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Spin diffusion in a two-dimensional electron gas
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Spin transport properties of spin-polarized two-dimensional electron systems are studied, with application to
quantum wells or heterostructures of III-V semiconductors. We present numerical solutions of a quantum
transport equation, which is a 232 matrix in spinor space. It is shown that the ‘‘spin-rotation term,’’ which
leads to anomalous spin diffusion and spin waves in three-dimensional rarefied spin polarized3He and Hy-
drogen, is also present in two-dimensional degenerate electron systems at low temperatures. Calculated longi-
tudinal and transverse spin diffusion coefficients show different temperature dependence due to the fact that the
phase space available in electron-electron scatterings associated with each diffusion process is different. We
also discuss the possible experimental setups to achieve spin-polarized electrons in semiconductor quantum
wells. @S0163-1829~99!02031-7#
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I. INTRODUCTION

There has been growing interest in the spin degree
freedom of carrier electrons in semiconductor quantum w
~QW’s! and heterostructures. Many intensive studies are
progress motivated by the prospect of developing electro1

and optical devices based on the carrier spins in semicon
tors. Compound semiconductors are mainly investigated
cause the symmetry of the band structure enables on
generate highly spin-polarized carriers by circularly pol
ized optical excitations,2 and the recent technologica
progress enables the injection of spin-polarized carriers f
ferromagnetic metallic electrodes.3–6

Quantitative understanding of the carrier spin dynam
within the semiconductor nanostructure is essential for
development of device design. While spin relaxation mec
nisms are extensively studied both in theoretically and
perimentally, to the best of our knowledge, there have b
few reports on electron spin transport properties in semic
ductor nanostructures. In this paper, we present a theory
numerical calculations of spin diffusion coefficients in tw
dimensional electron system~2DES!.

It has been known that the spin diffusion7 behavior of
strongly interacting Fermi system in the degenerate regi
or highly polarized Fermi/ Bose system in Boltzmann
gime, is quite different from that of free particles. As f
highly degenerate Fermi liquid, Leggett and Rice8–10pointed
out that the effective transverse spin diffusion coefficie
measured by spin echo experiments should depend on
spin-tipping angle by the initial r.f. pulse~Leggett-Rice ef-
fect!. This effect is caused by an additional term in the eq
tion of motion for spin currents, representing the precess
of the spin current about the molecular field made by ot
spins. Their results also imply the existence of spin wa
first predicted by Silin11 and Platzman and Wolff.12
PRB 600163-1829/99/60~7!/4856~10!/$15.00
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Bashkin13 and Lhuillier and Laloe´14 independently pre-
dicted a similar effect in dilute Fermi and Bose gases in
Boltzmann regime, provided that the spin polarization is ve
high. In Lhuillier and Laloe¨’s microscopic transport theory
the exchange effect in interparticle collisions, which is a
rect consequence of particle indistinguishability, plays
important role at low temperatures where de Broglie wa
length is comparable to the interaction range. When the
rection of spin polarizations varies spatially, this exchan
effect rotates spin directions during scattering, leading t
similar spin precession effect as in the Fermi liquid mod
which they called the ‘‘identical spin-rotation effect.’’

Later, the connection between the Fermi liquid model
degenerate system and the microscopic collision theory
Boltzmann gas were investigated and unified in the quan
kinetic theory using Green’s-function technique.15–20 We
should also point out the Meyerovich’s work,21 which
showed that the transverse spin diffusion coefficientD'

would be different from the longitudinal oneD i in highly
degenerate system.D i diverges at low temperatures asT22,
as expected in the transport of degenerate Fermi system
D' was predicted to show saturation at low temperatures
converge to a finite value asT˜0.

On the experimental side, there have been many inve
gations to observe the predicted phenomena. Spin wave
degenerate Fermi system were first observed in bulk met
Na and K.22 Spin waves in weakly polarized, degenera
Fermi system were also found in normal liquid3He ~Ref. 23!
and 3He-4He mixture.24 Direct evidence of Leggett-Rice ef
fects were observed in bulk liquid3He and3He-4He mixture
at very low temperatures.25 Spin-rotation effects in highly
polarized gases in the Boltzmann regime were observe
spin-polarized atomic Hydrogen,26 in optically polarized3He
gas,27 and in dilute liquid3He-4He mixture in high-magnetic
fields.28 Crossover between the two regimes have been in
4856 ©1999 The American Physical Society
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sively investigated in liquid helium.29–31

The foregoing experiments are done for bulk system
helium and hydrogen in gaseous or liquid phase, and e
trons in metal. We are interested in the possibility of obse
ing the same effects in 2DES in semiconductors. Recen
high-quality samples are available with very low rate
impurity-related scatterings so that electrons confined in
erostructures can be treated as nearly ideal 2DES. Exp
mentally, there are two advantages in 2DES in semicond
tors over the previously investigated systems:~1! electron
spin polarization can be controlled from weak to full by a
plying linearly or circularly polarized optical excitation
without any magnetic fields.~2! sheet densities of electron
can be easily varied ranging from very dilute to high dens
such that degeneracy temperature can be varied easily u
electrons in metals. One drawback of optically excited 2D
in semiconductors is that spin relaxation times are short c
pared to other experimentally studied systems.

