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The theory of resonant Rayleigh scattering of light by excitons in a disordered quantum structure is pre-
sented. Disorder is modeled by a random Gauss distributed potential with finite correlation length in space. The
time dependent scattered signal under pulsed excitation is studied by solving thdiggtr@quation for the
exciton center-of-mass motion. The key quantity turns out to be the distribution of energy level distances
weighted by the optical matrix elements. The limit of classical center-of-mass motion is derived analytically,
while large-scale simulations are performed for the general case. The results show that the quantum-
mechanical nature of the exciton motion is responsible for an oscillating behavior of the time dependent
intensity. The oscillations originate from an interplay between the quantum-mechanical energy-level repulsion
and the correlation induced by the finite correlation length of the disof86163-182699)10031-§

[. INTRODUCTION guantum-mechanical—of the exciton COM motion subject
to the disordered potential.
The elastic scattering of lighiRayleigh scatteringby a The first time resolved measurements of RRS under

spatially inhomogeneous system is resonantly enhancepulsed excitatiohhave shown that the time dependent signal
when spectrally close to an optical transition the case of decays with a rate given by the inverse of the exciton homo-
semiconductor quantum well®W’s), the resonant Rayleigh geneous broadening. However, the time resolution was still
scattering(RRS by excitons has drawn particular attention too poor to resolve features on the time scale relevant to the
in recent years. In fact, the RRS into nonspecular directionscattering process, namely the inverse of the exciton inho-
is directly connected to the presence of disorder in the QWnogeneous broadening. Waagal® have resolved the RRS
plane and to the localization of the excitonic wave functionssignal on the femtosecond scale. It turned out that the RRS
Thus RRS can in principle provide important information response is not instantaneous and that the maximum in the
about the nature of the exciton wave functions in presence ddcattered intensity occurs at a finite time delay. Their mea-
disorder. The early experimental results on QW’s were obsurements, however, were dominated by excitation depen-
tained under steady-state excitation, allowing to resolve theent nonlinear effects which affected the shape of the time
spectral features of RRS. In particular, the pioneering workesolved signal. Low intensity measurements were per-
by Hegarty and co-worke?s were focused at the detection formed by Haacket al® In the linear regime the RRS signal
of a “mobility edge” for the exciton center-of-mag€OM) presents two remarkable features. First, it rises quadratically
motion. This feature was inferred from the frequency depenin time. In addition, the decay is characterized by a fast non-
dence of the exciton homogeneous linewidth that was deexponential component on the time scale of the inverse in-
rived from the RRS spectrum by means of a simple modehomogeneous broadening, followed by a slower exponential
for the light-scattering process. The same scheme has beedecay. In order to explain this behavior, a theoretical model
subsequently adopted by other authbtélthough the exis- has been adopted which assumes an ensemble of classical
tence of a mobility edge at frequencies within the excitonoscillators moving within a random potential with finite cor-
resonance has always represented a major controversy, thaséation length. This model accounts for the rise and the fast
early investigations agreed on the fact that the RRS mainlglecay component but underestimates the RRS intensity in
originates from exciton states localized in the QW planethe long-time limit. To explain this discrepancy, it was ar-
More recently, the steady-state RRS measurement by Gargued that the emitted signal in the nonspecular direction also
et al® have provided information on the role of the typical has a contribution from incoherent photoluminescence origi-
correlation length characterizing the in-plane disorder. Bynating from relaxation processes. It is not easy, however, to
comparing RRS and absorption spectra from samples olguantitatively estimate the relative importance of the two
tained using different fabrication processes, they have arguezbntributions. As will be pointed out later on, an alternative
that the technique of growth interruption at the interfacesexplanation can be drawn from the quantum-mechanical na-
produces disorder with a correlation length larger than theure of the localized exciton states. The most recent experi-
exciton Bohr radius. The fact that RRS originates mainlymental works on time resolved RRS were aimed at the dis-
from exciton states localized on the subwavelength scale i8nction between the RRS and the incoherent
actually well established. None of these studies, howevephotoluminescence contributions to the radiated field. To this
has provided information about the nature — classical opurpose, the coherent properties of the scattered field have
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been investigated through interferometric measurent@nts. corresponds to the statistical level-level correlation function
These results, however, have not provided new informatiofior the eigenstates of the COM motion, once the uncorrelated
about the nature of the exciton localization. counterpart has been subtracted. This allows us to establish a
A difficulty inherent in any RRS measurement consists indirect connection between RRS and level repulsion originat-
the fact that all the relevant information on the system mustng from the quantum nature of the COM motion. The cor-
be extracted with the help of an accurate model of the scafesponding results for the RRS in the time domain give the
tering process. Theoretical attempts to describe both steadprecise shape of the time resolved field intensity. The main
state and time dependent RRS signals were based on tHBprovement brought about by this exact nqmer_mal solution
assumption of a spatially fluctuating local dielectric function, {© the second Born results of Ref. 12 consists in the occur-
from which the excitonic polarization was derivé#’ In ad-  '€NCc€ of a minimum in the time dependent RRS intensity
dition, Stolzet al” have discarded the spectral dependencd€fore the plateau is reached. The minimum is shown to be a

of the dielectric function, thus obtaining an instantaneoué".a'tural consequence of the quantum-mechanical level repul-
RRS signal. The choice of a local dielectric function corre-Sion: In reality, this feature could be blurred by the exponen-

sponds to the assumption of classical motion of the excitojal decay of the signal due to.homogenec_)us broadening pro-
COM, as will be shown in the present treatment. cesses. However, the numerical calculations show that in a

