PHYSICAL REVIEW B VOLUME 60, NUMBER 7 15 AUGUST 1999-I

Spin diffusion in a two-dimensional electron gas
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Spin transport properties of spin-polarized two-dimensional electron systems are studied, with application to
guantum wells or heterostructures of IlI-V semiconductors. We present numerical solutions of a quantum
transport equation, which is @22 matrix in spinor space. It is shown that the “spin-rotation term,” which
leads to anomalous spin diffusion and spin waves in three-dimensional rarefied spin pofatizedd Hy-
drogen, is also present in two-dimensional degenerate electron systems at low temperatures. Calculated longi-
tudinal and transverse spin diffusion coefficients show different temperature dependence due to the fact that the
phase space available in electron-electron scatterings associated with each diffusion process is different. We
also discuss the possible experimental setups to achieve spin-polarized electrons in semiconductor quantum
wells. [S0163-18209)02031-7

. INTRODUCTION Bashkirt® and Lhuillier and Lalo& independently pre-
dicted a similar effect in dilute Fermi and Bose gases in the
There has been growing interest in the spin degrees dBoltzmann regime, provided that the spin polarization is very
freedom of carrier electrons in semiconductor quantum well$igh. In Lhuillier and Lalog microscopic transport theory,
(QW's) and heterostructures. Many intensive studies are ithe exchange effect in interparticle collisions, which is a di-
progress motivated by the prospect of developing electtonicrect consequence of particle indistinguishability, plays an
and optical devices based on the carrier spins in semicondutmportant role at low temperatures where de Broglie wave-
tors. Compound semiconductors are mainly investigated bdength is comparable to the interaction range. When the di-
cause the symmetry of the band structure enables one t€ction of spin polarizations varies spatially, this exchange
generate highly spin-polarized carriers by circularly polar-€ffect rotates spin directions during scattering, leading to a
ized optical excitation$, and the recent technological Similar spin precession effect as in the Fermi liquid model,
progress enables the injection of spin-polarized carriers frorhich they called the “identical spin-rotation effect.”
ferromagnetic metallic electrodé&s® Later, the connection between the Fermi liquid model for
Quantitative understanding of the carrier spin dynamicglegenerate system and the microscopic collision theory for
within the semiconductor nanostructure is essential for thdoltzmann gas were investigated and unified in the quantum
development of device design. While spin relaxation mechakinetic theory using Green’s-function technigtte?® We
nisms are extensively studied both in theoretically and exshould also point out the Meyerovich's wofk, which
perimentally, to the best of our knowledge, there have beefhowed that the transverse spin diffusion coefficiént
few reports on electron spin transport properties in semiconwould be different from the longitudinal onB in highly
ductor nanostructures. In this paper, we present a theory arftegenerate syster; diverges at low temperatures &7,
numerical calculations of spin diffusion coefficients in two- as expected in the transport of degenerate Fermi system. But
dimensional electron syste(@DES. D, was predicted to show saturation at low temperatures and
It has been known that the spin diffusiobehavior of ~converge to a finite value a—0.
strongly interacting Fermi system in the degenerate regime, On the experimental side, there have been many investi-
or highly polarized Fermi/ Bose system in Boltzmann re-gations to observe the predicted phenomena. Spin waves in
gime, is quite different from that of free particles. As for degenerate Fermi system were first observed in bulk metallic
highly degenerate Fermi liquid, Leggett and Ric@pointed  Na and K* Spin waves in weakly polarized, degenerate
out that the effective transverse spin diffusion coefficients=ermi system were also found in normal liquitle (Ref. 23
measured by spin echo experiments should depend on tlend 3He-*He mixture? Direct evidence of Leggett-Rice ef-
spin-tipping angle by the initial r.f. pulsé_eggett-Rice ef- fects were observed in bulk liquitHe and*He-*He mixture
fect). This effect is caused by an additional term in the equaat very low temperatures. Spin-rotation effects in highly
tion of motion for spin currents, representing the precessioipolarized gases in the Boltzmann regime were observed in
of the spin current about the molecular field made by othespin-polarized atomic Hydrogéfijn optically polarized®He
spins. Their results also imply the existence of spin wavegas?’ and in dilute liquid*He-*He mixture in high-magnetic
first predicted by Silitt and Platzman and Wolff fields® Crossover between the two regimes have been inten-
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sively investigated in liquid heliurf® 3! we will drop the term of the external magnetic field assum-
The foregoing experiments are done for bulk system ofng that the spins are aligned by optical excitations. Even if
helium and hydrogen in gaseous or liquid phase, and eledhe field is present, provided that the field strength is suffi-
trons in metal. We are interested in the possibility of observciently low so that the orbital motion is not affecté¢de
ing the same effects in 2DES in semiconductors. Recentlydiscuss this point at the end of Sec,)/lits effect can trivi-
high-quality samples are available with very low rate ofally be included in the following derivations by using a ro-
impurity-related scatterings so that electrons confined in het@ting frame. ) o
erostructures can be treated as nearly ideal 2DES. Experi- W€ consider 2DES long after optical excitations, long
mentally, there are two advantages in 2DES in semiconduc@Nough so that the electrons are close to the local, quasither-
tors over the previously investigated systertis: electron ma}l eq“"'b”um In momentum space, but.not_toollong to lose
spin polarization can be controlled from weak to full by ap- spin polarizations. The distribution function is given by the
plying linearly or circularly polarized optical excitations local eq”'_"bg'“m function plus a fmall correptlon term,
without any magnetic field€2) sheet densities of electrons k= (R:T)=M: (R, T) +dny(R,T) (= for the spin-up and
can be easily varied ranging from very dilute to high density'dOWn componenys The total density of spin-up and spin-
such that degeneracy temperature can be varied easily unlilgé)wn eIegtronsn(R,T) =n.(RT)+ n,(R,T)_, IS assumeo_l
electrons in metals. One drawback of optically excited 2DESO be spatially and temporally constant. Their difference, i.e.,