The purpose of this report is to calculate the longitudi
and transverse spin diffusion coefficients in 2DES pertain
to GaAs QW’s and examine whether or not ‘‘identical sp
rotation effects’’ cause important effects in realistic expe
mental conditions. To evaluate the size of the effect, a rig
ous quantum transport equation must be solved, since
experimental values of phenomenological parameters
available.

This paper is organized as follows: In Sec. II, the quant
transport equation for spin-polarized electrons is briefly
scribed, followed by our approximate approach to obtain
solutions for 2DES. In Sec. III, the results of numerical c
culations for spin diffusion coefficients and spin-rotation p
rameters are shown with detailed discussions. We also
cuss the plausible experimental setups to realize s
polarized electrons in semiconductors. Conclusions are g
in Sec. IV.

II. THEORY

We consider two-dimensional electrons interacti
through Coulomb interactions. Other interactions such
electron-phonon, electron-ionized impurity or the exchan
interaction of electrons and magnetic impurities are not
cluded in the present study. The Hamiltonian of the system

H5E d2rc i
†~r ,t !S 2

\2¹2

2m Dc i~r ,t !

1
1

2E d2r 1E d2r 2c i
†~r1 ,t1!c j

†~r2 ,t2!V~ ur12r2u!

3c j~r2 ,t2!c i~r1 ,t1!1E d2rc i
†~r ,t !Ui j c j~r ,t !,

~2.1!

where c i(r ,t) is an electron field operator with spi
z-componenti, m is the band effective mass(0.067m0 in
GaAs!, the Coulomb interactionV(ur12r2u)5e2/(«0ur1
2r2u) ~dielectric constant«0512.91 in GaAs!, and the re-
peated indices (i , j ) are assumed to be summed over. T
external fieldUi j is 2 1

2 gmBB(r ,t)•ti j , whereB(r ,t) is a
magnetic field andti j is a Pauli spin matrix. In the following
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we will drop the term of the external magnetic field assu
ing that the spins are aligned by optical excitations. Even
the field is present, provided that the field strength is su
ciently low so that the orbital motion is not affected~we
discuss this point at the end of Sec. III!, its effect can trivi-
ally be included in the following derivations by using a r
tating frame.

We consider 2DES long after optical excitations, lo
enough so that the electrons are close to the local, quasi
mal equilibrium in momentum space, but not too long to lo
spin polarizations. The distribution function is given by th
local equilibrium function plus a small correction term
nk6(R,T)5nk6

0 (R,T)1dnk6(R,T) (6 for the spin-up and
-down components!. The total density of spin-up and spin
down electrons,n(R,T)5n1(R,T)1n2(R,T), is assumed
to be spatially and temporally constant. Their difference, i
the spin density M (R,T)5n1(R,T)2n2(R,T), varies
slowly on a hydrodynamic scale.32 The spin polarization is
given byP5(n12n2 )/(n11n2 ). In the present study, we
can calculate the spin transport coefficients only when
spin polarizations is small due to the approximations used
the derivations.

In transport problems in semiconductors, thesemiclassi-
cal Boltzmann transport model is widely used, in which t
quantum mechanics appears only in the calculation of s
tering rates and Pauli blocking in collision terms. In order
solve transport problems associated with spin degrees
freedom, which are quantum mechanical in origin, we ha
to treat the problem quantum mechanically from the outs
Here we use quantum kinetic equation derived from
equation of motion for the nonequilibrium real-time Green
functions.33–37For the spin-polarized Fermi liquid (3He-4He
mixture in 3D!, the derivation of spin-transport coefficien
from the quantum kinetic equation is described in great de
in Refs.18 and 20. We apply their formulation to 2DES. T
present calculations differ from these previous studies in
points; electrons are confined in two dimensions instead
three, and they are interacting via a Coulomb force. W
adopt the Green’s-function method to calculate many-bo
effects of electrons such as self-energies in the drift te
and the screening of the Coulomb interactions in the co
sion terms.

A. Drift terms

We start from the quantum kinetic equation for noneq
librium Green’s functionsG,. After using the gradient ex-
pansion and applying the Kadanoff-Baym Ansatz,33 we ar-
rive at the quantum transport equation for the elect
distribution functionsnp ,

]n p~r ,t !

]t
1

1

2 H ]« p~r ,t !

]p
,
]n p~r ,t !

]r J
2

1

2 H ]« p~r ,t !

]r
,
]n p~r ,t !

]p J 1
i

\
@« p~r ,t !,n p~r ,t !#

5S ]n p~r ,t !

]t D
col.

, ~2.2!

where underlining indicates a 232 matrix in spinor space
The distribution function is decomposed into the spin sca
f p and vectorsp parts,
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n p~r ,t !5 1
2 @ f p~r ,t !I 1sp~r ,t !•t#.

The quasiparticle energy,« p(r ,t), which will be given in the
Hartree-Fock approximation~HFA!, is also decomposed int
spin-scalar and spin-vector parts:

« p~r ,t !5«p~r ,t !I 1hp~r ,t !•t.

The first three terms of Eq.~2.2! correspond to the drift term
in the classical Boltzmann equations. The last term on
left-hand side represents the effect of the molecular fie
which is called the ‘‘spin-rotation term’’ and is essential
the present analysis.