Zimmermani? has provided a theoretical account of RRS€9ime of low temperature and density, where only the ra-

including quantum-mechanical features of the exciton in_dlatlve decay contributes, the present result is compatible

plane motion. The exciton-disorder interaction has been deXith the appearance of a double-peaked feature in the time

scribed within a self-consistent second Born approximation€S°!ved signal. This unique behavior, that has recently been

4= . .
In addition, the disorder has been treated on a most genergpsehrvegl, IIS an unafml:r)]|guou§ S|gr(1:a(t)u|\;|e of .the qluanturr?-
basis via the introduction of the two-point statistical correla—g?eC danlcg 'L?/t“rle of the exciton motion along the
tion function of the in-plane potential. It has been showndisordered QW plane.

that, disregarding any homogeneous contribution to the ex- Tfhe artlicrlle Is or?aniz:aq ?}S fOHOW.S' IrE)Sec. I we derive
citon linewidth, the time dependent signal approaches a finitd1€ formal theory of Rayleigh scattering by QW excitons. In

value. In a realistic situation, the decay due to homogeneo ec. Ill we express the RRS signal in terms of the quantized

processes such as radiative recombination has to be Superiﬁfgene_nergles (_)f the_ exciton C.OM motion, wh|I_e the corre-
posed, which results in a purely exponential decay for lon pon_dmg qlasswal limit is derived an_alytlcally In S_ec. IV_‘
times. The kinetic theory presented in Ref. 12 provides th ection V is devoted to the presentation and th? discussion
exact result in the limit of classical exciton motion. An im- Of the results. In Sec. VI we present the conclusions.
portant feature emerging from this treatment is that the shape

of the time dependent signal in the quantum-mechanical casd. EMITTED FIELD AND TIME RESOLVED INTENSITY
coincides with the corresponding classical limit for short . . .
times up to the occurrence of the plateau. For later times, the 1 N€ OPtics near to the fundamental absorption edge in

guantum result stays constant while the classical one deca §m|conductor hanostructures |s.dom|nated by excitonic ef-
as t2. This gives important insight into how gquantum- ects. We concentrate on the &xciton of the lowest heavy-

mechanical effects could account for the long-time limit of 0!€ subband. The following more general derivations are

the experimental results by Haac&eal. The formal theor V"’.‘"d for both quantum wells(QW's) .and quantum well
of RRg has also been der)i/ved by Citfnvho included po)f wires (QWW'’s). If needed we distinguish both cases by the

laritonic effects in the exciton in-plane motion. The numeri-Sp""t_Ial dimensiorD =2 or D=1, res_pectlvely. For the nu-
cal results, however, were again obtained in the classic erical results, however, we restrict ourselves to the one-

limit, neglecting the polaritonic effects and wittd hocas-  dimensional1D) case. . .
sumptions for the disordered potential Rayleigh scattering relies on the imperfect spatial struc-

The aim of the present paper is to provide a full quantummre which might be due to interface roughness and/or alloy

treatment of RRS due to excitons. The macroscopic polarizard_'sorder' In average quality QW's the amplitude of the con-
tion originating from the incoming electromagnetic field inement energy fluctuations are typically one order of mag-

obeys the Sclitinger equation for the exciton COM motion. nitude smaller than the exciton binding energy. In this limit,

The disorder is accounted for by a Gauss distributed randori{'€ relative exciton motion, described by the_w?\a/e function
potential assuming an arbitrary two-point correlation func-?1s(P), may be assumed as undistorted by disordaten,

tion in space. For the numerical results, however, a Gaus@?%”&e COL\]/' motri_]_c:]g remains to be SOI‘;]ed which is accl:om-
correlation function will be assumed. The expression for thé!iShed via the Schitinger equation for the excitonic polar-

scattered field is derived and the angular features are car&ationP(R,t),

fully included, separating specular emission from scattering. )

It is demonstrated that a finite angular acceptance in the de- —ihdP(R,)=HrP(R,t) + uEijs(R,1). ey
tection of the scattered field formally corresponds to averag-

ing the calculated intensity over a statistical ensemble of dif'he COM vectorR is res.tricte'd to lie Within.the quantum
ferent potential configurations. The equation for theWell plane or along the wire direction. Denoting the average

polarization is solved numerically over a wide range of pa-LS €XCiton energy byiw,, the Hamilton operator is given

rameters, from the classical limit to the limit of spatially ®Y
uncorrelated potentidlvhite noise limi}. The results for the
RRS intensity are studied both in the frequency and in the
time domain. In the frequency domain, the RRS intensity

