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Cohesion and conductance of disordered metallic point contacts
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The cohesion and conductance of a point contact in a two-dimensional metallic nanowire are investigated in
an independent-electron model with hard-wall boundary conditions. All properties of the nanowire are related
to the Green function of the electronic scattering problem, which is solved exactly via a modified recursive
Green function algorithm. Our results confirm the validity of a previous approach based on the WKB approxi-
mation for a long constriction, but find an enhancement of cohesion for shorter constrictions. Surprisingly, the
cohesion persists even after the last conductance channel has been closed. For disordered nanowires, a statis-
tical analysis yields well-defined peaks in the conductance histograms even when individual conductance traces
do not show well-defined plateaus. The shifts of the peaks below integer multiples of 2e2/h, as well as the peak
heights and widths, are found to be in excellent agreement with predictions based on random matrix theory,
and are similar to those observed experimentally. Thus abrupt changes in the wire geometry are not necessary
for reproducing the observed conductance histograms. The effect of disorder on cohesion is found to be quite
strong and very sensitive to the particular configuration of impurities at the center of the constriction.
@S0163-1829~99!05231-5#
io
nd
no
co

on
o

n
to
o

th

o
o
rs

du

ire

e
is
u

ith

few
e
nd
,
e
re-

an-
es,

that

uc-
out
-
b-
of
n

oth

ase,
ms
ost
by
I. INTRODUCTION

In a pioneering experiment published in 1996, Rub
Agraı̈t, and Vieira1 simultaneously measured the force a
conductance during deformation and rupture of gold na
contacts. They observed nano Newton force oscillations
related with conductance steps of order 2e2/h. Similar re-
sults were obtained independently by Stalder and Du¨rig.2 An
explanation of these force fluctuations, based on the resp
of the conduction electrons to the mechanical deformation
the contact, was proposed by Stafford, Baeriswyl, a
Bürki.3 In this paper, we give an exact numerical solution
the model of Ref. 3, allowing the treatment of any shape
the constriction and the inclusion of disorder.

Conductance quantization has been widely studied in
past decade, both experimentally4–11 and theoretically.8,12–23

On the experimental side, it was first measured in a tw
dimensional electron gas split gate and was understood t
a consequence of the quantization of the transve
motion.4,5 Each transverse energy subband defines a con
tion channel that contributes 2e2/h to the conductance. More
recently, conductance quantization in units of 2e2/h has
been observed in three-dimensional metallic quantum w
using various experimental techniques.6–11 In this case, the
quantization is not so clear-cut, and measurements ar
general less reproducible. Therefore, a statistical analys
a large set of experimental data is usually made. The res
PRB 600163-1829/99/60~7!/5000~9!/$15.00
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ing conductance histograms show well-defined peaks w
centers shifted below integer multiples of 2e2/h. The shifts
can be corrected by subtracting a series resistance of a
hundredV. This resistance was originally attributed to th
bulk contacts, which are not part of the nanocontact a
should thus be subtracted.7,9–11 It has recently been argued
based on theoretical work,21 that this resistance could also b
caused by disorder in the nanowire, in agreement with p
vious studies of quantum point contacts.17,20

On the theoretical side, the problem of conductance qu
tization has been investigated using a variety of techniqu
both in two and three dimensions.8,12–23It is found that con-
ductance plateaus are well defined only in constrictions
are smooth on the scale of the Fermi wavelength.12,15,19Fur-
thermore, the plateaus can also be affected by thermal fl
tuations or disorder. Thermal effects, which smoothen
the conductance steps,14 are important in the case of a two
dimensional electron gas,4,5 where the spacing between su
bands is of the order of 1 K, but negligible in the case
metallic point contacts,1,2,6–11 where the spacing betwee
subbands is of the order of 104 K. The effect of disorder on
conductance quantization has been studied b
analytically17,20,23and numerically.8,21,22Disorder was found
to reduce the conductance compared to the ballistic c
leading to shifts of the peaks in the conductance histogra
similar to those observed experimentally. We note that m
of the theoretical conductance curves were obtained
5000 ©1999 The American Physical Society
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PRB 60 5001COHESION AND CONDUCTANCE OF DISORDERED . . .
changing the Fermi energy, in contrast to the experime
situation for a metallic nanowire, where the Fermi energy
an invariant property of the material and the shape of
contact is modified.

