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The cohesion and conductance of a point contact in a two-dimensional metallic nanowire are investigated in
an independent-electron model with hard-wall boundary conditions. All properties of the nanowire are related
to the Green function of the electronic scattering problem, which is solved exactly via a modified recursive
Green function algorithm. Our results confirm the validity of a previous approach based on the WKB approxi-
mation for a long constriction, but find an enhancement of cohesion for shorter constrictions. Surprisingly, the
cohesion persists even after the last conductance channel has been closed. For disordered nanowires, a statis-
tical analysis yields well-defined peaks in the conductance histograms even when individual conductance traces
do not show well-defined plateaus. The shifts of the peaks below integer multiple$/bf 2s well as the peak
heights and widths, are found to be in excellent agreement with predictions based on random matrix theory,
and are similar to those observed experimentally. Thus abrupt changes in the wire geometry are not necessary
for reproducing the observed conductance histograms. The effect of disorder on cohesion is found to be quite
strong and very sensitive to the particular configuration of impurities at the center of the constriction.
[S0163-182699)05231-3

I. INTRODUCTION ing conductance histograms show well-defined peaks with
centers shifted below integer multiples o%h. The shifts
In a pioneering experiment published in 1996, Rubio,can be corrected by subtracting a series resistance of a few
Agrait, and Vieird simultaneously measured the force andhundred(Q). This resistance was originally attributed to the
conductance during deformation and rupture of gold nanobulk contacts, which are not part of the nanocontact and
contacts. They observed nano Newton force oscillations corshould thus be subtractéd ! It has recently been argued,
related with conductance steps of ordee®/h. Similar re-  based on theoretical wofk that this resistance could also be
sults were obtained independently by Stalder anddduAn caused by disorder in the nanowire, in agreement with pre-
explanation of these force fluctuations, based on the responséous studies of quantum point conta&fg?
of the conduction electrons to the mechanical deformation of On the theoretical side, the problem of conductance quan-
the contact, was proposed by Stafford, Baeriswyl, andization has been investigated using a variety of techniques,
Burki.2 In this paper, we give an exact numerical solution toboth in two and three dimensiofti$?>~?It is found that con-
the model of Ref. 3, allowing the treatment of any shape ofductance plateaus are well defined only in constrictions that
the constriction and the inclusion of disorder. are smooth on the scale of the Fermi wavelergth:**Fur-
Conductance quantization has been widely studied in théhermore, the plateaus can also be affected by thermal fluc-
past decade, both experimentafi}* and theoreticall}:'>=>®*  tuations or disorder. Thermal effects, which smoothen out
On the experimental side, it was first measured in a twothe conductance step$are important in the case of a two-
dimensional electron gas split gate and was understood to lmensional electron gds,where the spacing between sub-
a consequence of the quantization of the transversbands is of the order of 1 K, but negligible in the case of
motion*® Each transverse energy subband defines a condueetallic point contact$?®-! where the spacing between
tion channel that contributese?/h to the conductance. More subbands is of the order of 4&. The effect of disorder on
recently, conductance quantization in units a#®/h has conductance quantization has been studied both
been observed in three-dimensional metallic quantum wireanalytically”?*?2and numerically**?Disorder was found
using various experimental technigqfes! In this case, the to reduce the conductance compared to the ballistic case,
guantization is not so clear-cut, and measurements are ieading to shifts of the peaks in the conductance histograms
general less reproducible. Therefore, a statistical analysis @&imilar to those observed experimentally. We note that most
a large set of experimental data is usually made. The resultf the theoretical conductance curves were obtained by
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changing the Fermi energy, in contrast to the experimental A. Assumptions
situfation.for a metallic nanowire, where the Fermi energy is  oyr model is based on several simplifying assumptions.
an invariant property of the material and the shape of thgj) Free electronsGold is known to be rather well described
contact is modified. by the model of free electrons where the atomic potentials
The structural transformations of metallic nanocontactsgre neglected This indicates that the detailed configuration
were first studied by Landman and co-work&tand later by  of atoms has little effect on both electronic and cohesive
others®8 using molecular dynamics. These simulations sugproperties. By adopting the free-electron model, we elimi-
gest that the elongation of a connective neck proceedmate the kinetics of atomic rearrangements, which seem to
through a sequence of abrupt structural transformations, irplay a role in actual experiments, at least for thick
volving a succession of elastic and yielding stages. Withirconstrictions®® (i) Independent electrons:We neglect
this approach, the conductance is expected to changgectron-electron interactions. Recent calculations, one based
abruptly due to atomic rearrangemefit€,and the force is on an extended Thomas-Fermi schethéhe other on the
expected to follow a sawtooth behavf?# The molecular Hartree approximatioff suggest that interactions have little
dynamics simulations give rise to the following effect on the quantities considered here. However, more
interpretatio?>2%of experiments: During elastic stages, the careful studies will be needed to substantiate this conclusion,

