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Polaron effects on an anisotropic quantum dot in a magnetic field
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The polaronic effects for an electron confined in a parabolic quantum dot and a uniform magnetic field are
calculated, taking into account the electron-bulk LO-phonon interaction. The variational wave function is
constructed as a product form of an electronic part and a part of coherent phonons generated by the Lee-Low-
Pines transformation from the vacuum. An analytical expression for the polaron energy is found by the
minimization procedure, and from this expression the ground- and first-excited-state energies are obtained
explicitly. It is shown that the results obtained for the ground-state energy reduce to the existing works in zero
magnetic fields. In the presence of a magnetic field, the confinement of the electron is examined in three
different limiting cases both for the ground and first excited states, depending on certain parameters, such as
the magnetic-field strength, the electron-phonon coupling strength, the polaron radius, and the confinement
length.[S0163-182@9)03828-X]

[. INTRODUCTION magnetic field, whose existence now affects the confinement
length in addition to the polaron properties. In the presence
Recent technological advances in the fabrication of nanoef a magnetic field, there are several theoretical studies. Zhu
structures have stimulated both experimental and theoreticand Gu” investigated the cyclotron resonance of a magneto-
interest in low-dimensional systerhdhis interest arises for Polarons in a QD with a strong magnetic field within the
two major reasons: first, in these systems the length scaldgamework of the Rayleigh-Schdinger perturbation theory.
involved are typically of the order of a few nanometers,Zhu and Kobayasfif used the Landau-Pekar variational
which paves the way for interesting fundamental physicstreatment to calculate the binding energy of strong-coupling
and second, they have potential use in designing devices. @plarons in QD’s. Recently, some theoretical works on cy-
these structures, quantum wells, quantum wires, and quaslotron resonance in QD’s have been done by several
tum dots(QD’s) are primarily important, since the electrons aUthorsl-g'ZO _ .
in quantum wells and wires are free to move in two direc- N this paper we shall consider a QD embedded in a three-
tions and one direction, respectively, and in all the othedimensional3D) material, where the dot electron is confined
directions confinement takes place, whereas the electrons i & parabolic potential and in magnetic fields. Our attention
QD’s are confined in all three spatial dimensions. The conWill be focused on the electron bulk-phonon interaction ef-
finement feature brings in quantum effects when the electrofeCts in QD’s. We develop a variational method, valid for an
wavelength is of the same order as the confinement length. iftermediate electron-phonon coupling strength.
is therefore useful to consider quantized energy spectra of The layout of the present paper as follows. In Sec. I, we
the confined electrons and their variations with the confineconstruct a wave function as a product of the electronic and
ment lengths in order to assess electronic properties of thegdlonon parts, containing certain variational parameters, by
nanostructures. Furthermore, it is also of much interest to se&hich the polaron energy is calculated by a minimization
the effects of electron-phonon interaction on these properProcedure. In Sec. Ill, we obtain the ground- and first-
ties. excited-state energies, and compare with other works in cer-
Electron-phonon interaction, which plays an importanttain limits. A conclusion is given in Sec. IV.
role in electronic and optical properties of polar crystalline
materials in three dimensions, will have pronounced effects Il. THEORY
wolrtl)(vsv ghmsazlr?;?cl: Se);fséggsinagugﬁlhrﬁ r\),\?éhsfrg:]nd r:/:ljirrr;esr’orues_ We consider an e_Iectron, which is inte_racting with bulk
cently there has been a considerable number of theoretic&f pho_nons and sub_Jec.ted to a QD Pm?““?'- In the presence
studies on the same effects including the confinement pro pra unlfo_rm magnetic field along th:edweptmn, the Frb-
lem in the QD system. The main theme of the latter subject ili'Ch .Haml_ltonlan of an eIe_ctron—phor)on Interaction system
the ground-state energies calculated in a sphericaP®D, confined in a 3D anisotropic harmonic potential is given by
and in a QD with parabolic potenti&r°employing all types
of interactiong such as with bu!k, intgrface, and surface LO H=HE+2 thbTb +2 (Vb +H.c), ()
phonons. Various other effects involving these phonons have q a4 a-a
been investigated theoretically in QD structut&sIn par-
ticular, the authors of Refs. 2, 3, and 14 concluded that
bulk-type LO-phonon contribution into the polaron energies
dominates. H :i
Polaron effects in a QD become more interesting in a E " 2u

é{vhere

2

e 1 1
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is the electronic part, and yml n v g2
Nomi(ys,.8)=(=1)" '} I e
dma) T Ja L(ntmt] 2l
2_ 2 10
[V (ﬁwo>( Y 3 (10

In Eq. (9), n andm are the radial and the absolute value of
the angular momentum quantum numbers, respectivelyl and
is the harmonic-oscillator quantum number confined inzhe
direction. Herey-. , 8, andf, are used as variational param-

is the electron-phonon interaction amplitude. In Edy),
bg(bq) is the creation(annihilation operator of an optical
phonon with a wave vectar=(q, ,q,) and an energy w,
andp andr=(r, ,z) denote the electron momentum and PO- aters
sition operators, respectivelyr and r, are the electron- Th-e part ofH,p of the HamiltonianHg was solved in a
phonon coupling constant and polaron radius, respectivelyprevious worke! ZaDnd the result is E

By using the symmetrical Coulomb gaugeA ’