in semiconductors is that spin relaxation times are short comt—he spin  density M(R,T)=n.(R,T)—n_(R,T), varies

pared to other experimentally studied systems. slowly on a hydrodynamic scafé.The spin polarization is
The purpose of this report is to calculate the longitudinal9'Ve" bI)/Plz(n+h—n_ )/(n++n_ ) In t?f.e present ftUdK’ weh
and transverse spin diffusion coefficients in 2DES pertainind@" €@ culate the spin transport coefficients only when the
to GaAs QW's and examine whether or not “identical spin- 5P\ po'larlz.anons is small due to the approximations used in
rotation effects” cause important effects in realistic experi-theI derivations. blems | cond classi
mental conditions. To evaluate the size of the effect, a rigor- N fransport problems in semiconductors, gemiclassi-

ous quantum transport equation must be solved, since r]%al Boltzmann transport model is widely used, in which the

experimental values of phenomenological parameters arauantum mechanics appears only in the calculation of scat-

available. tering rates and Pauli blocking in collision terms. In order to
This paper is organized as follows: In Sec. I, the quantu olve transport problems associated with spin degrees of

transport equation for spin-polarized electrons is briefly de!r€€dom, which are quantum mechanical in origin, we have

scribed, followed by our approximate approach to obtain the® treat the problem quarllt_um_mechanllcallyé frpm dthfe OUtsﬁt'
solutions for 2DES. In Sec. lIl, the results of numerical cal- €€ W€ l;se quar]ltumh Inetic et_n:_t;)a_hon e{|\(e (r;om t, N
culations for spin diffusion coefficients and spin-rotation pa_equatlon of motion for the nonequilibrium real-time Green's

- o33-37 : : N 4
rameters are shown with detailed discussions. We also digynctlons. For the spin-polarized Fermi I|qU|ch6Ie- He

cuss the plausible experimental setups to realize SIOinr_nixture in 3D, the derivation of spin-transport coefficients

polarized electrons in semiconductors. Conclusions are giveﬁOm the quantum kinetic equatio_n is descri.bed in great detail
in Sec. IV. in Refs.18 and 20. We apply their formulation to 2DES. The

present calculations differ from these previous studies in two
points; electrons are confined in two dimensions instead of
Il. THEORY three, and they are interacting via a Coulomb force. We

We consider two-dimensional electrons interactingadOpt the Green’s-function method to calculate many-body

through Coulomb interactions. Other interactions such a§'TECtS of electrons such as self-energies in the drift terms

electron-phonon, electron-ionized impurity or the exchang@nd the screening of the Coulomb interactions in the colli-

interaction of electrons and magnetic impurities are not jnSion terms.

cluded in the present study. The Hamiltonian of the system is A Drift terms

R #2y?2 We start from the quantum kinetic equation for nonequi-
H=j d?r (f,t)( ~om )lﬂi(r,t) librium Green’s functionsz=. After using the gradient ex-
pansion and applying the Kadanoff-Baym Ans&taye ar-
(., N . rive at the quantum transport equation for the electron
+§f d flf d2rog (e, t) ¢ (ra, 1) V([ri—rp)) distribution functionsn,,
anp(r,t) 1{dep(r,t) any(r,t)
X‘/’j(ertZ)wi(rlytl)"'jdzr'zbiT(rvt)Uij‘pj(r’t)’ a2 op ' or
(2.2 1| de p(r,t) anp(r,t) i

where ;(r,t) is an electron field operator with spin
z-componenti, m is the band effective masg0.067m, in an p(r,t)
GaAs, the Coulomb interactionV(|r,—r,|)=e%/(go|r; :(_T) ,
—r,|) (dielectric constant,=12.91 in GaA$, and the re- col
peated indicesi(j) are assumed to be summed over. Thewhere underlining indicates ax22 matrix in spinor space.
external fieldU;; is —%g,uBB(r,t)-rij , whereB(r,t) is a  The distribution function is decomposed into the spin scalar
magnetic field andy; is a Pauli spin matrix. In the following  f, and vectoroy, parts,

(2.2
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N (1,0 =31, 01+ o1, 0)- 71, RS HES(pir =A%y (Pir, D= A e (P b).