conductance is essentially constant at a quantized value a§ nteraction effects are particularly subtle in one-
the magnitude of the force increases with a constant slop&imensional systems and thin wireii) Smooth constric-

b ; ; ; i 818,24,26
while the yielding stages consist of abrupt relaxations of thdlon: According to molecular dynamics simulatiér$

. 34 .
atomic structure, giving rise to a sudden change of conducfzmd experiment$}**the shape of elongated gold nanowires

tance and force. It was asserted that both the elastic an'a quite regular. Therefore we model the contact as a smooth

. . - constriction, which changes continuously upon deformation.
transport properties of narrow metallic constrictions can b%

derstood on the basis of atomi " lculat iy) Constant volumeThe volume of the constricted part is
understood on the basis of atomic rearrangements, calculalelsmed to be conserved during the deformation, in agree-
in the framework of classical lattice dynamics.

; . ccovk ment with molecular dynamics simulatioffs. Recent
It thus came as a surprise when it was discovetedt a experiment® indicate that this assumption is not always

simple free-electron model, which neglects the discrete;,a"d' for instance, in the case of monoatomic chaif.
atomic structure of the constriction, is able to reproduce bothygrd-wall boundary conditionsElectrons are confined to a
the oscillations in the tensile force and the conductance playire due to a smooth attractive ionic potential. We approxi-
teaus of Ref. 1. In this model, each conductance channel isate the potential in terms of hard-wall boundary conditions,
viewed as a long chemical bond which is stretched and brokeeping in mind that the radius of the boundary will be larger
ken, giving rise to the observed force oscillations. Similarthan the effective radius defined by the electronic derSity.
results were obtained by van Ruitenbetlal ” using a free-  (vi) Zero temperatureThe thermal population of electronic
electron model and by Yannouleas and Landffamsing a  subbands above the Fermi energy is negligible for nanow-
slightly more realistic jellium model. However, these studiesires. Therefore we consider the zero-temperature limit, where
dealt with closed systems, while the experimental nanowirénelastic scattering processes, e.g., due to phonons or
is a contact between two macroscopic pieces of metal, and glectron-electron collisions, are absent.

thus an open system. Since mesoscopic effects can be very

different in the canonical and grand-canonical ensembles, B. Model

this is an Important dl_stlnct|on. . . The physics of the problem is similar for two- and three-
In this paper, we give an exact numerical solution of thedi

¢ lect del 4 in Ref. 3. Our f i | mensional wires except that, for a two-dimensional system,
ree-electron mode! proposed In Ret. 3. Dur formaism .a'(i) the transverse energy levels are nondegenerate, and there-

lows us to extend the analytical results of Ref. 3 by treating .o the steps in the conductance curves are all of height

bOth nonadiabatic_constrictions and di;orderec_;l \_Nires_. W%ezlh and(ii) the surface energy is reduced as compared to
find that the cohesion of shofttonadiabatizconstrictions is that o’f a three-dimensional wire: this changes the overall

:jn:rrsgssdsfeonTspa;ig E)Obttg?]t (c):foL%nugct(;%rlse}nﬁitgg&ralzé C\I/I\/Shci)(I;- lope of the force curves. We restrict ourselves to two di-
Y ’ 9 ensions, where the computational effort is much lower.

