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We applied the recurrent variational approach to the two-leg Hubbard ladder. At half filling, our variational
ansatz was a generalization of the resonating valence-bond state. At finite doping, hole pairs were allowed to
move in the resonating valence-bond background. The results obtained by the recurrent variational approach
were compared with results from density matrix renormalization grpsP163-18299)00332-X]

I. INTRODUCTION In this paper, we apply the RVA to the two-leg Hubbard
ladder at strong coupling and small dopings. Though a con-
In the hope to get a better understanding of strongly insiderable amount of work has been done on the Hubbard
teracting systems, there has been considerable interest in |d@dder and many of its properties are known, we are unaware
der systems.These ladder systems have proven to be a theof any work that has put this information together and con-
oretical wonderland, both analyticaflyand numerically. ~ Structed a ground-state wave function. Our goal in this paper
However, much of the analytic work done on ladders hadS to provide a simple physical picture of what the ground
been in weak couplingor perturbatively in some parameter state might look I_|ke and to go ahead and construct a ground-
namely because there are very few analytic methods atiele wave function. o
strong coupling. Exact diagonalization, Monte Carlo, and The Hamiltonian of the two-leg Hubbard ladder is given
density matrix renormalization group methods have been '[hBy
primary tools for studying these systems at strong coupling.
Each of these methods has both strengths and weaknessesH=—tE (CiT,sCi+>”<,s+ h'C')_tiiEs (ci’fsci+9,s+ H.c)

when considering the lattice sizes, temperatures, and cou- i,s
plings one can consider.
With the ability to fabricate these materifl&adders are +U N |, (1)
not just a theoretical playground. For example, in [
(VO),P,0;, there are well separated two-leg ladders com- +

where c; ¢ creates a fermion at sité with spin's, n;
ICISCLS, tis the hopping matrix element along the chdin,
is the hopping matrix element perpendicular to the chain

(i.e., along the rung and U is the on-site Coulomb repul-

posed of VQ.° Also, the cupratelike material SrgD; con-
sists of weakly coupled CuQwo-leg ladder$,and the ma-
terial SL,CuzO5 consists of weakly coupled CyQhree-leg

ladders’ : . . i
Recently, a powerful analytic method was developed too!ON-: Sitei has coordlnatesx(y)_wnh I=x<N andyfl,z.
It will also be convenient to introduce the following two

deal with strongly coupled quasi-one-dimensional systems— )
the recurrent variational approatRVA).2-1°This method is ~ OPerators:
similar in spirit to Wilson’s numerical renormalization Pttt
group! and White’s density matrix renormalization group A= CitChu T Gy s @
(DMRG).*? The key idea in all of these methods is to build \yhich creates a singlet across siteandj, and

up the system by adding on sites at the boundary. However,

the real power of the RVA is that, though analytic, the phys- Di=cl.cf 3

ics of the problem is taken into account in an unbiased way Lo

and elucidated quite clearly. For example, the importance ofvhich creates a doubly occupied site.

different configurations in the ground-state wave function is The rest of the paper is organized as follows. In Sec. I,
determined without any outside assumptions, and the physiage consider the half-filled case. In Sec. Ill, we consider the
of these configurations is made clear. For a review of thedubbard ladder at small dopings. In Sec. IV, we present our
RVA, see Ref. 10. results for the ground-state energies and compare with
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DMRG. Finally, in Sec. V we summarize our results and TABLE I. Values of the parameters for the half-filedx2

present some concluding remarks. plaquette(with t=t, =1), which give the exact ground state.
U a; as as a, ay

Il. HALF-FILLED HUBBARD LADDER 8 —1.0 —0.0762 —0.3306 —ay —ag

. . ] . 16 —-1.0 —0.0221 —0.1807 —a —a

We begin with the half-filled ladder. What are the ingre- s s

9 9 24 -1.0 —0.0101 —-0.1229 —az —ag

dients necessary to construct a wave function that captures
the physics of the half-filled Hubbard ladder? A trail of clues
has been laid by previous works. First of all, we know that at A. The 2x 2 Plaquette
strong coupling the half-filled Hubbard model is equivalent
to the Heisenberg model. Secondly, it is known that the two-