The structural transformations of metallic nanoconta
were first studied by Landman and co-workers,24 and later by
others,8,18 using molecular dynamics. These simulations s
gest that the elongation of a connective neck proce
through a sequence of abrupt structural transformations
volving a succession of elastic and yielding stages. Wit
this approach, the conductance is expected to cha
abruptly due to atomic rearrangements,8,18 and the force is
expected to follow a sawtooth behavior.8,24 The molecular
dynamics simulations give rise to the followin
interpretation1,25,26of experiments: During elastic stages, t
conductance is essentially constant at a quantized value
the magnitude of the force increases with a constant slo
while the yielding stages consist of abrupt relaxations of
atomic structure, giving rise to a sudden change of cond
tance and force. It was asserted that both the elastic
transport properties of narrow metallic constrictions can
understood on the basis of atomic rearrangements, calcu
in the framework of classical lattice dynamics.

It thus came as a surprise when it was discovered3 that a
simple free-electron model, which neglects the discr
atomic structure of the constriction, is able to reproduce b
the oscillations in the tensile force and the conductance
teaus of Ref. 1. In this model, each conductance chann
viewed as a long chemical bond which is stretched and b
ken, giving rise to the observed force oscillations. Simi
results were obtained by van Ruitenbeeket al.27 using a free-
electron model and by Yannouleas and Landman,28 using a
slightly more realistic jellium model. However, these stud
dealt with closed systems, while the experimental nanow
is a contact between two macroscopic pieces of metal, an
thus an open system. Since mesoscopic effects can be
different in the canonical and grand-canonical ensemb
this is an important distinction.

In this paper, we give an exact numerical solution of t
free-electron model proposed in Ref. 3. Our formalism
lows us to extend the analytical results of Ref. 3 by treat
both nonadiabatic constrictions and disordered wires.
find that the cohesion of short~nonadiabatic! constrictions is
increased compared to that of long constrictions. For dis
dered systems, we obtain conductance histograms w
look very similar to those observed experimentally. Our
sults also suggest that the cohesion of nanowires is q
sensitive to disorder.

The rest of this paper is organized as follows. In Sec.
we describe our model in which conductance and cohe
are interconnected through the scattering matrix. Section
presents the numerical method, while the results are
cussed in Sec. IV. A short summary is given in Sec. V.

II. MODEL AND BASIC QUANTITIES

This section introduces our free-electron model. Its s
plicity allows us to treat both the conductance and the m
tallic cohesion in a unified way.
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A. Assumptions

Our model is based on several simplifying assumptio
(i) Free electrons:Gold is known to be rather well describe
by the model of free electrons where the atomic potent
are neglected.29 This indicates that the detailed configuratio
of atoms has little effect on both electronic and cohes
properties. By adopting the free-electron model, we elim
nate the kinetics of atomic rearrangements, which seem
play a role in actual experiments, at least for thi
constrictions.30 (ii) Independent electrons:We neglect
electron-electron interactions. Recent calculations, one ba
on an extended Thomas-Fermi scheme,31 the other on the
Hartree approximation,32 suggest that interactions have litt
effect on the quantities considered here. However, m
careful studies will be needed to substantiate this conclus
as interaction effects are particularly subtle in on
dimensional systems and thin wires.(iii) Smooth constric-
tion: According to molecular dynamics simulations8,18,24,26

and experiments,33,34 the shape of elongated gold nanowir
is quite regular. Therefore we model the contact as a smo
constriction, which changes continuously upon deformati
(iv) Constant volume:The volume of the constricted part i
assumed to be conserved during the deformation, in ag
ment with molecular dynamics simulations.24 Recent
experiments35 indicate that this assumption is not alwa
valid, for instance, in the case of monoatomic chains.(v)
Hard-wall boundary conditions:Electrons are confined to
wire due to a smooth attractive ionic potential. We appro
mate the potential in terms of hard-wall boundary conditio
keeping in mind that the radius of the boundary will be larg
than the effective radius defined by the electronic densit27

(vi) Zero temperature:The thermal population of electroni
subbands above the Fermi energy is negligible for nan
ires. Therefore we consider the zero-temperature limit, wh
inelastic scattering processes, e.g., due to phonons
electron-electron collisions, are absent.