The quasiparticle energy,(r,t), which will be given in the

Hartree-Fock approximatiofHFA), is also decomposed into  Putting these expressions into Hg.2) and we arrive at
spin-scalar and spin-vector parts: the drift terms of the transport equations for the distribution

functionsf) and o :
gp(r,)=gp(r, )l +hy(r,t)- 7. .
The first three terms of E2.2) correspond to the drift terms ﬂ _ ﬂ

in the classical Boltzmann equations. The last term on thedt  Jr;
left-hand side represents the effect of the molecular field,

0 0
Vp+.i &np+ B Vp—.i &np_
ZGJr (98Kin 2G_ (98Kin

0 0
which is called the “spin-rotation term” and is essential to —v., i% Mp+ . imi IMp- . (25
the present analysis. PEL g dekin P an dexin
Now, we apply the Chapman-Enskog expansforthe
true solution is divided into a local equilibrium distribution aag A | IM[Vpy ang+ Vpoii ang_
and a correction terrrﬂ(? +6n,. The drift term is evaluated "5t ™| gr, | 2G, deyin  2G_ dexin
to the lowest order with the local equilibrium distribution 0 o
function Dop while the spin-rotation and collision terms are N IhZEs Ny B IhZ - dnp_
evaluated with the variational functiorf, + n ,. We set the Ver i T den P an dean
Cartesian coordinatee(,e, ,e,) where z axis is along the A
; : e 1 an?
growth axis of the quantum well andy in the 2D plane. ol av a0 _ 0 \_ p+
L ; ; + V(N =Np ) = A2 pep| Vot i 72— —
The 2D transport equation is expressed in ¥qg coordi- ar; ' 2 " dekin
nates. We assume that the local equilibrium spin-polarization an®
direction is close to the directio,, so that all physical +Vp- i_p) (2.6)
guantities in 22 spinor space can be written in diagonal " dekin

form when the quantization axis is taken alomg neglect-  wherei denotes spatial directior or y, exi,=p?/2m, the
ing small off-diagonal components. Then quasiparticle velocity is defined asv,. ;=d(ekin

H av __
Qop(r,t)=%[fg(r,t)l_+a-g(r,t)~z] +hZye.)/dp;, the mean velocity = (Vpy i +Vp-i)/2,

andG.. is given by

_ 0 0 -

=3[fo(r, )l +op(r.te,(r,t)- 7] &p ol
_(mpert 0 6.~ | 5 e @7

0 np-(r,t))"’ 23

We should notice that the present forms of transport equa-
where e, is a directional vector of the spin polarization, t'On.SI.t')n' Egs.(2.5 aTd (2.6 aredyahd only When”thle |OC?:
fh 550 _ 0 0 ; : equilibrium spin-polarization direction is parallel to the
= + - . L .
\;vch;f;r 1S ;Ir(t)sea:](?gbgrp(tr)’i)non??(tr)’i)nonf(’;(tr)'tzslsaa zp:z growth axis(the normal of 2D plang which is also a spin-
part, pr oo TNt Tip A >Pin quantization axis. When the polarization direction is tipped
vector part of the distribution function. The local equilibrium

o . . away from the growth axis by a finite angle, the finite off-
d!StI’IbUtIOﬂ functlo_ns_ fo_r Spin-up an_d -down electrons arediagonal elements appear irK2 spinor matrices such as in
given by the Fermi distribution function,

gop(r,t) andgop(r,t), resulting in the extra terms in the trans-
ngi(r,t)={exr{ﬁ(sgi(r,t)—,ut(r,t))]+ 11, port equations. This is a distinctive feature of 2D system. In

_ . _ _ . 3D case, due to the isotropy of all directions, it is always
wherep . is a chemical potential, anef.. is a diagonal part possible to set the direction of local equilibrium spin polar-
of quasiparticle energisee Eq(2.4)]. The local spin density ization asz axis at each point of space and write the transport

vector is defined as equation in this coordinate system. Since we are interested in
~ . the case when the spin polarization is parallel to growth axis
M(r,t)=M(r,t)e,(r,t)=[n (r,t) —n_(r,t)]e,(r,t). assuming the optical spin orientation in semiconductor QW

gtructures, we will calculate transport coefficients for this
case below.
The particle current in the spatial directiois given by

The quasiparticle energy is also written in spin-diagonal
form:

eS(r,)=ed(r,H)l+hd(r,t)e, 7

d?p [ de,(r,t) dhy(r,t)
0? Ji(r,t)zjF(g—pfp(r,t)—kg—p-ap(r,t)
2_+h2HF+(p;r,t) 0 ' '
_| M d?p
= . - f CRVf(rD), 2.9
0 ﬁ-l-ﬁEH,:_(p;r,t)

(2.4 Wherevg'i =p;/m=2de;n/Ip; is a velocity of the noninter-
' acting particle. The spin current of the spin componient
wheref 2 e is a self-energy in HFA. Here, we define flowing in the spatial direction is given by
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d2p<asp(r,t) dhpi(r,t) m* 2R M Mm% +m*
Jo. i(r,t)= ——op(rt)+ ———f(r,t s=— E= ;
R I B T A T C-" 22 m
d?p
= | Fevhioair. @9 Peolle) | are 214
M eo(ke, +ke )’

