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Quasiharmonic versus exact surface free energies of Al: A systematic study employing a classic
interatomic potential
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We discuss a computationally efficient classical many-body potential designed to model the Al-Al interac-
tion in a wide range of bonding geometries. We show that the potential yields results in excellent agreement
with experiment andab initio calculations for a number of bulk and surface properties, among others for
surface and step formation energies, and self-diffusion barriers. As an application, free-energy calculations are
performed for the Al~100! surface by Monte Carlo thermodynamic integration and the quasiharmonic approxi-
mation. Comparison of the latter approximation with the reference Monte Carlo results provides information
on its range of applicability to surface problems at high temperatures.@S0163-1829~99!03831-X#
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I. INTRODUCTION

Atomistic simulations are playing an increasingly prom
nent role in materials science. From studies of crystallizat
of clusters1 to large scale simulations of fracture2 and grain
boundary diffusion,3 atomistic simulations offer a micro
scopic physical view that cannot be obtained from exp
ment. Predictions resulting from this atomic level und
standing are proving increasingly accurate and useful.4

The effective interatomic interaction potential is the k
ingredient in all atomistic simulation. The accuracy of t
potential affects drastically the quality of the simulation r
sult, and its functional complexity determines the amoun
computer time required.5 Much research effort has therefo
been devoted to the design of potential-energy functio6

This is especially important in classical dynamics which,
though quantum-mechanical simulations have been progr
ing at a rapid pace in recent years, remains the most~some-
times, the only! affordable way to perform very large sca
simulations in materials science. In this paper, we prese
carefully designed Al-Al interaction model, test its perfo
mance, and apply it to the study of free energies in ato
scale simulations.

The ability to compute free energies is essential to und
stand or predict many physical phenomena, from the stab
of crystal structures, to the propensity to form defects
disorder, and to morphology changes and phase transit
However, the determination of free energies from atom
scale computer simulations is a daunting task. Approxim
methods, mostly based on the harmonic vibrational prop
ties of the system, are commonly in use to this end. Here
compare several possible versions of the so-called quas
monic approximation, using as reference accurate simula
using isobaric molecular dynamics, canonical Monte Ca
and thermodynamic integration, focusing on the specific c
of surface free energies. The goal is to provide a measur
the range of applicability of approximate methods for co
plex systems using a reliable Al interaction model.
PRB 600163-1829/99/60~7!/5055~10!/$15.00
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II. AL INTERACTION POTENTIAL

Previously developed interatomic potentials7–11 for the
Al-Al interaction have mostly focused on bulk and molecu
properties. In this work, we analyze and generalize one
those models with special regard to surface properties, a
ing as usual at describing Al in as wide a range of chem
environments as possible, i.e., ranging from bulk Al to
surfaces and surface steps, and to small Al molecules.
functionalities of the refined potential are found to exte
significantly those of previous ones. As we are going to u
an embedded atom interaction model, in this section
briefly review the basic ideas of this approach, describe
details of the model, and finally assess its quality.

A. Theory

In the embedded atom method, each atom in a solid
viewed as an impurity embedded in a host comprising all
other atoms.12,13 The energy of the host with impurity is
according to Stott and Zaremba,14 a functional of the unper-
turbed host electron density, and a function of the impur
type and position,

E5FZ,R@rh~r !#, ~1!

whererh(r ) is the unperturbed host electron density, andZ
and R are the type and position of the impurity. Here th
energy of an impurity is determined by the electron dens
of the host before the impurity is added. The functionalF is
a universal function, independent of the host, but its form
unknown.12 A simple approximation toF is the so-called
local approximation, whereby the impurity experiences a
cally uniform electron density.13 This can be viewed as th
lowest-order term of an expansion involving the success
gradients of the density. The functionalF is then approxi-
mated to yield
5055 ©1999 The American Physical Society



ti

sy

os
e

-

ls

n

en
th
e
c
fa

ffe
ff
ed
s
fo

ia
ke

se
t
.
m

ra

gh
n

-
er

n

ial
f

e

ion
ots
are

on

5056 PRB 60U. HANSEN, P. VOGL, AND VINCENZO FIORENTINI
E5Fi„r i~Ri !…1
1

2 (
j

f i j ~Ri j !, ~2!

where f i j is a pair potential representing the electrosta
interaction,Ri j is the distance between atomsi and j, andFi
denotes the embedding energy. The total energy of the
tem is a sum over all individual contributions:

Etot5(
i

Fi~rh,i !1
1

2 (
i , j

iÞ j

f i j ~Ri j !. ~3!

A further simplification is introduced assuming that the h
densityrh,i at atomi is closely approximated by a sum of th
atomic densitiesr j of the constituent atoms, i.e.,rh,i
5( j ,( j Þ i )r j (Ri j ), with r j being the contribution to the den
sity at atomi from atom j. Equation~3! is the form com-
monly used for molecular-dynamics simulations of meta
and is known as embedded atom potential.

