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We discuss a computationally efficient classical many-body potential designed to model the Al-Al interac-
tion in a wide range of bonding geometries. We show that the potential yields results in excellent agreement
with experiment andab initio calculations for a number of bulk and surface properties, among others for
surface and step formation energies, and self-diffusion barriers. As an application, free-energy calculations are
performed for the A[100) surface by Monte Carlo thermodynamic integration and the quasiharmonic approxi-
mation. Comparison of the latter approximation with the reference Monte Carlo results provides information
on its range of applicability to surface problems at high temperat{64.63-18209)03831-X

I. INTRODUCTION Il. AL INTERACTION POTENTIAL

Previously developed interatomic potentfafs for the

Atomls_tlc SImuI_atlons_ are playing an mcreasmgly PrOMI A1l interaction have mostly focused on bulk and molecular
nent role in materials science. From studies of crystallization roperties. In this work. we analvze and aeneralize one of
of clusters to large scale simulations of fractdrand grain brop . ! Y 9

boundary diffusior?, atomistic simulations offer a micro- those models with special regard to surface properties, aim-

scopic physical view that cannot be obtained from experi—Ing as usual at describing Al in as wide a range of chemical

ment. Predictions resulting from this atomic level under_environments as possible, i.e., ranging from bulk Al to Al
L S 9 surfaces and surface steps, and to small Al molecules. The
standing are proving increasingly accurate and udeful.

The effective interatomic interaction potential is the ke functionalities of the refined potential are found to extend
. . . S . P ysigniﬁcantly those of previous ones. As we are going to use
ingredient in all atomistic simulation. The accuracy of the

potential affects drastically the quality of the simulation re- 21 embedded atom Interaction m_odel, in this section we
sult, and its functional complexity determines the amount OTbnef!y review the basic |d¢as of this approach,.descnbe the
’ - . details of the model, and finally assess its quality.

computer time requiredlMuch research effort has therefore

been devoted to the design of potential-energy functfons.

This is especially important in classical dynamics which, al- A. Theory

though quantum-mechanical simulations have been progress-
ing at a rapid pace in recent years, remains the r{szshe-

times, the only affordable way to perform very large scale .0~ 516md213 The energy of the host with impurity is,
simulations in materials science. In this paper, we present

carefully designed Al-Al interaction model, test its perfor- gccordmg to Stott and Zaremb&a functional of the unper-

mance, and apply it to the study of free energies in atomi(%;;%egngo;gseifggon density, and a function of the impurity

scale simulations.
The ability to compute free energies is essential to under-
stand or predict many physical phenomena, from the stability
of crystal structures, to the propensity to form defects or E=Fzrlpn(N)], @
disorder, and to morphology changes and phase transitions.
However, the determination of free energies from atomicwherep,(r) is the unperturbed host electron density, @nd
scale computer simulations is a daunting task. Approximat@nd R are the type and position of the impurity. Here the
methods, mostly based on the harmonic vibrational properenergy of an impurity is determined by the electron density
ties of the system, are commonly in use to this end. Here wef the host before the impurity is added. The functiafeb
compare several possible versions of the so-called quasihag-universal function, independent of the host, but its form is
monic approximation, using as reference accurate simulationnknown*?> A simple approximation taF is the so-called
using isobaric molecular dynamics, canonical Monte Carlojocal approximation, whereby the impurity experiences a lo-
and thermodynamic integration, focusing on the specific caseally uniform electron densit}? This can be viewed as the
of surface free energies. The goal is to provide a measure déwest-order term of an expansion involving the successive
the range of applicability of approximate methods for com-gradients of the density. The functional is then approxi-
plex systems using a reliable Al interaction model. mated to yield

In the embedded atom method, each atom in a solid is
viewed as an impurity embedded in a host comprising all the
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1 TABLE I. Parameters used to define the atomic density function
E=F;(pi(R))+ > 2 ?ii(Rij), (2 p(r). The positions of the spline knots and the values at the knots
J are given. Also the first derivatives at the first and last knots are

given

where ¢;; is a pair potential representing the electrostatic

interaction,R;; is the distance between atomandj, andF; | (4 ] o(r) o' (1) [UA ]
denotes the embedding energy. The total energy of the sys
tem is a sum over all individual contributions: 0.0000 0.000 0.0000
1.8000 6.3826010°*
1.9000 7.654%10°!
1 2.0211 8.656% 10 *
Ewot= E. Filpni)+ > ; ?ij(Rij). @ 55737 9252% 10" !
i#] 2.5264 8.620810 !
A further simplification is introduced assuming that the host2-/ 790 7.627% 1071
densitypy, ; at atomi is closely approximated by a sum of the 3.0317 6.064& 10_1
atomic densitiesp; of the constituent atoms, i.epp 3.2843 4.660% 10_1
=3 j+iPj(Rij), with p; being the contribution to the den- 3.5370 3.387X 10_1
sity at atomi from atomj. Equation(3) is the form com- 3.7896 2.325% 10
monly used for molecular-dynamics simulations of metals#-0422 1.090%10*
and is known as embedded atom potential. 4.2949 5.249% 10" ?
4.5475 3.917810 ?
B. Details of the Al-Al interaction potential 4.8001 3.0828 1072
. . . 5.0528 2.502K 102
The Ercolessi-Adams interaction model for Al was con-5 3054 1.472% 102
structed with the so-called force matchmg_me_ﬂ%cmhd, in 55600 0.0000 21298106
contrast to most other empirical models, it gives excellent
structural and elastic properties for the bulk along with the
correct surface interlayer relaxations at low-index surfaces.
Furthermore, we found that the diffusion barriers for surface pi= E p(rij) < fe(rij ,Ro,Do). (5)