The goal of the derivation is to obtain the equation for thewhere we used the fact that the electron distribution is de-
spin currentd, ;(r,t). We multiply Eq. (2.6) by vg'j and  generate and the spin polarization is smifl, ~kg . We
integrate ovep. Then, we find keep the limitation of the present scheme in mind when we

apply it.
3dgi(r,t) .~ IM(r,t)
ot +e0' arl A(kFi!rat)
- The variational functions are carefully chosen in the simi-
+M(r,t)§8(kpi ), (2.10 lar form to the qrift terms. From Eq2.5), the spin-scalar
ar; part of the variational functions is

B. Variational functions

h M vy, an®, v, . an°_
where Sfp=—Cp—— | =t - L P (215
P i\ 2G, dekin  2G_ 9&kin

1 (n+(r,t) Jrn,(r,t)

Alkes 1 t)=— . 1, (2.11) WwhereC is a variational constant. This form guarantees a
m\ 2G. 2G_

vanishing particle current in E¢2.8). The spin-vector varia-
tional function consists of a longitudingbarallel to the local
- spin polarizatiop and a transverse part,
B k + ,r,t - —
(kec.1,1) h?M (r,t) S0,= o+ S0y,

1 - K where the longitudinal part is given by
+m[n+(r,t) HED(KE+ 1)

~ M (Vpy dnd, vy dng_

+n_ (1043 uep(ke_ 1,01, (2.12 00p)=~ &Ly 5 2G. %exn | 2G. Foxm)’
=1 1 (2.16
- _ — _ . — 2 : -
whereG,"=G. "~ a. with a.=2e"/(soymn.), and= is 4o irancarca part is
defined as
1 .
805, =5Vpiop(Ci&—iCy,i€)). (2.17)

=_ |~ 0,,av 0 _ 0

H—JO dp pvpvy (N —np_). o
In the transverse par€, ; andC, ; are variational constants
and the directional vectors are defined as

In further evaluating the quantities in Eq&.11) and

(2.12), we run into a difficulty due to the inadequacy of using de, " . ~ 08, . .
the HFA: The derivative’s, ;(k)/dk diverges at the Fermi I Pxit by &, € Xom =i by i€,
surface(in 2D as well as in 3} andG.. , E and#3 ygp /M ' ! (2.18

are not defined atk=kg.. This also leads to the ) )
vanishing quasiparticle effective massm*=#%k/  Whered,; and ¢, ; are constants. The mean field contribu-
[58(k)/5k]|k=kF-34’39 This is an artifact due to the infinite tions associated withX p is small and will be neglected.

range of the bare Coulomb interaction used in HFA, and the _ _
finite effective mass is recovered when the higher order C. Spin-rotation term
terms are included-The effective mass calculated in random  From the last term in I.h.s. of Eq2.2), the spin-vector
phase approximatiOI(RPA) (Ref. 40 is 1.0-1.1Xm, de- part of the Spin-rota{ion term is
pending on the density.To circumvent this problem, al-
though the selfconsistency of the theory is lost, we will as- 2
sume through the following derivations that the energy — 7 Lhp(r, )X ep(r,].
dispersion of quasiparticles near the Fermi surface is given
by the quadratic form as The spin-scalar part vanishes. This term is evaluated with
oo, , multiplied byv(k”j , and integrated ovek to find the
72K2 spin-rotation term for the transport equation for the spin cur-
+Ep+, (2.13 rentJ, ;(r,t). It can easily be shown that this term is pro-
portional toM X J,,; in spinor space. Then, we can write

L. =——
k=* 2m§

using a finite effective mas®*. We can then calculate as, msfM X Jy i, (2.19
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where conservation before and after the collision, and specifies the
point in (k,w) space at which the interactiofizpa(k, w) is
e d*k  d%k’ sampled. When the spin-polarization is small, we can ap-
= lk—k'[(n%, —n? ) ped. pin-p ton ' N ap
KSR SheonM2) (2m)2 (2m)2 ko ke proximatee . ~¢,_ . If the interaction is a smooth function
0 0 of energy transfer, and which is true in the RPA-screened
X (N = Nir ). (220 Coulomb interaction except at the plasmon peak, the quasi-
i H i \%
The spin-rotation parameter is obtained by numerically inte-p;?lrtICIe ENergyey... can be replaced with their av_eragé .
. . . without introducing significant error. We adopt this approxi-
grating this expression. N > -
mation in calculating the collision terms below.
We next multiply @ny/dt)con. with vi; and integrate
overk to find the collision term of the transport equation for

D. Collision terms

We find the collision term of the following form: the spin currend, ;(r,t). After some calculations we find
2 2K d2k! 1 1
(@ _1(d k22 d k12 d k22(277)3 — =g i=—da (2.24)
at ), PJ (2m)° (2m)° (2m) TR

where the longitudinal pad,, ;. is the spin current in the
X 82(ky+kp—kj—ks) oI o ORATHENS" Patle i B O S |
spin direction o, (parallel toe,) flowing in the spatial
X o(ek1t e ek~ €kar) directionj, while the transverse padt, ; is the spin current

1 ’ , in the spin directiorsa,, (parallel toC, ;&,—iCy ;€,) flow-
X5 Vrealki—kil e /e )] ing in the spatial directiof. The relaxation rate associated
with the longitudinal spin diffusion is given by