B. Details of the Al-Al interaction potential

The Ercolessi-Adams interaction model for Al was co
structed with the so-called force matching method11 and, in
contrast to most other empirical models, it gives excell
structural and elastic properties for the bulk along with
correct surface interlayer relaxations at low-index surfac
Furthermore, we found that the diffusion barriers for surfa
adatoms obtained by the Ercolessi-Adams model are in
agreement withab initio calculations,15–17 whereas those
predicted by most other embedded atom potentials di
drastically18 from ab initio results. We therefore started o
from the Ercolessi-Adams potential to build our own refin
Al-Al interaction. Without affecting the elastic propertie
and the surface relaxation properties, we introduced the
lowing modifications to the model:

1. An additional term was introduced in the pair potent
f i j in order to account for an exponential Born-Mayer-li
repulsion at short Al-Al separation.19 This is a key require-
ment for studies of, e.g., physical vapor deposition proces
where the energy of each single atom easily exceeds
thermal energy by as much as three orders of magnitude

2. In the low-density region, three parameters of the e
bedding functionF were changed in order to improve seve
reference quantities, namely the Al2 binding energy and vi-
brational frequency, and the adatom diffusion barrier hei
on the Al~111! surface~i.e., the energy difference betwee
the surface binding site and the saddle point!.

3. A fifth-order polynomial cutoff function was intro
duced, smoothly bringing the potential to zero at an int
atomic distance of 5.56 Å ~slightly larger than the third-
nearest-neighbor distance in bulk Al!.

The total energyEtot of a system containing Al atoms i
an arbitrary arrangement is written~see Sec. II A! as

Etot5(
i

F~r i !1
1

2 (
i , j

iÞ j

f̄ i j ~r i j !. ~4!

The atomic densityr i in arbitrary units is given as
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r i5 (
j ,( j Þ i )

r~r i j !3 f c~r i j ,R0 ,D0!. ~5!

The sum runs over all atoms that lie within the potent
range R01D0 ~5.56 Å!, which is enforced by the cutof
function f c(r ,R,D). This function is zero forr exceeding
R1D and unity forr less thanR2D. For r within the inter-
val (R2D,R1D) it is defined according to

f c~r ,R,D !523F r 2R

D
11G5

1
15

2 F r 2R

D
11G4

25F r 2R

D
11G3

11. ~6!

The functionr(r ) in Eq. ~4! is spline interpolated using th
values reported in Table I; the parametersR0 and D0 are
given in Table II. The embedding functionF(r) is also
spline interpolated, and the corresponding values forF(r)
are collected in Table III.

TABLE I. Parameters used to define the atomic density funct
r(r ). The positions of the spline knots and the values at the kn
are given. Also the first derivatives at the first and last knots
given.

r @Å # r(r ) r8(r ) @1/Å #

0.0000 0.000 0.0000
1.8000 6.382031021

1.9000 7.654131021

2.0211 8.656731021

2.2737 9.252131021

2.5264 8.620031021

2.7790 7.627331021

3.0317 6.064831021

3.2843 4.660331021

3.5370 3.387431021

3.7896 2.325731021

4.0422 1.090531021

4.2949 5.249131022

4.5475 3.917031022

4.8001 3.082831022

5.0528 2.502131022

5.3054 1.472231022

5.5600 0.0000 2.129831026

TABLE II. Parameters entering the potential energy functi
from Eq. ~4!.

Parameter

R0 @Å # 5.46
D0 @Å # 0.10
RF @Å # 2.00
DF @Å # 0.25
A @eV# 7255.44
l @1/Å # 4.42085
B @eV# 1.04897
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The pair potential term in Eq.~4! is written according to

f̄ i j 5@f~r i j !1„A exp$2lr i j %3 f c~r i j ,Rf ,Df!2B…#

3 f c~r i j ,R0 ,D0!. ~7!

The function f is tabulated in Table IV. The first cutof
f c(r i j ,Rf ,Df) switches on the exponential repulsive term
small distances (r ,2.25 Å!, while f c(r i j ,R0 ,D0) terminates
the interaction range of the potential. The corresponding
rameters are given in Table II. The exponential term ensu
that one gets a Born-Mayer repulsion at short separations
e.g., diatomic molecules.19

TABLE III. Parameters used to define the embedding funct
F(r). The positions of the spline knots and the values at the kn
are given. Also the first derivatives at the first and last knots
given.

r F(r) @eV# u8(r) @1/eV#

0.0 0.0000 212.375
0.1 20.8139
0.2 21.2697
0.3 21.6799
0.4 22.0296
0.5 22.2520
0.6 22.4272
0.7 22.5517
0.8 22.6052
0.9 22.6440
1.0 22.6571
1.1 22.6456
1.2 22.6087
1.4 22.4525 1.0620

TABLE IV. Parameters used to define the pair potentialf(r ).
The positions of the spline knots and the values at the knots
given. Also the first derivatives at the first and last knots are giv

r @Å # f(r ) @eV# f8(r ) @eV/Å #

2.0211 1.9601 27.0273
2.2737 6.827231021

2.5263 1.473731021

2.7790 21.881831022

3.0317 25.760131022

3.2843 25.198431022

3.5369 23.763531022

3.7896 23.737331022

4.0422 25.313531022

4.2949 26.328631022

4.5475 25.481031022

4.8001 23.728831022

5.0528 21.888731022

5.3054 25.852331023

5.5600 0.0000 5.906531026
t
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C. Assessment of the potential

We now present evidence that the potential just descri
yields satisfactory results for a variety of properties of Al
different environments. In particular we address the bulk,
dimer, low-index surfaces and steps thereon, and s
diffusion on different low-index surfaces; also included
this test section is the energy dependent sticking coeffic
of high-energy Al atoms on Al~111!. The changes to the
potential significantly improved agreement with experime
and other theoretical predictions in several instances wh
errors were typically of order 50%.