adatoms obtained by the Ercolessi-Adams model are in fair 107D
agreement withab initio calculations:>~” whereas those
predicted by most other embedded atom potentials diffe
drastically® from ab initio results. We therefore started off
from t_he Ercqlessi-Adams potent.ial to build our-own refipedR+D and unity forr less tharR—D. For r within the inter-
Al-Al interaction. W|tho_ut affectln_g the e_Iastlc properties , (R—D,R+D) it is defined according to

and the surface relaxation properties, we introduced the fol-
lowing modifications to the model:

The sum runs over all atoms that lie within the potential
Fange Ro+ D, (5.56 A), which is enforced by the cutoff
function f.(r,R,D). This function is zero for exceeding

1. An additional term was introduced in the pair potential r—R 5 15[r—R 4
¢ij in order to account for an exponential Born-Mayer-like fo(r,R,D)= —3[T+ 1 + e 1}
repulsion at short Al-Al separatiofi. This is a key require-
ment for studies of, e.g., physical vapor deposition processes, r— 3
where the energy of each single atom easily exceeds the —5[T+1 +1. (6)

thermal energy by as much as three orders of magnitude.
2. In the low-density region, three parameters of the emThe functionp(r) in Eq. (4) is spline interpolated using the
bedding functior were changed in order to improve severalvalues reported in Table |; the paramet&g and D, are
reference quantities, namely the,Alinding energy and vi- given in Table Il. The embedding functioR(p) is also
brational frequency, and the adatom diffusion barrier heightpline interpolated, and the corresponding valuesFp)
on the Al111) surface(i.e., the energy difference between gre collected in Table III.
the surface binding site and the saddle point
3. A fifth-order polynomial cutoff function was intro- TABLE Il. Parameters entering the potential energy function
duced, smoothly bringing the potential to zero at an inter{rom Eq. (4).
atomic distance of 5.56 A (slightly larger than the third-
nearest-neighbor distance in bulk)Al Parameter
The total energyE,,; of a system containing Al atoms in

. ~ SYS Ry [A ] 5.46
an arbitrary arrangement is writtésee Sec. Il A as Dy [A ] 0.10
Re [A] 2.00
1 _ Dy [A] 0.25
Ew= 2 Flpi)+ > > di(rip. (4) A[eV] 7255.44
' 2 A VA ] 4.42085
B [eV] 1.04897

The atomic density; in arbitrary units is given as
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TABLE Ill. Parameters used to define the embedding function C. Assessment of the potential
F(p). The positions of the spline knots and the values at the knots

are given. Also the first derivatives at the first and last knots are . We now present evidence that the potential just described

given. yl_elds satisfa_\ctory results for a variety of properties of Al in
different environments. In particular we address the bulk, the

o F(p) [eV] u’(p) [1/eV] d!mer., Iow—in(_jex surface_s and steps Fhereor), and s_elf—
diffusion on different low-index surfaces; also included in

0.0 0.0000 —12.375 this test section is the energy dependent sticking coefficient

0.1 —0.8139 of high-energy Al atoms on A[111). The changes to the

0.2 —1.2697 potential significantly improved agreement with experiment

0.3 —1.6799 and other theoretical predictions in several instances where

0.4 —2.0296 errors were typically of order 50%.

0.5 —2.2520 ]

0.6 —2.4272 1. Bulk properties

0.7 —2.5517 By construction our model does not alter the equilibrium

0.8 —2.6052 lattice constanty, the cohesive energy &, and the elastic

0.9 —2.6440 properties of the previous model of Ercolessi. We obtain as

1.0 —-2.6571 in Ref. 11a, = 4.03 A, E,,,=3.36 eV, G,=118 GPa,

1.1 —2.6456 C,=62 GPa, and &= 36 GPa. For comparison, the experi-

1.2 —2.6087 mental value® are G;=114 GPa, ¢,=62 GPa, and &

1.4 —2.4525 1.0620 =32 GPa, and local-density approximatiofLDA)

calculations”?! predict a,=3.98 A, E,=4.15 eV, G,
=135 GPa, &=70 GPa, and =35 GPa.
The pair potential term in Eq4) is written according to o .
2. Diffusion barriers
Diffusion is central to many physical processes which de-

— termine the morphology of surfaces, such as step flow, nucle-
Bij=L(rij) + (Aexp{ —Arjj} X fe(rij ,Ry,Dy) —B)] ation, and growtH? It is of obvious importance to study

diffusion processes theoretically, since direct observations of

Xfe(rij,Ro,Do)- (7) e 2 .