2
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AR+VR+ﬁwX, (2)
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with M being the in-plane kinetic mass of the excitdfy is  The dummy variabl®k’ has been introduced to deal with the
the random potential felt by the exciton as a whole. It hasoperatorHy properly. Defining the scattered wave vector by
zero mean value, is Gauss distributed, and correlated overlas=esw,/c the explicit result is

length approximately given by the exciton Bohr radius as
shown elsewher® We introduce the two-point potential et | i(Hr— wp) 7 (ksR' K R)
correlation functionf via the relation Eoufes,t)=ie™ o dr | dRe ve

<VRVR’>:szR—R’! (3) XA[R,t_’T+(ksR,_kLR)/(J)p]|R/:R. (8)

where o is the width of the Gauss distribution, arfig=1. If propagation effects .Within the sample are neglegible
The notation(- - -) indicates here and in what follows an L((Ks—kL)R/@, small with respect to the pulse lengtithe
average over the statistical ensemble of disorder configurdi€!d amplitude can be taken as spatially homogeneous over
tions. We define the potential correlation lengihas the the exqtanon focu$)r. The scatte_red field is thus expressed
length scale over which the correlation functiindecays to &S @n integral over the focus region:

zero. Hence¢é constitutes the natural length unit for the "

Schralinger problem. A corresponding unit of energyHs Eout(esat):ieiwptf drA(t— 1)

=#2£72/2M. In Appendix A we derive the scaling proper- 0

ties of the Schrdinger equation. After rescaling to the above

units ¢ andE., there is only one independent parameter in xf dRefksRgi(Hr—wp)Ta—ik R 9)

the problem, namely the rati@/E.. At this stage we do not Q

make any further assumption for the disordered potentialiqgh a finite pulse is of importance for the spectral se-
V. We point out, however, that theptically active eigen-  |a¢tion of the excitonic region, we consider for simplicity the

functions of the Hamiltonian Eq2) are characterized by a limit of a deltalike excitationA(t) = A-8(t). ending up with
typical localization lengthl,,., that will be used in the fol- A =Rod(1), aup

lowing discussion. _ R ”
The excitonic polarization is driven by the exciting light Eout(esit):|®(t)AOf dRe'ksRelHrle TR (10)
field E;, via dipole couplingu contains here — additionally Or

to the interband matrix element—the confinement overlapye remark that Eq(10) corresponds to the retarded COM
and the excitonic enhancemet(0)."” Since the resonant exciton propagator, if we identiff)- with the finite spatial
radiation is expected to be angle dependent, the spatial strugxtent of the system. This result holds when retardation in
ture of the light field has to be taken into account carefully.the electromagnetic field propagation along the QW or
The incoming plane wave directed aloggdk, =€ w,/C) is  QWW is disregarded. The more general result including po-

modulated by an amplitude function in time and space, laritonic effects, formally derived by Citriff amounts to
otk replacing Eq(10) by the retarded exciton propagator includ-
Ein(r,t)=e'(r " KIA(r t—gr/c). (4)  ing polaritonic self-energy corrections. However, these cor-

rections are unimportant as long as>l,,. holds for the

A formal integration of the differential equation gives wavelength, and may be safely neglected in the present dis-

: cussion.
P(R,t)= '_'“j dreMRE, (R t— 7). (5) It has been shown recentfythat the measured time re-
hiJo solved intensity per unit area and per incoming excitation
o intensity,
In what follows we puti=1. The polarization is the source
of the emitted field at a point outside the sample, 1
I(es,t) = —= Egui(es,t) Eoules, 1), 11
X P(R,t—|r—R|/c) QeAG
Eout(rit):_kLM drR “R . (6) . . . . . .
Ir=R] is randomly fluctuating as a function of detection direction,

We have dropped any vector notation of fields. The formulasformmg speckles which even depend on time. The angular

. : . L . . extension of one speckle 8=0.44\/Lg with L being the
hold strictly if the scattering directioss, the INCOMING ON€ ¢ \width at half maximum of the Gauss-shaped excitation
& , and the sample normal are coplanar, and the field IOOIarf'ocus Qr~LE. The observation anglé is defined relative
ization is perpendicular. Using the expansion-R|~r h ey directi 9
—egR for the far-field case and dropping the trivial deldyg to the incoming direction, cos=es- €, .

and some prefactors, the field to be observed in direaion In any experiment with querate angular' resolution, an
: average over many speckles is detected, which means to in-