The ground state of the>22 plaquette is given by

leg Heisenberg laddéand Hubbard laddg¢have a spin gap lWo)=leo)+a; |e1)+a, |e)+as |es)
and short-range spin correlations. Furthermore, it has been
shown that the resonating valence b@R¥B) state captures tay |es)t+as |es), (4)

the essential physics of the two-leg Heisenberg ladt®r. \yhere
Hence, the RVB picture should capture the essential physics

of the half-filled Hubbard ladder at strong coupling. Thus, |(P0>:Azrl,l),(l,2)A22,l),(2,2JO>’

we propose a generalization of the RVB state as our varia-

tional ansatz. |(Pl>:Azl,l),(Z,l)Agl,Z),(Z,zJo)!
A key property of the RVB state is that it is the exact

solution to the 22 Heisenberg plaquette. Therefore, we |@2)=D{11)D{12/0)+ D 1D 5/0),

base our generalized RVB state on the exact solution to the

2X 2 Hubbard plaquette. Since thex2 plaquette will serve |@3)=D{1.D {5100+ D1 2D (50},

as the basis for our ansatz, we discuss it in detail below. N N s N (5)
It should be noted that the>22 plaquette has been the le)=A(11),12P 2,210+ A1), 1,2P 2.2/ 0)

basis for other work*~1In these approaches, the ladder is

+A] L0y +A] 1 0),
first broken up into plaquettes and each plaquette is diago- @.e2P a0 Aey 2P a2l0)

nalized. Then some metho¢contractor renormalization —Af t 10+ AT t 10
group!* exact diagonalizatiolt, or perturbation theor) is [€s)=801,21P 210 T A1, 2aP 22]0)
used to essentially “glue” the plaquettes back together into a + AIl,2),(2,2PIl,1)|O>+ Azl,z),(2,2P22,1)|o>'

ladder. These approaches, especially Refs. 14 and 15, rl(z ) is shown schematically in Fig. 1
similar to the real-space renormalization group methods that We will be mainly interested in the case't, . In Table |

have been used on lattice modéls. we list the values of the parameters for several valueld of
In our approach we daot break up the ladder into (with t=t, =1) P
=t, =1).

plaquettes; rather, we use the<2 plaquette as a way to Notice that the solution to the 22 plaquette(with t

generalize the RVB state for the Hubbard model. The RVB_

state for the Heisenberg model is a nonperturbative state_,tl) hasD, symmetry. D, is the symmetry group of the

which is (lattice) translationally invariant and consists of sin- squlare). Howevetr, Jhe gfrou?(tj statfe do‘*.’t ttrserésform in the
glets between all pairs of nearest-neighbor sites. Our gene?—@l ar representation Gy, it transftorms in 2 represen-
alized RVB state is also a nonperturbatiyiattice) transla- tation OfD‘." (B, is the one—d|menS|onaI represgntatlon that
tionally invariant state consisting of singlets between a”c_hangesi sgn upon drotatlpﬂ ?}y 90 gmd reflection about the
pairs of nearest-neighbor sites. However, our generalize§'29°na $. B, coincides with the standamiz_,2 symmetry.

RVB state for the Hubbard model also includes doubly oc-! "€ B2 répresentation is what forbids some configurations,
cupied sites. In the Heisenberg model, these doubly occupied® 110S€ shown in Fig. 2, from appearing in the ground-state
states have already been integrated out, giving an effectiy§¥@ve function. .

spin-spin interactiod. The key idea of our approach is that, * féw more words are in order about the ground-state
using the 2 plaquette, the RVB and generalized RvB VaV€ function. Notice thad,=—1 [i.e., the weight of the

states can be generatetursively (This will be discussed in  norizontal singlets is equal taninus the weight of the ver-
more detail below. tical singletd. This is the RVB mechanism—the system low-

ers its energy by resonating between horizontal and vertical
singlets; a; is the “RVB parameter.” Also, notice that

_ lay|,|as|=O(a3). This will play a role in constructing the
e e “"(D*[ﬁ)“(ﬂ*ﬁ) ansatz for the half-filled ladder.
Ly '“——’ ’ | Al 1 Al
+ay + + + +as + + K
OROD-CD0D o) oSN

U | Al
vow )] Y &

FIG. 1. Ground-state wave function for thex2 half-filled
plaquette. A circled link represents a singlet bo(fee text for a FIG. 2. States that thB, representation prevents from appear-
full explanation of each stafe. ing in the ground-state wave function of the half-filled plaquette.
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FIG. 3. Typical configuration appearing in the ground-state
wave function of the half-filled ladder.

FIG. 5. States generated bg,) and|¢,) (and also|¢s)) by
B. The Ladder running the recursion relations once.