Now, we apply the Chapman-Enskog expansion;38 the
true solution is divided into a local equilibrium distributio
and a correction term,n p

0 1dn p . The drift term is evaluated
to the lowest order with the local equilibrium distributio
function n p

0 while the spin-rotation and collision terms a
evaluated with the variational functionn p

0 1dn p . We set the

Cartesian coordinate (êx ,êy ,êz) where z axis is along the
growth axis of the quantum well andx-y in the 2D plane.
The 2D transport equation is expressed in thex-y coordi-
nates. We assume that the local equilibrium spin-polariza
direction is close to the directionêz , so that all physical
quantities in 232 spinor space can be written in diagon
form when the quantization axis is taken alongêz , neglect-
ing small off-diagonal components. Then

n p
0 ~r ,t !5 1

2 @ f p
0~r ,t !I 1sp

0~r ,t !•t#

5 1
2 @ f p

0~r ,t !I 1sp
0~r ,t !ês~r ,t !•t#

>S np1
0 ~r ,t ! 0

0 np2
0 ~r ,t !

D , ~2.3!

where ês is a directional vector of the spin polarizatio
which is close toêz , f p

0(r ,t)5np1
0 (r ,t)1np2

0 (r ,t) is a spin-
scalar part, andsp

0(r ,t)5np1
0 (r ,t)2np2

0 (r ,t) is a spin-
vector part of the distribution function. The local equilibriu
distribution functions for spin-up and -down electrons a
given by the Fermi distribution function,

np6
0 ~r ,t !5$exp@b~«p6

0 ~r ,t !2m6~r ,t !!#11%21,

wherem6 is a chemical potential, and«p6
0 is a diagonal part

of quasiparticle energy@see Eq.~2.4!#. The local spin density
vector is defined as

M ~r ,t !5M ~r ,t !ês~r ,t !5@n1~r ,t !2n2~r ,t !#ês~r ,t !.

The quasiparticle energy is also written in spin-diago
form:

« p
0 ~r ,t !5«p

0~r ,t !I 1hp
0~r ,t !ês•t

>S p2

2m
1\SHF1~p;r ,t ! 0

0
p2

2m
1\SHF2~p;r ,t !

D
~2.4!

where\SHF6 is a self-energy in HFA. Here, we define
e
,

n

l

l

\S HFS
HFD

~p;r ,t !5\SHF1~p;r ,t !6\SHF2~p;r ,t !.

Putting these expressions into Eq.~2.2! and we arrive at
the drift terms of the transport equations for the distributi
functions f p

0 andsp
0 :

] f p
0

]t
2

]M

]r i
S vp1,i

2G1

]np1
0

]«Kin
2

vp2,i

2G2

]np2
0

]«Kin
D

2vp1,i

]\SHF1

]r i

]np1
0

]«Kin
2vp2,i

]\SHF2

]r i

]np2
0

]«Kin
, ~2.5!

]sp
0

]t
2êsF]M

]r i
S vp1,i

2G1

]np1
0

]«Kin
1

vp2,i

2G2

]np2
0

]«Kin
D

1vp1,i

]\SHF1

]r i

]np1
0

]«Kin
2vp2,i

]\SHF2

]r i

]np2
0

]«Kin
G

1
]ês

]r i
Fvp,i

av ~np1
0 2np2

0 !2
1

2
\SHFDS vp1,i

]np1
0

]«Kin

1vp2,i

]np2
0

]«Kin
D G , ~2.6!

where i denotes spatial directionx or y, «Kin5p2/2m, the
quasiparticle velocity is defined asvp6,i5](«Kin

1\SHF1)/]pi , the mean velocityvp,i
av 5(vp1,i1vp2,i)/2,

andG6 is given by

G652E d2p

h2

]np6
0

]«Kin
. ~2.7!

We should notice that the present forms of transport eq
tions in Eqs.~2.5! and ~2.6! are valid only when the loca
equilibrium spin-polarization direction is parallel to th
growth axis~the normal of 2D plane!, which is also a spin-
quantization axis. When the polarization direction is tipp
away from the growth axis by a finite angle, the finite o
diagonal elements appear in 232 spinor matrices such as i
n p

0 (r ,t) and« p
0 (r ,t), resulting in the extra terms in the tran

port equations. This is a distinctive feature of 2D system.
3D case, due to the isotropy of all directions, it is alwa
possible to set the direction of local equilibrium spin pola
ization asz axis at each point of space and write the transp
equation in this coordinate system. Since we are intereste
the case when the spin polarization is parallel to growth a
assuming the optical spin orientation in semiconductor Q
structures, we will calculate transport coefficients for th
case below.

The particle current in the spatial directioni is given by10

Ji~r ,t !5E d2p

h2 S ]«p~r ,t !

]pi
f p~r ,t !1

]hp~r ,t !

]pi
•sp~r ,t ! D

5E d2p

h2 vp,i
0 f p~r ,t !, ~2.8!

wherevp,i
0 5pi /m5]«Kin /]pi is a velocity of the noninter-

acting particle. The spin current of the spin componeni
flowing in the spatial directionj is given by
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Js i , j~r ,t !5E d2p

h2 S ]«p~r ,t !

]pj
sp,i~r ,t !1

]hp,i~r ,t !

]pj
f p~r ,t ! D

5E d2p

h2 vp, j
0 sp,i~r ,t !. ~2.9!

The goal of the derivation is to obtain the equation for t
spin currentJs, j (r ,t). We multiply Eq. ~2.6! by vp, j

0 and
integrate overp. Then, we find

]Js,i~r ,t !