'S tegrate oveks in a small range. By averaging E(.1) over
a Gauss aperture @f,=0.44\/L,, straightforward algebra
Eau(65.)= [ ARP(R,L+egR/o) leads to
(= . | t)= i dRdR’ ~|R=R'[2In2/L2 ikg(R—R’)
=1 J;) de dReIHRTEm(R,t+esR’/C_T)|R/=R. (es, - QF QF € e

@ el (HR—HR)tg ik (R-R") (12)
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The integration is thus effectively restricted to overlappingoptical densityD (E) which determines the linear absorption

regions of size,~LY%. L, has to be still larger than the of the inhomogeneously broadenes éxciton:

wavelengthh which in turn exceedk, . for typical values of

the exciton mass and disorder parameters. Therefore the in- 1 5

tegrations can be carried out independently over units of size D(E)= Q ; MLS(E—€a) ). (19

Q,, formally resulting in an average over different disorder

realizations, Indeed, it has been shoit® that the width of the optical

density is always belowr (motional narrowing The upper

|(es,t)=ij deR/<eikS(RfR’)ei(HRfHR/)tefikL(RfR’)>. boundc_r is achie_ve_d in th_e classical_IirmSee_be_Iov)/,_Where

Qala, D(E) simply coincides with the statistical distribution of the
(13 disordered potential.

This may be viewed upon as(aomewhat unusugkergodic At times .mUCh Iarger thaw 7, o_lestructive interference
hypothesis: A directional average can be replaced by an e rorks effgctwely leaving only the diagonal tewn= 5 in the
semble average. Aresidual smooth angular dependence irst sum in Eq.(18) untouched,

outside the reflected/transmitted direction would result if

andl,,. are comparable. However, with the exception of ex- | (t—e)= i E M4 ) =D (20)
tremely small disorden\>1,,. holds pretty well. As a con- ¢ Q\G el e

sequence, the scattered intensity is practically isotropic and it ) . .

is possible to get rid of the momentum dependence afte¢hich has the dimension of an area or a length in depen-

splitting off the uncorrelated average dence on dimensionalitp. We call L, the optically rel-
evant average wave function extension.

2 For the interpretation of the results as well as for the
' numerical simulation, it is advantageous to work in the fre-
(14) quency domain. Fourier transforming the time dependence

according to
where() now denotes a still smaller integration domain such

1 ) 1 .
lso(t)= ﬁdeRdR'(e'(HRHR’)t>_5‘ deR<eIHRt>

that\P>Q> 17 . The detailed derivation of Eq14) is pre-
sented in Appendix B. lsc(t):f dE[R(E) —Ro(E)]cog EY) (21)
lll. RAYLEIGH SCATTERING — QUANTIZED gives from the first part in Eq:18) a function,
In order to proceed, eigenfunctions of the COM motion 1
#,(R) are introduced, R(E)= 5<EB MiM%é[E—(ea—eB)]>, (22)

Hri/a(R)=€atalR), (19 which can be considered as the level distance distribution,
which have to be normalized withif 5. Exploiting the or-  weighted with the optical matrix elements. The symmetry
thonormality, one gets for the intensity Ed.3) R(E)=R(—E) is obvious. Note that the diagonal terms in

L the double sum of E22) provide a deltalike contribution,
I(es,t)= Q_A< a% Yok b € P Y W ) (16 1 \ .
' 5<E>5<E Ma> = 8(E)Lgpe, (23
with the Fourier transform of the wave function “

_ which accounts for the long-time limit of the scattered inten-
Yok = f dre'Ry (R) (17)  sity.

Qa The optical densityD (E) can be used to express the sec-
being the COM part of the optical matrix element. As de-Ond part of Eq(18) as a convolution,

tailed in Appendix B, the scattered intensity equals the cor-
related part of this expressidof. Eq. (14)]

Ro(E):QjOlE’D(E’)D(E’—E). (24)
Isc(t):%<2ﬁ MiMzei(ea_fﬂ)t>—é‘<2 Mieifat>

2

There is a large compensation betwé¥t) andRy(E) ap-

(18) pearing in Eq(21). Both contributions scale with the system
size(). However, distant parts of the system are statistically

whereM ,= [ ,(R)dR. The normalization is now within independent from each other and cancel out when forming

), and using the completeness relatﬁijfo it is eas- the difference between correlated and decoupled terms,

ily seen thatl;(0)=0 holds. It should be pointed out that R.(E)=R(E)—Ry(E). ConsequentlyR.(E) is not an ex-

the optical matrix elementd!, are very small for high- tensive quantity and is well defined in the limit of infinite

energy eigenstates whose wave functions are rapidly oscikystem size, too. This point will be further elucidated in Sec.

lating. Only for eigenvalues close to the band edgethe VvV where numerical results foR(E) and Ry(E) are pre-

order of o), M, reaches sizable values. We introduce thesented.
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IV. RAYLEIGH SCATTERING — CLASSICAL or Fourier transformed

For a better understanding of the results, it is useful to
examine the limit of classical exciton COM motion. Treating X(t)=i®(t)J dRe(VRT @t (32)
excitons as classical particles means to neglect the kinetic
term in Eq.(2). More generally, this is justified for large This establishes the connection between the present classical
values ofo/E. which could be reached by heavy excitons, limit and the fluctuating dielectric constant model of Refs. 2,
large correlation length of the potential, or strong disorder4, and 7.
Defining the scattering vectay=ks—k, , we have now in- We conclude this section with explicit results for the op-
stead of Eq(13) simply tical level distance distributions, valid for the classical case.