In the approximation where we use the configurations of -
the 2x 2 plaquette as the basis of our ansatz, a typical condenerate the terms shown in Fig. 5. In the ground state of the

figuration for the ladder is shown in Fig. 3. Within this ap- 22 Plaquette, the states in Fig'k? have weightO(a), the
proximation, the ground state will still be a superposition ofStates in Fig. &) have weightO(«), and the states in Fig.

all possible configurations of the type shown in Fig. 3.5(d) do notappear. Since we e;<pect the parameters to evolve

8 — . .
Therefore, it seems like working with this kind of state will SMoothly; we expect n~—a”. (7 is bezhavmg as a
be a formidable task. Fortunately, the RVA gives us a counter-term’ it's job is to subtract off thex” contribution
straightforward way of dealing with such a state—generate iffoM | #1).) (iii) Even though we no longer ha, symme-
recursively Specifically, the RVA builds the ground state of Y. initial calculations showed that the states in Figh)2lo
a ladder withN+ » rungs using the knowledge of the ground Not appear in the ground state of the Hubbard laddéis is

states of a ladder with,N+1, ... N+»—1 rungs. This is another indication that the parameters evolve smoothly from
achieved by recursion relations that express the ground staff® 2x2 case to the laddgrTherefore, we do not consider
IN+») in terms of the ground state§N+i)} with i them in what follows. (iv) Since the configurations
=0,... p—1810 |de)nn+1n+2 and [d7)nn+in+2 @ppear as intermediate
Using these ingredients, we consider the following ansatstates for the resonances shown in Fig. 6, it is necessary to
for the half-filled Hubbard ladder include these states in the ansatz to give us an RVB state.
This can easily be seen by comparing the weights of the
IN+2) = [o)ns2lN+ 1)+ a|di)n o N+1) coefficients as shown in Table (see below.
In order to compute the values of the coefficients, we treat
+ Blda)n+ in+2lN) + ¥ da)n+1n+2|N) them as variational parameters and minimize the ground-
state energy with respect to these parameters. The ground-
+ &l dalnranealN)+ 7l bs)nap+2lN) state energy and other quantities appear as recursion rela-
+ 8| dbednns N2l N—1) tions. It will be useful to define
+e|lpnnrine2lN—1), (6) En=(N[HyIN),
which is shown schematically in F|g: A For completeness,' D= {(N—1|n{ bo|Hn|N),
the states in terms of the operators in Egs. 2 and 3 are given
in Appendix A. Cu=(N—1 HolN
A few words are in order about the configurations in our n=( InCbalHuIN), @
ansatz.(i) B, the weight of the horizontal bong@elative to Zy=(N|N)

the vertical bony is the “RVB parameter.” For a true RVB
state, we would havgg=—1. Although we do not expect Y= (N— 1| ol N)
B=—1, from work on the Heisenberg model the variational N NATOITE
parameters were shown to evolve smoothly with system Xp= (N— 1|5 (b1 N)

size® we expect8|=0(1). (i) Suppose we iterate the re- N NALER/

cursion relations once. Thew,) and|¢,) (and also/¢s))  They are supplemented by the initial conditions

f— Z():l, YO:O, XOZO,

N+2=N+]M+aN+]<r+’J>+B N - (8)

Ey,=0, Dy=0, Cy=0.
+v| N (
(

A
l +[::j>+n N <m +m> To determine the values for the variational parameters for
a given(finite) value ofN, we iterate the recursion relations
+E[ N ﬁ+ﬁ+g+g) and minimize the quantitfy /Zy numerically. The actual
S b P ——
0 (S e S I (O )
L . :
—_— > A . o
EwiEa e NE=N o T -0

FIG. 4. The RVA ansatz for the half-filled Hubbard ladder. Note  FIG. 6. Other “resonances,” which play an important role in
that links or sites connected with a circle represent a singlet bondthe RVB picture.

il#
|

+&|N-1
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recursion relations are quite unwieldly; we have relegated ;
. oo . ,>= ( + ‘,) +b,< + )
them, as well as their derivation, to Appendix A. ;
The values of the variational parameters for various val- N A
ues ofU (with t=t, =1) are shown in Table Il. The results +bz< + >+bs< LT + )

were obtained on a:232 ladder. Notice thafi) |8|=O(1), '
- _ 2
and we have produced an RVB stzie) | 77|_ O(a%), andy FIG. 7. Ground-state wave function for thex2 plaquette with
is indeed behaving as a counterteriii) |5|,|e|~al3. o holes.
Therefore, these configurations are non-negligible, suggest-
ing that the resonances shown in Fig. 6 are important to the  |@3)=D{, 1)/0)+D{; »/0)+ D {5 1|0) + D {5 ,|0).

RVB picture. |4y is shown schematically in Fig. 7.

In Table Il we list the values of the parameters for sev-
eral values oU (with t=t, =1).