surface diffusion by means of field ion microscoffyiM)
(Ref. 23 are limited to a few surfaces due to the response
The function ¢ is tabulated in Table IV. The first cutoff limits of the materials of interest to high voltagésThe
fe(rij,R4,Dy4) switches on the exponential repulsive term atbarriers for single adatom diffusion on Al surfaces calculated
small distancesr(<2.25 A), while f(r;; ,Ry,Do) terminates by Stumpf and Schefflét" using ab initio LDA tech-
the interaction range of the potential. The corresponding paniques, provide a stringent test for the present empirical
rameters are given in Table Il. The exponential term ensure8l-Al interaction model. It is generally accepted that diffu-
that one gets a Born-Mayer repulsion at short separations fosjon on flat metal surfaces proceeds by either hopping or
e.g., diatomic molecul€s. exchangé? In the two following subsections compare the
results of the present model for these mechanisms with pre-

TABLE IV. Parameters used to define the pair poten#ét). vious LD_A regults.. . . . .
The positions of the spline knots and the values at the knots are HOPping Diffusion During hopping diffusion the adatom

given. Also the first derivatives at the first and last knots are giveniS Moving between minima of the potential energy surface,
i.e., between stable or metastable binding sites. Orilth#

ij

riA ] #(r) [eV] &' (r) [eVIA ] surface the stable adsorption sites are the threefold fcc and
hcp sites; on thé100) surface there is a single independent
2.0211 1.9601 —7.0273 adsorption site, the fourfold hollow; thél10) surface is
2.2737 6.827210 * analogous, with a fivefold site. Hopping diffusion on the
2.5263 1.473%10°* (110 surface is intrinsically anisotropic, since it can proceed
2.7790 —1.8818<10 perpendicular or parallel to tHel 10]-oriented atomic rows,
3.0317 —5.7601x10" respectively, via the short bridge or long bridge paths. The
3.2843 —5.1984< 10" activations energies for the long and short bridge are labeled
3.5369 —3.7635¢10°* E| andE, , respectively.
3.7896 —3.7373%10°? For each surface we performed total-energy calculations
4.0422 —5.3135¢10°? for the adatom sitting at the adsorption site and at the bridge
4.2949 —6.3286x 102 site. At the latter site the total energy is minimized with
4.5475 —5.4810< 102 respect to the distance of the adatom from surface. All other
4.8001 —3.7288<10 2 Al positions are fully optimized. The energy difference be-
5.0528 —1.8887x 102 tween adsorption and bridge site is defined to be the activa-
5.3054 —5.8523<10° 3 tion energy for hopping diffusion. Further technicalities are
5.5600 0.0000 5.906510 © discussed in the Appendix. Table V summarizes the activa-

tion energies for surface self-diffusion obtained with the
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TABLE V. Comparison of selected hopping and exchange dif- TABLE VI. Surface formation energies for low index Al sur-
fusion barriers on low-index Al surfaces obtained with the presenfaces calculated with the present model and with other theories.
model and inab initio calculations. Al(111) is also included for
completeness. This work LDA?
System (eViatom  (eV/IA?)  (eViatom  (eVIA?)

This work ab initio
: Al(11) 0.38 0.054 0.48 0.070
Al (111 hopping 0.04 0.04 Al(100 0.48 0.059 0.56 0.071
Al (100 hopping 0.60 0.68,0.65" Al(110 0.74 0.065 0.89 0.080
Al (100 exchange 0.50 0.35
Al (110 L hopping 1.13 1.08 *Reference 17.
Al (110 || hopping 0.30 0.66
E..i— N E
®Reference 15. E:ﬁ??EW, 9
bReference 28. surf

whereEgy,is the total energy of the slabl the total number
present model and compares the barrier heights to resultf atoms in the slabNg,s the number of atoms on each
from previousab initio calculations. The barrier for diffusion surface E, is the total energy per bulk atorAis the area
on Al (111) was used to set up the potential, hence it agreesf each free surface of the slab, and the factor 1/2 accounts
with LDA results by construction. On Al100, we obtain a  for the two free surfaces of the simulation cell; periodic
diffusion barrier in good agreement with first-principle cal- boundary conditions are applied in the planar directions.
culations; we are not aware of experimental results for thes&hese formulas are not problem free in genétabut we
self-diffusion barriers on A(111) and Al (100. According  have checked that they are in the cases of interest to us.
to a recent stud$’> the hopping-self-diffusion barriers calcu- ~ We calculated the formation energies for the low index
lated ab initio in the generalized gradient approximation to (111), (100, and (110 Al surfaces with the present Al-Al
density-functional theory for unreconstructed (fd@0) sur-  interaction model. The comparison of our results to those
faces equal one-sixth the bulk cohesive energy; this is foundbtained inab initio LDA investigations, given in Table VI
to be the case for Al also in our calculations. In the case oghows that the trend of surface energies of our Al model are
Al (110, the present potential correctly predicts diffusion consistent with theab initio calculations. We obtain all sur-
anisotropy, although some quantitative discrepancy existface energies about 20% lower than the LDA surface ener-
with the predictions ofab initio calculations®!® FIM  gies. Keeping in mind the known LDA overestimate of the
studie$® find no anisotropy for the diffusion on the10)  binding energiesthe LDA cohesive enerd{ of Al is 4.15
surface, and report a barrier height of 0.43 eV for both pathseV, about 20% larger than the experimental value of 3.36
This discrepancy with our result is due to the fact that hereeV) the agreement between the two approaches is in fact
we only addressed hopping diffusion for demonstrative purexcellent.
poses. In fact, exchange diffusion normal to the rows is The energy per unit length of a step on a low-index sur-
known>1®to have a barrier as low as0.6 eV, which re- face is defined in terms of the energies of the low-index face
stores a reasonable agreement with experiment. and the vicinal surface used to simulate the step itself, and of