>< T ’~ ! 1~ o G
(TN Mo N7, Niea } 1 1 4B MG, +m*G_

= T[Nk N2 {Niea 2N}, (2.21) 7 2m*m* n,G +n G,

whereﬁkzl_—gk. We put the distribution functiom,(r,t) d%k; d?%k, dzki dzké .
=ng(r,t)+ én(r,t) into Eq. (2.2) and evaluate it to the Xf 2m)?2 (2m)?2 (2n)? (277)2(277)
lowest order of the variatiodn,. Vrpa is @ dynamically
screened Coulomb interaction given in RPA. X 82(ky+ko—ki—kp) d(ef+ef—ep —ei)

Here we encounter the problem of the Kadanoff-Baym S
Ansatz specific to the spin-polarized system. We use the av g\ |2
Kadanoff-Baym AnsatzG==in,A, to obtain the quantum x (ky—k!)?2|V Ik, —k!| Sﬁ_ _ki)
transport equatiofEq. (2.2)] for n, from the quantum- LR P ERPALTRL Rl g [

kinetic equation forG=. (Here A is a spectral functioi. ~0 ~0
Since bothn, and A are 2<2 matrices,in A(k, ) is gen- ><nk,+nk,,n‘k’l+n82_, (2.29

o = —K— 1 2
erally different fromiA(k,w)n,, and we do not have any
principle on which order to take. The drift term is not subjectwhere 3 is an inverse temperatur&T) ' and e’ =3 (&
to this problem since the quasiequilibrium functions that aretex-). This expression has the interpretion that the two
diagonal in spinor space is used in evaluations. However, ifncident electrons, one spin-up wiy and one spin-down
the collision term, the different order of matrix multiplication with k, scatter through the screened Coulomb potential into
leads to different results as shown explicitly below. Thethe final states, one spin-up wikj and one spin-down with
problem arises from the fact that the relation that is validk,. The relaxation rate associated with the transverse spin
only in equilibrium system without spin polarization is ap- diffusion, (r,) "%, is given in more lengthy form as
plied to the polarized system. )

The off-diagonal components of the collision term, which iz ﬁ_ i+ i @sinr(&>
are associated with the transverse spin diffusion, give differ- =, mim% m*) E 2
ent results when the matrix multiplication order is changed. 5 5 o) o
For example, we have terms like J’ dk; d%k, d%k; d%;

(2m)? (2m)* (2m)? (2m)*

27)3

(e~ T ex,-— i+~ ai-) | Vrea(lki—ki, 2 /%

X 82Ky +ko—ki—kp) (el +el—ep —en)
1 2 1 2

0 ~o0
_8k1+ /ﬁ)|zﬁ ;+nk;750'k1_n82_ (2.22
1 2 sﬁv SEY 2
_L\2 L1
5(sk1++sk2,—skiJr—ské,)|VRpA(|k1—ki|,sk1+/h X (ky1—k1)?| Vrpa| [ki—kKil, 5 h
-0 =~0 0 ~0 ~0 BAI2,.0 0 —BA2,0 0
—ey,+ 1) ”kﬁ”ké—&fkr”kf- (2.23 ><nki+nké_(e N, N, +€ N, + Myt )
We marked the differences with double underlines. The en- (2.26

ergy ¢ function in the collision integral ensures the energywhereA=u_,. —u_.
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E. Diffusion coefficients calculateG.., =, and 7|, , which is not calculated in HF
The Egs.(2.10, (2.19, and(2.24 comprise the equation Scheme we adopted in this stud¥he effective mass could
for the spin curreng,, ;(r 1), be given selfconsistently if the self-energies in the drift terms
’ were calculated in RPA or higher order approximations:
g i(r,t) . IM(r,t) 1.0Xm<m*<1.15<m in RPA%) We tentatively putm®
ot e ar, Alke= .10 =m in the present calculations. We should keep in mind that

the present results are subject to this uncertainty.

The spin polarization is restricted to a small region be-
cause we approximated,. by %’ in the transverse colli-
sion term due to the problem of Kadanoff-Baym Ansatz in
_ EJ ._ iJ ' (2.27 the spin-polarized system. The self-energies in the HFA also

I TR ' limit the range of spin polarizations: Since the HFA does not

include the correlation terms, the selfenergy for spin-up elec-

This equation has the similar form to the one developed iq : o .
Fermi liquid theorv by Legaetexcent that the coefficient in oS does not contain the contribution from the spin-down
q y by -€9g b electrons. This leads to a quite unrealistic situation when the

r(ekd“fi tt(;rgsdi?fsesrgﬁ[[a;r%dmvmg (t:r(])zﬁlcic::?gr']tgalnal ;:c:;‘ng:_nentspm polari_zation_ is_ high, i.e., provided we prgpared 2_DES

sociFa%céd,with the transverse component Therttéa,dy-state szth al SpIns pplntlng downward, and pu.t a ;lngle Spin-up

lution of this equation is readily found to‘ be Sectron into thl's'ZDES, then in HFA th|s single e'Iectron

would move as if it were a free particle without knowing the

M . D, g0 e presence of spin-down electrons. This problem can be re-

———— | M—+ yMZ%g,X—|, moved when the electron self-energies are evaluated includ-
1+y'M o aj ing higher order terms, which is deferred to our future pub-