Now, we consider the doped Hubbard ladder. In Ref, 9 it Notice that the solution to the)22 case(with t=t,) has

was shown that hole pairs moving through an RVB back- 5}4 symlmetry HOW?Vter ”0;:’)" thg grolllmd ?Lattettt:ansformg in
ground captures the essential physics of the) ladder at € scalar representation ob,. recalling that the groun

small dopings. Since the—J model is the largeJ limit of state of the half-filled ladder transforms in tBg represen-

the Hubbard model, we expect this picture to hold for the tﬁgounngg)e sgestzz;r;hﬁ:peratsoréﬁtetig/?gfl?;ezehgitgilgr?-UI of

Hubbard model at largel and small dopings. Therefore, we ped Sy %2—y2 SY

consider an ansatz of hole pairs moving through our generI'nue to be true for low doping in larger ladders. Also, notice

alized RVB background for the Hubbard ladder at small dopNat Ps=0O(a) wherea is from the half-filled ladder. This

ings. will play a role in writing our ansatz for the doped ladder.
Since the structure of the hole pairs is based on the exact

solution to the X 2 plaguette with 2 holes, we consider the

Ill. THE DOPED HUBBARD LADDER

B. The Ladder

2% 2 case in detail below. In the approximation where we use the configurations of
the generalized RVB state as well as the hole pair configu-
A. The 2x 2 Plaquete with Two Holes rations, a typical configuration for the doped ladder is shown

) _in Fig. 8. In this approximation, the ground state will still be
~The ground state of the>22 plaquette with 2 holes is 5 syperposition of all such configurations shown in Fig. 8.
given by Fortunately, we can generate such a statursively Spe-

h\_ | h h h h cifically, we build the ground state of a ladder wikh+ v
|¥0)=1@0) +bs1 |e1)+b2 |¢2)+Dbs [e3), © rungs andP+ u holes using the knowledge of the ground
where states of a ladder witiN,N+1,... N+»—1 rungs and
h + . P,P+1,... P+ u holes. This is achieved by recursion re-
leo)=A(11),(1.2) 0 +A(21),(2.2/0) lations that express the ground stélet v, P+,u> in terms
N . . of the ground state§N+| P+j)} withi=0,...,v—1 and
leD)=A011),21)0) +A(12) 220 j= o210
h . . (10 Usmg the above ingredients, we consider the following
|02)=A(1,1),22)0) + A (2,1),(2,2)0) ansatz for the doped Hubbard ladder

IN+2 P+1)=|do)n+2N+1 P+1)+a|d)nio|N+1 P+1)+B[do)n+1n+ 2l NP+ 1)+ ¥ dg)nsins 2l NP+1)
+ & aInrin+2NP+HL)+ 7 ds)nran+ 2l NP+ 1)+ 8 de)n N+ an+2l N—1 P+1)
+elprnnsini 2 N=1 P+1)+[d0hn 2N+ 1 Py+ N[ @Dns a2l NP)+E @b+ 12l NP)
+uldDnnrindN=1 P)+v[gDnnsint2lN=1 P), (13)

which is shown schematically in Fig. 9. For completeness|cji{)N,,\,Hy,\]+2 extend over three rungs. These states are nec-
the states in terms of the operators in E(5.and (3) are  essary to allow the hole pairs to move smoothly through the
given in Appendix B. RVB background.(iii) Note that physically, the picture of

A few words are in order about the configurations in ourhole pairs moving through an RVB background can only be
ansatz.(i) The ansatz contains the configurations for theappropriate for low dopings.
RVB state, as well as the configurations for holes bound in  To compute the values of the coefficients in our ansatz,
pairs. The hole pair states are based on the exact solution ige treat them as variational parameters and minimize the
the 2X2 plaquette with 2 holes, and our ansatz reproduceground-state energy with respect to these parameters. It will
this exact solution.(ii) The states|¢>3>N n+1N+2 and  be useful to define
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TABLE Il. Values of the variational parameters for a<x32

halffilled ladder witht=t, = 1. he2 1| = ij +aft e ( w ’J +B[ N P | -
U a B y I3 7 ) € NP+1 m:l [:j +n N P+l m m
8 .3206 —.8710 —.0782 —.2877 —.0938 .1031 .1031 e JN:;_[ Q
16 .1848 —.8800 —.0243 —.1606 —.0299 .0639 .0639 ﬁ
24 1265 —.8817 —.0113 —.1097 —.0142 .0451 .0451 +smﬁ§b Z %
= (NPIHAINP), -WME)
N P +
Dy.p=(N—1 P|n(dolHnINP), AL (N A) < L (O
Cup=(N=1 Plu(eslH\INP), g S [0 T (e
12 -
ZNYP:<NP|NP>, ( ) +V(E+E)

FIG. 9. The RVA ansatz for the doped Hubbard ladder.

Ynp=(N=1 P|(¢o|NP),

dy2_y2 structurerelative to the RVB background. Fok
Xnp=(N—1 P|n(#1|NP). >Xx., the hole pairs have amwave-like symmetry relative
to their background.