Fourier transforming both parts of E@®8) gives

1 . oo
I(q,t)=—=—| dRdR’eIR"RI(Vr=VRIY)  (25)

Qala, Rd(E):f dRrR 1 e—Ez/[4az(1—fR)] (32)
The disorder average is performed in Appendix C, it depends o m2o\1- fr
solely on the pair-correlation function of the random poten-5q
tial introduced in Eq(34):
Q
RS(E)= e EM (33

I(q,t)=fQ dRe'®Rexg —?t2(1—fR)]. (26) (20

A

we subtract and add the®S thg decoupled part: Both expressions scgle with the sys-
tem size(), but their difference does not. This can be seen
using the limitfg—0 for large argument, and corroborates

_ the general statement made at the end of the preceding sec-
p—— iqR o2t — 0?2 .
I(g,t)=e f dRe'M(e” " R—1)+e Qabg0- tion.
Qp

(27)

The second part is nonzero only in the specdlaflected or

transmittedl direction. In the first part, the spatial integration Al calculations presented here refer to the one-

is essentially restricted to the correlation lengttand due to ~ dimensional caseY=1), which refers to the continuous

gé<1 the exponentiad'“R can be replaced by unity. Outside Anderson model with correlated disorder. We do not go into

the specular direction we get the final result, the details of how the relative exciton wave function in the
quantum wire is averaging over the underlying atomic-scale

Since fg decays to zero rapidly,
limiting behavior and integrate the latter ov@r, ,

V. RESULTS

22 S22 disorder*® Rather, we assume a potential correlation of
l(t)=¢e f dR(e” " 'R—1), (289 Gauss type,
Q
where the integration can now be restricted to the simulation fr=exp —R%/2¢%). (34)

size () as well. The scatteredRayleigh signal exhibits
therefore no angular dependencg&+\ holds, which in the
classical case replaces the inequalijty<<\ used above.
Obviously,ls(t) starts quadratically in time, and the time
scale is set by /. For large times, the signal decaysta$
if a Gaussian spatial correlation is assumed. This nontrivi
time dependencéise and decgystems from the product of
time and correlation in the exponent: as time elapses, th

range off, which is probed, diminishes. The classical reSUItchain length have been carefully adjusted in order to avoid

for the 2D case has been derived before in Ref. 12. finite-size effects. In particular, two prescriptions have been
A simplification assuming time independent spatial corre- - 1N p ’ P P

lation of the susceptibility is completely invalid. This ex- ﬁqoftter? for :jealm_g@p_roLperly Wl'th a c?]ntlnuous p;]oltentlal.
plains why StolZ came up in his theory with an instanta- thlrs I € Sys% em dsllz— 4_ wasﬁg WaBt/.S ¢ I?sen mgc azjger
neous Rayleigh signal, which decays only via dephasing. anlioc (we foundL =4 um sufficient in all casgs Second,

—_F2A 2
It is instructive that the same final result can be deriveoIhe transfer energil =#"A "*/2M was .taken much larger
starting from the general expression than botho andE,. The latter prescription assures that both

the kinetic and the potential terms in the Salinger equa-
lso(1) = Ot (D x (D))= Ok (D)) (1)), (29  fion are sampled sufficiently dense. .
* < )= N ) The first quantity we study is the optical length,,,
which states that the scattered intensity is given by the flucwhich we calculate for varying values ofandE. . Because
tuations of the linear susceptibility. In the present case, apf the scaling properties of the Schlinger equation(Ap-

To give physical units, we adopt an exciton kinetic mass of
M =0.25 m, typical for AIAs/GaAs quantum wells. With a
potential correlation length of=10nm, for example, the
reference energy i€.=1.5meV. Large-scale numerical
imulations have been performed for determining eigenfunc-
ions and eigenvalues. The second derivative in phas
een discretized on a fine grid, mapping the problem to an
effective tight-binding calculation. Step size as well as

oscillator type is appropriate, pendix A), any length of the system scales &s(o/E,),
whereF denotes a specific dimensionless function. We thus

X(w)=f dR 1 _ (30) plot in Fig. 1 the o_pticgl length o/ & as a functioh obr/E,
Vet owy,—o—i0’ on a double logarithmic scale. For this calculation, the sys-
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FIG. 1. Optical length_,,; (squarep and inverse participation
length L, (open circleg as a function ofe/E.. The points have
been calculated varying bothandE,, but follow two well defined