1. Bulk properties

By construction our model does not alter the equilibriu
lattice constanta0, the cohesive energy Ecoh and the elastic
properties of the previous model of Ercolessi. We obtain
in Ref. 11 a0 5 4.03 Å, Ecoh53.36 eV, C115118 GPa,
C12562 GPa, and C44536 GPa. For comparison, the expe
mental values20 are C115114 GPa, C12562 GPa, and C44
532 GPa, and local-density approximation~LDA !
calculations17,21 predict a053.98 Å, Ecoh54.15 eV, C11
5135 GPa, C12570 GPa, and C44535 GPa.

2. Diffusion barriers

Diffusion is central to many physical processes which d
termine the morphology of surfaces, such as step flow, nu
ation, and growth.22 It is of obvious importance to study
diffusion processes theoretically, since direct observation
surface diffusion by means of field ion microscopy~FIM!
~Ref. 23! are limited to a few surfaces due to the respon
limits of the materials of interest to high voltages.22 The
barriers for single adatom diffusion on Al surfaces calcula
by Stumpf and Scheffler15–17 using ab initio LDA tech-
niques, provide a stringent test for the present empir
Al-Al interaction model. It is generally accepted that diffu
sion on flat metal surfaces proceeds by either hopping
exchange.24 In the two following subsections compare th
results of the present model for these mechanisms with
vious LDA results.

Hopping Diffusion. During hopping diffusion the adatom
is moving between minima of the potential energy surfa
i.e., between stable or metastable binding sites. On the~111!
surface the stable adsorption sites are the threefold fcc
hcp sites; on the~100! surface there is a single independe
adsorption site, the fourfold hollow; the~110! surface is
analogous, with a fivefold site. Hopping diffusion on th
~110! surface is intrinsically anisotropic, since it can proce
perpendicular or parallel to the@11̄0#-oriented atomic rows,
respectively, via the short bridge or long bridge paths. T
activations energies for the long and short bridge are labe
Ei andE' , respectively.

For each surface we performed total-energy calculati
for the adatom sitting at the adsorption site and at the bri
site. At the latter site the total energy is minimized wi
respect to the distance of the adatom from surface. All ot
Al positions are fully optimized. The energy difference b
tween adsorption and bridge site is defined to be the act
tion energy for hopping diffusion. Further technicalities a
discussed in the Appendix. Table V summarizes the act
tion energies for surface self-diffusion obtained with t
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present model and compares the barrier heights to re
from previousab initio calculations. The barrier for diffusion
on Al ~111! was used to set up the potential, hence it agr
with LDA results by construction. On Al~100!, we obtain a
diffusion barrier in good agreement with first-principle ca
culations; we are not aware of experimental results for th
self-diffusion barriers on Al~111! and Al ~100!. According
to a recent study,25 the hopping-self-diffusion barriers calcu
lated ab initio in the generalized gradient approximation
density-functional theory for unreconstructed fcc~100! sur-
faces equal one-sixth the bulk cohesive energy; this is fo
to be the case for Al also in our calculations. In the case
Al ~110!, the present potential correctly predicts diffusio
anisotropy, although some quantitative discrepancy ex
with the predictions ofab initio calculations.15,16 FIM
studies23 find no anisotropy for the diffusion on the~110!
surface, and report a barrier height of 0.43 eV for both pa
This discrepancy with our result is due to the fact that h
we only addressed hopping diffusion for demonstrative p
poses. In fact, exchange diffusion normal to the rows
known15,16 to have a barrier as low as.0.6 eV, which re-
stores a reasonable agreement with experiment.

Exchange Diffusion. Diffusion by atomic exchange occur
as the adatom replaces a surface atom, which in turn pop
at an adjacent stable surface site. Diffusion by exchange
discussed by Bassett and Webber26 and Wrigley and
Ehrlich,27 and predicted theoretically for~100! surfaces by
Feibelman.28 This diffusion mode can lower significantly th
effective diffusion barriers. Views on why diffusion by ex
change is favorable for some metal surfaces is discusse
Refs. 17 and 28–30, and references therein. For Al~100!, we
calculated the activation energy for exchange diffusion~see
Table V! and found it lower than for hopping, as do firs
principles calculations. The quantitative agreement is reas
ably good.

3. Surface and step energies

The surface energy per atom and per area, defined a
difference between the energy of an atom at the surface
in the bulk environment, is usually calculated as

Esurf
area5

Eslab2N Ebulk

2A
, ~8!