Now, consider Figs. 1®) and 1@c). First of all, notice
that \>¢. This shows the importance of the diagonal frus-
trating bonds for all doping® Also, notice that and¢ both
reach their maximum at=3. At x=3 the system is essen-

They are supplemented by the initial conditions

ZN,P:N::L’ YN,P:Nzon XN,PIN:O’

Enp-n=0. Dnp-n=0, Crnp-n=0, 13 tially a large scale reproduction of the<2 plaquette with 2
holes? Indeed, the values of and{ atx=% are similar to
Fn<pp=0 for F=ZY,X,E,D,C. their values for the X 2 plaquette.

To determine the values for the variational parameters for
given (finite) values ofN and P, we iterate the recursion
relations and we minimize the quanti p/Zyp. The ac- First, we show results for energy per siteWsn Fig. 11.
tual recursion relations are quite unwieldly; we have rel-For comparison, DMRG results are presented for the same
egated them, as well as their derivation, to Appendix B.  set of parameters. In our DMRG runs, we kept up to 300

What is the nature of the state we have constructed? Igtates with a maximum discarded weight of 1x88)* for
order to answer this question, we p@t\, and{ vs doping. U =4; all higher values ot) had lower discarded weightd.
These parameters contain most of the physics of our ansatz. At half-filing, as we would expect, our ansatz is most
B is the “RVB parameter”;\ and{ are the weights of the accurate for largd) and larget, . The ground-state energy
hole pair configurations. The results were obtained on a er site for a % 32 half-filled ladder as a function df for

IV. GROUND-STATE ENERGIES

X 32 ladder. _ _ _ varioust, is shown in Fig. 11a). ForU=8 andt, =1, the
First, consider Fig. 1@. B begins atO(—1) and in-  energy from the RVA agrees with DMRG to within 90% and
creasesi.e., becomes less negatjweith doping until a criti- improves adJ ort, is increased. Up to about= 10, longer

cal doping.x;, where it vanishes. Beyond this dogin@,is bonds(extending over at least 3 rungasre coming into play.

positive. This has also been found for theJ ladder’ Upon  These states should be included in the ansatz to further im-

doping, the hole pairs cause destructive interference whicBrove the overlap with the ground state. Wt=16 andt,

degrades the RVB mechanism. ForX., this destructive =1, our ansatz gives a ground-state energy within 94% of

interference has drivef positive, and it is no longer appro- the DMRG result.

priate to think of our state as describing hole pairs moving |t should be noted that for the Heisenberg ladder, the

through an RVB backgrourt. . RVB state gives a ground-state energy within 96% of true
Similar to thet-J ladder, the difference between<x.  ground-state energy, obtained from DMRGA recent

and x>x. can be attributed to two different internal struc-

tures of the hole pairs. Fax<x., the hole pairs have a  TABLE IIl. Values of the parameters for thex2 plaquette

with two holes(with t=t, =1), which gives the exact ground state.

- Al
[ ' ’ ! U by b, bs
h - 8 1.0 1.2470 0.3569
16 1.0 1.3131 0.2100

FIG. 8. Typical configuration appearing in the ground-state 24 1.0 1.3420 0.1483
wave function of the doped ladder.
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FIG. 10. (8 B vs doping,x, for a 2x 32 ladder atJ=8 (solid FIG. 11. (a) Ground-state energy per site at half filling=<0)
line), U=12 (dashed ling and U=16 (dashed-dotted line (b)  vs U for t, =1 (solid ling), t, =2 (dashed ling t, =3 (dashed-
Same aga) for \. (c) Same aga) for . dotted ling. For comparison, DMRG resulfshown asx) are pre-

. sented for the same set of parametélbs.Same aqa) except for
DMRG study of different ladder models found that the Hub-x— 1 (c) Same aga) except forx= 2.

bard model and Heisenberg model begin to agree only for

rather largel (U~ 16) 22 Therefore, it is not surprising that =3 on a 2<32 ladder. Again, we show energies obtained

the RVB picture becomes as good for the Hubbard model aBom DMRG for the same set of parameters. b 16 and

it is for the Heisenberg model &t~ 16. t, =1, the two energies agree to only within 77% and im-
Figure 11b) shows the ground-state energy of the RVA proves slightly a$, is increased. For example, dt= 16 and

ansatz as a funtion o for varioust, for a doping ofx  t, =2, the overlap of energies increases to 87%. Further dis-
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(a)( + ) (b)( + ) —025T
(C)( . . . ) -0.35
2 045
FIG. 12. “Pair-breaking” configurations that are playing a g
rather large role in the ground state of the doped Hubbard ladder. & -0.55
&
. E .. @ -0.65
crepancies occur when the doping is increased=d/4 [see S
Fig. 110)]. -0.75
The differences in ground-state energies occur due to the
importance of “pair-breaking” configurations, like those -0.85 x * %
shown in Fig. 12. The weights of these types of states in- X x
crease as we move away from half-filling. Consequently, to -0.95 - o1 Y Y Y 05
further improve the RVA ansatz, such states must be in- X

cluded in the wave function. Note also that our ansatz would

be essentially exact for the case where hole pairs are well FIG. 14. Ground-state energy per site vs doping for>a32
localized on a rung. For theé—J model with Jing ladder (with t=t, =1) for U=8 (solid line) and U= 16 (dashed-