look very similar to those observeq expenmenta'lly. Qur "€ Our model wire is described by the eigenvalue equation
sults also suggest that the cohesion of nanowires is quite

sensitive to disorder.
The rest of this paper is organized as follows. In Sec. Il,
we describe our model in which conductance and cohesion

are interconnected through the scattering matrix. Section Ill o _
presents the numerical method, while the results are divherex andz are the transverse and longitudinal coordinates,

cussed in Sec. IV. A short summary is given in Sec. V. respectively, and/4(X,2) is a potential due to disorder. We
use the boundary conditiopi=0 for x>=r?(z), wherer (z)

defines the geometifgee Fig. 1 In the initial configuration,
there is no constrictiorir(z)=R] and the disorder is re-
stricted to a finite part of the wirgnamely, to|z|<(Lo/2

This section introduces our free-electron model. Its sim-+ L), whereL g is the initial length of the deformable part
plicity allows us to treat both the conductance and the meAfter elongation byAL =L — L, the shape of the deformable
tallic cohesion in a unified way. part is chosen to be, fde|<L/2,

hZ
— 5 (B ) +Vadx,2) | #(x, ) =E(x,2), (1)

II. MODEL AND BASIC QUANTITIES
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The S matrix provides a fundamental link between conduc-
tance and cohesion, and it is amenable to analytical
calculations’ Sis directly related to the retarded electronic
Green functior?! *which may be calculated numerically, as
explained in the next section. A closely related formulation
of the free energy in terms of th® matrix was given by
Akkermanset al>®

Ill. EXTENDED RECURSIVE GREEN
FIG. 1. Schematic diagram of a constriction in a two- FUNCTION METHOD

dimensional quantum wire. Electrons are confined alongztheis
by a hard-wall potential at==r(z). Localized impurities of po- In this section, we describe our numerical procedure. It
tential V(x—x; ,z—z;) are distributed randomly in the constriction consists of computing recursively the Green function, from
and within a part of length. 4 on each side of it. which both the transmission coefficients and the density of
states are obtained.
r(2)=Rpint (R—Rpin) (3u*=3u*+u°), 2

. ) A. Green function for a wire of constant width
whereu=|2z/L| and R, is the width of the narrowest part

of the constriction, related tb by the condition of constant _ In order to illustrate our method, we first consider an in-
volume. The specific choice of the functiar(z) is not finite, two-dimensional wire of constant widthR2 In order
crucial® as has been checked by using other shapes. THe proceed nL_lmerlcaIIy,.the o_r|g|nalicont|nu.um model is re-
potential Vg(x,2) = =,V(x—X; ,z—2;) describes randomly p!aced by a dlscrete Iat_tlce, with a width Mfstes, whﬂg the
distributed impurities, with a given density . It can repre- disordered part is restricted to a lengthMsites. This finite
sent structural defects or real impurities. Similar effects ard€gion consists of slices, numbered from 1Npeach slice
expected to arise due to surface roughr?eBaring deforma- repre_senfung a cross .sectlon wilh sites. The Q|scret|zed
tion, the impurities are moved in such a way that their localiamiltonian (for the disordered part of the wirés then a
concentration remains constant. Since we are dealing with afy M>XNM) matrix, with MXM submatrices; for theith
open system, we use the grand-canonical ensemble and tajéce andM XM submatrices/;; for the hopping terms be-
the chemical potential to be the Fermi energy of the macrotWeen neighboring slicesand.

scopic wires connected to the nanocontact. Throughout this The recursive Green functiofRGF) method, developed

paper, we consider the case of gold, with a Fermi energpy MacKinnon,™ is based on the Dyson equation for the
er=5.5 eV. Green function. At each step of the iteration, only the rel-

evant parts of the Green function are retained. Thus the RGF
method allows one to calculate both the density of states and
the transmission coefficients at low memory cost. Applied to
The formalism developed by Stafford, Baeriswyl, andour problem, the method allows us to construct the Green
Burki® allows one to treat both transport and mechanicafunction of the disordered part of the wire slice by slice. The
properties of open mesoscopic systems on an equal footingnfinite ordered parts are included through boundary condi-
in terms of the electronic scattering matB8xThis formalism  tions for the first and last slices of the disordered redsme
is general and can be applied to any noninteracting opeRef. 40 for details The advantage of this method is that one
system connected to an arbitrary number of leads. only needs to keep track of a feM X M matrices instead of
The conductance for the present two lead system is cathe (NMXNM) matrix representing the full Green function.
culated using the Landauer formtfa