TABLE V. Comparison of selected hopping and exchange d
fusion barriers on low-index Al surfaces obtained with the pres
model and inab initio calculations. Al~111! is also included for
completeness.

This work ab initio

Al ~111! hopping 0.04 0.04a

Al ~100! hopping 0.60 0.68a,0.65b

Al ~100! exchange 0.50 0.35a

Al ~110! ' hopping 1.13 1.06a

Al ~110! i hopping 0.30 0.60a

aReference 15.
bReference 28.
lts
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Esurf
atom5

Eslab2N Ebulk

2Nsurf
, ~9!

whereEslab is the total energy of the slab,N the total number
of atoms in the slab,Nsurf the number of atoms on eac
surface,Ebulk is the total energy per bulk atom,A is the area
of each free surface of the slab, and the factor 1/2 acco
for the two free surfaces of the simulation cell; period
boundary conditions are applied in the planar directio
These formulas are not problem free in general,31 but we
have checked that they are in the cases of interest to us

We calculated the formation energies for the low ind
~111!, ~100!, and ~110! Al surfaces with the present Al-A
interaction model. The comparison of our results to tho
obtained inab initio LDA investigations, given in Table VI
shows that the trend of surface energies of our Al model
consistent with theab initio calculations. We obtain all sur
face energies about 20% lower than the LDA surface en
gies. Keeping in mind the known LDA overestimate of th
binding energies~the LDA cohesive energy16 of Al is 4.15
eV, about 20% larger than the experimental value of 3
eV! the agreement between the two approaches is in
excellent.

The energy per unit length of a step on a low-index s
face is defined in terms of the energies of the low-index fa
and the vicinal surface used to simulate the step itself, an
the geometrical parameters thereof:32

Estep5ds2sEvicinal2 l terraceElow-index, ~10!

with ds2s the step-step distance, andl terracethe terrace length
on the vicinal surface. In analogy to the surface energy,
step energy can also be expressed per step atom.

Although a stepped vicinal surface can be specified by
corresponding Miller indices, this notation is not very co
venient, as it does not indicate at first sight the geometr
structure of the surface. Thus we use instead the nota
@n(h,k,l )3m(h8,k8,l 8)# by Lang and others,33,34 where
(h,k,l ) and (h8,k8,l 8) are the Miller indices of the terrace
and ledges, respectively;n gives the number of atomic row
in the terrace parallel to the step, andm corresponds to the
height of the step. In the case of monoatomic-height stepm
is omitted in this notation.

For the two low-index surfaces Al~100! and Al ~111!, we
calculated the formation energy of different steps. On
~100! there exist two monoatomic steps, the close-pac
$111% faceted and the more open$110% faceted. The former
belongs to the family of (1,1,2n11) surfaces, the latter to
the family of the (1,0,n) surfaces.35,36 For the calculation of

-
t

TABLE VI. Surface formation energies for low index Al sur
faces calculated with the present model and with other theories

This work LDA a

System ~eV/atom! ~eV/Å 2) ~eV/atom! ~eV/Å 2)

Al ~111! 0.38 0.054 0.48 0.070
Al ~100! 0.48 0.059 0.56 0.071
Al ~110! 0.74 0.065 0.89 0.080

aReference 17.
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the step energies we used the Al(1,1,15)5Al @9(100)
3(111)# and the Al(1,0,9)5Al @9(100)3(110)# surfaces.

On Al ~111! there are two types of close-packed steps,
$111% faceted and the$100% faceted. The corresponding vic
nal surfaces belong to the (n,n,n22) and (n,n,n12) fami-
lies, respectively. We used the Al(9,9,7)5Al @9(111)
3(111)# and the Al(8,8,10)5Al @9(111)3(100)# surfaces.
The geometry of the different steps on the Al~100! and Al
~111! surface is depicted in Fig. 1. For all these vicinals, t
terraces separating the steps have the same width of
atomic rows. We have verified that step-step repulsion
these inter-step distances is already in the long-range el
regime;ds2s

22 ;32,37 thus the steps are far enough to extra
their formation energy without an unknown bias from t
interstep interaction.

Table VII lists the results for step formation energies, a
compares them toab initio data. The empirical Al potentia
describes the step formation energies for the two differ
steps on Al~111! in excellent agreement with first-principle
calculations. More energy is needed to create steps on
close-packed Al~111! surface than on the more open A
~100!. The open step on the Al~100! surface has a 20%
larger formation energy than the close-packed step, in ag
ment with bond cutting arguments.38

4. The Al dimer

The dimer is a stringent test for an Al-Al interactio
model, since atoms in a dimer experience a very differ
chemical environment compared to bulk or surface ato

FIG. 1. Atomic arrangement of the$110% and $111% faceted
steps on Al~100!, and the$100% and$111% faceted step on Al~111!.
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For Al2, our model yields a binding energy per atom of 0.
eV and a bond length of 2.70 Å . The binding energy was
indeed used as input to determine the model parame
matching the LDA value39 of 0.71 eV (20.6860.03 eV ex-
perimental, Ref. 40! The lowest vibrational frequency is ca
culated to ben5290 cm21, in excellent agreement with th
experimental value41 of 284.2 cm21. The predicted bond
length of our model matches exactly the experimen
estimate.41 Thus the present model describes satisfacto
the bonding of Al in the rather extreme case of the A2
dimer.