> Jchain.t, pairs are well localized along a rung, and thedotted ling. For comparison, DMRG results fa&f=8 (X) andU
ground state is essentially a product of rung singlets and rung 16 (*) are shown.

hole pairs. However, for the Hubbard model at strong cou-

pling (i.e., U>t, ,t), this is not the case. Holes would al- state energy of theJ ladder forJ=0.5 (U=28) at a doping
ways rather occupgdjacentrungs, even fot, >t, since this  of x=3. There are two ways to interpret this; either th&
minimizes the Coulomb energy from doubly occupied sitesmodel supports pairing better than the Hubbard model, or we
To see this consider a>22 plaquette with 2 holes; let  must view the hole pairs in the Hubbard model as having a
<t, andt,t; <U. With 1 particle on each rung.e., one larger size(i.e., larger coherence length

hole on each rungthe ground-state energy is approximately

—2t, ; with both particles on the same rufige., both holes

on the same rungthe ground-state energy is approximately

—J=—4t?/U. Therefore, at large U, the particles would V. CONCLUDING REMARKS

rather occupy adjacent rungSee Fig. 13.

The situation we have with the doped ladder is similar to,)
what we had for the half-filled ladder in the early stages o
this paper. We found that without the statés) and|#-),
which extend over three rungsee Fig. 4, the RVA did not

To summarize, we applied the recurrent variational ap-
oach to the two-leg Hubbard ladder. Our results were in
qualitative agreement with previous results on the Heisen-
berg andt-J ladders. For the half-filled ladder, the general-
ized RVB state became more accurate in the parameter re-
) %ime where the Hubbard and Heisenberg ladders were shown
U. However, once we includefibs) and |¢-), the results i coincide. However, comparison of the RVA with DMRG
from the RVA improved drastically. Based on these results¢, ie qoped ladder indicates that hole pairs moving through
we expect the RVA to greatly improve by including the 5, RyB background is incomplete. “Pair-breaking” con-

states shown in Fig. 12. _ _ figurations are also necessary to capture the essential phys-
In Fig. 14, we plot energy per site vs doping for a 2 ;o
x32 ladder forU=8 andU=16 (with t, =1) in order to As we saw, the strength of the RVA is the ease in which
bett_er understand the region of val_ldlty of our RVA ansatz.,,e could extract the physics. We were able to see the impor-
Again, we see good agreement with DMRG results at haltynce of the configurations in our ansatz quite easily. Fur-
filing. However, as soon as we dope, configurations likehermore, the RVA has a natural way in which to include
those shown in Fig. 12 are also important. , . longer bonds in the ansatz to more accurately represent the
It is interesting to note that the idea of hole pairs MOViNg 6 und-state wave function. The importance of such addi-
through the RVB background seems to more accurately reRjona) states to the physics of the ladder is not easily probed
resent the ground state of tite) model than the Hubbard \yith other techniques.

modzel. Using the well-known relation at strong couplidg, Generalized RVB states similar to ours have been consid-
~4t°/U, the RVA agrees to within 92% of the true ground- greq previously for the half-filled Hubbard laddérFano
et al. were even able to produce an ansatz coming within
98% of the true ground state energy fothalf filled) 24
ladder atU=16. (Their ansatz included diagonal bonds of
length /5.) However, none of these works considered the
FIG. 13. Fort<t, , hopping along the rung dominates. By put- doped case. Using the approach in Ref(ihterms of dimer
ting the particles(or holes on adjacent rungs, we can have the COVerings, it appears to be a formidable task to consider
situation shown ir(a). However, by putting both particlésr holeg ~ doping. This is one of the strengths of the RVA; doping is
on the same rung, we get the situation showsbin which is ener-  handled rather easily. Even though our results for the doped
getically unfavorable. ladder showed that hole pairs moving through an RVB back-

—

(a) LT (b) b,

!
ir
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APPENDIX A: THE HALF-FILLED LADDER