C. S matrix

B. Generalization to a wire of variable width

2
G= ziTr (™), (3) In order to generalize the RGF method to the case of a
h wire with varying thickness, we first apply a scale transfor-
mation. Consider the eigenvalue equatidn together with
the boundary conditiogi(x,z) =0 for |x| =r(z). The change
cof coordinates

wheret is the transmission matrix at the Fermi enefgy
rectly related to thes matrix).

The force is obtained from the variation of the appropriat
free energy, the grand-canonical potenfiqle,L), with re-

spect to the length of the deformed region. For a noninter- izxi’ Z=7 (6)
acting system of electrons, one has r(z)
transforms the wire geometry into a stripe of constant width
Q(ep,L)= fSFd E(E—ep)D(E), (4) 2R, at the cost of a more complicated differential operator,
. . . 1 R N . 3
where the density of statd3(E) is related to theS matrix 2+ 2= ———+X%p2, 5 | + 05— {Xp, I3z —~ p?
by37‘38 X z 2 rz(z) X ya XYz 4

1 S st 1dp
_ = 22 g2 +Z =, 7
D(E)=> iTr[sT(E)mE S(E)—= - (5) 6 @)
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wherep(z)=(d/d2)In[r(z)] and{.,.} is the anticommutator.
This operator is well behaved if(z) is twice continuously
differentiable.

The stripe geometry now allows a straightforward dis-
cretization. For the case of interest, whe(e) =R outside
of the constriction, the RGF method can again be used, a:
described above. The transformatitfy has the additional
advantage that the narrowest part of the wire, where the mair
effects considered here originatés scanned with the finest
grid.

C. Calculation of conductance and force

Once the retarded Green functi@y; is determined, the

transmission matrix in the Landauer4Bker formula [Eq. FIG. 2. Comparison of analyticaWWKB) and numericalRGF)
(3)] can be easily calculatetsee Ref. 41 The resulting results for a wire of width R-R=12. For the conductance, the

results kgLo=120, dotted linekgLo,=12, dashed line For the
) force the WKB result(solid line, independent df ) is displayed
|(GOL)W| , (8 together with several RGF results,=120,36,24,12, from top to
E=ep bottom.

whereE, (k) is the dispersion relation for theth subband.  constriction. The width is fixed tol2R=12. We have var-
The Green function also yields directly the density of statesed the lattice constars of our mesh in order to study pos-
sible discreteness effects. We have found that these effects
D(E)=— Elm TrG(E), (9) are r]egligible fO(kFasO.Y. All resu]ts presented beloyv.were
T obtained for lattice constants satisfying these conditions. In
Ref. 3, it was shown that within the adiabatic and WKB

X . 4 : . approximations the force is invariant with respect to a
tained by integration. The tensile force is then calculated b%tretching of the geometmy(z)—r(\2), and thus is indepen-

differentiating the energy) with respect to the length of  gent of the initial lengtio. We therefore compare in Fig. 2
the constriction, the analytical results for a single initial lengtk;L o= 120,
20(L) with numerical results for different,. For kel ,=120 the
_ (100  conductance curves are almost indistinguishable, and the nu-
JL merical result for the force comes very close to the analyti-

For the conductance, it is sufficient to know the Green func-caIIy calculated curve. The analytical approach Is thus seen

tion at the Fermi energy. The evaluation of the force requiret0 be justified for a long constriction. The behavior for

much more work. as all occunied electronic states contribut%horter constrictions will be discussed in the next subsection.
' P An intriguing effect is observed for an elongatiarl