As the understanding of diffusion and growth requires
knowledge of the binding energies of small aggregates
adatoms, we also calculated the energy of two Al adato
sitting at neighboring fcc sites on an Al~111! surface. The
energy gain with respect to isolated adatoms is 0.50 eV,
the Al ad-dimer is stabilized appreciably over separated a
toms. LDA calculations17 yield a similar energy gain of 0.58
eV.

5. Sticking coefficient for hyperthermal Al atoms

During physical vapor deposition the Al atoms emitt
from the sputter source have a nonthermal energy distr
tion, with kinetic energies exceeding 10 eV. Therefore
sticking coefficient, a key ingredient for a reliable modelin
of metal film growth, cannot be assumed to be constant
independent of the particle’s energy as it is typically done
order to elucidate the dependence of the sticking coeffic
on impingement energy, we start our simulations with t
incident Al atom placed outside the interaction range of
surface. Its initial kinetic energy is set in the range of 0–1
eV, and its starting angle off the surface normal in the ran
0° –60°, which corresponds to typical ionized physical vap
deposition conditions. The trajectories of the incident ato
and of any other atom which may be etched away from
surface upon impact, are monitored until either a certain ti
span has elapsed, or the outcoming atoms~in the case of
reflection or etching! have traveled a distance of 10 Å awa
from the surface. Analyzing 200 trajectories per incident e
ergy and angle, we collected a statistically significant sam
of well-defined adsorption, reflection, and etching even
The relative probability of the sticking coefficient is calc
lated as the ratio of the number of adsorption events to
total number. The typical statistical error in the reacti
probability thus determined is below 5%. Figure 2 depi
the sticking coefficient as a function of energy for Al atom
imping normally on the surface~solid circles! or at an off-
normal angle of 40°~open circles!. The sticking probability
l and
TABLE VII. Step formation energies for low-index Al surfaces calculated with the present mode
with other theories.

This work LDA a

System ~eV/Å! ~eV/atom! ~eV/Å! ~eV/atom!

Al @9(100)3(111)# 0.055 0.142
Al @9(100)3(110)# 0.066 0.240
Al @9(111)3(111)# 0.083 0.215 0.082 0.232
Al @9(111)3(100)# 0.085 0.222 0.088 0.248

aReference 16.
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varies strongly with the incident kinetic energy; the angle
the normal also has a drastic effect. Details of the molecu
dynamics calculations are given in Sec. A2. Further disc
sion and results on high-energy deposition are reporte
Ref. 42.

III. APPLICATION: FREE-ENERGY CALCULATIONS

In this applicative section of the paper, we compare s
face free energies of Al computed using different levels
quasiharmonic approximation, and thermodynamic integ
tion via Monte Carlo simulations. The latter effectively fun
tions as ‘‘exact’’ reference for the various harmonic appro
mations. Before presenting the results, we briefly review
background theory of the different approaches.

A. Theory

Thermodynamic integration. The free energy cannot b
calculated as an ensemble average.43 The method of thermo-
dynamic integration10,43–47circumvents this problem startin
from the concept of Stockmayer fluid, a fictitious system
which the interparticle interaction potentialUl is gradually
switched on from a known reference potentialUh to the ac-
tual, full interaction potentialU; the mixing ofUh andU into
the effective potential is controlled by a parameterl:

Ul5~12l!Uh1lU. ~11!

The key relation of the method concerns the derivative oF
with respect tol:

dF

dl
5 K dUl

dl L
l

5^U2Uh&l . ~12!

The subscriptl means that the average has to be evalua
with the interaction potentialUl . Integrating the latter equa
tion one arrives at the following expression for the free e
ergy of the system of interest:

Fl515Fl501E
0

1

^U2Uh&ldl. ~13!

FIG. 2. Sticking probabilities for hyperthermal Al atoms im
pinging on an Al~111! surface. As a function of kinetic energy th
solid line with filled circles depicts the reaction probabilities for
atoms impinging normal on the surface and the dashed line with
open circles show the latter quantity for an angle of 40° to
normal.
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The usual choice for the reference system is the Eins
crystal ~i.e., a system of noninteracting harmonic oscillato
with the interaction potential Uh5 1

2 mvD( i ur i2r i0u2!,
whose free energy is

Fl50523NkBT lnS T

QD
D , ~14!

with QD the Debye temperature@394 K for Al ~Ref. 48!#.
The free energy of the real system can thus be obtaine
any given temperature by a series of canonical Monte C
simulations.

A faster way to obtain the temperature variation of t
free energy is to integrate the thermodynamical relation

d

dT S F

TD52K H

T2L , ~15!

from a reference temperature upwards. This require
simple ~e.g.! Monte Carlo ensemble average of the ener
for each temperature, and of course a reference valueF
from thermodynamic integration.