]t
1ês

]M ~r ,t !

]r i
A~kF6 ,r ,t !

1M ~r ,t !
]ês

]r i
B~kF6 ,r ,t !, ~2.10!

where

A~kF6 ,r ,t !5
1

m S n1~r ,t !

2Ḡ1

1
n2~r ,t !

2Ḡ2
D , ~2.11!

B~kF6 ,r ,t !5
pJ

h2M ~r ,t !

1
1

2mM~r ,t !
@n1~r ,t !\SHFD~kF1 ,r ,t !

1n2~r ,t !\SHFD~kF2 ,r ,t !#, ~2.12!

whereḠ6
215G6

212a6 with a652e2/(«0Apn6), andJ is
defined as

J5E
0

`

dp pvp
0vp

av~np1
0 2np2

0 !.

In further evaluating the quantities in Eqs.~2.11! and
~2.12!, we run into a difficulty due to the inadequacy of usin
the HFA: The derivative]SHF(k)/]k diverges at the Ferm
surface~in 2D as well as in 3D!, andG6 , J and\SHFD /M
are not defined atk5kF6 . This also leads to the
vanishing quasiparticle effective mass,m* 5\2kF /
@]«(k)/]k#uk5kF

.34,39 This is an artifact due to the infinite
range of the bare Coulomb interaction used in HFA, and
finite effective mass is recovered when the higher or
terms are included.@The effective mass calculated in rando
phase approximation~RPA! ~Ref. 40! is 1.0–1.153m, de-
pending on the density.# To circumvent this problem, al
though the selfconsistency of the theory is lost, we will a
sume through the following derivations that the ener
dispersion of quasiparticles near the Fermi surface is gi
by the quadratic form as

«k65
\2k2

2m6*
1E06 , ~2.13!

using a finite effective massm* . We can then calculate as
e
r

-
y
n

G65
m6*

2p\2 , J5
2p2\4nM

m

m1* 1m2*

m1* m2*
,

\SHFD~kF6
!

M
52

4pe2

«0~kF1
1kF2

!
, ~2.14!

where we used the fact that the electron distribution is
generate and the spin polarization is small,kF1

'kF2
. We

keep the limitation of the present scheme in mind when
apply it.

B. Variational functions

The variational functions are carefully chosen in the sim
lar form to the drift terms. From Eq.~2.5!, the spin-scalar
part of the variational functions is

d f p52Ci
]M

]r i
S vp1,i

2Ḡ1

]np1
0

]«Kin
2

vp2,i

2Ḡ2

]np2
0

]«Kin
D , ~2.15!

whereCi is a variational constant. This form guarantees
vanishing particle current in Eq.~2.8!. The spin-vector varia-
tional function consists of a longitudinal~parallel to the local
spin polarization! and a transverse part,

dsp5dspi1dsp' ,

where the longitudinal part is given by

dspi52êsCi
]M

]r i
S vp1,i

2Ḡ1

]np1
0

]«Kin
1

vp2,i

2Ḡ2

]np2
0

]«Kin
D ,

~2.16!

and the transverse part is

dsp'5
1

2
vp,i

av sp
0~Cx,i êx2 iCy,i êy!. ~2.17!

In the transverse part,Cx,i andCy,i are variational constant
and the directional vectors are defined as

]ês

]r i
5fx,i êx1fy,i êy , ês3

]ês

]r i
5fx,i êy2fy,i êx ,

~2.18!

wherefx,i andfy,i are constants. The mean field contrib
tions associated with\SHFD is small and will be neglected

C. Spin-rotation term

From the last term in l.h.s. of Eq.~2.2!, the spin-vector
part of the spin-rotation term is

2
2

\
@hp~r ,t !3sp~r ,t !#.

The spin-scalar part vanishes. This term is evaluated w
dsp' , multiplied by vk, j

0 , and integrated overk to find the
spin-rotation term for the transport equation for the spin c
rent Js, j (r ,t). It can easily be shown that this term is pr
portional toM3Js,i in spinor space. Then, we can write

mSRM3Js,i , ~2.19!
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where

mSR5
e2

2\«0nM2E d2k

~2p!2

d2k8

~2p!2uk2k8u~nk1
0 2nk2

0 !

3~nk81
0

2nk82
0

!. ~2.20!

The spin-rotation parameter is obtained by numerically in
grating this expression.

D. Collision terms

We find the collision term of the following form:

S ]nk

]t D
Coll.

5
1

\E d2k2

~2p!2

d2k18

~2p!2

d2k28

~2p!2 ~2p!3

3d2~k11k22k182k28!

3d~«k11«k22«k182«k28!

3
1

2
uVRPA~ uk12k18u,«k1 /\2«k18 /\!u2

3~Tr@nk28ñk2#$nk18 ,ñk1%

2Tr@ ñk28nk2#$ñk18 ,nk1%!, ~2.21!

where ñk5I 2nk . We put the distribution functionnk(r ,t)
5nk

0(r ,t)1dnk(r ,t) into Eq. ~2.21! and evaluate it to the
lowest order of the variationdnk . VRPA is a dynamically
screened Coulomb interaction given in RPA.