E [meV
curves, as expected from the scaling properties. The asymptotic ! ]
behavior is depicted by thin curvésee text The arrows indicate FIG. 2. The optical level distance distributi®(E) (full curve)
the parameter values used in Fig. 3 and Fig. 4. and its decoupled counterp&§(E) (dashed curvein dependence

on energy, foro/E.=10. The inset shows the important region of
tem sizeL has been divided into 2048 steps=f 40 me\). small level distanceE, here together with the classical results Egs.
Then, botho and ¢ have been varied within the bounds (32) and(33) plotted as thin lines{=40nm,L=4 xum).
imposed by the above-mentioned prescriptions. Each point in

the plot represents an average over 50 statistically indepely, a5 1o characterize the localization of the wave functions
dent potential realizations, and the convergence has beqrq its relevance for optical transitions

thoroughly checked. Results for the optical level distance distribution are given

Two limiting cases aré of importance. MEC_)OO’ We' in Fig. 2. In this plot, the curves corresponding to the clas-
approach the classical limit, where analytical results are

available. In the other extrema/E.—0, the wave functions Sical limit have been calculated analytically, according to the
' ¢ T . .7n 77 expressions given in Sec. V. The numerical calculations for
extend very far K,.>¢), and the white-noise limit is

: the general case, in this and in the following figures, have
reachedsee Appendix A As shown there, any length has to : . -
be a constant timé(E./o)%2. The calculated optical length been performed by using a system sizd-of4 um divided

in Fig. 1 shows clearly the approach to this power-law de-im0 512 steps, and=1 meV. The parameter/E, has been
pendencefull line) for o<E, . adjusted by varying the correlation lenggh Each plot re-

Among different possibilities, wave function localization sults from an average over A8tatistically independent real-

can be characterized by the inverse particioation Aiiy- izations. Still, there is some noise left which — in physical
) 1 Dy . participatio . terms — can be considered as a remainder of speckle effects.
eraging over the optically active states in a similar fasHion

as in Eq.(20), we define For classical excitonsR(E) is a smooth curve diverging
e logarithmically atE=0 due to the spatial correlation in the
1 random potentialEq. (32)]. This peak is missing in its un-
1/|_p=5< E Mif dR¢i(R)>, (35 correlated counterpaRy(E). In the full guantum treatment,
@ however,R(E) goes sharply down &E—0, reflecting the
“avoided level crossing” behavior of quantum systems.
Note that the present expression is weighted by the optical
g\jatrix elements, thus emphasizing the optically active COM
states close to the band edge. This contrasts the standard
definition of unbiased level repulsion elaborated, e.g., in ran-
dom matrix theon?? Recently it has been suggested that the
level repulsion feature could be directly detected in micro-
photoluminescence  measurement under steady-state
excitation?® Here we show how direct evidence of level re-
pulsion is also present in the time resolved intensity.
N = _ Figure 3 shows the quantify.(E) for different values of
Lopr=¢VEc/oand  Lp~¢/In(Ec/o). (36 o/E., together with the classical limit plotted as a thin line.
These findings are backed again by the numerics, as showrhe transition from a full quantum situation, close to the
in Fig. 1 by a dotted and a dashed curve, respectively. white-noise limit, to the classical limit clearly appears. In
In view of the present results, we consider the opticalparticular, for values otr/E <1, the curve is always nega-
length L,; as a well defined and useful quantity, which tive, reflecting strong energy-level repulsion. The classical

which gives a result surprisingly close kg in the white-
noise limit.

We have searched for asymptotic results close to the cla
sical limit, too (o> E_). The eigenfunction in this case piles
up in the vicinity of the classical turning points. Concentrat-
ing on that part we looked for the linear potentiylx) — e
= ox/ ¢ with coefficients solely dictated by dimensional ar-
guments. From the properties of the Airy function solution
Ai(¢(E. /o)) we derived as limiting behavior
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FIG. 3. The subtracted optical level distance distribution FIG. 4. The scattered Rayleigh intenslty(t) as a function of
R.(E)=R(E) — Ry(E) in dependence on energy is plotted for pa- time is plotted for the same parameters as in Fig. 3, together with
rameter values oé/E.=1,2.6,10,100 from below as thick curves. the classical limit(thin curve.