to the grand-canonical potentidg. (4)]. Itis thus necessary - 1 g The force, expected to change sign as soon as the last
to recalculate the Green function many times, and this is th@yquctance chennel is closgde., for L/Ly~1.5, is found
part that uses most of the computational effort. Fortunately,y remain attractive untiL/L,~1.6. For the case of gold,
the energy(}(L) turns out to be a smooth function bf o this would correspond to a stretching of about 5 A beyond
that the numerical differentiation can be carried out for rathegpe point where the conductance becomes vanishingly small.
large stepsiL. This surprising effect may actually have been observed.
We have checked whether this persistent force originates
IV. RESULTS from our arbitrary choice of the shape of the constriction.
Therefore, we have determined the shape that minimizes the
macroscopic part of the free enefdyor a fixed elongation.
"With our constraint, this is equivalent to minimizing the
boundary length of the constriction, subject to the condition
“of constant area. We find that in this case the effect is even
ronger than in other geometries. Nevertheless, in three-
dimensional wires, this persistent force depends strongly on
Otihe shape and sometimes even disappears. Further work is
a'Reeded to clarify the origin of this interesting effect. It is
worthwhile to mention that for this optimized shape the con-
ductance steps turn out to be more pronounced and closer to
A. Comparison with analytical results experiments than for other shapes.

We first want to check the analytical results of Ref. 3. We
thus consider a clean wire with a long constriction, i.e., with
a small enough rati&R/L,, where R and L, are, respec- Our next goal is to go beyond the limitations of the adia-
tively, the width of the wire and the initial length of the batic approximation and to study short constrictions. To this

JE,, JE,

2e?
GL= { ok

m,v

from which the grand-canonical potentigEq. (4)] is ob-

F(L)=—

In Ref. 3, we solved the free-electron model without dis-
order analytically, using both the adiabatic and WKB ap
proximations. In this section, the validity of our analytical
results is confirmed numerically for long and clean constric
tions. We then proceed to the case of short necks, where t
adiabatic approximation breaks down. Subsequently, impuri
ties are introduced in terms of randomly distributed sh
ranged potentials. Both nonadiabaticity and disorder
found to produce interesting new effects.

B. Nonadiabatic constrictions
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overall increase of the force is due to the increased effect of
surface tension in short constrictions. In the two-dimensional
case, the surface is one dimensional, and the surface energy
is proportional to the circumferente

| 28|: 48|: L

. — T A= T 21172

ff / Qg 3)\F8A 3)\|:f0 dz[1+(dr/d2)7]* (11
!

///////'
////////’

NO /’lz’

G [2e2 ] In the WKB approximation, the circumference is approxi-
b TS R u mated bydAykg=2L, which is a good approximation pro-
27,,,,,,,,{,% onm i | Yy WKB _ ( _
1 /////%%%‘" m:,,' i 80 vided ((_jr/d_z) <1, as pointed out in Ref. 3. However, this
.......... ‘ ' W 0o approximation leads to an underestimate of the surface ten-
3 'I," sion in short constrictions, wherer/dzl is large. The in-
i 40 o S ge. | .
g 0,,,{{{{”///4;5//’1/'1/‘1 creased effect of surface tension in short constrictions with a
bt [ 7 oy //';///,’,’,’ZI’,;;;% 20 special wide-narrow-wide geometry was recently discussed
-2 1y 11, by Kassubek, Stafford, and Grab&tAs to the force oscil-
(a) L/Lo ’ lations, we note that they remain well defined provided that

one can resolve the conductance plateaus. Thus we attribute
their decrease with increasing valueséfo enhanced tun-
neling.

We remark that wires with larget can be stretched more
than ones with smalb, that is to say, the cohesive force
remains negativéattractive further past the point where the
conductance goes to zero. Thus the remanent cohesion is
enhanced for nonadiabatic constrictions.

C. Effects of disorder

We now turn to the study of disorder effects. We first
calculate the conductance for a single impurity configuration,
then construct histograms from several hundred samples and
compare them both with experimental results and previous
numerical and theoretical work. Finally, we study the effect
of disorder on the tensile force.

