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Time-resolved Rayleigh scattering of excitons: Evidence for level repulsion
in a disordered system
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The theory of resonant Rayleigh scattering of light by excitons in a disordered quantum structure is pre-
sented. Disorder is modeled by a random Gauss distributed potential with finite correlation length in space. The
time dependent scattered signal under pulsed excitation is studied by solving the Schro¨dinger equation for the
exciton center-of-mass motion. The key quantity turns out to be the distribution of energy level distances
weighted by the optical matrix elements. The limit of classical center-of-mass motion is derived analytically,
while large-scale simulations are performed for the general case. The results show that the quantum-
mechanical nature of the exciton motion is responsible for an oscillating behavior of the time dependent
intensity. The oscillations originate from an interplay between the quantum-mechanical energy-level repulsion
and the correlation induced by the finite correlation length of the disorder.@S0163-1829~99!10031-6#
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I. INTRODUCTION

The elastic scattering of light~Rayleigh scattering! by a
spatially inhomogeneous system is resonantly enhan
when spectrally close to an optical transition.1 In the case of
semiconductor quantum wells~QW’s!, the resonant Rayleigh
scattering~RRS! by excitons has drawn particular attentio
in recent years. In fact, the RRS into nonspecular directi
is directly connected to the presence of disorder in the Q
plane and to the localization of the excitonic wave functio
Thus RRS can in principle provide important informatio
about the nature of the exciton wave functions in presenc
disorder. The early experimental results on QW’s were
tained under steady-state excitation, allowing to resolve
spectral features of RRS. In particular, the pioneering w
by Hegarty and co-workers2,3 were focused at the detectio
of a ‘‘mobility edge’’ for the exciton center-of-mass~COM!
motion. This feature was inferred from the frequency dep
dence of the exciton homogeneous linewidth that was
rived from the RRS spectrum by means of a simple mo
for the light-scattering process. The same scheme has
subsequently adopted by other authors.4,5 Although the exis-
tence of a mobility edge at frequencies within the excit
resonance has always represented a major controversy,
early investigations agreed on the fact that the RRS ma
originates from exciton states localized in the QW pla
More recently, the steady-state RRS measurement by G
et al.6 have provided information on the role of the typic
correlation length characterizing the in-plane disorder.
comparing RRS and absorption spectra from samples
tained using different fabrication processes, they have arg
that the technique of growth interruption at the interfac
produces disorder with a correlation length larger than
exciton Bohr radius. The fact that RRS originates mai
from exciton states localized on the subwavelength scal
actually well established. None of these studies, howe
has provided information about the nature — classical
PRB 600163-1829/99/60~7!/4928~9!/$15.00
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quantum-mechanical—of the exciton COM motion subje
to the disordered potential.

The first time resolved measurements of RRS un
pulsed excitation7 have shown that the time dependent sign
decays with a rate given by the inverse of the exciton hom
geneous broadening. However, the time resolution was
too poor to resolve features on the time scale relevant to
scattering process, namely the inverse of the exciton in
mogeneous broadening. Wanget al.8 have resolved the RRS
signal on the femtosecond scale. It turned out that the R
response is not instantaneous and that the maximum in
scattered intensity occurs at a finite time delay. Their m
surements, however, were dominated by excitation dep
dent nonlinear effects which affected the shape of the t
resolved signal. Low intensity measurements were p
formed by Haackeet al.9 In the linear regime the RRS signa
presents two remarkable features. First, it rises quadratic
in time. In addition, the decay is characterized by a fast n
exponential component on the time scale of the inverse
homogeneous broadening, followed by a slower exponen
decay. In order to explain this behavior, a theoretical mo
has been adopted which assumes an ensemble of clas
oscillators moving within a random potential with finite co
relation length. This model accounts for the rise and the
decay component but underestimates the RRS intensit
the long-time limit. To explain this discrepancy, it was a
gued that the emitted signal in the nonspecular direction a
has a contribution from incoherent photoluminescence or
nating from relaxation processes. It is not easy, however
quantitatively estimate the relative importance of the t
contributions. As will be pointed out later on, an alternati
explanation can be drawn from the quantum-mechanical
ture of the localized exciton states. The most recent exp
mental works on time resolved RRS were aimed at the
tinction between the RRS and the incohere
photoluminescence contributions to the radiated field. To
purpose, the coherent properties of the scattered field h
4928 ©1999 The American Physical Society
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been investigated through interferometric measurements10,11

These results, however, have not provided new informa
about the nature of the exciton localization.