Exchange DiffusionDiffusion by atomic exchange occurs the geometrical parameters theréof:

as the adatom replaces a surface atom, which in turn pops up
at an adjacent stable surface site. Diffusion by exchange was
discussed by Bassett and Wetfeand Wrigley and Estep™ ds— sEvicinai— | terracE iow-index: (10)
Ehrlich?” and predicted theoretically fof100) surfaces by _
Feibelmar?® This diffusion mode can lower significantly the With ds—s the step-step distance, ahg.c.the terrace length
effective diffusion barriers. Views on why diffusion by ex- O the vicinal surface. In analogy to the surface energy, the
change is favorable for some metal surfaces is discussed fEP €nergy can also be expressed per step atom. _
Refs. 17 and 28—30, and references therein. Fqi.a0), we Although_ a ste_ppeq V|_C|nal sqrface can b.e specified by its
calculated the activation energy for exchange diffusisee corr_espondlng Miller m;hcgs, this n_otatlt_)n is not very con-
Table V) and found it lower than for hopping, as do first- venient, as it does not indicate at first sight the geometrical

principles calculations. The quantitative agreement is reasorpUcture of the surface. Thus we use instead34the notation
ably good. [n(h,k,l)xm(h’,k’,1")] by Lang and other&>* where

(h,k,1) and (h',k’,I") are the Miller indices of the terraces
and ledges, respectively;gives the number of atomic rows
in the terrace parallel to the step, amdcorresponds to the
The surface energy per atom and per area, defined as theight of the step. In the case of monoatomic-height steps,
difference between the energy of an atom at the surface arig omitted in this notation.
in the bulk environment, is usually calculated as For the two low-index surfaces ALOO) and Al (111), we
calculated the formation energy of different steps. On Al
(100 there exist two monoatomic steps, the close-packed
{117} faceted and the more opéhlC faceted. The former
parea Esias— N Epuik ® belongs to the family of (1,1y2+ 1) surfaces, the latter to
surf 2A ' the family of the (1,0) surfaces>® For the calculation of

3. Surface and step energies
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A RARSN S Siad S For Al,, our model yields a binding energy per atom of 0.70
N N N { Mg\ g | eV and a bond length of 207A . The binding energy was
N N NN \\‘& ’ e ,:“N indeed used as input to determine the model parameters,
A k"ﬂ\_ ‘ {‘7\ k“k Ck;“k_g& matching the LDA valu® of 0.71 eV (—0.68+0.03 eV ex-
S e e ‘ perimental, Ref. 40The lowest vibrational frequency is cal-
{110}-facetted step {100}-facetted step culated to bev=290 cmi'!, in excellent agreement with the
on AICTO0) on Al{111) experimental valu® of 284.2 cm. The predicted bond
length of our model matches exactly the experimental
- — v estimate“.l_ Thus thg present model describes satisfactorily
‘a,"_‘:\, - K CJ Lk’k,.ﬁk,\\“k,; the bonding of Al in the rather extreme case of the, Al
R 111 (P W D™ dimer.
"S- M& ., 4 } » As the understanding of diffusion and growth requires a
AL 'x\_ﬁ}* - WO knowledge of the binding energies of small aggregates of
{111}-facetted step {111}-facetted step adatoms, we also calculated the energy of two Al adatoms
on Al(100) on Al(111) sitting at neighboring fcc sites on an AL11) surface. The

energy gain with respect to isolated adatoms is 0.50 eV, i.e.,
FIG. 1. Atomic arrangement of thgl10 and {111} faceted the Al ad-dimer is stabilized appreciably over separated ada-
steps on A(100), and the{100} and{111} faceted step on Al111). toms. LDA calculation¥ yield a similar energy gain of 0.58
ev.

the step energies we used the AI(1,1ZBI[9(100)
X (111)] and the Al(1,0,9% Al[9(100)x (110)] surfaces.
On Al (111 there are two types of close-packed steps, the

{111 faceted and th€100} faceted. The corresponding vici- L
nal surfaces belong to then,n—2) and ,n,n+2) fami- from the sputter source have a nonthermal energy distribu-

lies, respectively. We used the AI(9,9FA[9(111) tion, with kinetic energies exceeding 10 eV. Therefore the

X (111)] and the Al(8,8,10% AI[9(111)x (100)] surfaces. sticking coefficient, a key ingredient for a reliable modeling