(2.28  Jications.

whereD = A7 is the longitudinal spin diffusion coefficient,

expressing the diffusion of spin component parallel to the

local spin polarization: the magnitude of polarization B. Spin diffusion coefficients and spin-rotation parameters

changes but the direction remains unaffected. Generally dif- e will show the results of numerical calculations in this

fusion coefficients are expressed dmean velocity subsection. The coefficient of the spin-rotation tegrgg, in
X (scattering '[_lm% and in the present cagehas the dlmen-_ Eq. (2.20 can be directly computed assuming the 0 form
sion of (velocity)*. D, =B, is called the transverse spin of the distribution functions. Since we consider the degener-
diffusion coefflczlenzt, which expresses, along with the de-a1e system, the finite temperature correction is confirmed to
nominator, X y“M*, the diffusion of spin component per- pe |ess than 1%. The eightfold integral in, , Egs.(2.25

pendicular to the local polarization and the spin precessiognd(z_ze,), can be reduced using the method given in Refs.41
about the effective field.y=—uggr, is called a spin- gnd 42. We find

rotation parameter, whose magnitude determines the trans-
verse spin diffusion and the spin wave propagati@es be-

Je,
+M(F,I)WB(kF: D)+ usgM X,
I

Ja-,j: - DH a—”e(,

|0W). * ~ *

. . . . + _
When the spin current is given as E®.27), it can be i: E fﬂ* mf* m_E 4775
shown that the system supports damped spin w&v@se 7 2mimi n,G_+n_G, (27)

longitudinal component shows simple damping without os-

av av 2
cillation; the damping rate is given b§)||k2, wherek is a 2ken® | d? €k, B Ekyta
wave number of spatial modulations of the spin polarization. X 1My, +079 Vrea| O h h
The transverse component exhibits the damped traveling
wave with its angular frequency and the damping rate given quﬁ(k)l+q’+n3(8kl+q'+—8k1+)
by
& €
D, k*yM q D, k? 29 X 1m P(q,i— kl+q'+), (3.1
1+ M2 A 12me (229 f h

respectively.
whereq=k,—k; andng(a)=1/(e#®—1). P.(q,w) has the
IIl. RESULTS AND DISCUSSION same functional form as the RPA polarization function, ex-
cept that the electron mass is replaced with the quasiparticle

effective mass. And for, , we find
We first summarize the conditions and the limitations of

the present calculations. We consider the two-dimensional
electrons with sheet densitp=n,+n_=2x10" cm? 1 w21  1\2wh . I-(BA> 1 1
=—|—=+—=|—=-sinh—|| =+
mi, m*] E 2 )\ma TP

A. Calculation conditions

(corresponding Fermi temperature; 83, Kvith the spin po- Z_ m

larizationsP=(n, —n_)/(n.+n_) less than 0.1. We cal-
culate in the degenerate region only; the temperatures are
less than 20 K. The quasiparticle effective mass is nec-
essary to where

(3.2
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FIG. 1. The temperature dependence of the longitudinal spin  FiG. 2. The transverse spin diffusion coefficients v&21/The
diffusion coefficients witiP=0.01, 0.05 and 0.1 and at the electron spin polarizations and the density are the same as Fig. 1

sheet density 2010 cm™ 2 (Fermi temperature 83 K

1 4 BA
o +5% | 421k A0 42
78 (277)56 2fdk1nkl_dq
av av 2
€k, Eky+q
XVRPA(‘J:T_T) qzﬁ81+q,+
i+ Eky+a+
XnB(8k1+q,+_8kl+)|m P q-T_ A

(3.3

1 4r AA[ o o
?E_(ZT)SG ZJd klnk1+d q

a a 2
Sk\ll sk\1/+q 70
X |Vrpa Q7= 7 ]| 9 Nky+a-
€k +  Cky—q—
an(8k1+q,—_8kl—)|m P, QaT_ 7

(3.9

expect thalDHoc(E,:/kBT)zlln(E,:/kB'I'), andD will diverge
asT—0. (The coefficientA shows only a small temperature
dependencg.The small deviation oD from T2 depen-
dence in Fig. 1 corresponds to the logarithmic correction
characteristic of 2D system.

The increase oD with the spin polarization can also be
understood in terms of the phase space available to the scat-
tering. When the angle between two incident electrons with
k, andk, is changed from O tar, the scattering angled,
betweenk; and k; can also vary from O tor when P
=0 (kpy=kg_). However, with increasing?, 6 is re-
stricted to angles smaller than This causes a reduction of
phase space in the scattering, leading to a smaller scattering
rate (or larger spin diffusiop The calculation for the helium
system in Ref. 17 shows the similar increaségfwith P in
small P region but it has a peak at some valuePodind then
drops at largeP region.