A difficulty inherent in any RRS measurement consists
the fact that all the relevant information on the system m
be extracted with the help of an accurate model of the s
tering process. Theoretical attempts to describe both ste
state and time dependent RRS signals were based on
assumption of a spatially fluctuating local dielectric functio
from which the excitonic polarization was derived.2,4,7 In ad-
dition, Stolz et al.7 have discarded the spectral depende
of the dielectric function, thus obtaining an instantaneo
RRS signal. The choice of a local dielectric function cor
sponds to the assumption of classical motion of the exc
COM, as will be shown in the present treatme
Zimmermann12 has provided a theoretical account of RR
including quantum-mechanical features of the exciton
plane motion. The exciton-disorder interaction has been
scribed within a self-consistent second Born approximati
In addition, the disorder has been treated on a most gen
basis via the introduction of the two-point statistical corre
tion function of the in-plane potential. It has been sho
that, disregarding any homogeneous contribution to the
citon linewidth, the time dependent signal approaches a fi
value. In a realistic situation, the decay due to homogene
processes such as radiative recombination has to be sup
posed, which results in a purely exponential decay for lo
times. The kinetic theory presented in Ref. 12 provides
exact result in the limit of classical exciton motion. An im
portant feature emerging from this treatment is that the sh
of the time dependent signal in the quantum-mechanical c
coincides with the corresponding classical limit for sh
times up to the occurrence of the plateau. For later times,
quantum result stays constant while the classical one de
as t22. This gives important insight into how quantum
mechanical effects could account for the long-time limit
the experimental results by Haackeet al. The formal theory
of RRS has also been derived by Citrin13 who included po-
laritonic effects in the exciton in-plane motion. The nume
cal results, however, were again obtained in the class
limit, neglecting the polaritonic effects and withad hocas-
sumptions for the disordered potential.

The aim of the present paper is to provide a full quant
treatment of RRS due to excitons. The macroscopic polar
tion originating from the incoming electromagnetic fie
obeys the Schro¨dinger equation for the exciton COM motion
The disorder is accounted for by a Gauss distributed rand
potential assuming an arbitrary two-point correlation fun
tion in space. For the numerical results, however, a Ga
correlation function will be assumed. The expression for
scattered field is derived and the angular features are c
fully included, separating specular emission from scatter
It is demonstrated that a finite angular acceptance in the
tection of the scattered field formally corresponds to aver
ing the calculated intensity over a statistical ensemble of
ferent potential configurations. The equation for t
polarization is solved numerically over a wide range of p
rameters, from the classical limit to the limit of spatial
uncorrelated potential~white noise limit!. The results for the
RRS intensity are studied both in the frequency and in
time domain. In the frequency domain, the RRS intens
n
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corresponds to the statistical level-level correlation funct
for the eigenstates of the COM motion, once the uncorrela
counterpart has been subtracted. This allows us to establ
direct connection between RRS and level repulsion origin
ing from the quantum nature of the COM motion. The co
responding results for the RRS in the time domain give
precise shape of the time resolved field intensity. The m
improvement brought about by this exact numerical solut
to the second Born results of Ref. 12 consists in the occ
rence of a minimum in the time dependent RRS intens
before the plateau is reached. The minimum is shown to b
natural consequence of the quantum-mechanical level re
sion. In reality, this feature could be blurred by the expon
tial decay of the signal due to homogeneous broadening
cesses. However, the numerical calculations show that
regime of low temperature and density, where only the
diative decay contributes, the present result is compat
with the appearance of a double-peaked feature in the t
resolved signal. This unique behavior, that has recently b
observed,14 is an unambiguous signature of the quantu
mechanical nature of the exciton COM motion along t
disordered QW plane.

The article is organized as follows. In Sec. II we deri
the formal theory of Rayleigh scattering by QW excitons.
Sec. III we express the RRS signal in terms of the quanti
eigenenergies of the exciton COM motion, while the cor
sponding classical limit is derived analytically in Sec. IV
Section V is devoted to the presentation and the discus
of the results. In Sec. VI we present the conclusions.

II. EMITTED FIELD AND TIME RESOLVED INTENSITY

The optics near to the fundamental absorption edge
semiconductor nanostructures is dominated by excitonic
fects. We concentrate on the 1s exciton of the lowest heavy
hole subband. The following more general derivations
valid for both quantum wells~QW’s! and quantum well
wires ~QWW’s!. If needed we distinguish both cases by t
spatial dimensionD52 or D51, respectively. For the nu
merical results, however, we restrict ourselves to the o
dimensional~1D! case.

Rayleigh scattering relies on the imperfect spatial str
ture which might be due to interface roughness and/or a
disorder. In average quality QW’s the amplitude of the co
finement energy fluctuations are typically one order of m
nitude smaller than the exciton binding energy. In this lim
the relative exciton motion, described by the wave funct
f1s(r), may be assumed as undistorted by disorder.15 Then,
only the COM motion remains to be solved which is acco
plished via the Schro¨dinger equation for the excitonic polar
ization P(R,t),

2 i\] tP~R,t !5HRP~R,t !1mEin~R,t !. ~1!