B. Model

The physics of the problem is similar for two- and thre
dimensional wires except that, for a two-dimensional syste
~i! the transverse energy levels are nondegenerate, and t
fore the steps in the conductance curves are all of he
2e2/h, and~ii ! the surface energy is reduced as compared
that of a three-dimensional wire; this changes the ove
slope of the force curves. We restrict ourselves to two
mensions, where the computational effort is much lower.

Our model wire is described by the eigenvalue equatio

F2
\2

2m
~]x

21]z
2!1Vdis~x,z!Gc~x,z!5Ec~x,z!, ~1!

wherex andzare the transverse and longitudinal coordinat
respectively, andVdis(x,z) is a potential due to disorder. W
use the boundary conditionc50 for x25r 2(z), wherer (z)
defines the geometry~see Fig. 1!. In the initial configuration,
there is no constriction@r (z)5R# and the disorder is re
stricted to a finite part of the wire@namely, to uzu,(L0/2
1Ldis), whereL0 is the initial length of the deformable part#.
After elongation byDL5L2L0, the shape of the deformabl
part is chosen to be, foruzu,L/2,
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r ~z!5Rmin1~R2Rmin!~3u223u41u6!, ~2!

whereu5u2z/Lu and 2Rmin is the width of the narrowest par
of the constriction, related toL by the condition of constan
volume. The specific choice of the functionr (z) is not
crucial,3 as has been checked by using other shapes.
potential Vdis(x,z)5( jV(x2xj ,z2zj ) describes randomly
distributed impurities, with a given densityni . It can repre-
sent structural defects or real impurities. Similar effects
expected to arise due to surface roughness.8 During deforma-
tion, the impurities are moved in such a way that their lo
concentration remains constant. Since we are dealing wit
open system, we use the grand-canonical ensemble and
the chemical potential to be the Fermi energy of the mac
scopic wires connected to the nanocontact. Throughout
paper, we consider the case of gold, with a Fermi ene
«F55.5 eV.

C. S matrix

The formalism developed by Stafford, Baeriswyl, a
Bürki3 allows one to treat both transport and mechani
properties of open mesoscopic systems on an equal foo
in terms of the electronic scattering matrixS. This formalism
is general and can be applied to any noninteracting o
system connected to an arbitrary number of leads.

The conductance for the present two lead system is
culated using the Landauer formula36

G5
2e2

h
Tr ~ t†t !, ~3!

where t is the transmission matrix at the Fermi energy~di-
rectly related to theS matrix!.

The force is obtained from the variation of the appropri
free energy, the grand-canonical potentialV(«F ,L), with re-
spect to the lengthL of the deformed region. For a noninte
acting system of electrons, one has

V~«F ,L !5E«F
dE~E2«F!D~E!, ~4!

where the density of statesD(E) is related to theS matrix
by37,38

D~E!5
1

2p i
Tr H S†~E!

]S

]E
2S~E!

]S†

]E J . ~5!

FIG. 1. Schematic diagram of a constriction in a tw
dimensional quantum wire. Electrons are confined along thez axis
by a hard-wall potential atx56r (z). Localized impurities of po-
tential V(x2xj ,z2zj ) are distributed randomly in the constrictio
and within a part of lengthLdis on each side of it.
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The S matrix provides a fundamental link between condu
tance and cohesion, and it is amenable to analyt
calculations.3 S is directly related to the retarded electron
Green function,37,38which may be calculated numerically, a
explained in the next section. A closely related formulati
of the free energy in terms of theS matrix was given by
Akkermanset al.39

III. EXTENDED RECURSIVE GREEN
FUNCTION METHOD

In this section, we describe our numerical procedure
consists of computing recursively the Green function, fro
which both the transmission coefficients and the density
states are obtained.