) of metal film growth, cannot be assumed to be constant and
The geometry of the different steps on the (ADO) and Al . S o ;
(111)gsurfaceyis depicted in Fig. 1.pF0r all th(ese )vicinals thelndependent of the particle’s energy as itis typically done. In

terraces separating the steps have the same width of nir?erder to elucidate the dependence of the sticking coefficient

atomic rows. We have verified that step-step repulsion a?n_impingement energy, we start our simullations with the
these inter-step distances is already in the long-range elast'f{(]:mdent Al atom pl_ace_d outS|de_the Interaction range of the
ime ~d_2 2% thus the steps are far enough to extractsurface' _Its |n|t|a_l kinetic energy is set in the range of 0-125
{ﬁg]mfe St—.s' ithout K bias f th eV, and its starting angle off the surface normal in the range
eir formation energy without an unknown bias from th€ns._gae \yhich corresponds to typical ionized physical vapor

interstep interaction. d - o . . o
. . . eposition conditions. The trajectories of the incident atom,
Table VII lists the results for step formation energies, and P J

them tab initio data. Th irical Al potential and of any other atom which may be etched away from the
compares them tab Initio data. The empirica potential - ¢\ face upon impact, are monitored until either a certain time
describes the step formation energies for the two differen

) o L pan has elapsed, or the outcoming atgimsthe case of
steps on A(111) in excellent agreement with first-principles reflection or etchinghave traveled a distance of 10 A away

calculations. More energy is needed to create steps on tr}F"om the surface. Analyzing 200 trajectories per incident en-

close-packed Al(111) surface than on the more open Al er R e
gy and angle, we collected a statistically significant sample
(100. The open step on the AlLOO surface has a 20% of well-defined adsorption, reflection, and etching events.

larger formation energy than the close-packed step, in a9"€8e relative probability of the sticking coefficient is calcu-

ment with bond cutting argumerts, lated as the ratio of the number of adsorption events to the
total number. The typical statistical error in the reaction
probability thus determined is below 5%. Figure 2 depicts
The dimer is a stringent test for an Al-Al interaction the sticking coefficient as a function of energy for Al atoms
model, since atoms in a dimer experience a very differentmping normally on the surfacésolid circleg or at an off-
chemical environment compared to bulk or surface atomsnormal angle of 409open circles The sticking probability

5. Sticking coefficient for hyperthermal Al atoms

During physical vapor deposition the Al atoms emitted

4. The Al dimer

TABLE VII. Step formation energies for low-index Al surfaces calculated with the present model and
with other theories.

This work LDA?
System (eVIA) (eV/atom (eVIA) (eV/atom
AI[9(100)x (111)] 0.055 0.142
AI[9(100)x (110)] 0.066 0.240
AI[9(111)x (111)] 0.083 0.215 0.082 0.232
AI[9(111)X (100)] 0.085 0.222 0.088 0.248

%Reference 16.
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- 1.04 The usual choice for the reference system is the Einstein
= 0.8 crystal (i.e., a system of noninteracting harmonic oscillators
0 V.0 | (o] J . . . 1 2

Ed 0 with the interaction potentialUp=3mwpi|ri—riol?),

g 06| ' whose free energy is

o 0.4 -

£ 02 e 400 T

02 0 Teell Fy—0=—3NkgTIn| —], (14)

% 0.0 ! ©p

0 25 50 75 100 125
kinetic energy [eV] with ®p the Debye temperature894 K for Al (Ref. 48].
o ~ The free energy of the real system can thus be obtained at
FIG. 2. Sticking probabilities for hyperthermal Al atoms im- any given temperature by a series of canonical Monte Carlo
pinging on an Al(111) surface. As a function of kinetic energy the simulations
solid line with filled circles depicts the reaction probabilities for Al A faster .Way to obtain the temperature variation of the

atoms impinging normal on the surface and the dashed line with th . . : .
open circles show the latter quantity for an angle of 40° to thef)ree energy is to integrate the thermodynamical refation

I
normal d/F H
. . . L T 7=\ (15
varies strongly with the incident kinetic energy; the angle to dT\T T
the normal also has a drastic effect. Details of the molecular:

dynamics calculations are given in Sec. A2. Further discuslfO™ @ reference temperature upwards. This requires a

sion and results on high-energy deposition are reported ifim"Ple (€.9) Monte Carlo ensemble average of the energy
Ref. 42. for each temperature, and of course a reference value of

from thermodynamic integration.
In summary, the free energy of the system at a reference
lll. APPLICATION: FREE-ENERGY CALCULATIONS temperatureT, is determined with Eq(13); then, the tem-

In this applicative section of the paper, we compare gyrberature variation fronT, to T is calculated using Ec_{15).
face free energies of Al computed using different levels ofS0th steps were performed by canonical Metropolis Monte
quasiharmonic approximation, and thermodynamic integra_—Carlo smulaﬂoné‘.* As detall'ed below, thermal expansion
tion via Monte Carlo simulations. The latter effectively func- IS taken into account performing the NV(€onstant number

tions as “exact” reference for the various harmonic approxi-Of particles, constant volume and constant temperature

mations. Before presenting the results, we briefly review thd1onté Carlo calculations at the temperature-dependent lat-
background theory of the different approaches. tice constant determined independently by NRDnstant
number of particles, constant pressure and constant tempera-

ture) molecular dynamics.
A. Theory Quasiharmonic approachA popular approach to free en-
Thermodynamic integrationThe free energy cannot be ergy calculations is the quasiharmonic approximation.
calculated as an ensemble aver&tjghe method of thermo- Thereby, the full interatomic potential is replaced by its qua-
dynamic integratiot?**~*"circumvents this problem starting dratic expansion about the atomic equilibrium positions. The
from the concept of Stockmayer fluid, a fictitious system insystem is then equivalent to a collection of harmonic oscil-
which the interparticle interaction potentidl, is gradually lators, and diagonalization of the corresponding dynamical
switched on from a known reference potentii] to the ac- matrix yields the squares of the normal-mode frequencies,
tual, full interaction potential; the mixing ofU,, andU into  i-e., the phonon spectrum. In bulk systems the dynamical

the effective potential is controlled by a parameter matrix is a 33 matrix; for a slab system it is a/3<3/
matrix, wherel is the number of atomic layers in the slab.
The dynamical matrix is given B