The COM vectorR is restricted to lie within the quantum
well plane or along the wire direction. Denoting the avera
1s exciton energy by\vx , the Hamilton operator is given
by

HR52
\2

2M
DR1VR1\vx , ~2!



a
e
a
l

n
ur

e

r-
ve
in

t
ti

a

ht

la
t
tru
lly

e

la

la

e
by

le

ver
ed

e-
e

M

in
or

po-

d-
or-

dis-

-
ion

n,
lar

on

an
o in-

4930 PRB 60VINCENZO SAVONA AND ROLAND ZIMMERMANN
with M being the in-plane kinetic mass of the exciton.VR is
the random potential felt by the exciton as a whole. It h
zero mean value, is Gauss distributed, and correlated ov
length approximately given by the exciton Bohr radius
shown elsewhere.16 We introduce the two-point potentia
correlation functionf R via the relation

^VR VR8&5s2f R2R8 , ~3!

wheres is the width of the Gauss distribution, andf 051.
The notation^•••& indicates here and in what follows a
average over the statistical ensemble of disorder config
tions. We define the potential correlation lengthj as the
length scale over which the correlation functionf R decays to
zero. Hencej constitutes the natural length unit for th
Schrödinger problem. A corresponding unit of energy isEc
5\2j22/2M . In Appendix A we derive the scaling prope
ties of the Schro¨dinger equation. After rescaling to the abo
units j andEc , there is only one independent parameter
the problem, namely the ratios/Ec . At this stage we do no
make any further assumption for the disordered poten
VR . We point out, however, that the~optically active! eigen-
functions of the Hamiltonian Eq.~2! are characterized by
typical localization length,l loc , that will be used in the fol-
lowing discussion.

The excitonic polarization is driven by the exciting lig
field Ein via dipole coupling.m contains here — additionally
to the interband matrix element—the confinement over
and the excitonic enhancementf1s(0).17 Since the resonan
radiation is expected to be angle dependent, the spatial s
ture of the light field has to be taken into account carefu
The incoming plane wave directed alongeL(kL5eLvp /c) is
modulated by an amplitude function in time and space,

Ein~r ,t !5ei (vpt2kLr )A~r ,t2eLr /c!. ~4!

A formal integration of the differential equation gives

P~R,t !5
im

\ E
0

`

dteiH RtEin~R,t2t!. ~5!

In what follows we put\51. The polarization is the sourc
of the emitted field at a pointr outside the sample,4

Eout~r ,t !52kL
2mE dR

P~R,t2ur2Ru/c!

ur2Ru
. ~6!

We have dropped any vector notation of fields. The formu
hold strictly if the scattering directioneS , the incoming one
eL , and the sample normal are coplanar, and the field po
ization is perpendicular. Using the expansionur2Ru'r
2eSR for the far-field case and dropping the trivial delayr /c
and some prefactors, the field to be observed in directioneS
is

Eout~eS ,t !5E dR P~R,t1eSR/c!

5 i E
0

`

dtE dReiH RtEin~R,t1eSR8/c2t!uR85R .

~7!
s
r a
s

a-

al

p

c-
.

s

r-

The dummy variableR8 has been introduced to deal with th
operatorHR properly. Defining the scattered wave vector
kS5eSvp /c the explicit result is

Eout~eS ,t !5 ieivptE
0

`

dtE dRei (HR2vp)tei (kSR82kLR)

3A@R,t2t1~kSR82kLR!/vp#uR85R . ~8!

If propagation effects within the sample are neglegib
@((kS2kL)R/vp small with respect to the pulse length#, the
field amplitude can be taken as spatially homogeneous o
the excitation focusVF . The scattered field is thus express
as an integral over the focus region:

Eout~eS ,t !5 ieivptE
0

`

dtA~ t2t!

3E
VF

dReikSRei (HR2vp)te2 ikLR. ~9!

Although a finite pulse is of importance for the spectral s
lection of the excitonic region, we consider for simplicity th
limit of a deltalike excitation,A(t)5A0d(t), ending up with

Eout~eS ,t !5 iQ~ t !A0E
VF

dReikSReiH Rte2 ikLR. ~10!

We remark that Eq.~10! corresponds to the retarded CO
exciton propagator, if we identifyVF with the finite spatial
extent of the system. This result holds when retardation
the electromagnetic field propagation along the QW
QWW is disregarded. The more general result including
laritonic effects, formally derived by Citrin,13 amounts to
replacing Eq.~10! by the retarded exciton propagator inclu
ing polaritonic self-energy corrections. However, these c
rections are unimportant as long asl@ l loc holds for the
wavelength, and may be safely neglected in the present
cussion.

It has been shown recently18 that the measured time re
solved intensity per unit area and per incoming excitat
intensity,

I ~eS ,t !5
1

VFA0
2

Eout* ~eS ,t !Eout~eS ,t !, ~11!

is randomly fluctuating as a function of detection directio
forming speckles which even depend on time. The angu
extension of one speckle isdS50.44l/LF with LF being the
full width at half maximum of the Gauss-shaped excitati
focus,VF;LF

D . The observation angled is defined relative
to the incoming direction, cosd5eS•eL .