(b)
1. Conductance for a single impurity configuration
FIG. 3. Conductancé) in units of 2e%/h and force(b) in units N
of eg/\¢ as functions of elongatioh/L, and opening angl@ for We model an impurity at;=(x;,z;) by a local potential
a fixed width X R=12. V(x,z)=y8(Xx—X;) 8(z—z;). The disorder for a density;
of impurities can be characterized by the mean free path in
end, we consider clean systems with a fixed wid#ttR  the Born approximation|=17%4*kr/m?n;y?. Figure 4 shows
=12, and vary the initial length.y. We characterize the conductance curves for a disordered wire with seven occu-
geometry of a wire by its opening angt defined by ta®w  pied channelsKcR=12,kcLo=60), with an impurity con-
=2R/L,. centration)x%ni =0.27 both within the constriction and over a
In the adiabatic approximation the wave function of Eq.lengthkgL 4s=36 on each side of the constrictidsee Fig.
(1) is factorized,y(x,z) = ¢*(x) x(z), and terms containing 1). The disorder strengthg correspond to mean free paths in
derivatives of ¢*(x) with respect toz are neglected. This the range 1.&kgl<7000. The spatial distribution of impu-
solution corresponds to a set of decoupled channels. In theties is the same for all curves.
present context, the approximation is valid if(1/ For a very large mean free pakizl = 7000 (solid line in
r)(dr/dz)|<k, wherek is the wave vector of the incident Fig. 4), the quantization is almost unaffected by the disorder.
electron. For the case of the conductance, where only stat&¥hen | decreases, higher conductance plateaus are de-
at the Fermi energy are involved, this condition is equivalenitroyed. Lower plateaus remain well defined at first, although
to 6<w/2. Figure 3a) shows the conductance versus elon-they are shifted to lower valugsee dotted line in Fig.)4
gationL/L, and opening anglé. These results for the con- This shift is smallest for the lowest plateaus. For strong dis-
ductance are consistent with those of Torres, Pascual, aratder,kel~1, the conductance quantization is no longer vis-
Szenz!® for an adiabatic wire §</2), the conductance is ible except for the very first step.
well quantized in units of 8/h, with sharp steps between  This behavior is similar to some experimental restfts,
the plateaus, while for nonadiabatic wires the edges aravhere only a few conductance steps can be observed, with a
rounded off and the plateaus are no longer well defined. Thehift to conductance values lower than integer multiples of
effects of the geometry on the force are shown in Figp).3 2e?/h. This shift is experimentally observed to increase for
One notices that a8 increases, the average force becomesigher conductance values, in agreement with our numerical
larger and the force oscillations are slightly suppressed. Theesults.
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FIG. 6. Mean values and widths of the peaks of the conductance
width 2keR=24 and initial lengttkgL,=60. The same configura- hisFogram qf Fig. 5. The bars show the ngmerical results, while the
tion of impurities located both within the constriction and in the SOlid line gives the mean value as predicted from random matrix
adjacent regions, as in Fig. 1, is used for each curve. The disorderdf€0ry- The dotted line represents the conductance of the clean sys-
region is given bykeL 4= 36, and the impurity concentration is in €M and is shown for comparison.

all caseQ\Endiszo.ZY. The impurity strengths are, from top to bot-

FIG. 4. Effects of disorder on the conductance of a wire of

tom, k2y=0.2% ,2.9C:,7.26s¢ ,and 21.8¢, corresponding, re- The pea2I<s of the his'togram are not located at integer m.ul-
spectively, to mean free pathg!=7000, 70, 11, and 1.2. Curves tiples of 2e“/h, but are instead shifted to lower values, as is
are shifted by one unit of conductance. expected from the single curve of Fig. 4. They can be moved

back to quantized values of the conductance, as for experi-
mental results,by subtracting a classical resistance in series
with that caused by the constriction. This additional contri-
As pointed out by several authdrs?? conductance mea- bution can be estimated using the Drude formula for the
surements are reproducible only in very controlled expericonductivity, c=ne?l/mvg, wheren is the electronic den-
ments and hence it is easier to study conductance quantizaity. For the mean free path chosen in the simulations we
tion statistically in terms of histogrami€:*! In Fig. 5, we  obtain a sheet resistanéa~589 (). This value of the re-
show a conductance histogram representing 380 different insistance is consistent with the ones found in experiments
purity configurations. The same geometry, impurity concen{see, for example, Refs. 8—-115ubtracting it from the total
tration, and disorder strength as for the dotted line of Fig. 4esistance, we indeed find that the peaks are shifted to quan-
have been used, corresponding to a mean freelgath 70.  tized values, as is shown in the inset of Fig. 5.
Individual peaks(shown as dotted lines in Fig.) £an be The resolution of individual peaks allows one to calculate