U,=(1-NMUp+2AU. (11
1 ) ,
The key relation of the method concerns the derivative of Dapl” 7)=15 2 Pap(7 7T)exdiaqro—ro)l,
with respect tan: ! (16)
where the force-constant matrix,z(~ #’) is defined as
dF <dUA> (U-Uy) (12
dn N dn /T T e 9°U
d)\ d)\ N q)aﬁ(/ //I):( ) . (17)
(/) dug(Z") 0

The subscripf. means that the average has to be evaluated
with the interaction potentidl, . Integrating the latter equa- The subscript “0” indicates that the second derivatives are
tion one arrives at the following expression for the free ento evaluated at the true mean positions of the atoms, with any
ergy of the system of interest: displacements from the bulk positioie.g., surface relax-
ations or reconstructiongaken into account. The equilib-
L rium positionsxg ,yg ,zg of the atoms are given by the vec-
szleA:o+f (U=Up),d\. (13 fors /z(/l,/z,/g);_ fthe /'3 axis is pgrpendlcular to the .
0 surface and the position of an atom within a plane is speci-
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10 spect to the bulk, i.e., the surface will generally either con-
tract or expand. The average equilibrium positions of the
8E near-surface layergthe interlayer spacings in the case of
simple relaxatiop are determined by the minimum of the
EG— X free energy, but that is, of course, unknowimpriori. In ad-
-, dition, the harmonic expansion is not strictly corrésince
> 4 X the forces, i.e., the derivatives of the internal potential energy
2 7 M : are not zero at the free-energy minimymwhich is why one
calls this the quasiharmonic approximation to begin with. In
LY ‘ ‘ fact, it is clear that there are several levels of approximation
r M X r possible for the quasiharmonic approach; here we consider

some of those:

1. The computationally simplest way is to optimize the
atomic configuration and calculate the phonabhgero tem-
perature and evaluate the free energy Vausing those in-
gredients for allT. Within this approach, the quasiharmonic
approximation is strictly valid, as we expand the potential-
energy function around the equilibrium positions, and The
dependence enters solely with E48). In real systems, of
course, both the surface internal eneegyd the vibrational
contribution to the free energy will change withand it isa
priori unclear to what degree this influences the result.

2. Another way to account for the effects of finite tem-
FIG. 3. Bulk (&) and surfacgb) phonon spectra for Al calcu- perature is to take th& =0 atomic positions, rescale their
lated with a 50-layer slab. Ifb) the slab has tw¢100 surfaces, the  coordinates as a function of the temperature according to the
frequencies are plotted along lines of high symmetry. The correappropriate bulk thermal-expansion coefficient, and recalcu-

sponding two-dimensional Brillouin zone is shown in the inset of |gte the phonongand hence the free eneigjor the ex-
panel(a). panded lattice. This is a hybrid case in whighnot only
affects the force constants, but also the surface internal en-
fied by /1,75, andu,(/) describes thex component & ergy. Of course it is arbitrary to use the scaled 0 inter-
=X,Y,z) of the position of thdth atom from its mean posi- layer spacings at nonzero temperatures. Also, it should be
tion x3,Y6 .25 - kept in mind that the harmonic approximation is not strictly

The phonon spectrum of bulk Al and of AlLOO) are valid for the expansion of the potential energy around non-
displayed in Fig. 3, upper and lower panels, respectiffely ~ equilibrium positions.
both calculations supercells comprising 50 layers stacked 3. A further possibility is to rescale all the coordinates
along (100 have been employéd A variety of surface according to thermal expansion first, and then reoptimize all
modes appear in bulk gaps or split off from bulk band edgesatomic positions; the phonons and the free energy are calcu-
These additional modes are the source of the different vibrdated for that geometry. Here one is consistent with the pre-
tional free energy of surface systems in comparison to bulkequisites of the quasiharmonic expansion, but at the cost of
systems. The free energy in this approximation is calculategetting wrong interlayer spacings at the surface.
for lattice and geometrical parameterst temperaturd as 4. The real thing is of course to minimize the total free

energy with a “self-consistent” adjustment of the atomic

_fiwi(k) positions of all layers in the slab system, resulting in the
F(aT)=Eq(a)+ kBT; In{2 Sm“—ZkBT . (18 thermodynamic equilibrium configuration of the surface sys-
g

tem. In practice, one starts with the bulk positions rescaled
according to thermal expansion, and then adjusts the inter-
layer spacings of a few near-surface layers to obtain the
corresponding modes. Both the frequencies, and the internlinimum of the free energy. The major contribution is gen-
energyEq(a) of the ideal static lattice, depend on all the €rally due to the first few surface layers, the only having a
lattice and geometrical parametaxsThe latter include the sizable _d|splacement from the bulk interlayer spacing. In our
bulk lattice constant and, for the surface, the additional geoS@culations for AI100), we therefore changeth, by = 3%
metrical parameters involved in relaxations or reconstruc@Nddzs by +2%.
tions.