In summary, the free energy of the system at a refere
temperatureT0 is determined with Eq.~13!; then, the tem-
perature variation fromT0 to T is calculated using Eq.~15!.
Both steps were performed by canonical Metropolis Mo
Carlo simulations.43,49 As detailed below, thermal expansio
is taken into account performing the NVT~constant number
of particles, constant volume and constant temperatu!
Monte Carlo calculations at the temperature-dependent
tice constant determined independently by NPT~constant
number of particles, constant pressure and constant temp
ture! molecular dynamics.

Quasiharmonic approach. A popular approach to free en
ergy calculations is the quasiharmonic approximatio
Thereby, the full interatomic potential is replaced by its qu
dratic expansion about the atomic equilibrium positions. T
system is then equivalent to a collection of harmonic os
lators, and diagonalization of the corresponding dynam
matrix yields the squares of the normal-mode frequenc
i.e., the phonon spectrum. In bulk systems the dynam
matrix is a 333 matrix; for a slab system it is a 3l 33l
matrix, wherel is the number of atomic layers in the sla
The dynamical matrix is given by50

Dab~l l 8!5
1

m (
l 8

Fab~l l 8!exp@ iq~r02r08!#,

~16!

where the force-constant matrixFab(l l 8) is defined as

Fab~l l 8!5S ]2U

]ua~l ! ]ub~l 8!
D

0

. ~17!

The subscript ‘‘0’’ indicates that the second derivatives a
to evaluated at the true mean positions of the atoms, with
displacements from the bulk positions~e.g., surface relax-
ations or reconstructions! taken into account. The equilib
rium positionsx0

l ,y0
l ,z0

l of the atoms are given by the vec
tors l 5(l 1 ,l 2 ,l 3); the l 3 axis is perpendicular to the
surface and the position of an atom within a plane is spe

e
e
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fied by l 1 ,l 2, and ua(l ) describes thea component (a
5x,y,z) of the position of thel th atom from its mean posi
tion x0

l ,y0
l ,z0

l .
The phonon spectrum of bulk Al and of Al~100! are

displayed in Fig. 3, upper and lower panels, respectively@for
both calculations supercells comprising 50 layers stac
along ~100! have been employed#. A variety of surface
modes appear in bulk gaps or split off from bulk band edg
These additional modes are the source of the different vi
tional free energy of surface systems in comparison to b
systems. The free energy in this approximation is calcula
for lattice and geometrical parametersa at temperatureT as

F~a,T!5E0~a!1kBT(
k, j

ln S 2 sinh
\v j~k!

2kBT D . ~18!

The sum runs over all phonon polarizationsj and wave vec-
torsk in the Brillouin zone, withv j (k) the frequency of the
corresponding modes. Both the frequencies, and the inte
energyE0(a) of the ideal static lattice, depend on all th
lattice and geometrical parametersa. The latter include the
bulk lattice constant and, for the surface, the additional g
metrical parameters involved in relaxations or reconstr
tions.

In a bulk system the forces on each atom are zero
symmetry, independently ofa, so that it is strictly correct to
neglect the first derivatives in the quadratic expansion of
potential energy. We have verified that the quasiharmo
approximation does indeed work very well for the bulk ev
in comparison to thermodynamic integration. For a surfa
the situation is different, since the interlayer spacings~expe-
cially those of the top surface layers! will change with re-

FIG. 3. Bulk ~a! and surface~b! phonon spectra for Al calcu
lated with a 50-layer slab. In~b! the slab has two~100! surfaces, the
frequencies are plotted along lines of high symmetry. The co
sponding two-dimensional Brillouin zone is shown in the inset
panel~a!.
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spect to the bulk, i.e., the surface will generally either co
tract or expand. The average equilibrium positions of
near-surface layers~the interlayer spacings in the case
simple relaxation! are determined by the minimum of th
free energy, but that is, of course, unknowna priori. In ad-
dition, the harmonic expansion is not strictly correct~since
the forces, i.e., the derivatives of the internal potential ene
are not zero at the free-energy minimum!, which is why one
calls this the quasiharmonic approximation to begin with.
fact, it is clear that there are several levels of approximat
possible for the quasiharmonic approach; here we cons
some of those:

1. The computationally simplest way is to optimize th
atomic configuration and calculate the phononsat zero tem-
perature, and evaluate the free energy vsT using those in-
gredients for allT. Within this approach, the quasiharmon
approximation is strictly valid, as we expand the potenti
energy function around the equilibrium positions, and theT
dependence enters solely with Eq.~18!. In real systems, of
course, both the surface internal energyand the vibrational
contribution to the free energy will change withT, and it isa
priori unclear to what degree this influences the result.

2. Another way to account for the effects of finite tem
perature is to take theT50 atomic positions, rescale the
coordinates as a function of the temperature according to
appropriate bulk thermal-expansion coefficient, and reca
late the phonons~and hence the free energy! for the ex-
panded lattice. This is a hybrid case in whichT not only
affects the force constants, but also the surface internal
ergy. Of course it is arbitrary to use the scaledT50 inter-
layer spacings at nonzero temperatures. Also, it should
kept in mind that the harmonic approximation is not stric
valid for the expansion of the potential energy around n
equilibrium positions.