In any experiment with moderate angular resolution,
average over many speckles is detected, which means t
tegrate overeS in a small range. By averaging Eq.~11! over
a Gauss aperture ofdA50.44l/LA , straightforward algebra
leads to

I ~eS ,t !5
1

VF
E

VF

dRdR8e2uR2R8u2ln2/LA
2
eikS(R2R8)

3ei (HR2HR8)te2 ikL(R2R8). ~12!
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The integration is thus effectively restricted to overlappi
regions of sizeVA;LA

D . LA has to be still larger than th
wavelengthl which in turn exceedsl loc for typical values of
the exciton mass and disorder parameters. Therefore th
tegrations can be carried out independently over units of
VA , formally resulting in an average over different disord
realizations,

I ~eS ,t !5
1

VA
E

VA

dRdR8^eikS(R2R8)ei (HR2HR8)te2 ikL(R2R8)&.

~13!

This may be viewed upon as a~somewhat unusual! ergodic
hypothesis: A directional average can be replaced by an
semble average. A~residual! smooth angular dependenc
outside the reflected/transmitted direction would result ifl
and l loc are comparable. However, with the exception of e
tremely small disorder,l@ l loc holds pretty well. As a con-
sequence, the scattered intensity is practically isotropic an
is possible to get rid of the momentum dependence a
splitting off the uncorrelated average

I sc~ t !5
1

VE
V

dRdR8^ei (HR2HR8)t&2
1

V U E
V

dR^eiH Rt&U2

,

~14!

whereV now denotes a still smaller integration domain su
thatlD@V@ l loc

D . The detailed derivation of Eq.~14! is pre-
sented in Appendix B.

III. RAYLEIGH SCATTERING — QUANTIZED

In order to proceed, eigenfunctions of the COM moti
ca(R) are introduced,

HRca~R!5eaca~R!, ~15!

which have to be normalized withinVA . Exploiting the or-
thonormality, one gets for the intensity Eq.~13!

I ~eS ,t !5
1

VA
K (

a,b
cakS

* cakL
ei (ea2eb)tcbkS

cbkL
* L ~16!

with the Fourier transform of the wave function

cak5E
VA

dReikRca~R! ~17!

being the COM part of the optical matrix element. As d
tailed in Appendix B, the scattered intensity equals the c
related part of this expression@cf. Eq. ~14!#

I sc~ t !5
1

V K (
a,b

Ma
2Mb

2ei (ea2eb)tL 2
1

V U K (
a

Ma
2ei eatL U2

,

~18!

whereMa5*Vca(R)dR. The normalization is now within
V, and using the completeness relation(aMa

25V it is eas-
ily seen thatI sc(0)50 holds. It should be pointed out tha
the optical matrix elementsMa are very small for high-
energy eigenstates whose wave functions are rapidly o
lating. Only for eigenvalues close to the band edge~of the
order of s), Ma reaches sizable values. We introduce t
in-
e

r

n-

-

it
er

-
r-

il-

e

optical densityD(E) which determines the linear absorptio
of the inhomogeneously broadened 1s exciton:

D~E!5
1

V K (
a

Ma
2d~E2ea!L . ~19!

Indeed, it has been shown15,19 that the width of the optical
density is always belows ~motional narrowing!. The upper
bounds is achieved in the classical limit~see below!, where
D(E) simply coincides with the statistical distribution of th
disordered potential.

At times much larger thans21, destructive interference
works effectively leaving only the diagonal terma5b in the
first sum in Eq.~18! untouched,

I sc~ t˜`!5
1

V K (
a

Ma
4 L [Lopt

D , ~20!

which has the dimension of an area or a length in dep
dence on dimensionalityD. We call Lopt the optically rel-
evant average wave function extension.

For the interpretation of the results as well as for t
numerical simulation, it is advantageous to work in the f
quency domain. Fourier transforming the time depende
according to

I sc~ t !5E dE@R~E!2R0~E!#cos~Et! ~21!

gives from the first part in Eq.~18! a function,

R~E!5
1

V K (
a,b

Ma
2Mb

2d@E2~ea2eb!#L , ~22!

which can be considered as the level distance distribut
weighted with the optical matrix elements. The symme
R(E)5R(2E) is obvious. Note that the diagonal terms
the double sum of Eq.~22! provide a deltalike contribution,

d~E!
1

V K (
a

Ma
4 L 5d~E!Lopt

D , ~23!

which accounts for the long-time limit of the scattered inte
sity.

The optical densityD(E) can be used to express the se
ond part of Eq.~18! as a convolution,

R0~E!5VE dE8D~E8!D~E82E!. ~24!