Here we encounter the problem of the Kadanoff-Ba
Ansatz specific to the spin-polarized system. We use
Kadanoff-Baym Ansatz,G,5 inkA, to obtain the quantum
transport equation@Eq. ~2.2!# for nk from the quantum-
kinetic equation forG,. ~Here A is a spectral function.!
Since bothnk and A are 232 matrices,i nkA(k,v) is gen-
erally different from i A(k,v)nk , and we do not have an
principle on which order to take. The drift term is not subje
to this problem since the quasiequilibrium functions that
diagonal in spinor space is used in evaluations. Howeve
the collision term, the different order of matrix multiplicatio
leads to different results as shown explicitly below. T
problem arises from the fact that the relation that is va
only in equilibrium system without spin polarization is a
plied to the polarized system.

The off-diagonal components of the collision term, whi
are associated with the transverse spin diffusion, give dif
ent results when the matrix multiplication order is chang
For example, we have terms like

d~«k121«k222«k
1812«k

282!uVRPA~ uk12k18u,«k12/\

2«k11 /\!u2ñk
181

0
ñk

282

0 dsk12nk22
0 ~2.22!

d~«k111«k222«k
1812«k

282!uVRPA~ uk12k18u,«k11/\

2«k11 /\!u2ñk
181

0
ñk

282

0 dsk12nk22
0 . ~2.23!

We marked the differences with double underlines. The
ergy d function in the collision integral ensures the ener
-

e

t
e
in

r-
.

-

conservation before and after the collision, and specifies
point in (k,v) space at which the interactionVRPA(k,v) is
sampled. When the spin-polarization is small, we can
proximate«k1'«k2 . If the interaction is a smooth function
of energy transfer, and which is true in the RPA-screen
Coulomb interaction except at the plasmon peak, the qu
particle energy«k6 can be replaced with their average«k

av

without introducing significant error. We adopt this approx
mation in calculating the collision terms below.

We next multiply (]nk /]t)Coll. with vk, j
0 and integrate

overk to find the collision term of the transport equation f
the spin currentJs, j (r ,t). After some calculations we find

2
1

t i
Jsi , j2

1

t'

Js' , j , ~2.24!

where the longitudinal partJsi , j is the spin current in the

spin directiondspi ~parallel to êz) flowing in the spatial
directionj, while the transverse partJs' , j is the spin current

in the spin directiondsp' ~parallel toCx, j êx2 iCy, j êy) flow-
ing in the spatial directionj. The relaxation rate associate
with the longitudinal spin diffusion is given by

1

t i
5

1

2

\b

m1* m2*

m1* Ḡ11m2* Ḡ2

n1Ḡ21n2Ḡ1

3E d2k1

~2p!2

d2k2

~2p!2

d2k18

~2p!2

d2k28

~2p!2~2p!3

3d2~k11k22k182k28!d~«k1

av1«k2

av2«k
18

av
2«k

28
av

!

3~k12k18!2UVRPAS uk12k18u,
«k1

av

\
2

«k
18

av

\
D U2

3ñk
181

0
ñk

282

0
nk11

0 nk22
0 , ~2.25!

whereb is an inverse temperature (kT)21 and«k
av5 1

2 («k1

1«k2). This expression has the interpretion that the t
incident electrons, one spin-up withk1 and one spin-down
with k2 scatter through the screened Coulomb potential i
the final states, one spin-up withk18 and one spin-down with
k28 . The relaxation rate associated with the transverse s
diffusion, (t')21, is given in more lengthy form as

1

t'

5
\2

m S 1

m1*
1

1

m2*
D 2p\

J
sinhS bD

2 D
3E d2k1

~2p!2

d2k2

~2p!2

d2k18

~2p!2

d2k28

~2p!2~2p!3

3d2~k11k22k182k28!d~«k1

av1«k2

av2«k
18

av
2«k

28
av

!

3~k12k18!2UVRPAS uk12k18u,
«k1

av

\
2

«k
18

av

\
D U2

3ñk
181

0
ñk

282

0
~ebD/2nk12

0 nk22
0 1e2bD/2nk11

0 nk21
0 !,

~2.26!

whereD5m12m2 .
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E. Diffusion coefficients

The Eqs.~2.10!, ~2.19!, and~2.24! comprise the equation
for the spin currentJs, j (r ,t),

]Js,i~r ,t !

]t
1ês

]M ~r ,t !

]r i
A~kF6 ,r ,t !

1M ~r ,t !
]ês

]r i
B~kF6 ,r ,t !1mSRM3Js,i

52
1

t i
Jsi , j2

1

t'

Js' , j . ~2.27!

This equation has the similar form to the one developed
Fermi liquid theory by Leggett9 except that the coefficient in
the drift terms associated with the longitudinal compon
A(kF6 ,r ,t) is different from the coefficientB(kF6 ,r ,t) as-
sociated with the transverse component. The steady-stat
lution of this equation is readily found to be

Js, j52D i
]M

]r j
ês2

D'

11g2M2 S M
]ês

]r j
1gM2ês3

]ês

]r j
D ,

~2.28!
whereD i5At i is the longitudinal spin diffusion coefficient
expressing the diffusion of spin component parallel to
local spin polarization: the magnitude of polarizatio
changes but the direction remains unaffected. Generally
fusion coefficients are expressed as~mean velocity! 2

3~scattering time!, and in the present caseA has the dimen-
sion of ~velocity! 2. D'5Bt' is called the transverse spi
diffusion coefficient, which expresses, along with the d
nominator, 11g2M2, the diffusion of spin component per
pendicular to the local polarization and the spin precess
about the effective field.g52mSRt' is called a spin-
rotation parameter, whose magnitude determines the tr
verse spin diffusion and the spin wave propagations~see be-
low!.