resolved by constructing histograms from partial conducthe mean valuén and root-mean-square widthG,, of the
tance curves for elongations in the interval L, ;<L nth peak. These quantities have been calculated by Beenak-
<Lpn, wherel, is the midpoint of thenth step of the clean ker and Melsen using random matrix thedigMT) for a
system, i.e.G(Ln)=(2e%h)(n—1/2). slightly different situatiorf® They have a setup whet® the
disordered and constricted parts are spatially separated by
scattering-free segmentsi,) the widening between the con-
stricted and unconstricted parts occurs abruptly, @ndthe
disorder is varied, while the constriction remains fixed. In
our notation, their results fan open channels are given by

2. Conductance histograms

Corrected curve (R =589 Q)

n 1
1+y, 3

Yn
1+,

2
—wrwr_ 28

G”_h

3
} : (12

Counts

112
: (13

2

2 1+6y,
B 1+9)°

where y,=(n+1)(2e?*/h)R,. These expressions are valid
3 ) 6 for (2e?/h)Rs<1, i.e., for a good conductor. We can mimic
Conductance [ 2e/h ] .
the setup of Ref. 20 by sampling the conductance for elon-
FIG. 5. Conductance histogram made out of 380 individual con—gatlons ,CorreSpondmg to_ the midpoints of th.e.plateaus O_f the
ductance curves. The widthR? initial length Lo, lengthL 4 and Cle"’i‘n_w're' where tunneling effects are negligible. The width
impurity concentratiom; are chosen as in Fig. 4. The impurity AG, is then exclusively due to the different impurity con-
strength isk?y=2.%¢ (mean free pattk-l =70). The inset shows figurations. Figure 6 shows our numerical resiliarg, to-

the same histogram corrected by the calculated sheet resistance @&ther with the RMT predictiofsolid line), calculated from
R¢=589 Q. Eqg. (12) using the same sheet resistance as in the simula-
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TABLE |. Comparison of the different widths of the peaks de- 0
fined in the text.

Peak no. AGM AGL AGRMT AGY'+AG!| AG™

1 0050 0.102  0.105 0.152 0157 _ -1} .
2 0.049 0149 0.144 0.198 0205 <

3 0045 0.177  0.176 0.222 0218 =

4 0.040 0203  0.203 0.243 0.249

5 0035 0226 0.225 0.261 0.257 ol ]
6 0028 0247 0.244 0.275 0.276

tions. The agreement between the mean values is excellent
and the widths, calculated from E(L3), deviate less than
1% from the numerical results. This remarkable agreement FIG. 7. Impurity effects on the tensile force for a wire of width
may be due to the fact that the impurity concentration is low2k-R= 12, initial lengthkeL,=30, and a disorder characterized by
so that the constriction and the disordered parts are effedsL =60 andkel =54 (upper and lower curvg@sThe middle line
tively separated by a scattering-free region, as assumed nepresents the force of the corresponding clean system.

Ref. 20. The hypothesis of abrupt widening between the con-

stricted and unconstricted regions appears not to be cruciakonstriction tend to increase the density of electrons in the

The histogram of Fig. 5 also contains a broadenii@'"  center, thus increasing the cohesich lowest curve of Fig.
due to tunneling, which depends on the shape of the constrig). Further work is needed to understand these effects quan-
tion and can be estimated from the results for the clean syditatively.
tem. The total widths are found to be well reproduced by
simple sums of impurity and tunneling contributiodsG!" V. CONCLUSIONS
~AG! +AGY" as shown in Table I. _ _