A. Green function for a wire of constant width

In order to illustrate our method, we first consider an
finite, two-dimensional wire of constant width 2R. In order
to proceed numerically, the original continuum model is
placed by a discrete lattice, with a width ofM sites, while the
disordered part is restricted to a length ofN sites. This finite
region consists of slices, numbered from 1 toN, each slice
representing a cross section withM sites. The discretized
Hamiltonian ~for the disordered part of the wire! is then a
(NM3NM) matrix, with M3M submatricesH i for the ith
slice andM3M submatricesV i j for the hopping terms be
tween neighboring slicesi and j.

The recursive Green function~RGF! method, developed
by MacKinnon,40 is based on the Dyson equation for th
Green function. At each step of the iteration, only the r
evant parts of the Green function are retained. Thus the R
method allows one to calculate both the density of states
the transmission coefficients at low memory cost. Applied
our problem, the method allows us to construct the Gre
function of the disordered part of the wire slice by slice. T
infinite ordered parts are included through boundary con
tions for the first and last slices of the disordered region~see
Ref. 40 for details!. The advantage of this method is that o
only needs to keep track of a fewM3M matrices instead of
the (NM3NM) matrix representing the full Green function

B. Generalization to a wire of variable width

In order to generalize the RGF method to the case o
wire with varying thickness, we first apply a scale transfo
mation. Consider the eigenvalue equation~1! together with
the boundary conditionc(x,z)50 for uxu5r (z). The change
of coordinates

x̃5x
R

r ~z!
, z̃5z ~6!

transforms the wire geometry into a stripe of constant wi
2R, at the cost of a more complicated differential operato

]x
21]z

25
1

2 H R2

r 2~ z̃!
1 x̃2r2,] x̃

2J 1] z̃
2
2$x̃r,] x̃] z̃%2

3

4
r2

1
1

2

dr

dz̃
, ~7!
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wherer( z̃)5(d/dz̃)ln@r(z̃)# and$.,.% is the anticommutator
This operator is well behaved ifr (z) is twice continuously
differentiable.

The stripe geometry now allows a straightforward d
cretization. For the case of interest, wherer (z)5R outside
of the constriction, the RGF method can again be used
described above. The transformation~7! has the additiona
advantage that the narrowest part of the wire, where the m
effects considered here originate,3 is scanned with the fines
grid.

C. Calculation of conductance and force

Once the retarded Green functionGi j is determined, the
transmission matrix in the Landauer-Bu¨ttiker formula @Eq.
~3!# can be easily calculated~see Ref. 41!. The resulting
equation for the conductance is found to be

G~L !5
2e2

h (
m,n

H U]Em

]k

]En

]k Uu~G0L!mnu2J
E5«F

, ~8!

whereEn(k) is the dispersion relation for thenth subband.
The Green function also yields directly the density of sta

D~E!52
2

p
Im Tr G~E!, ~9!

from which the grand-canonical potential@Eq. ~4!# is ob-
tained by integration. The tensile force is then calculated
differentiating the energyV with respect to the lengthL of
the constriction,

F~L !52
]V~L !

]L
. ~10!

For the conductance, it is sufficient to know the Green fu
tion at the Fermi energy. The evaluation of the force requ
much more work, as all occupied electronic states contrib
to the grand-canonical potential@Eq. ~4!#. It is thus necessary
to recalculate the Green function many times, and this is
part that uses most of the computational effort. Fortunat
the energyV(L) turns out to be a smooth function ofL, so
that the numerical differentiation can be carried out for rat
large stepsDL.

IV. RESULTS

In Ref. 3, we solved the free-electron model without d
order analytically, using both the adiabatic and WKB a
proximations. In this section, the validity of our analytic
results is confirmed numerically for long and clean const
tions. We then proceed to the case of short necks, where
adiabatic approximation breaks down. Subsequently, imp
ties are introduced in terms of randomly distributed sho
ranged potentials. Both nonadiabaticity and disorder
found to produce interesting new effects.