There is a large compensation betweenR(E) andR0(E) ap-
pearing in Eq.~21!. Both contributions scale with the syste
sizeV. However, distant parts of the system are statistica
independent from each other and cancel out when form
the difference between correlated and decoupled ter
Rc(E)[R(E)2R0(E). Consequently,Rc(E) is not an ex-
tensive quantity and is well defined in the limit of infinit
system size, too. This point will be further elucidated in S
V where numerical results forR(E) and R0(E) are pre-
sented.
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IV. RAYLEIGH SCATTERING — CLASSICAL

For a better understanding of the results, it is usefu
examine the limit of classical exciton COM motion. Treatin
excitons as classical particles means to neglect the kin
term in Eq. ~2!. More generally, this is justified for larg
values ofs/Ec which could be reached by heavy exciton
large correlation length of the potential, or strong disord
Defining the scattering vectorq5kS2kL , we have now in-
stead of Eq.~13! simply

I ~q,t !5
1

VA
E

VA

dRdR8eiq(R2R8)^ei (VR2VR8)t&. ~25!

The disorder average is performed in Appendix C, it depe
solely on the pair-correlation function of the random pote
tial introduced in Eq.~34!:

I ~q,t !5E
VA

dReiqR exp@2s2t2~12 f R!#. ~26!

Since f R decays to zero rapidly, we subtract and add
limiting behavior and integrate the latter overVA ,

I ~q,t !5e2s2t2E
VA

dReiqR~es2t2f R21!1e2s2t2VAdq,0 .

~27!

The second part is nonzero only in the specular~reflected or
transmitted! direction. In the first part, the spatial integratio
is essentially restricted to the correlation lengthj, and due to
qj!1 the exponentialeiqR can be replaced by unity. Outsid
the specular direction we get the final result,

I sc~ t !5e2s2t2E
V

dR~es2t2f R21!, ~28!

where the integration can now be restricted to the simula
size V as well. The scattered~Rayleigh! signal exhibits
therefore no angular dependence ifj!l holds, which in the
classical case replaces the inequalityl loc!l used above.

Obviously,I sc(t) starts quadratically in time, and the tim
scale is set by 1/s. For large times, the signal decays ast2D

if a Gaussian spatial correlation is assumed. This nontri
time dependence~rise and decay! stems from the product o
time and correlation in the exponent: as time elapses,
range off R, which is probed, diminishes. The classical res
for the 2D case has been derived before in Ref. 12.

A simplification assuming time independent spatial cor
lation of the susceptibility is completely invalid. This ex
plains why Stolz7 came up in his theory with an instanta
neous Rayleigh signal, which decays only via dephasing

It is instructive that the same final result can be deriv
starting from the general expression2

I sc~ t !5^x* ~ t !x~ t !&2^x* ~ t !&^x~ t !&, ~29!

which states that the scattered intensity is given by the fl
tuations of the linear susceptibility. In the present case,
oscillator type is appropriate,

x~v!5E dR
1

VR1vx2v2 i0
, ~30!
o

tic

,
r.

s
-

e
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e
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or Fourier transformed

x~ t !5 iQ~ t !E dRei (VR1vx)t. ~31!

This establishes the connection between the present clas
limit and the fluctuating dielectric constant model of Refs.
4, and 7.

We conclude this section with explicit results for the o
tical level distance distributions, valid for the classical ca
Fourier transforming both parts of Eq.~28! gives

Rcl~E!5E
V

dR
1

Ap2sA12 f R

e2E2/[4s2(12 f R)] ~32!

and

R0
cl~E!5

V

Ap2s
e2E2/4s2

~33!

as the decoupled part. Both expressions scale with the
tem sizeV, but their difference does not. This can be se
using the limit f R˜0 for large argument, and corroborate
the general statement made at the end of the preceding
tion.

V. RESULTS

All calculations presented here refer to the on
dimensional case (D51), which refers to the continuou
Anderson model with correlated disorder. We do not go in
the details of how the relative exciton wave function in t
quantum wire is averaging over the underlying atomic-sc
disorder.16 Rather, we assume a potential correlation
Gauss type,

f R5exp~2R2/2j2!. ~34!

To give physical units, we adopt an exciton kinetic mass
M50.25 m0 typical for AlAs/GaAs quantum wells. With a
potential correlation length ofj510 nm, for example, the
reference energy isEc51.5 meV. Large-scale numerica
simulations have been performed for determining eigenfu
tions and eigenvalues. The second derivative in Eq.~2! has
been discretized on a fine grid, mapping the problem to
effective tight-binding calculation. Step sizeD as well as
chain length have been carefully adjusted in order to av
finite-size effects. In particular, two prescriptions have be
adopted for dealing properly with a continuous potenti
First, the system sizeV5L was always chosen much large
thanl loc ~we foundL54 mm sufficient in all cases!. Second,
the transfer energyT5\2D22/2M was taken much large
than boths andEc . The latter prescription assures that bo
the kinetic and the potential terms in the Schro¨dinger equa-
tion are sampled sufficiently dense.