3. A further possibility is to rescale all the coordinat
according to thermal expansion first, and then reoptimize
atomic positions; the phonons and the free energy are ca
lated for that geometry. Here one is consistent with the p
requisites of the quasiharmonic expansion, but at the cos
getting wrong interlayer spacings at the surface.

4. The real thing is of course to minimize the total fre
energy with a ‘‘self-consistent’’ adjustment of the atom
positions of all layers in the slab system, resulting in t
thermodynamic equilibrium configuration of the surface s
tem. In practice, one starts with the bulk positions resca
according to thermal expansion, and then adjusts the in
layer spacings of a few near-surface layers to obtain
minimum of the free energy. The major contribution is ge
erally due to the first few surface layers, the only having
sizable displacement from the bulk interlayer spacing. In
calculations for Al~100!, we therefore changedd12 by 63%
andd23 by 62%.

B. Results

We now compare the free energy of an Al~100! surface
calculated within the different quasiharmonic approach
1–4 described above, with the results of thermodynamic
tegration; the latter effectively functions as exact referen
since it takes the full potential into account, hence in parti
lar all anharmonic contributions. We chose the~100! surface

-
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for demonstrative purposes, as intermediate between
closed-packed~111! and the more open~110! surface.

Comparison of different methods

In order to obtain the bulk lattice constant at differe
temperatures we first performed zero-pressure molecu
dynamics simulation49,51,52using our Al potential. In the lin-
ear regime the expansion coefficient isa51.6431025 Å/K,
the experimental value being 2.3631025 Å/K.53 Deviations
from linearity set in54 at about 500 K. The dimensions of th
simulation cell with periodic boundary conditions corr
spond, in all subsequent calculations, to the bulk lattice c
stant at the relevant temperature. The surface free-en
calculations imply the evaluation of the bulk free energy, a
of the free energy of a slab system with two surfaces. T
surface free energy is then determined with Eq.~9!.

In Fig. 4 we compare the surface free energy calcula
with thermodynamic integration and the quasiharmonic
proach. All versions of the latter underestimate severely
temperature variation of the surface free energy. This
mainly due to the neglect of anharmonicity, which is al
responsible for thermal expansion. A first important resul
then that at temperaturesT>QD , the harmonic approxima
tion is inadequate for Al surfaces.

Note that the failure of the harmonic approximation f
the present relatively high-temperature calculations does
affect the successes of this approach at low temperature
example being the recent first-principles calculations for
surfaces.55 The reason why those results are compatible w
ours is clearly that we work well above the Debye tempe
ture of our system (;400 K!, whereas the highest temper
ture considered in Ref. 55 is 750 K, well belowQD

Be.1000
K ~as extracted from a Debye-Einstein model!. Of course,
the quasiharmonic approach will generally fail if applied
systems at sufficiently high temperatures.

To sort out the relative merits of the various levels
harmonic approximation, we focus on the effects of the
terlayer spacingd12 ~between first and second layer! andd23
~between second and third layer! on the surface energy an
on the vibrational contribution to the surface free ener
Essentially this is the fourth level of approximation me

FIG. 4. Surface free energies for Al~100! calculated with dif-
ferent quasiharmonic approaches~as discussed in the text! and with
the method of thermodynamic integration. Solid line: approach
zero-temperature phonons for all temperatures; dotted line:
proach 2, positions rescaled according to thermal expansion; d
dotted line: approach 3, as 2 with reoptimization of atomic po
tions; crosses: approach 4, minimization of the free energy in
$d12,d23% plane; dashed line:~TI! thermodynamic integration, ref
erence for harmonic approximations. See text for more details.
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tioned earlier. We pickT5450 K for demonstrative pur-
poses, and expand the lattice accordingly.

Panel~a! in Fig. 5 shows the variation of the plain surfac
energy as a function of the interlayer spacings~expressed in
turn in percentage of the bulk interlayer spacing!. An in-
crease of the interlayer spacings tends to increase the en
drastically, a decrease to reduce it. The minimum is
around23% for both spacings. These fairly unrealistic va
ues result from the optimization of the interlayer spacing
a laterally expanded surface.

The excess surface free energy, i.e., the vibrational c
tribution, is shown in panel~b! of Fig. 5. An increase of the
interlayer spacings leads to softer force constants and h
to lower frequencies, which yield according to Eq.~18! a
more negative value of the free energy. The dependenc

,
p-
h-

-
e

FIG. 5. Panel~a!: dependence of the plain surface energy on
interlayer spacingd12 andd23. Panel~b!: vibrational contribution to
the surface free energy as a function of the interlayer spaci
Panel~c!: total surface free energy, sum of the two previous co
tributions.
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the first spacing is stronger than on the second, altho
conceptually both spacings would tend to positive infin
~decoupled Al planes! if only the vibrational contribution
mattered.