A. Comparison with analytical results

We first want to check the analytical results of Ref. 3. W
thus consider a clean wire with a long constriction, i.e., w
a small enough ratioR/L0, where 2R and L0 are, respec-
tively, the width of the wire and the initial length of th
-
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constriction. The width is fixed to 2kFR512. We have var-
ied the lattice constanta of our mesh in order to study pos
sible discreteness effects. We have found that these eff
are negligible forkFa<0.7. All results presented below wer
obtained for lattice constants satisfying these conditions
Ref. 3, it was shown that within the adiabatic and WK
approximations the force is invariant with respect to
stretching of the geometryr (z)˜r (lz), and thus is indepen
dent of the initial lengthL0. We therefore compare in Fig.
the analytical results for a single initial length,kFL05120,
with numerical results for differentL0. For kFL05120 the
conductance curves are almost indistinguishable, and the
merical result for the force comes very close to the anal
cally calculated curve. The analytical approach is thus s
to be justified for a long constriction. The behavior f
shorter constrictions will be discussed in the next subsect

An intriguing effect is observed for an elongationL/L0
*1.5. The force, expected to change sign as soon as the
conductance channel is closed,3 i.e., for L/L0'1.5, is found
to remain attractive untilL/L0'1.6. For the case of gold
this would correspond to a stretching of about 5 Å beyo
the point where the conductance becomes vanishingly sm
This surprising effect may actually have been observed.1

We have checked whether this persistent force origina
from our arbitrary choice of the shape of the constrictio
Therefore, we have determined the shape that minimizes
macroscopic part of the free energy42 for a fixed elongation.
With our constraint, this is equivalent to minimizing th
boundary length of the constriction, subject to the condit
of constant area. We find that in this case the effect is e
stronger than in other geometries. Nevertheless, in th
dimensional wires, this persistent force depends strongly
the shape and sometimes even disappears. Further wo
needed to clarify the origin of this interesting effect. It
worthwhile to mention that for this optimized shape the co
ductance steps turn out to be more pronounced and clos
experiments than for other shapes.

B. Nonadiabatic constrictions

Our next goal is to go beyond the limitations of the ad
batic approximation and to study short constrictions. To t

FIG. 2. Comparison of analytical~WKB! and numerical~RGF!
results for a wire of width 2kFR512. For the conductance, th
WKB result (kFL05120, solid line! is compared with two RGF
results (kFL05120, dotted line;kFL0512, dashed line!. For the
force the WKB result~solid line, independent ofL0) is displayed
together with several RGF results (kFL05120,36,24,12, from top to
bottom!.
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end, we consider clean systems with a fixed width 2kFR
512, and vary the initial lengthL0. We characterize the
geometry of a wire by its opening angleu, defined by tanu
52R/L0.

In the adiabatic approximation the wave function of E
~1! is factorized,c(x,z)5fz(x)x(z), and terms containing
derivatives offz(x) with respect toz are neglected. This
solution corresponds to a set of decoupled channels. In
present context, the approximation is valid ifu(1/
r )(dr/dz)u!k, wherek is the wave vector of the inciden
electron. For the case of the conductance, where only s
at the Fermi energy are involved, this condition is equival
to u!p/2. Figure 3~a! shows the conductance versus elo
gationL/L0 and opening angleu. These results for the con
ductance are consistent with those of Torres, Pascual,
Sáenz:19 for an adiabatic wire (u!p/2), the conductance is
well quantized in units of 2e2/h, with sharp steps betwee
the plateaus, while for nonadiabatic wires the edges
rounded off and the plateaus are no longer well defined.
effects of the geometry on the force are shown in Fig. 3~b!.
One notices that asu increases, the average force becom
larger and the force oscillations are slightly suppressed.

FIG. 3. Conductance~a! in units of 2e2/h and force~b! in units
of «F /lF as functions of elongationL/L0 and opening angleu for
a fixed width 2kFR512.
.
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overall increase of the force is due to the increased effec
surface tension in short constrictions. In the two-dimensio
case, the surface is one dimensional, and the surface en
is proportional to the circumference42

Vsurf5
2«F

3lF
]A5

4«F

3lF
E

0

L

dz@11~dr/dz!2#1/2. ~11!

In the WKB approximation, the circumference is approx
mated by]AWKB52L, which is a good approximation pro
vided (dr/dz)2!1, as pointed out in Ref. 3. However, th
approximation leads to an underestimate of the surface
sion in short constrictions, whereudr/dzu is large. The in-
creased effect of surface tension in short constrictions wi
special wide-narrow-wide geometry was recently discus
by Kassubek, Stafford, and Grabert.42 As to the force oscil-
lations, we note that they remain well defined provided t
one can resolve the conductance plateaus. Thus we attr
their decrease with increasing values ofu to enhanced tun-
neling.

