZN11,P1122bYN11,P1112ahXN11,P111~4b212g218j212h2!ZN,P111~16d2116«2

216jd!ZN21,P1128j«YN,P1118d«YN21,P111ZN11,P1~4l214z2!ZN,P24lnYN,P1~8m218n2

28lm!ZN21,P14mnYN21,P ,

YN12,P1152ZN11,P112bYN11,P1128jdZN21,P1114d«YN21,P1124mlZN21,P12mnYN21,P ,

XN12,P1152aZN11,P111hXN11,P11 ,
~B3!

EN12,P115~212a2!EN11,P111~28t'a12Ua2!ZN11,P1122bDN11,P1112ahCN11,P111~8tj14t'ab!YN11,P11

1~24t'h28taj12Uah!XN11,P111~4b212g218j212h2!EN,P111~232tbj14Ug2216tgj18Uj2

216tjh14Uh2!ZN,P111~16tbd28t«18ta2«116tb«18tg«28Uj«18th«28td!YN,P1118tadXN,P11

1~32tb«116Ud2116U«2132tbd116tgd216Ujd116thd132t'adj!XN21,P1128j«DN,P111~16d2

116«2216dj!EN21,P1118d«DN21,P111~8Ud«216t'ad«!YN21,P111EN11,P1~4l214z2!EN,P1~8m2

18n228lm!EN21,P24tlYN11,P24tzXN11,P1~216t'lz28tl28taz!ZN,P1~4tn18t'zn14tm14tn!YN,P
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1~216tbn18tm116t'zm116t'alm216tbm!ZN21,P24lnDN,P14mnDN21,P28t'amnYN21,P ,

DN12,P1152EN11,P1124t'aZN11,P112bDN11,P11 1 4tjYN11,P1122t'hXN11,P111~24t«24td!YN,P11

14tadXN,P111~16tbd18tgd28Ujd18thd116tb«!ZN21,P1128jdEN21,P1114d«DN21,P11

14Ud«YN21,P1124tlZN,P1~2tn12tm!YN,P24lmEN21,P12mnDN21,P1~4tm18t'zm!ZN21,P ,

CN12,P1152aEN11,P111~24t'12Ua!ZN11,P1112t'bYN11,P111~24tj1Uh!XN11,P111hCN11,P11

116t'jdZN21,P1128t'd«YN21,P1114ta«YN,P1124tzZN,P18t'lmZN21,P24t'mnYN21,P .
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Östlund and S. Rommer, Phys. Rev. B55, 2164~1997!.

25J. M. Roman, G. Sierra, J. Dukelsky, and M. A. Martin-Delgad
J. Phys. A31, 9729~1998!.