The first quantity we study is the optical lengthLopt
which we calculate for varying values ofs andEc . Because
of the scaling properties of the Schro¨dinger equation~Ap-
pendix A!, any length of the system scales asjF(s/Ec),
whereF denotes a specific dimensionless function. We th
plot in Fig. 1 the optical lengthLopt /j as a function ofs/Ec
on a double logarithmic scale. For this calculation, the s
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tem sizeL has been divided into 2048 steps (T540 meV!.
Then, boths and j have been varied within the bound
imposed by the above-mentioned prescriptions. Each poin
the plot represents an average over 50 statistically inde
dent potential realizations, and the convergence has b
thoroughly checked.

Two limiting cases are of importance. Ats/Ec˜`, we
approach the classical limit, where analytical results
available. In the other extreme,s/Ec˜0, the wave functions
extend very far (l loc@j), and the white-noise limit is
reached~see Appendix A!. As shown there, any length has
be a constant timej(Ec /s)2/3. The calculated optical length
in Fig. 1 shows clearly the approach to this power-law d
pendence~full line! for s!Ec .

Among different possibilities, wave function localizatio
can be characterized by the inverse participation ratio.20 Av-
eraging over the optically active states in a similar fashio21

as in Eq.~20!, we define

1/Lp5
1

V K (
a

Ma
2E dRca

4~R!L , ~35!

which gives a result surprisingly close toLopt in the white-
noise limit.

We have searched for asymptotic results close to the c
sical limit, too (s@Ec). The eigenfunction in this case pile
up in the vicinity of the classical turning points. Concentr
ing on that part we looked for the linear potentialV(x)2e
5sx/j with coefficients solely dictated by dimensional a
guments. From the properties of the Airy function soluti
Ai „j(Ec /s)1/3

… we derived as limiting behavior

Lopt;jAEc /s and Lp;j/ ln~Ec /s!. ~36!

These findings are backed again by the numerics, as sh
in Fig. 1 by a dotted and a dashed curve, respectively.

In view of the present results, we consider the opti
length Lopt as a well defined and useful quantity, whic

FIG. 1. Optical lengthLopt ~squares! and inverse participation
length Lp ~open circles! as a function ofs/Ec . The points have
been calculated varying boths andEc , but follow two well defined
curves, as expected from the scaling properties. The asymp
behavior is depicted by thin curves~see text!. The arrows indicate
the parameter values used in Fig. 3 and Fig. 4.
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serves to characterize the localization of the wave functi
in its relevance for optical transitions.

Results for the optical level distance distribution are giv
in Fig. 2. In this plot, the curves corresponding to the cla
sical limit have been calculated analytically, according to
expressions given in Sec. IV. The numerical calculations
the general case, in this and in the following figures, ha
been performed by using a system size ofL54 mm divided
into 512 steps, ands51 meV. The parameters/Ec has been
adjusted by varying the correlation lengthj. Each plot re-
sults from an average over 105 statistically independent real
izations. Still, there is some noise left which — in physic
terms — can be considered as a remainder of speckle eff
For classical excitons,R(E) is a smooth curve diverging
logarithmically atE50 due to the spatial correlation in th
random potential@Eq. ~32!#. This peak is missing in its un
correlated counterpartR0(E). In the full quantum treatment
however,R(E) goes sharply down atE˜0, reflecting the
‘‘avoided level crossing’’ behavior of quantum system
Note that the present expression is weighted by the opt
matrix elements, thus emphasizing the optically active CO
states close to the band edge. This contrasts the stan
definition of unbiased level repulsion elaborated, e.g., in r
dom matrix theory.22 Recently it has been suggested that t
level repulsion feature could be directly detected in mic
photoluminescence measurement under steady-s
excitation.23 Here we show how direct evidence of level r
pulsion is also present in the time resolved intensity.

Figure 3 shows the quantityRc(E) for different values of
s/Ec , together with the classical limit plotted as a thin lin
The transition from a full quantum situation, close to t
white-noise limit, to the classical limit clearly appears.
particular, for values ofs/Ec<1, the curve is always nega
tive, reflecting strong energy-level repulsion. The classi

tic
FIG. 2. The optical level distance distributionR(E) ~full curve!

and its decoupled counterpartR0(E) ~dashed curve! in dependence
on energy, fors/Ec510. The inset shows the important region
small level distancesE, here together with the classical results Eq
~32! and ~33! plotted as thin lines (j540 nm, L54 mm).
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limit is approached at largeuEu and the energy interval wher
the result differs from such limit becomes smaller ass/Ec
increases. As a consequence, a peaked structure develo
an intermediate energy range, while forE˜0 a downward
level repulsion feature~singularity! is always present, reflect
ing the quantum nature of the system. The total integral o
Rc(E) including the delta contribution atE50 adds up to
zero, which accounts forI sc(t50)50. The same integra
without including the delta contribution is then equal
2Lopt . Thus the value of the optical lengthLopt[I sc(t
˜`) gives already a rough approximation of the integ
level repulsion effect. For the classical curve, we remark t
the positive peak atE50 is simply related to the spatia
correlation of the potential. Similarly, the negative featu
at largeruEu only appear in order to preserve level counti
~vanishing integral of the curve!.