We remark that wires with largeru can be stretched mor
than ones with smallu, that is to say, the cohesive forc
remains negative~attractive! further past the point where th
conductance goes to zero. Thus the remanent cohesio
enhanced for nonadiabatic constrictions.

C. Effects of disorder

We now turn to the study of disorder effects. We fir
calculate the conductance for a single impurity configurati
then construct histograms from several hundred samples
compare them both with experimental results and previ
numerical and theoretical work. Finally, we study the effe
of disorder on the tensile force.

1. Conductance for a single impurity configuration

We model an impurity atr j
W5(xj ,zj ) by a local potential

V(x,z)5gd(x2xj )d(z2zj ). The disorder for a densityni
of impurities can be characterized by the mean free path
the Born approximation,l 5\4kF /m2nig

2. Figure 4 shows
conductance curves for a disordered wire with seven oc
pied channels (kFR512,kFL0560), with an impurity con-
centrationlF

2ni50.27 both within the constriction and over
length kFLdis536 on each side of the constriction~see Fig.
1!. The disorder strengthsg correspond to mean free paths
the range 1.2<kFl<7000. The spatial distribution of impu
rities is the same for all curves.

For a very large mean free pathkFl 57000 ~solid line in
Fig. 4!, the quantization is almost unaffected by the disord
When l decreases, higher conductance plateaus are
stroyed. Lower plateaus remain well defined at first, althou
they are shifted to lower values~see dotted line in Fig. 4!.
This shift is smallest for the lowest plateaus. For strong d
order,kFl'1, the conductance quantization is no longer v
ible except for the very first step.

This behavior is similar to some experimental results,9,22

where only a few conductance steps can be observed, w
shift to conductance values lower than integer multiples
2e2/h. This shift is experimentally observed to increase
higher conductance values, in agreement with our numer
results.
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2. Conductance histograms

As pointed out by several authors,11,22 conductance mea
surements are reproducible only in very controlled exp
ments and hence it is easier to study conductance quan
tion statistically in terms of histograms.6,7,11 In Fig. 5, we
show a conductance histogram representing 380 different
purity configurations. The same geometry, impurity conc
tration, and disorder strength as for the dotted line of Fig
have been used, corresponding to a mean free pathkFl 570.
Individual peaks~shown as dotted lines in Fig. 5! can be
resolved by constructing histograms from partial cond
tance curves for elongationsL in the interval Ln11,L
,Ln , whereLn is the midpoint of thenth step of the clean
system, i.e.,G(Ln)5(2e2/h)(n21/2).

FIG. 4. Effects of disorder on the conductance of a wire
width 2kFR524 and initial lengthkFL0560. The same configura
tion of impurities located both within the constriction and in t
adjacent regions, as in Fig. 1, is used for each curve. The disord
region is given bykFLdis536, and the impurity concentration is i
all caseslF

2ndis50.27. The impurity strengths are, from top to bo
tom, kF

2g50.29«F ,2.90«F ,7.26«F ,and 21.8«F , corresponding, re-
spectively, to mean free pathskFl 57000, 70, 11, and 1.2. Curve
are shifted by one unit of conductance.

FIG. 5. Conductance histogram made out of 380 individual c
ductance curves. The width 2R, initial length L0, lengthLdis, and
impurity concentrationni are chosen as in Fig. 4. The impurit
strength iskF

2g52.9«F ~mean free pathkFl 570). The inset shows
the same histogram corrected by the calculated sheet resistan
Rs.589 V.
i-
a-

-
-
4

-

The peaks of the histogram are not located at integer m
tiples of 2e2/h, but are instead shifted to lower values, as
expected from the single curve of Fig. 4. They can be mo
back to quantized values of the conductance, as for exp
mental results,9 by subtracting a classical resistance in ser
with that caused by the constriction. This additional con
bution can be estimated using the Drude formula for
conductivity,s5ne2l /mvF , wheren is the electronic den-
sity. For the mean free path chosen in the simulations
obtain a sheet resistanceRs.589 V. This value of the re-
sistance is consistent with the ones found in experime
~see, for example, Refs. 8–11!. Subtracting it from the total
resistance, we indeed find that the peaks are shifted to q
tized values, as is shown in the inset of Fig. 5.