In a bulk system the forces on each atom are zero by
symmetry, independently @& so that it is strictly correct to
neglect the first derivatives in the quadratic expansion of the We now compare the free energy of an (ADO surface
potential energy. We have verified that the quasiharmonicalculated within the different quasiharmonic approaches
approximation does indeed work very well for the bulk even1—4 described above, with the results of thermodynamic in-
in comparison to thermodynamic integration. For a surfacetegration; the latter effectively functions as exact reference
the situation is different, since the interlayer spacif@ge- since it takes the full potential into account, hence in particu-
cially those of the top surface layenwill change with re- lar all anharmonic contributions. We chose th€0) surface

The sum runs over all phonon polarizatigrend wave vec-
torsk in the Brillouin zone, withw;(k) the frequency of the

B. Results
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FIG. 4. Surface free energies for ALOO calculated with dif- 0.484
ferent quasiharmonic approach@s discussed in the téxand with ey
the method of thermodynamic integration. Solid line: approach 1,
zero-temperature phonons for all temperatures; dotted line: ap-
proach 2, positions rescaled according to thermal expansion; dash-
dotted line: approach 3, as 2 with reoptimization of atomic posi-
tions; crosses: approach 4, minimization of the free energy in the
{dy,d,3} plane; dashed ling(Tl) thermodynamic integration, ref-
erence for harmonic approximations. See text for more details. -g-ggg
-0.024
for demonstrative purposes, as intermediate between the Pyent
closed-packedl11l) and the more opefil10 surface. / A -0.030
T e -0.032
. . i ||Il| -0.034
Comparison of different methods -0.036

In order to obtain the bulk lattice constant at different
temperatures we first performed zero-pressure molecular-
dynamics simulatiot?>**2using our Al potential. In the lin-
ear regime the expansion coefficientis- 1.64x 10~ ° A/K,
the experimental value being 2:86.0 ° A/K.® Deviations
from linearity set ifi* at about 500 K. The dimensions of the
simulation cell with periodic boundary conditions corre- ,
spond, in all subsequent calculations, to the bulk lattice con- . XXX e o 4
stant at the relevant temperature. The surface free-energy ' =
calculations imply the evaluation of the bulk free energy, and
of the free energy of a slab system with two surfaces. The
surface free energy is then determined with E3j.

In Fig. 4 we compare the surface free energy calculated
with thermodynamic integration and the quasiharmonic ap-
proach. All versions of the latter underestimate severely the
temperature variation of the surface free energy. This is
mainly due to the neglect of anharmonicity, which is also _
responsible for thermal expansion. A first important result is F!G- 5. Pane(a): dependence of the plain surface energy on the
then that at temperaturds=0, the harmonic approxima- interlayer spacingl;, andd,s. Panel(b).: V|brat|ona.l contribution to.
tion is inadequate for Al surfaces. the surface free energy as a function of the interlayer spacings.

Note that the failure of the harmonic approximation for P.ane.l(c): total surface free energy, sum of the wo previous con-
. . . tributions.

the present relatively high-temperature calculations does not
affect the successes of this approach at low temperatures, &8ned earlier. We pickT=450 K for demonstrative pur-
example being the recent first-principles calculations for Beposes, and expand the lattice accordingly.
surfaces?” The reason why those results are compatible with  Panel(a) in Fig. 5 shows the variation of the plain surface
ours is clearly that we work well above the Debye temperaenergy as a function of the interlayer spacirigspressed in
ture of our system+ 400 K), whereas the highest tempera- turn in percentage of the bulk interlayer spagingn in-
ture considered in Ref. 55 is 750 K, well bel®£°=1000 crease of the interlayer spacings tends to increase the energy
K (as extracted from a Debye-Einstein modéf course, drastically, a decrease to reduce it. The minimum is at
the quasiharmonic approach will generally fail if applied to around— 3% for both spacings. These fairly unrealistic val-
systems at sufficiently high temperatures. ues result from the optimization of the interlayer spacing for

To sort out the relative merits of the various levels ofa laterally expanded surface.
harmonic approximation, we focus on the effects of the in- The excess surface free energy, i.e., the vibrational con-
terlayer spacingl,, (between first and second layemdd,;  tribution, is shown in paneglb) of Fig. 5. An increase of the
(between second and third layem the surface energy and interlayer spacings leads to softer force constants and hence
on the vibrational contribution to the surface free energyto lower frequencies, which yield according to E48) a
Essentially this is the fourth level of approximation men- more negative value of the free energy. The dependence on

0.464
0.462
0.460
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the first spacing is stronger than on the second, althougbmens AG. V. Fiorentini was supported by the Alexander
conceptually both spacings would tend to positive infinityvon Humboldt-Stiftung during his stay at the Walter
(decoupled Al planesif only the vibrational contribution Schottky Institut.

mattered.