From the experimental point of view, however, this qua
tity is not accessible through the measurement of the t
resolved RRS intensity. In fact, an intrinsic damping of t
signal due to radiative as well as nonradiative processe
always present and the measured signal vanis
exponentially.9 Indeed, it might be objected that a nonze
scattered intensityI sc(t˜`) for a finite exciting pulse vio-
lates energy conservation. However, the overall Rayle
signal is proportional to the interband optical matrix eleme
which also determines the radiative exciton recombinat
rate. Thus in a realistic physical situation RRS is alwa
associated to a finite exciton damping rate that has been
regarded, for clarity, in the present treatment.

Experimental evidence of the quantum level repuls
could be extracted anyway from the time resolved signal
fact, if converted into the time domain by the Fourier tran
form, Eq. ~21!, a nonmonotonic time dependence for t
scattered intensity evolves~Fig. 4!. The classical result peak
at st51.4 before tending to zero as 1/t. At decreasing values
of s/Ec , the signal follows the classical curve surprising
far before turning to the nonzero end value, and a minim

FIG. 3. The subtracted optical level distance distributi
Rc(E)5R(E)2R0(E) in dependence on energy is plotted for p
rameter values ofs/Ec51,2.6,10,100 from below as thick curve
At s/Ec5100, the approach to the corresponding classical li
~thin curve! is obvious, but the level repulsion dip close toE50
always persists.
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appears. A faint oscillation is seen, too, the period of wh
is related to the peak distance from zero energy in Fig
Consequently, minimum and oscillation are a fingerprint
the level repulsion effect.24 At still smaller values ofs/Ec ,
no minimum is seen, but the curve approaches the long-t
limit rather slowly. Again, this slow increase is closely r
lated to the small width of the level repulsion dip in ener
space.

This analysis provides a key for the interpretation of t
experimental results by Haackeet al.9 In that experiment, the
measured time dependent intensity was in excess with
spect to the prediction of the classical RRS model. The
cess intensity was attributed to incoherent photolumin
cence originating from inelastic scattering process
Although the incoherent photoluminescence contribution
always present, this distinction is in general unjustified,
the present results suggest. Indeed, the classical model
vides a lower limit to the intensity of the RRS contribution
secondary emission, as Fig. 4 shows. In general, given
typical values ofM, s, andj in realistic QW’s, we expect
the parameters/Ec to lie well below 100, thus providing a
sizeable increase of the signal atst.1 with respect to the
classical limit. These considerations should rule out the p
sibility of distinguishing between coherent and incohere
contribution to secondary emission simply via a subtract
procedure, due to the difficulty in making accurate quant
tive predictions of the RRS time dependent signal. Inste
recent studies have shown that this distinction can be m
using interferometric techniques11 or by means of a statistica
analysis of the angular intensity fluctuations~speckles!.18

These experiments usually have access to extremely s
angular detection windows, thus detecting light from a sin
speckle of angular extensiondS , in contrast with the angula
average assumed here. In particular, in Ref. 11 it was arg
that the configuration averaging is based on anad hocer-
godic assumption which could not account for the phase
herence of the RRS. The present model, however, inclu
only a fully phase-coherent process, namely, light scatte
by disordered exciton wave functions. We have rigorou
proven that configuration average is not anad hocassump-

it

FIG. 4. The scattered Rayleigh intensityI sc(t) as a function of
time is plotted for the same parameters as in Fig. 3, together
the classical limit~thin curve!.
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tion and is justified in terms of the angular resolution
typical measurement schemes detecting many speckles
time. In experiments such as the one by Birkedalet al.,11 the
conditions for angular averaging simply do not hold and
relation can be established with the present results. How
the present formalism, if applied without carrying out t
configuration average, would be appropriate to the desc
tion of single speckle RRS measurements.

VI. CONCLUSIONS

Time resolved resonant Rayleigh scattering of excitons
a disorder-dominated sample offers a unique possibility
detecting level repulsion features. In practice, as alre
mentioned, radiative recombination together with inelas
scattering effects will lead to a more or less exponential
cay of the scattered intensity, thus making an extraction
fine features a difficult task. However, we have shown in
present work that level repulsion is responsible for a qu
tative change in the scattered signal with respect to the c
sical and white-noise limits. In particular, the inclusion
radiative damping in the form of an exponentially decayi
factor, would result in a doubly peaked feature if applied,
example, to thes/Ec510 curve of Fig. 4. This feature
should be easily detected in time resolved RRS meas
ments with femtosecond resolution, especially in samp
fabricated using the growth interruption technique. In fact
has been suggested25,26 that this technique should produc
interface roughness with rather large correlation length.
deed, recent Rayleigh scattering measurements on a 9.5
wide quantum well sample with small inhomogeneous wi
(s50.6 meV) revealed rather clearly a double peaked f
ture in the scattered intensity which could be successf
attributed to the level repulsion.14

The present results should thus encourage new mea
ments of time resolved RRS on samples coming from diff
ent growth facilities. In fact, in the light of our theory, thes
measurements might provide better understanding of
properties of heterointerfaces and of the epitaxial grow
process.
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APPENDIX A: SCALING PROPERTIES

The exciton COM problem defined by the Hamiltonia
Eq. ~2! and the potential correlation Eq.~3! depends on the
three parametersM, j, ands, once the type of the correlatio
function is given. However, the scaling properties of t
Schrödinger equation leave only one relevant paramete
the problem. Let us introduce the dimensionless coordin
X[R/j which transforms the Laplace operator according
DR5(1/j2)DX . Dividing the Schro¨dinger equation by

Ec 5
\2

2Mj2
~A1!
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we get

~2DX1ṼX2 ẽ !c̃~X!50. ~A2!