The states in the ansatz for the half-filled ladder of &j.are given by

|¢0>N+2:A2N+2,l),(N+2,2)|O>N+21

| PN+ 2= D2N+2,1)|O>N+2+ D2N+2,2)|O>N+2a
|¢2>N+1,N+2:AErNJr1,1),(N+2,1)A2N+1,2),(N+2,2)|O>N+1,N+2y

| pa)n+1N+2= DZN+1,1)DZN+1,2)|0>N+ IN+2T DZN+ 2,1)DEFN+ 2,2)| 0>N+1,N2 )
(A1)

| Padn1n2= Alnr 1.1y, 0 29D (v 12| O 1 2F Afns 1.0y (v 20D e 2.2 OOk 142
+ AErN+ 1,2),(N+2,2)D2N+1,1)|0>N+ iN+2t A2N+1,2),(N+2,2)D2N+2,1)|O>N+1,N+2v
| bshn+1n+2=Dins 1D i+ 2.2/ 00n+ 18+ 2+ Dins 12D (N 2.0 O 1+ 2
| b6dnN+ 1N+2= Adnay (v 228 (N 1.2), (v 2.9D (.2 OO NN v 2T A1), (v 2,28 (v 1.2), (v 2.9D (v 1.2 OV NN+ 1+ 2
+ AN 2 N 208 (e 1.2), 05 22D N OIN N+ TN+ 2 A2y, (v 2,298 (N 1,29, (v 220D (s 1,1 OV NN+ LN+ 2
| prINN+ 1N+ 2= Aer,l),(N+2,2)AErN,2),(N+1,2)DEFN+1,1)|0>N,N+1,N+2+ AgN,l),(NJrz,z)AgN,z),(m 1,2)DEFN+2,1)|0>N,N+1,N+2

T T T t T T
+ A(N,Z),(N+2,1)A(N,1),(N+1,1)D(N+1,2)|0>N,N+1,N+2+ A(N,Z),(N+2,1)A(N,l),(N+l,l)D(N+2,2)|0>N,N+1,N+2-

To derive the recursion relations, the following inner products are necessary:
N+ 2{ Dol Podn+2=2, ni2 Bl DNt 2=2, nran+2{ Dol DInsini2=4,
N+1,N+2<¢3|¢3>N+1,N+2:21 N+1,N+2<¢4|¢4>N+1,N+2:8a N+1,N+2<¢5|¢5>N+1,N+2:21

NN+ 1N+ 2{ Pol Pe)n N+ 1N+ 2= 16, NN+ 1N+ 2{ D7l P7IN N+ 1N+ 2= 16,

(N+ 1N+ o ol p2)n+ an2dNY = (= 1)(N+ 1| o) +1|N), (A2)
(N+1Ns o D1l ds)ns v+ 2lNY=(N+ 1| p1)n1IN),
(N+ 1|y 2ol pednn+ in 2l N=1)= (= 1)(N+ 1] g n+2IN— 1),

(NInt1n+2{Pal drIn N+ v+ 2l N—=1) = (= 4)(N[dpo)n|N—1).
Using these inner products, a straightforward calculation gives the folloeimgpled recursion relations:
Zns2=(2420%) 21— 2BY N1t 2a Xy 1+ (AB%+ 292+ 82+ 2792) Z\+ (168°+ 1682 — 16£5) Zy_ 1 — 8Ee Yy
+858YN,1,
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Yn+2=2ZN+ 17 BYN+ 188021 +45eY -1,
Xn+2=2aZys1+ XN+,

(A3)
Ens2=(2+2a?)Ens1+(—8t, a+2Ua?)Zy, 1~ 28D+ 2anCyig+ (8téE+4t, aB) Yy, + (—4t, n—8tag

+2Uan) X1+ (4B%+ 292+ 882+ 29°)En+ (—32ABE+AUy?— 16t yé+8UE2—16ténp+4U p2) Zy+ (16686
—8te +8ta’s + 16t Be + 8tys —8U ée + 8t e — 8t5) Y+ 8taSXy+ (32 Be + 16U 62+ 16Us2+ 32 B5+ 16t yS
—16U £S5+ 16t pd+32t, abE)Xy_1—8EeDy+ (168%+ 1682— 166¢)Ey_1+86eDy_ 1+ (8U de — 16t arde)Yy_1,

DN+2:2EN+1_4tJ_aZN+1_BDN+1+4t§YN+l_2tJ_ 77XN+1+(_4t8_4t5)YN+4ta5XN+(l6t35+ 8t’y5_8U§5
+8t75+16t88)Zy_1—8ESEN_1+45eD,,_1+4USeYy_1,

CN+2=2aEN+1+(—4tL+2U a)ZN+1+ 2tl,8YN+1+(—4t§+ U 77)XN+1+ 77CN+1+ 16“_552,\]_1_8“_ 58YN_1+4ta8YN .