Figure 2 shows the transverse spin diffusion coefficients
D, plotted againsT 2. It shows saturation a§—0. This
trend, which is not expected for the ordinary transport coef-
ficients in the degenerate Fermions, was pointed out by
Meyerrovictf® and discussed in detail by Jeon and

These expressions are valid at finite temperatures. We obtaMullin.**?° The saturation has its origin in the form of the

7. by numerically integrating Eqg3.1)—(3.4).

transverse collision term. Careful examination of E2}26)

Figure 1 shows the plots of longitudinal spin diffusion shows that the electrons between the two Fermi surfaces of
coefficientsD vs T~2 at three spin polarizations, 0.01, 0.05, SPin-up and spin-down electrons can participate in the scat-
and 0.1Dy is nearly proportional td ~2 but it shows a slight ~ tering. (When P>0, electrons withkg, >k>kg_.) Thus,
deviation (bulging downwardl from T~2? dependence. The €ven whenl— 0, the finite number of electrons are involved

structure ofry in Eq. (2.25 shows that the electrons close to in the scattering, and the increaselbf saturates. The larger

the Fermi surface within the widtkT only are allowed to

the spin polarization, the more electronskip, >k>kg_,

participate in the scatterings due to the kinematics and thand the smaller the saturat&d . The number of electrons
Pauli exclusion. This structure of the collision integral gen-between the two Fermi surfaces is proportionalzk? .
erally appears in the scattering rates of degenerate Fermionk2_), thusD, «(k2, —kZ_)"2x(n,—n_)"2=P~2.(The
system, leading td? dependence in 3D. However in a 2D same relation is expected in 3DThis anomalous tempera-
system, it has been shown that the same structure of there dependence is also observed experimentally in the He
collision integral leads to the logarithmic correction factor of systent:*3! At higher temperatures at whickT is larger

the scattering rate as (kg T/Eg)? In(ksT/Ef).*3** Thus, we

than the Fermi energy differend®, increases in proportion
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100 decreased. The magnitude of this parameter is crucial to the
n=n,+n=20x 10" em? observation of spin waves in 2DES. To detect the spin waves
the damping time must be much longer than the oscillation
D, I(1+°M*) vs T period. As shown in Eq2.29, yM corresponds to the ratio,
(damping time/(period. The present calculation shows it is
- P=0.1 much larger than unity at low temperatures. This implies the

—&— P=0.05 possibility of the experimental detection of spin waves in
— P =0.01 2DES.

o]
(=)
T

[
(=)

C. Experimental prospects of spin-polarized 2DES

N
o

We would like to discuss whether and how the spin-
polarized 2DES could be realized to observe the physical
quantities calculated in the preceding sections. We have cal-
culated spin transport coefficients of 2DES using the physi-
cal parameters of GaAs heterostructures or QW's. In these
structures, owing to the development of crystal growth tech-
, | nigues, high-quality samples are available with very low

0 5 10 15 20 scattering rates other than electron-electron scattering. In
Temperature (K) -V (or in lI-VI) semiconductors, due to the symmetry of
electronic states in the conduction and valence bands, the

FIG. 3. The temperature dependence of the effective tranSVEI’S@rcmaﬂy polarized photons can generate spin-polarized
spin diffusion coefficients. The spin polarizations and the densitye|ectrons and holes. Especia”y in undoped QW,S, the Spin
are the same as Fig. 1. polarization of electrons reaches almost unity just after pho-
togeneration since the degeneracy in valence bands is lifted.
o X . In the modulation doped QW's the partially spin polarized
tion is not evident in the temperature rgmgze we calculated. system composed of the unpolarized carriers due to the dop-

Figure 3 shows the plots d, /(1+y"M*?) vs tempera- i 4 ang the polarized photocarriers can be prepared. In this

tures. As shown in .E.c(2.2'8) it is interpreted as an effective way we can set up a spin-polarized electrons without apply-
spin diffusion coefficient in the transverse mode. The Maging'the external field.

nitudes of this value is crucial to the experimental detection.
The temperature dependence is determined bin the de-
nominator asy=—uggr, and in the numerator a®,

D, /(1+y"M?) (em® s™)

20

to T~2 as in the longitudinal cas€The logarithmic correc-

The experimental observation depends on how long the
electron spin polarization can be kept. The following three
mechanisms are responsible for the spin relaxations in 111-V

=B, . compound semiconductofsElliott-Yafet mechanism; the

We show the temperature dependence of the spin-rotatioflectronic states in the conduction bands depart from the spin
parametersyy multiplied by M in Fig. 4. The same parameter gjgenstates since the spin-orbit coupling mixes the conduc-

is calculated in Ref. 20 foPHe-*He mixtures. Comparing tion bands with valence bands. This mechanism is consid-

their values with ours scaled by the normalized temperaturgreq to be less effective in GaAs due to its large band gap,

samples. Dyakonov-PeréDP) mechanism; due to the lack

100 : .
of inversion symmetry of the crystal, the degeneracy of the
Spin-rotation parameter y x M spin-up and -down states is lifted in the conduction bands,
leading to the energy splitting in the two spin states. This is
80~ n=n+n=20x 10" em2 e_quival_ent to thg presence c_)f an gffective internal magnetic
field with magnitude and orientation dependent lanThe
electron spins precess around this field and lose spin polar-
60 - P=0.1 ization. Bir-Aronov-Pikus(BAP) mechanism; the valence
= —A— P=0.05 bands are not spin eigenstatexcept at the zone cenjatue
= —*- P=001 to the strong mixing. Thus, the hole spins relax in very short

periods comparable to momentum relaxation times. The
electrons lose their spin polarization in the exchange scatter-
ing with holes with random spin orientations.