The OppOSing tendencies of the internal and vibrational APPENDIX: COMPUTATIONAL DETAILS
contributions tend to compensate; in fact, summing up the _
plain surface energy and the vibrational contribution, one 1. Substrate sizes

arrives at the total surface free energy depicted as a function For the calculation of the surface self-diffusion barriers,
of the interlayer spacings in pan) of Fig. 5. For the Al and surface and step energies, we have employed finite slabs
(100 surface, the minimum in the free energy corresponds tquith periodic boundary conditions for the lateral cells. The
dy,=—0.5% anddys= —0.9%, a compromise between the sypercells contained 672, 550, and 560 atoms for the Al
gain of free energy upon outward relaxation, and that in plain111), Al (100, and Al (110 surfaces and consisted of 12,
surface energy upon inward relaxation. 11, and 9 atomic layers. In order to determine the surface
In approaches 1 and 2 from our above (fstce constants  energies of Al(111), Al (100), and Al (110 the supercells
from zero-temperature or rescaled zero-temperature postontained 1080, 550, and 560 atoms, arranged in 9, 11, and
tions), the interlayer spacings am,=—1.5% anddy= 16 atomic layers. The step formation energies were obtained
—1.3%. These are rather close to the minimum of the freQrom Systems Containing four Steps and 72, 105, 102, and
energy found by direct minimization in approach 4; indeed,102 atoms per layer corresponding to a total number of 1312,
with reference to Fig. 4, both approach(solid line) and 2 2724, 1368, and 2532 atoms for the Al(1,0,9), Al(1,1,15),
(dashed ling match rather closely the values of approach 4a|(8,8,10), and Al(9,9,7) surface. All forceE per atom
(CrOSSE)S i.e., of the full quaSi'harmoniC calculation. Ap- have been brought below a threshold offi(EV/A . We

proach 3(dash-dotted ling where we rescaled the lattice estimated the errors in the total energies due to the finite
constant and then reoptimized all atomic positions, failssypercell size to be well below 16 eV/atom.

badly, going astray already near the Debye temperature, and
progressively more so for higher temperatures. This is due t
the incorrect(free-energy-wise spacings imposed on the
near-surface layers by the minimization of the internal en- The reaction probabilities were calculated in classical
ergy. The spacings are found to dg,= —3.4% andd,s= molecular-dynamics simulations using our Al interaction po-
—3.1% at 450 K, andi,,= —5.8% andd,;= —5.5% at 900 tential. The integration was performed with a fifth order
K. A glance at pane(c) of Fig. 5 reveals that both of these Runge Kutta method with an adaptive timestep, in order to
points in the{d,,,d,3} plane do indeed correspond to free ensure total-energy conservation throughout the simulation.
energies very far away from the minimuf@specially at the Supercells containing 1320 atoms arranged in ten atomic lay-
higher temperatuje ers were employed; cell dimensions are chosen so as to avoid

In conclusion, the most naive and simplest approach ofirtifacts of the in-plane periodicity. The starting configura-
exporting theT=0 force constants and surface energy totion is chosen to be €111) surface, the one Al surface with
nonzero temperature does indeed underestimate consideralthe lowest formation energy. All atomic coordinates are al-
the temperature variation of the surface free energy with relowed to evolve dynamically, except those of the two bottom
spect to thermodynamic integration, but it gives an agreelayers of the supercell. The surface temperature is set at 450
ment comparable to, or better than the sophisticated adjusk (i.e., about 1/2 of the melting temperature, and5%
ment of the interlayers to find the free-energy minimum.  larger than the bulk Debye temperature

02. Molecular-dynamics calculation of the sticking probability

IV. SUMMARY 3. Monte Carlo calculations within the canonical ensemble

We have presented a refined Al interatomic potential for All Monte Carlo calculations were be performed within
classical dynamics and Monte Carlo simulations. We thorthe canonical ensemble, using the standard Metropolis
oughly tested its functionalities, finding it to be very accuratetechnique'®*® The maximum atomic displacement was auto-
for a variety of systems. Next, we applied it to evaluating thematically adjusted in order to get an acceptance ratio of 0.4.
performance of quasiharmonic approaches to free-energy was not systematically studied that this acceptance ratio
calculations for surfaces, comparing the latter results wittwas an optimum, but well converged statistical averages
full thermodynamic integration results. For Al surfaces, thewere obtained with a typical number of Monte Carlo moves
quasiharmonic approximation shows a progressively increasf order 1 times the number of atoms in the system. Before
ing error for temperatures abov®,. Different levels of averaging, the system was equilibrated for a number of steps
quasiharmonic approximation have been compared; for Alpf order 500 times the number of atoms in the system. For
the simplest method of using zero-temperature phonons tthe Al (100 surface we used in total 384 atoms.
compute the free energy at all temperatures is as accurate as
the explicit minimization of the free energy with respect to 4. Quasiharmonic free-energy calculations

eometrical parameters. - . .
g P Within the quasiharmonic methods we employed slab ge-

ometries with 20 atomic layers each containing 32 atoms.

For thek-space summation we used grids typically contain-
We thank Dr. Furio Ercolessi for helpful assistance. U.ing 2500 equally spacekl points. Careful tests showed that

Hansen and P. Vogl acknowledge financial support by Sithis number ofk points yields well converged results.
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