The tilde denotes scaled quantities withj as length unit and
Ec as energy unit. The potential correlation is now given

^ṼXṼX8&5~s/Ec!
2 f̃ X2X8 , ~A3!

with the scaled correlation functionf̃ X5 f R5jX . It is then
clear that the~rescaled! problem is uniquely determined b
the single dimensionless ratios/Ec .

In the white-noise limit, the potential is delta correlated

^VRVR8&5wd~R2R8!, ~A4!

wherew has dimensionsE2
•LD. Now, the number of inde-

pendent parameters has been reduced to two,w and M. In
one dimension we can thus define length and energy unit

l 05S \2/2M

w1/2 D 2/3

, E05S w2

\2/2M
D 1/3

. ~A5!

The white-noise limit is obtained from the general case in
limit s/Ec!1 which can be reached by very light mass, ve
short correlation length, or very weak disorder. A prec
relation betweenw, s, andj is established by performing th
limit j˜0 carefully. In the case of a Gauss correlated p
tential, we havef R5exp(2R2/2j2)˜A2pj d(R). Thus w
5A2pjs2 holds for a Gauss correlated problem inD51.
Replacing into Eq.~A5! gives

l 05j~2p!21/6S s

Ec
D 22/3

, E05sS 2p
s

Ec
D 1/3

. ~A6!

Approaching the white-noise limit, all the quantities havin
dimension of a length or an energy must be proportional tol 0
and E0, respectively. This limit is correctly reproduced fo
the optical lengthLopt and the optically averaged invers
participation ratioLp , as shown in Fig. 1.

APPENDIX B: LONG-WAVE LIMIT

To simplify the derivation we assume normal incidenc
kLR50. The spatial integrations in

I ~eS ,t !5
1

VA
E

VA

dRdR8^eikS(R2R8)ei (HR2HR8)t& ~B1!

are split into small units of sizeV5VA /N centered atRj ,

I ~eS ,t !5
1

NV (
j ,l 51

N

eikS(Rj 2Rl8)

3E
V

dRdR8^expi ~HR1Rj
2HR81Rl

!t&.

~B2!

SinceV is taken small compared to the wavelength scale,
phase factors exp(ikSR) could be omitted. On the other han
V is assumed to be large with respect to the relevant lo
ization lengths. Then, only a minor fraction of states sp
over into neighboring units, and the average factorizes
the nondiagonal termsj Þ l . Singling out the diagonal term
j 5 l gives
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I ~eS ,t !5
1

VE
V

dRdR8^expi ~HR2HR8!t&

1
1

NV (
j Þ l

eikS(Rj 2Rl )E
V

dR^eiH Rt&E
V

dR8^e2 iH R8t&.

~B3!

Simplifications were possible since the ensemble aver
does not depend on the center position. The second
nearly contains the Kronecker delta,

(
j ,l 51

N

expi ~kS2kL!~Rj2Rl !5N2dkS ,kL
. ~B4!

Subtracting and adding the missing termj 5 l gives

I ~eS ,t !5
1

V S E
V

dRdR8^ei (HR2HR8)t&2U E
V

dR^eiH Rt&U2D
1NVdkS ,kLU 1

VE
V

dR^eiH Rt&U2

. ~B5!

The last term represents the specular contribution of
emitted radiation, with the proper scaling of the total ar
W

F

.

hy

B

v

ge
ne

e
a

VA5NV. OutsidekS5kL , the scattered intensity has n
angular dependence, and Eq.~14! evolves. The condition to
be satisfied waslD@V@ l loc

D which can be realized sinc
l@ l loc holds.

APPENDIX C: STATISTICS OF POTENTIAL
CORRELATION

To perform averages of correlated Gaussian random v
ablesVr with zero mean, a useful expression is

K expS E drh~r !Vr D L 5expS 1

2E drdr 8h~r !gr2r8h~r 8! D
~C1!

which holds for any functionh(r ). The potential correlation
function is here defined asgr2r85^VrVr8&. Putting

h~r !5 i td~r2R!2 i td~r2R8! ~C2!

gives for the statistical average needed in Eq.~25!

^exp~2 iVRt1 iVR8t !&5exp~2t2g01t2gR2R8!. ~C3!
D
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