The resolution of individual peaks allows one to calcula
the mean valueḠn and root-mean-square widthDGn of the
nth peak. These quantities have been calculated by Bee
ker and Melsen using random matrix theory~RMT! for a
slightly different situation.20 They have a setup where~i! the
disordered and constricted parts are spatially separate
scattering-free segments,~ii ! the widening between the con
stricted and unconstricted parts occurs abruptly, and~iii ! the
disorder is varied, while the constriction remains fixed.
our notation, their results forn open channels are given by

Ḡn
RMT5

2e2

h F n

11gn
2

1

3 S gn

11gn
D 3G , ~12!

DGn
RMT5

2e2

h F 2

15S 12
116gn

~11gn!6D G 1/2

, ~13!

where gn5(n11)(2e2/h)Rs . These expressions are val
for (2e2/h)Rs!1, i.e., for a good conductor. We can mim
the setup of Ref. 20 by sampling the conductance for el
gations corresponding to the midpoints of the plateaus of
clean wire, where tunneling effects are negligible. The wid
DGn

i is then exclusively due to the different impurity con
figurations. Figure 6 shows our numerical results~bars!, to-
gether with the RMT prediction~solid line!, calculated from
Eq. ~12! using the same sheet resistance as in the sim

f

ed

-

of

FIG. 6. Mean values and widths of the peaks of the conducta
histogram of Fig. 5. The bars show the numerical results, while
solid line gives the mean value as predicted from random ma
theory. The dotted line represents the conductance of the clean
tem and is shown for comparison.
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tions. The agreement between the mean values is exce
and the widths, calculated from Eq.~13!, deviate less than
1% from the numerical results. This remarkable agreem
may be due to the fact that the impurity concentration is lo
so that the constriction and the disordered parts are ef
tively separated by a scattering-free region, as assume
Ref. 20. The hypothesis of abrupt widening between the c
stricted and unconstricted regions appears not to be cru

The histogram of Fig. 5 also contains a broadeningDGn
tun

due to tunneling, which depends on the shape of the cons
tion and can be estimated from the results for the clean
tem. The total widths are found to be well reproduced
simple sums of impurity and tunneling contributions,DGn

tot

'DGn
i 1DGn

tun, as shown in Table I.
Finally, we want to emphasize that our result is closer

experiment than previous numerical calculations,21 in par-
ticular with respect to the peak heights, which decre
strongly with increasing conductance. We attribute the
proved agreement to the fact that we consider an ensemb
different geometries, with fixed Fermi energy, as in the
periments, while in Ref. 21 the Fermi energy was vari
Since these systems are nearly ballistic, the ergo
behavior43 expected in the diffusive regime is violated: a
ensemble of different geometries with fixed«F is not statis-
tically equivalent to an ensemble over«F with fixed geom-
etry.

3. Force

In this last subsection, we study the effects of disorder
the tensile force. In this case, it is no longer optimal to us
d-function impurity potential. The force appears to be mo
sensitive to discretization than the conductance. In fact,
lattice constanta must be smaller than the range of the im
purity potential. Therefore we use a Gaussian impurity
tential with a finite extentd.a.

The wire studied has a geometry given bykFR56 and
kFL0530. The disordered length iskFLdis560 with an im-
purity concentrationlF

2ni50.27, corresponding to a mea
free pathkFl 554. Results are shown in Fig. 7 for two di
ferent configurations of disorder. Although the disorder
rather weak, it has a strong effect on the tensile force,
can either weaken or strengthen the cohesion. An intui
understanding of these opposite behaviors can be obta
by considering the change in the density of electrons du
disorder. An impurity located at the center of the constrict
~cf. upper curve of Fig. 7! would deplete the electron densi
in the constriction, and thus weaken the cohesion. Co
spondingly, impurities located away from the center of t

TABLE I. Comparison of the different widths of the peaks d
fined in the text.