The opposing tendencies of the internal and vibratio
contributions tend to compensate; in fact, summing up
plain surface energy and the vibrational contribution, o
arrives at the total surface free energy depicted as a func
of the interlayer spacings in panel~c! of Fig. 5. For the Al
~100! surface, the minimum in the free energy correspond
d12520.5% andd23520.9%, a compromise between th
gain of free energy upon outward relaxation, and that in pl
surface energy upon inward relaxation.

In approaches 1 and 2 from our above list~force constants
from zero-temperature or rescaled zero-temperature p
tions!, the interlayer spacings ared12521.5% andd235
21.3%. These are rather close to the minimum of the f
energy found by direct minimization in approach 4; indee
with reference to Fig. 4, both approach 1~solid line! and 2
~dashed line! match rather closely the values of approach
~crosses!, i.e., of the full quasi-harmonic calculation. Ap
proach 3~dash-dotted line!, where we rescaled the lattic
constant and then reoptimized all atomic positions, fa
badly, going astray already near the Debye temperature,
progressively more so for higher temperatures. This is du
the incorrect ~free-energy-wise! spacings imposed on th
near-surface layers by the minimization of the internal
ergy. The spacings are found to bed12523.4% andd235
23.1% at 450 K, andd12525.8% andd23525.5% at 900
K. A glance at panel~c! of Fig. 5 reveals that both of thes
points in the$d12,d23% plane do indeed correspond to fre
energies very far away from the minimum~especially at the
higher temperature!.

In conclusion, the most naive and simplest approach
exporting theT50 force constants and surface energy
nonzero temperature does indeed underestimate conside
the temperature variation of the surface free energy with
spect to thermodynamic integration, but it gives an agr
ment comparable to, or better than the sophisticated ad
ment of the interlayers to find the free-energy minimum.

IV. SUMMARY

We have presented a refined Al interatomic potential
classical dynamics and Monte Carlo simulations. We th
oughly tested its functionalities, finding it to be very accura
for a variety of systems. Next, we applied it to evaluating
performance of quasiharmonic approaches to free-en
calculations for surfaces, comparing the latter results w
full thermodynamic integration results. For Al surfaces, t
quasiharmonic approximation shows a progressively incre
ing error for temperatures aboveQD . Different levels of
quasiharmonic approximation have been compared; for
the simplest method of using zero-temperature phonon
compute the free energy at all temperatures is as accura
the explicit minimization of the free energy with respect
geometrical parameters.
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APPENDIX: COMPUTATIONAL DETAILS

1. Substrate sizes

For the calculation of the surface self-diffusion barrie
and surface and step energies, we have employed finite s
with periodic boundary conditions for the lateral cells. T
supercells contained 672, 550, and 560 atoms for the
~111!, Al ~100!, and Al ~110! surfaces and consisted of 12
11, and 9 atomic layers. In order to determine the surf
energies of Al~111!, Al ~100!, and Al ~110! the supercells
contained 1080, 550, and 560 atoms, arranged in 9, 11,
16 atomic layers. The step formation energies were obtai
from systems containing four steps and 72, 105, 102,
102 atoms per layer corresponding to a total number of 13
2724, 1368, and 2532 atoms for the Al(1,0,9), Al(1,1,15
Al(8,8,10), and Al(9,9,7) surface. All forcesF per atom
have been brought below a threshold of 1025 eV/Å . We
estimated the errors in the total energies due to the fi
supercell size to be well below 1024 eV/atom.

2. Molecular-dynamics calculation of the sticking probability

The reaction probabilities were calculated in classi
molecular-dynamics simulations using our Al interaction p
tential. The integration was performed with a fifth ord
Runge Kutta method with an adaptive timestep, in order
ensure total-energy conservation throughout the simulat
Supercells containing 1320 atoms arranged in ten atomic
ers were employed; cell dimensions are chosen so as to a
artifacts of the in-plane periodicity. The starting configur
tion is chosen to be a~111! surface, the one Al surface with
the lowest formation energy. All atomic coordinates are
lowed to evolve dynamically, except those of the two botto
layers of the supercell. The surface temperature is set at
K ~i.e., about 1/2 of the melting temperature, and;15%
larger than the bulk Debye temperature!.

3. Monte Carlo calculations within the canonical ensemble

All Monte Carlo calculations were be performed with
the canonical ensemble, using the standard Metrop
technique.43,49The maximum atomic displacement was au
matically adjusted in order to get an acceptance ratio of
It was not systematically studied that this acceptance r
was an optimum, but well converged statistical avera
were obtained with a typical number of Monte Carlo mov
of order 104 times the number of atoms in the system. Befo
averaging, the system was equilibrated for a number of s
of order 500 times the number of atoms in the system.
the Al ~100! surface we used in total 384 atoms.

4. Quasiharmonic free-energy calculations

Within the quasiharmonic methods we employed slab
ometries with 20 atomic layers each containing 32 atom
For thek-space summation we used grids typically conta
ing 2500 equally spacedk points. Careful tests showed tha
this number ofk points yields well converged results.
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