Experimentally observed spin relaxation times scatter
widely between a few picoseconds to hundr&dBifferent
experimental conditions and sample preparations make the
systematic interpretation of results difficult. But there are
qualitative features in relaxation mechanisms. The spin re-
laxation by BAP becomes slower at low temperatures since
the phase space availablegdole scattering decreases with

FIG. 4. The temperature dependence of the spin-rotation parantemperature. Furthermore, the spin relaxation times can be
eters multiplied by the spin densitiegM. The spin polarizations extended by spatially separating electrons from holes in the
and the density are the same as Fig. 1. coupled double QW structures with an electric field perpen-

0 5 10 15 20
Temperature (K)
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dicular to 2D plane, or type-ll QW’s. The separation also 1.16X10 4
contributes to the extended radiative life times of photoge- m—>< B,
nerated carriers. Maialle and Deg¥hhave recently pre- eff

dicted a very long 100 ns) electron spin relaxation times

in double QW’s if only BAP were considered. The spin re-yherem,,, is an electron effective mass measured in the free
Iaxatjgn rate of DP mechanism can also be reduced. LOMM&lieciron masss is a magnetic field in Tesla. This yields 1.7
etal”" predicted that the spin splitting of conduction bandsy,e\/ ot the field strength 1 T. This estimation ensures the

at tFermll ]gulrga(_:e ?:Ab/e g'm'nitedhbi/ a dtenst'ty'dep_?_ﬂde%lidity of our present formulation and calculations when the
external neid in S/AGa_xAS heterostructires. € external field is smaller than 1 T.

magnitude of field is approximately 0.2 T when the electron
sheet density is 10" cm™2. In the real system, the struc-
tural asymmetryRashba termshould also be included, and
the confirmation of this cancellation mechanism awaits fur- IV. CONCLUSIONS

ther experimental investigations. Recently extremely long e have derived a guantum transport equation for the
spin life times (~10 ns or longerhave been experimentally - gpin-polarized two-dimensional electron system from the mi-
observed both in QW of ZnSe/Z@d,_,Se and in bulk  croscopic Hamiltonian. The transport equation reduces to a
GaAs when the n-type dopant density is carefully seletted. gimilar form as the one based on the Fermi liquid theory,
Though it is not certain whether the similar long spin life containing the spin-rotation term from which spin-collective
time can be achieved in the experimental configurations W@henomena originates. We then numerically calculated lon-
consider here, they are quite encouraging results. gitudinal and transverse spin diffusion coefficients and spin-
With the progress in the crystal growth technique, high-rotation parameters pertaining to GaAs QW’s and hetero-
quality quantum well structures of Ill-V and II-VI semicon- giryctures. The longitudinal coefficients diverge as the
ductors with diluteo! magn_etic impurities are bein_g aVa”ab|e-temperature approaches zero, while the transverse coeffi-
In these systems, in addition to the molecular field of conjents remain finite at all temperatures, as was predicted and
duction electrons that we considered here, the exchange cogpserved in liquid He. The temperature and the spin-
pling between conduction electrons and localized spins playgoarization dependence of the transport coefficients can be
an important role. In the presence of exchange coupling, thgyterpreted in terms of the structures of collision integrals.
spin polarization of conduction electrosdoes not precess Though there are some ambiguities in the magnitudes of cal-
about the external fieldH but about the effective fieldH culated values due to the approximations we used, we expect
+aMy, whereMy is a spin polarization of localized spins that the diffusion coefficients and spin-rotation parameters
and a is some coefficient. Langreth and Wilkiishave  are within the reach of experimental observations if the elec-
given a detailed anaIySiS on this case in the KadanOfftron Spin p0|arization is kept |ong enough_ The Spin relax-
Baym’s scheme similar to our method in a 3D metallic sys-ation times reported for simple GaAs QW’s is no more than
tem. They have shown that the spin dynamics is strongly| ns so far, which is too short for observations. But it should
modified due to the exchange coupling of electrons with loe noticed that the structures used in those experiments are
calized spins. not optimized for long spin life times. There is still a pros-
We finally consider the magnitude of the external mag-pect of fabricating semiconductor nanostructures with elon-
netic field which can be applied to the system. We deriVe‘gated spin life times. Further theoretical and experimental
the equations without the external magnetic field and, agyestigations are required to determine whether or not the

mentioned before, the effect of weak field can be included byyresent results can be actually observed in semiconductor
using rotating frame. However, with increasing magneticsamples.

field, the electron orbital motion is quantized in Landau lev-
els, and the system turns into a different state representing a
quantum Hall effect, to which our present theory does not
apply. The typical energy scale of the electron motion is
considered to be the kinetic energy at the Fermi surface, We acknowledge Koji Muraki for useful comments and
which is 7.1 meV at the density>210'* cm 2. While the  Peter Hirschfeld for the critical reading of this manusucript.
effect of the external field to the orbital motion can be esti-This work was partly supported by the Asahi Glass Founda-
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