When the spin current is given as Eq.~2.27!, it can be
shown that the system supports damped spin waves.14 The
longitudinal component shows simple damping without
cillation; the damping rate is given byD ik

2, wherek is a
wave number of spatial modulations of the spin polarizati
The transverse component exhibits the damped trave
wave with its angular frequency and the damping rate gi
by

D'k2gM

11g2M2 and
D'k2

11g2M2 , ~2.29!

respectively.

III. RESULTS AND DISCUSSION

A. Calculation conditions

We first summarize the conditions and the limitations
the present calculations. We consider the two-dimensio
electrons with sheet densityn5n11n25231011 cm22

~corresponding Fermi temperature; 83 K!, with the spin po-
larizationsP5(n12n2 )/(n11n2) less than 0.1. We cal
culate in the degenerate region only; the temperatures
less than 20 K. The quasiparticle effective massm6* is nec-
essary to
n

t

so-

e

if-

-

n

s-

-

.
g
n

f
al

re

calculateG6 , J, and t i ,' , which is not calculated in HF
scheme we adopted in this study.~The effective mass could
be given selfconsistently if the self-energies in the drift ter
were calculated in RPA or higher order approximation
1.03m,m* ,1.153m in RPA.40! We tentatively putm6*
5m in the present calculations. We should keep in mind t
the present results are subject to this uncertainty.

The spin polarization is restricted to a small region b
cause we approximated«k6 by «k

av in the transverse colli-
sion term due to the problem of Kadanoff-Baym Ansatz
the spin-polarized system. The self-energies in the HFA a
limit the range of spin polarizations: Since the HFA does n
include the correlation terms, the selfenergy for spin-up el
trons does not contain the contribution from the spin-do
electrons. This leads to a quite unrealistic situation when
spin polarization is high, i.e., provided we prepared 2D
with all spins pointing downward, and put a single spin-
electron into this 2DES, then in HFA this single electro
would move as if it were a free particle without knowing th
presence of spin-down electrons. This problem can be
moved when the electron self-energies are evaluated inc
ing higher order terms, which is deferred to our future pu
lications.

B. Spin diffusion coefficients and spin-rotation parameters

We will show the results of numerical calculations in th
subsection. The coefficient of the spin-rotation term,mSR, in
Eq. ~2.20! can be directly computed assuming theT50 form
of the distribution functions. Since we consider the degen
ate system, the finite temperature correction is confirmed
be less than 1%. The eightfold integral int i ,' , Eqs.~2.25!
and~2.26!, can be reduced using the method given in Refs
and 42. We find

1

t i
5

1

2

\b

m1* m2*

m1* Ḡ11m2* Ḡ2

n1Ḡ21n2Ḡ1

4p

~2p!5

3E d2k1nk11
0 d2qUVRPAS q,

«k1

av

\
2

«k11q
av

\
DU2

3q2ñk11q,1
0 nB~«k11q,12«k11!

3Im P2S q,
«k11

\
2

«k11q,1

\
D , ~3.1!

whereq5k12k18 andnB(a)51/(eba21). P6(q,v) has the
same functional form as the RPA polarization function, e
cept that the electron mass is replaced with the quasipar
effective mass. And fort' , we find

1

t'

5
\2

m S 1

m1*
1

1

m2*
D 2p\

J
sinhS bD

2 D S 1

T'
a 1

1

T'
b D ,

~3.2!

where
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1

T'
a 5

4p

~2p!5 e1
bD
2 E d2k1nk12

0 d2q

3UVRPAS q,
«k1

av

\
2

«k11q
av

\
D U2

q2ñk11q,1
0

3nB~«k11q,12«k11!Im P2S q,
«k11

\
2

«k11q,1

\
D

~3.3!

1

T'
b 5

4p

~2p!5e2
bD
2 E d2k1nk11

0 d2q

3UVRPAS q,
«k1

av

\
2

«k11q
av

\
DU2

q2ñk11q,2
0

3nB~«k11q,22«k12!Im P1S q,
«k11

\
2

«k12q,2

\
D .

~3.4!

These expressions are valid at finite temperatures. We ob
t i ,' by numerically integrating Eqs.~3.1!–~3.4!.

Figure 1 shows the plots of longitudinal spin diffusio
coefficientsD i vs T22 at three spin polarizations, 0.01, 0.0
and 0.1.D i is nearly proportional toT22 but it shows a slight
deviation ~bulging downward! from T22 dependence. The
structure oft i in Eq. ~2.25! shows that the electrons close
the Fermi surface within the widthkT only are allowed to
participate in the scatterings due to the kinematics and
Pauli exclusion. This structure of the collision integral ge
erally appears in the scattering rates of degenerate Ferm
system, leading toT2 dependence in 3D. However in a 2
system, it has been shown that the same structure of
collision integral leads to the logarithmic correction factor
the scattering rate as2(kBT/EF)2 ln(kBT/EF).43,44 Thus, we

FIG. 1. The temperature dependence of the longitudinal s
diffusion coefficients withP50.01, 0.05 and 0.1 and at the electro
sheet density 2.031011 cm22 ~Fermi temperature 83 K!.
in

e
-
on

he
f

expect thatD i}(EF /kBT)2/ln(EF /kBT), andD i will diverge
asT˜0. ~The coefficientA shows only a small temperatur
dependence.! The small deviation ofD i from T22 depen-
dence in Fig. 1 corresponds to the logarithmic correct
characteristic of 2D system.