Finally, we want to emphasize that our result is closer to . In this paper, we have presented an exact nur_nem_:al solu-
experiment than previous numerical calculati6hin par- tion of.the free—electro.n model (_)f metallic nanowirassing _
ticular with respect to the peak heights, which decreas&ecursive Green f.unctlon techniques. Our method allows, in
strongly with increasing conductance. We attribute the im.Principle, calculation of both the conductance and the cohe-

proved agreement to the fact that we consider an ensemble Si prlopertles for W|reshof arb;_tra_rydshape, t:Ut for compu-
different geometries, with fixed Fermi energy, as in the ex-ta_‘t'ona_ reasons we have Imite JOUrselves to . two-
periments, while in Ref. 21 the Fermi energy was varieq dimensional wires containing a constriction with a simple
Since these systems are nearly ballistic, the ergodigeoweuy'l,d. f the adiabati d WKB L

behaviof® expected in the diffusive regime is violated: an ' "€ Validity of the adiabatic an approximations

ensemble of different geometries with fixed is not statis- used in Ref. 3 was confirmed for long constrictions, while

tically equivalent to an ensemble oveg with fixed geom- for short constrictions the cohes_lon was found to be en-
etry. hanced. A persistence of the tensile force after closing of the

last conducting channel has been observed. It is not yet clear
if this is an important physical effect or just a curiosity due
to the reduced dimensionality.

In this last subsection, we study the effects of disorder on  we have commonly assumed ad hocshaper (z) of the
the tensile force. In this case, it is no longer optimal to use &onstriction, which in general does not represent equilibrium.
o-function impurity potential. The force appears to be moreA more consistent way would be to calculate the equilibrium
sensitive to discretization than the conductance. In fact, thehape which minimizes the free energy for a given elonga-
lattice constana must be smaller than the range of the im- tion. We have made a first step in this direction by minimiz-
purity potential. Therefore we use a Gaussian impurity poing the macroscopic part of the free energy. We have found

3. Force

tential with a finite extent>a. that in this case the wire can be stretched more before it
The wire studied has a geometry given kyR=6 and  preaks.
keLo=30. The disordered length kgL 5= 60 with an im- Extensive calculations have been made to investigate the

purity concentratiomﬁni=0.27, corresponding to a mean effects of random impurities. Our model gives conductance
free pathkgl =54. Results are shown in Fig. 7 for two dif- histograms very similar to those observed experimentally.
ferent configurations of disorder. Although the disorder isThe peaks tend to decrease in height and broaden with in-
rather weak, it has a strong effect on the tensile force, andreasing conductance. This confirms that disorder in the
can either weaken or strengthen the cohesion. An intuitivémanowire is the cause of the resistance that is usually sub-
understanding of these opposite behaviors can be obtainedhcted from experimental results. The positions and widths
by considering the change in the density of electrons due tof the peaks are in excellent agreement with calculations
disorder. An impurity located at the center of the constrictionbased on random matrix thec®yWe have shown that the
(cf. upper curve of Fig. ywould deplete the electron density widths have two components, one due to impuritiper-

in the constriction, and thus weaken the cohesion. Correfectly described within random matrix thegyyhe other due
spondingly, impurities located away from the center of theto tunneling, which depends on the shape of the constriction.
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Our calculations have shown that the effect of disorder ishysteresis® A hysteresis effect could be easily reproduced
particularly strong on cohesion, which is sensitive to the spewithin our model by choosing different geometries for the
cific impurity distribution at the center of the constriction. In two processes.
fact, depending on the presence or absence of an impurity Our approach, where the emphasis is on conduction elec-
close to the center of the constriction, the cohesion is eithetrons while the granularity of matter is neglected, is comple-
decreased or increased. This finding, though qualitatively unmentary to molecular dynamics simulations, where the
derstandable, requires further study. atomic rearrangements are followed in detail, while the ef-

Our model may appear to be oversimplified in severaffects of conduction electrons are taken into account only in
respects. We have used hard-wall boundary conditions, nen averaged way, e.g., by the embedded atom méttibae
glected both the electron-electron interactions and the ionicomparison between our results and experiments shows that,
background, and assumed a specific geometry upon elongaxcept for hysteresis effects, the overall behavior of both
tion. However, we do not think that these assumptions areohesive and electronic properties of metallic nanoconstric-
crucial for the essential effects studied in this paper. Othetions is well captured by our very simple model.
boundary conditions hardly affect the results. Coulomb inter-
actions are found to be barely visible in the cohes°’|’_o*°r?,and ACKNOWLEDGMENTS
are believed to preserve conductance quantiz&figks to
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