At o/E.=100, the approach to the corresponding classical limit
(thin curve is obvious, but the level repulsion dip close Ee=0

_ appears. A faint oscillation is seen, too, the period of which
always persists.

is related to the peak distance from zero energy in Fig. 3.
Consequently, minimum and oscillation are a fingerprint of
limit is approached at largé| and the energy interval where the level repulsion effect At still smaller values ofo/E,,
the result differs from such limit becomes smaller&d¥,;  no minimum is seen, but the curve approaches the long-time
increases. As a consequence, a peaked structure developdimit rather slowly. Again, this slow increase is closely re-
an intermediate energy range, while f6+-0 a downward lated to the small width of the level repulsion dip in energy
level repulsion featurésingularity) is always present, reflect- space.
ing the quantum nature of the system. The total integral over This analysis provides a key for the interpretation of the
R.(E) including the delta contribution & =0 adds up to experimental results by Haackeal® In that experiment, the
zero, which accounts fors(t=0)=0. The same integral measured time dependent intensity was in excess with re-
without including the delta contribution is then equal to spect to the prediction of the classical RRS model. The ex-
—Lopt- Thus the value of the optical length, =1t cess intensity was attributed to incoherent photolumines-
—) gives already a rough approximation of the integralcence originating from inelastic scattering processes.
level repulsion effect. For the classical curve, we remark thaflthough the incoherent photoluminescence contribution is
the positive peak aE=0 is simply related to the spatial always present, this distinction is in general unjustified, as
correlation of the potential. Similarly, the negative featuresthe present results suggest. Indeed, the classical model pro-
at larger|E| only appear in order to preserve level countingvides a lower limit to the intensity of the RRS contribution to
(vanishing integral of the curye secondary emission, as Fig. 4 shows. In general, given the
From the experimental point of view, however, this quan-typical values ofM, o, and ¢ in realistic QW’s, we expect
tity is not accessible through the measurement of the timéhe parametetr/E. to lie well below 100, thus providing a
resolved RRS intensity. In fact, an intrinsic damping of thesizeable increase of the signal @t>1 with respect to the
signal due to radiative as well as nonradiative processes idassical limit. These considerations should rule out the pos-
always present and the measured signal vanishesbility of distinguishing between coherent and incoherent
exponentially’ Indeed, it might be objected that a nonzero contribution to secondary emission simply via a subtraction
scattered intensitys(t—) for a finite exciting pulse vio- procedure, due to the difficulty in making accurate quantita-
lates energy conservation. However, the overall Rayleighive predictions of the RRS time dependent signal. Instead,
signal is proportional to the interband optical matrix elementrecent studies have shown that this distinction can be made
which also determines the radiative exciton recombinatiorusing interferometric techniquesor by means of a statistical
rate. Thus in a realistic physical situation RRS is alwaysanalysis of the angular intensity fluctuatiotspeckles'®
associated to a finite exciton damping rate that has been dighese experiments usually have access to extremely small
regarded, for clarity, in the present treatment. angular detection windows, thus detecting light from a single
Experimental evidence of the quantum level repulsionspeckle of angular extensiafy, in contrast with the angular
could be extracted anyway from the time resolved signal. Iraverage assumed here. In particular, in Ref. 11 it was argued
fact, if converted into the time domain by the Fourier trans-that the configuration averaging is based onaanhocer-
form, Eg. (21), a nonmonotonic time dependence for thegodic assumption which could not account for the phase co-
scattered intensity evolvéBig. 4). The classical result peaks herence of the RRS. The present model, however, includes
at ot= 1.4 before tending to zero as 1At decreasing values only a fully phase-coherent process, namely, light scattering
of o/E., the signal follows the classical curve surprisingly by disordered exciton wave functions. We have rigorously
far before turning to the nonzero end value, and a minimunproven that configuration average is notah hocassump-
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tion and is justified in terms of the angular resolution ofwe get
typical measurement schemes detecting many speckles at a -
time. In experiments such as the one by Birkeetadl,'! the (—Ax+Vx—e)(X)=0. (A2)

conditions for angular averaging simply do not hold and nothe jlde denotes scaled quantities wittas length unit and
relation can be esta}bllsh_ed Wlth the present reSL_JIts. HowevgC as energy unit. The potential correlation is now given by
the present formalism, if applied without carrying out the

configuration average, would be appropriate to the descrip- <\~/xvx'>=(U/Ec)zfx—xu (A3)

tion of single speckle RRS measurements. _
with the scaled correlation functiohy=fg_.x. It is then

clear that therescaledl problem is uniquely determined by
the single dimensionless ratig/E. .

Time resolved resonant Rayleigh scattering of excitons in In the white-noise limit, the potential is delta correlated,
a disorder-dominated sample offers a unique possibility for ,
detecting level repulsion features. In practice, as already (VRVr)=W5(R-R’), (A4)
mentioned, radiative recombination together with inelasticavherew has dimension&?2- LP. Now, the number of inde-
scattering effects will lead to a more or less exponential dependent parameters has been reduced to twand M. In
cay of the scattered intensity, thus making an extraction obne dimension we can thus define length and energy units as
fine features a difficult task. However, we have shown in the
present work that level repulsion is responsible for a quali- w
tative change in the scattered signal with respect to the clas- lo= £2/2M
sical and white-noise limits. In particular, the inclusion of
radiative damping in the form of an exponentially decayingThe white-noise limit is obtained from the general case in the
factor, would result in a doubly peaked feature if applied, forlimit o/E.<1 which can be reached by very light mass, very
example, to thes/E.=10 curve of Fig. 4. This feature short correlation length, or very weak disorder. A precise
should be easily detected in time resolved RRS measuréelation between, o, andé is established by performing the
ments with femtosecond resolution, especially in sampleimit {—0 carefully. In the case of a Gauss correlated po-
fabricated using the growth interruption technique. In fact, ittential, we havef z=exp(—R%/2¢%)— \27¢ 8(R). Thus w
has been suggestéd® that this technique should produce =\27¢0? holds for a Gauss correlated problemDn=1.
interface roughness with rather large correlation length. InReplacing into Eq(A5) gives
deed, recent Rayleigh scattering measurements on a 9.5-nm- o
wide quantum well sample with small inhomogeneous width | :5(277)1’6(1) E :U( 2
(0=0.6 meV) revealed rather clearly a double peaked fea- 0 E. ' 0 E.