The increase ofD i with the spin polarization can also b
understood in terms of the phase space available to the
tering. When the angle between two incident electrons w
k1 and k2 is changed from 0 top, the scattering angle,u,
betweenk1 and k18 can also vary from 0 top when P
50 (kF15kF2). However, with increasingP, u is re-
stricted to angles smaller thanp. This causes a reduction o
phase space in the scattering, leading to a smaller scatte
rate~or larger spin diffusion!. The calculation for the helium
system in Ref. 17 shows the similar increase ofD i with P in
smallP region but it has a peak at some value ofP and then
drops at largeP region.

Figure 2 shows the transverse spin diffusion coefficie
D' plotted againstT22. It shows saturation asT˜0. This
trend, which is not expected for the ordinary transport co
ficients in the degenerate Fermions, was pointed out
Meyerrovich21 and discussed in detail by Jeon an
Mullin.18,20 The saturation has its origin in the form of th
transverse collision term. Careful examination of Eq.~2.26!
shows that the electrons between the two Fermi surface
spin-up and spin-down electrons can participate in the s
tering. ~When P.0, electrons withkF1.k.kF2.) Thus,
even whenT˜0, the finite number of electrons are involve
in the scattering, and the increase ofD' saturates. The large
the spin polarization, the more electrons inkF1.k.kF2 ,
and the smaller the saturatedD' . The number of electrons
between the two Fermi surfaces is proportional top(kF1

2

2kF2
2 ), thusD'}(kF1

2 2kF2
2 )22}(n12n2)225P22. ~The

same relation is expected in 3D.! This anomalous tempera
ture dependence is also observed experimentally in the
system.30,31 At higher temperatures at whichkT is larger
than the Fermi energy difference,D' increases in proportion

in FIG. 2. The transverse spin diffusion coefficients vs 1/T2. The
spin polarizations and the density are the same as Fig. 1
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to T22 as in the longitudinal case.~The logarithmic correc-
tion is not evident in the temperature range we calculate!

Figure 3 shows the plots ofD'/(11g2M2) vs tempera-
tures. As shown in Eq.~2.28! it is interpreted as an effectiv
spin diffusion coefficient in the transverse mode. The m
nitudes of this value is crucial to the experimental detecti
The temperature dependence is determined byt' in the de-
nominator asg52mSRt' and in the numerator asD'

5Bt' .
We show the temperature dependence of the spin-rota

parametersg multiplied byM in Fig. 4. The same paramete
is calculated in Ref. 20 for3He-4He mixtures. Comparing
their values with ours scaled by the normalized tempera
T/TF , the gM ’s show similar a trend as the temperature

FIG. 3. The temperature dependence of the effective transv
spin diffusion coefficients. The spin polarizations and the den
are the same as Fig. 1.

FIG. 4. The temperature dependence of the spin-rotation pa
eters multiplied by the spin densities,gM . The spin polarizations
and the density are the same as Fig. 1.
-
.

on

re

decreased. The magnitude of this parameter is crucial to
observation of spin waves in 2DES. To detect the spin wa
the damping time must be much longer than the oscillat
period. As shown in Eq.~2.29!, gM corresponds to the ratio
~damping time!/~period!. The present calculation shows it
much larger than unity at low temperatures. This implies
possibility of the experimental detection of spin waves
2DES.

C. Experimental prospects of spin-polarized 2DES

We would like to discuss whether and how the sp
polarized 2DES could be realized to observe the phys
quantities calculated in the preceding sections. We have
culated spin transport coefficients of 2DES using the phy
cal parameters of GaAs heterostructures or QW’s. In th
structures, owing to the development of crystal growth te
niques, high-quality samples are available with very lo
scattering rates other than electron-electron scattering
III-V ~or in II-VI ! semiconductors, due to the symmetry
electronic states in the conduction and valence bands,
circularly polarized photons can generate spin-polariz
electrons and holes. Especially in undoped QW’s, the s
polarization of electrons reaches almost unity just after p
togeneration since the degeneracy in valence bands is li
In the modulation doped QW’s the partially spin polariz
system composed of the unpolarized carriers due to the d
ing and the polarized photocarriers can be prepared. In
way we can set up a spin-polarized electrons without app
ing the external field.

The experimental observation depends on how long
electron spin polarization can be kept. The following thr
mechanisms are responsible for the spin relaxations in III
compound semiconductors:2 Elliott-Yafet mechanism; the
electronic states in the conduction bands depart from the
eigenstates since the spin-orbit coupling mixes the cond
tion bands with valence bands. This mechanism is con
ered to be less effective in GaAs due to its large band g
and also due to the low scattering rate in high-qua
samples. Dyakonov-Perel~DP! mechanism; due to the lac
of inversion symmetry of the crystal, the degeneracy of
spin-up and -down states is lifted in the conduction ban
leading to the energy splitting in the two spin states. This
equivalent to the presence of an effective internal magn
field with magnitude and orientation dependent onk. The
electron spins precess around this field and lose spin po
ization. Bir-Aronov-Pikus~BAP! mechanism; the valenc
bands are not spin eigenstates~except at the zone center! due
to the strong mixing. Thus, the hole spins relax in very sh
periods comparable to momentum relaxation times. T
electrons lose their spin polarization in the exchange sca
ing with holes with random spin orientations.