Peak no. DGn
tun DGn

i DGn
RMT DGn

tun1DGn
i DGn

tot

1 0.050 0.102 0.105 0.152 0.157
2 0.049 0.149 0.144 0.198 0.205
3 0.045 0.177 0.176 0.222 0.218
4 0.040 0.203 0.203 0.243 0.249
5 0.035 0.226 0.225 0.261 0.257
6 0.028 0.247 0.244 0.275 0.276
nt,

nt
,
c-
in

n-
l.

ic-
s-
y

o

e
-
of
-
.
ic

n
a
e
e

-

s
d
e
ed
to
n

e-
e

constriction tend to increase the density of electrons in
center, thus increasing the cohesion~cf. lowest curve of Fig.
7!. Further work is needed to understand these effects qu
titatively.

V. CONCLUSIONS

In this paper, we have presented an exact numerical s
tion of the free-electron model of metallic nanowires,3 using
recursive Green function techniques. Our method allows
principle, calculation of both the conductance and the co
sive properties for wires of arbitrary shape, but for comp
tational reasons we have limited ourselves to tw
dimensional wires containing a constriction with a simp
geometry.

The validity of the adiabatic and WKB approximation
used in Ref. 3 was confirmed for long constrictions, wh
for short constrictions the cohesion was found to be
hanced. A persistence of the tensile force after closing of
last conducting channel has been observed. It is not yet c
if this is an important physical effect or just a curiosity du
to the reduced dimensionality.

We have commonly assumed anad hocshaper (z) of the
constriction, which in general does not represent equilibriu
A more consistent way would be to calculate the equilibriu
shape which minimizes the free energy for a given elon
tion. We have made a first step in this direction by minim
ing the macroscopic part of the free energy. We have fou
that in this case the wire can be stretched more befor
breaks.

Extensive calculations have been made to investigate
effects of random impurities. Our model gives conductan
histograms very similar to those observed experimenta
The peaks tend to decrease in height and broaden with
creasing conductance. This confirms that disorder in
nanowire is the cause of the resistance that is usually s
tracted from experimental results. The positions and wid
of the peaks are in excellent agreement with calculati
based on random matrix theory.20 We have shown that the
widths have two components, one due to impurities~per-
fectly described within random matrix theory!, the other due
to tunneling, which depends on the shape of the constrict

FIG. 7. Impurity effects on the tensile force for a wire of wid
2kFR512, initial lengthkFL0530, and a disorder characterized b
kFLdis560 andkFl 554 ~upper and lower curves!. The middle line
represents the force of the corresponding clean system.
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Our calculations have shown that the effect of disorde
particularly strong on cohesion, which is sensitive to the s
cific impurity distribution at the center of the constriction.
fact, depending on the presence or absence of an imp
close to the center of the constriction, the cohesion is ei
decreased or increased. This finding, though qualitatively
derstandable, requires further study.

Our model may appear to be oversimplified in seve
respects. We have used hard-wall boundary conditions,
glected both the electron-electron interactions and the io
background, and assumed a specific geometry upon elo
tion. However, we do not think that these assumptions
crucial for the essential effects studied in this paper. Ot
boundary conditions hardly affect the results. Coulomb int
actions are found to be barely visible in the cohesion,31,32and
are believed to preserve conductance quantization.44 As to
the ionic background, one has to worry, on the one ha
about its effects on the electronic structure, and, on the o
hand, about the kinetics of the deformation. The first eff
may produce interesting fine structure in the conductanc45

while the second can lead to different paths for elongat
and contraction processes,24 explaining the observed
il
T

G
, J

r,
y

nd

W
en

,

.

:

s
-

ity
er
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e-
ic
a-

re
r
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d,
er
t
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n

hysteresis.30 A hysteresis effect could be easily reproduc
within our model by choosing different geometries for t
two processes.

Our approach, where the emphasis is on conduction e
trons while the granularity of matter is neglected, is comp
mentary to molecular dynamics simulations, where
atomic rearrangements are followed in detail, while the
fects of conduction electrons are taken into account only
an averaged way, e.g., by the embedded atom method.24 The
comparison between our results and experiments shows
except for hysteresis effects, the overall behavior of b
cohesive and electronic properties of metallic nanoconst
tions is well captured by our very simple model.
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