ture in the scattered intensity which could be Successwl%pproaching the white-noise limit, all the quantities having

attributed to the level repulsict. dimension of a length or an energy must be proportiongd to

memsop;rﬁr?nin: er:cfltj/léz ;hsgkcj) r:hslfm%rl‘gsoLé?g?ﬂg?;’("ﬂ?g?%{gﬁd E,, respectively. This limit is correctly reproduced for
ent growth facilities. In fact, in the light of our theory, these the optical lengthlqp and the optically averaged inverse

measurements might provide better understanding of thgartlmpatlon ratiolp, as shown in Fig. 1.

VI. CONCLUSIONS

213 o\ 13
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o\ 13
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properties of heterointerfaces and of the epitaxial growth APPENDIX B: LONG-WAVE LIMIT
process.
To simplify the derivation we assume normal incidence,
ACKNOWLEDGMENTS k_.R=0. The spatial integrations in
We are grateful to C. Ciuti, S. Haacke, C. Piermarocchi _ 1 f 1/ aikg(R—R") al (HR—HR)t
) ’ " o l(es,t)==—] dRdR’(€'"s e'{"RTIR Bl
A. Quattropani, E. Runge, and P. Schwendimann for fruitful (6s.1) Qala, { ) (BD

discussions. V.S. acknowledges support from the Swiss Pri- o . o
ority Project “Optics.” are split into small units of siz€ =Q /N centered aR;,

N

APPENDIX A: SCALING PROPERTIES l(es.)=Nq jlzzl els(® 7R
The exciton COM problem defined by the Hamiltonian
Eq. (2) and the potential correlation E¢8) depends on the xf dRdR'(expi(Hr+r —Hrr+r 1)
three parameted, &, ando, once the type of the correlation Q !
function is given. However, the scaling properties of the (B2)

Schralinger equation leave only one relevant parameter in.. O is tak I dtoth lenath e th
the problem. Let us introduce the dimensionless coordinatgc€%2 IS taken small compared 1o the wavelength scale, the

X=R/¢ which transforms the Laplace operator according to%h‘f"se factorsdexbf)sR)l could bﬁ omitted. Onr:he olther halnd, |
Ar=(1/£%)A. Dividing the Schidinger equation by is assumed to be large with respect to the relevant local-

ization lengths. Then, only a minor fraction of states spills

52 over into neighboring units, and the average factorizes for

— (A1) the nondiagonal termg#1. Singling out the diagonal terms
2M £2 j=I gives

c
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1 , i Q,=NQ. Outsideks=k, , the scattered intensity has no
l(es,t)= Q QdeR (expi(Hr—Hr)t) angular dependence, and Ed4) evolves. The condition to
be satisfied was\°>Q>1D  which can be realized since
_l_i E eikS(ijR|)f dR<eiHRt>j dRr<e7iHth>_ A>1 o holds.
NQ F Q Q
(B3) APPENDIX C: STATISTICS OF POTENTIAL

. e . . CORRELATION
Simplifications were possible since the ensemble average

does not depend on the center position. The second line To perform averages of correlated Gaussian random vari-
nearly contains the Kronecker delta, ablesV, with zero mean, a useful expression is

N

_21 expi(ks— kL)(Rj—RI):N25kS,kL- (B4) <exp< f drh(r)Vr)>=exp<%f drdr'h(r)g,_,/h(r")

=

Subtracting and adding the missing tejm| gives

1 2 which holds for any functiom(r). The potential correlation
l(es,)==| | dRdR’(e'HrR=HrIt)—| [ dR(e™Hr") function is here defined as_, =(V,V,). Putting
U0l o 0 r=(V/V,
1 L h(r)=its(r—R)—its(r—R’) (C2)
+NQ 5kS’kL 5] dR<eIHRt> . (BS)
Q gives for the statistical average needed in &%)

The last term represents the specular contribution of the
emitted radiation, with the proper scaling of the total area (exp( —iVgt+iVgit))=exp —t?go+t2gr_gr/). (C3)
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