Experimentally observed spin relaxation times sca
widely between a few picoseconds to hundreds.45 Different
experimental conditions and sample preparations make
systematic interpretation of results difficult. But there a
qualitative features in relaxation mechanisms. The spin
laxation by BAP becomes slower at low temperatures si
the phase space available toe-hole scattering decreases wi
temperature. Furthermore, the spin relaxation times can
extended by spatially separating electrons from holes in
coupled double QW structures with an electric field perp

se
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dicular to 2D plane, or type-II QW’s. The separation als
contributes to the extended radiative life times of photog
nerated carriers. Maialle and Degani46 have recently pre-
dicted a very long (;100 ns) electron spin relaxation time
in double QW’s if only BAP were considered. The spin re
laxation rate of DP mechanism can also be reduced. Lomm
et al.47 predicted that the spin splitting of conduction band
at Fermi surface can be eliminated by a density-depend
external field in GaAs/AlxGa12xAs heterostructures. The
magnitude of field is approximately 0.2 T when the electro
sheet density is 231011 cm22. In the real system, the struc
tural asymmetry~Rashba term! should also be included, and
the confirmation of this cancellation mechanism awaits fu
ther experimental investigations. Recently extremely lo
spin life times (;10 ns or longer! have been experimentally
observed both in QW of ZnSe/ZnxCd12xSe and in bulk
GaAs when the n-type dopant density is carefully selected48

Though it is not certain whether the similar long spin lif
time can be achieved in the experimental configurations
consider here, they are quite encouraging results.

With the progress in the crystal growth technique, hig
quality quantum well structures of III-V and II-VI semicon
ductors with diluted magnetic impurities are being availab
In these systems, in addition to the molecular field of co
duction electrons that we considered here, the exchange c
pling between conduction electrons and localized spins pla
an important role. In the presence of exchange coupling,
spin polarization of conduction electronsM does not precess
about the external fieldH but about the effective fieldH
1aMd , whereMd is a spin polarization of localized spins
and a is some coefficient. Langreth and Wilkins37 have
given a detailed analysis on this case in the Kadano
Baym’s scheme similar to our method in a 3D metallic sy
tem. They have shown that the spin dynamics is stron
modified due to the exchange coupling of electrons with l
calized spins.

We finally consider the magnitude of the external ma
netic field which can be applied to the system. We deriv
the equations without the external magnetic field and,
mentioned before, the effect of weak field can be included
using rotating frame. However, with increasing magne
field, the electron orbital motion is quantized in Landau le
els, and the system turns into a different state representin
quantum Hall effect, to which our present theory does n
apply. The typical energy scale of the electron motion
considered to be the kinetic energy at the Fermi surfa
which is 7.1 meV at the density 231011 cm22. While the
effect of the external field to the orbital motion can be es
mated by the interval of Landau levels,
-

er

nt
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-
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e
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1.1631024

me f f
3B,

whereme f f is an electron effective mass measured in the f
electron mass,B is a magnetic field in Tesla. This yields 1.
meV at the field strength 1 T. This estimation ensures
validity of our present formulation and calculations when t
external field is smaller than 1 T.

IV. CONCLUSIONS

We have derived a quantum transport equation for
spin-polarized two-dimensional electron system from the
croscopic Hamiltonian. The transport equation reduces t
similar form as the one based on the Fermi liquid theo
containing the spin-rotation term from which spin-collecti
phenomena originates. We then numerically calculated l
gitudinal and transverse spin diffusion coefficients and sp
rotation parameters pertaining to GaAs QW’s and hete
structures. The longitudinal coefficients diverge as
temperature approaches zero, while the transverse co
cients remain finite at all temperatures, as was predicted
observed in liquid He. The temperature and the sp
polarization dependence of the transport coefficients can
interpreted in terms of the structures of collision integra
Though there are some ambiguities in the magnitudes of
culated values due to the approximations we used, we ex
that the diffusion coefficients and spin-rotation paramet
are within the reach of experimental observations if the el
tron spin polarization is kept long enough. The spin rela
ation times reported for simple GaAs QW’s is no more th
1 ns so far, which is too short for observations. But it sho
be noticed that the structures used in those experiments
not optimized for long spin life times. There is still a pro
pect of fabricating semiconductor nanostructures with el
gated spin life times. Further theoretical and experimen
investigations are required to determine whether or not
present results can be actually observed in semicondu
samples.
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11V. P. Silin, Zh. Éksp. Teor. Fiz.33, 1227 ~1957! @Sov. Phys.
JETP6, 945 ~1958!#.

12P. M. Platzman and P. A. Wolff, Phys. Rev. Lett.18, 280~1967!.
13E. P. Bashkin, Pis’ma Zh. E´ksp. Teor. Fiz.34, 86 ~1981! @JETP

Lett. 34, 81 ~1981!#; 33, 11 ~1981! @33, 8 ~1981!#; Zh. Éksp.
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