APPENDIX B: THE DOPED LADDER

For the doped laddefsee EqQ.(11)], [¢o)n+2, |PiIn+2: [d2)nsin+2: [Padnsin+2: [PdN+iN+2: [DS5IN+1N+2)
|de)nn+1n+2 and| )y n+1n+2 are the same as the half-filled case, and

|¢8>N+2:|0>N+2y

|¢1>N+1,N+2:AIN-*—1,1),(N+2,2)|0>N+1,N+2+AIN+2,1),(N+1,2)|0>N+1,N+2a
| d2)n+1N+2= AErN+1,1),(N+2,1)|0>N+1,N+2+ AEFNJr1,2),(N+2,2)|0>N+1,N+2, (B1)
_ AT T T T
| 3NN+ N 2= ANy v 2,02 (N 1,2), (22| 0NN LN 2T A2y (v 2.2 (N 1.1y, v 2 OO NN LN+ 25

_ AT T T T
| padn N+ 1N+ 2= A(N,l),(N+2,1)A(N,2),(N+1,2)|0>N,N+1,N+2+ A(N,Z),(N+2,2)A(N,1),(N+1,1)|O>N,N+1,N+2-

To derive the recursion relations, we use the inner products from the half-filled case as well as the the following:
N+2<¢8|¢8>N+2:1- N+1,N+2<¢?_|¢2>N+1,N+2:4- N+1,N+2<¢g|¢2>N+1,N+2:4-
NN+ 1N+ 2 BBl BN N 1N+ 2= 81 o 1+ 2{ Bl BN+ 1N 2= 8,
(N+1P+ 1y o ol 50N N+ 1+ 2l N— 1PY= (= 1)(N+ 1P+ 1] )y n+ 1IN 1P),

(NPl 1n+2( D DD nn e 2l N—= 1P) = (= 2)(NP| ho)|N — 1P).
Using these inner products, a straightforward calculation gives the follo(eimgpled recursion relations:

(B2)

Zniopi1=(2420%) Zns1pi1— 2BYNe1pr1t 2anXns1pa1 T (B2 +2Y2+8E2+ 27 Zy p oy +(165°+ 1662
—1668)Zn-1p+1—8EeYNpr1T83eYN_1pi1tZnsipt (AN2+4LH)Zy p—ANYy p+ (Bu®+ 87
—8Nu)Zn—1ptAuvYn_1p,

Yn+2p+1=2ZN+1p+17 BYN+1p+17 802N 1p+1+40eYN_1pr1— AuNZy_1pt20uVYN_1p,

Xnt2p+1=2aZnr1pr1t XN+ 1P+1s
, , (B3)
Ent2p+1=(2+2a%)Eni1piat (=8t a+2Ua)Zy 1 1p11=2BDN1pi1T2@nCniapra T (BtE+AL af)Yni1pi1
+(— 4t p—8taé+2Uan) Xy 1pr1t+ (482 +29°+ 88+ 27?)Enpr 1+ (—32BE+AUy?— 16t yE+8UE?
—16tEn+4Un*)Zy pr1+ (16185—8te +8ta’e + 16tBe +8tye —8U e+ 8t ne —8t5) Yy py1+ 8tadXy pi1
+(32tBe+16U 5%+ 16U e+ 324S5+ 16t yS— 16U 5+ 16t 5+ 32, adE)Xy_1p11— 8EeDy pr1+ (1662
+ 1682_165§)EN*1,P+1+ 858DN*1,P+1+(8U 58_16':La58)YN71'p+1+ EN+1,P+(4)\2+ 4§2)EN,P+(8M2

+8V2_8)\,&)EN_l’p_4t)\YN+1vp_4t§XN+1’p+(_ 1Gl)\§_8t)\_8ta§)ZN‘p+(4tV+ 8tL§V+4t,U,+4tV)YN]p
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+(—16tBr+8tu+16t, fu+16t, ahu—16tBu)Zy_1p—4NvDy pt+4uvDy_1p— 8t auvYy_1p,

Dni2p+1=2ENsapr1i— M aZyr1pr1— BDNr1prr T 48N 1pr1— 2t 7XNs1psat (—4te—410) Yy pig
+4ta5XN’p+1+(16tB5+ 8t'y5_8U§5+ 8t776+ 1&ﬁ8)ZN*1,P+l_8§5EN*1,P+1+458DN*1,P+1

+4U 58YN*1,P+1_4t)\ZN,P+(2tV+ ZtM)YN,P_4)\Iu’EN71,P+ ZIU«VDNfl,P"'(4tﬂ+8tL§M)ZN71P f

Crn+op+1=2aEN 1prit (=4t +2Ua)Zyr1prg 2t BY N 1pr 1t (—4tE+HU D) Xy 1pr1t 7CN+1p+1

+16t, £6ZN-1p+1— 8t OeYN_1pr1TAtaeYypi1—AtLZypt Bt ANUZN_1p— A4t uvYN-1p-
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