=B(—Y,x,0)/2 for the vector potential, E¢2) can be writ-

ten as a sum of two- and one-dimensional Hamiltonians iqn,+m,l|H,p|n, ¥ m,l)

the form
H :H ] +H ] ] 4 ﬁz 1 1 ﬁw
e=Huplw, w)+Hap(w, 1) @ = —y2(2n+m+1)+ S pwl—(2n+m+1)Fm—-—.
where 2p 2 Y5 2
(13)
g 2, 15, wc
Haop(w,p)=— EVHJF SpoTL+ oL, (5) It is also necessary to find the expectation valueHgf, ,

which is easily achieved by means of Hermite polynomials:
is the well-known 2D isotopic oscillator Hamiltonian with

frequencyw?=(w¢/2)?+ w? plus (w/2)L,, and ,

o 1,1
52 1 (n,Im,I|H1D|n,Im,I>=2—,B I+§ + 5ol —
Hip(@) )=~ 5Vt 5 pofz? ©®) g P
2u 2 1
is the 1D oscillator Hamiltonian. Here, is the cyclotron x| 1+5). (12)

frequency, andv, and | are the measures of confinement
strengths of the 3D anisotropic harmonic potential inxlye 11,4 expectation value of the total Hamiltonian in Ed),

pla{_‘ﬁ and .th.ez dlrlect|on, respetf:tlverl]y.H iitonian i including electron-phonon interaction term, is now
e variational state vector for the Hamiltonian in Ed). En,Im,I:Eg,Im,I_I—EI where the first term is the sum

; n,¥m,l
will be taken as of Egs.(11) and(12) and the last term is the electron-phonon

interaction energy, which is given b
W ) =1, Fm,13@ D(F)[0)p, @) & gven by

where
EL,im,I = % [ﬁwolfq|2+vqfq‘7nml(Qa Y+.8)

D(f)= exp[E (bifa—b f*)} (8)
g e VA orm(y= B, (13
is the well-known Lee-Low-Pines transformation, by which
coherent boson states are generated through the applicati$fere
on the zero-phonon stat9>ph.
In,¥m,I)=|n,¥m)y®|l) show the eigenfunctions of an

. . : _ _ _ o v+, B)=(n, T m,l|e'9"n,Fm,l
electron in an anisotropic harmonic potential subjected to a mi(G, y<,B)=(n T m | nFmD

uniform magnetic field in thez direction described by the =pam(AL . Y5)p1(A2,6), (14
Hamiltonian of Eq.(3), and its coordinate representation is
given by with the matrix elements
(rin, =m, 1)y =g 5 mlr 1) i(2) .
me 2.2 Pam(dL,y)=(n,¥m|e'% "1|n, T m) (15
=Npmi(v= aﬁ)eiyirilz
and
X (T iy) "L (YA 12 )e P ERH (B2),
© pi(0z.8)=(11€%1). (16)

where the function&]' andH, are associated Laguerre poly-
nomials and Hermite polynomials, respectivel;,,; is the ~ The full calculation ofp,n(d, ,ys) is derived in Ref.21;
normalization constant, and is given by here we briefly summarize the results:
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2(m+1) n! - (|)2p

2 0 (2p)!

pnm(qii')/I):(_l)zn . (n+m

27 o
< (qx008¢+qysincp)2pd¢fopdp

X exp( — y2p?) p? M PLT(y2p?)]?

*® + 2 \P
E (m p (_ qiz) Anm(p)-

~nimi o [(p)TP | 4yt
(17
with
Anm(P)
1+m+p m-+p. 2o
g F 5 1+ 5 ;1+m;A“/B
= 1 1 '
dhn (1—h) +mB +m+p oo
(18

in which only the even-order terms pfin the first integral
are included, since the integration over the angl@ives
zero in odd-order terms anef=x?+y?, and the definition
of the hypergeometric function,F; with argumentsA
=4h/(1—h)?, B=(1+h)/(1—h) is used. From Eq18) it

is easy to verify that\yo(p) =Ag:1(p)=1 are independent
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2 2 20\,2
nmI(Q)_j X dXpnm(X°/2)] f dymh(y ).
(24)

Here 0?=2/p? is an important parameter, for which we
will discuss three possible limiting cases.

Hence the expectation value of the Hamiltonian of &yg.
is now

ﬁZ

Enzmi(y=.8)= (—h 2““’ (2n+m+1)
_ ho [ A? 2, 1,1 1
~ ah [ 7,5 (). (25)

In the absence of the electron-phonon interaction, that is,
whena=0 , if we m|n|m|zeEn +m, With respect toy+ and

B, then we obta|ny+—(,uw/ﬁ)2 and g*= (moylh)?. If we
now substitute these results into E84), we obtain the fa-
miliar result

ﬁwc

2

+m

1
EY . mi=fho(2n+m+ l)+ﬁw|( I+

n,=m,l 2

(26)

of pandA;(p) =1+ p+ p?, and thus, by use of these results where the first term represents 2D isotropic oscillator eigen-

in Eq. (17), we see that various values pf(q, ,y=) take
the forms

poo= EXA(—X°12),  po=z1= exp—x*2)(1—x/2),

p1o= expl—x?/2)(1—x3/2)?, (19

wherex=q, /\/2y~ . The calculation ofp,(q,,8) can be

straightforwardly carried out and the result is given in terms

of Laguerre polynomials

2 q

pi(dz,B)=¢€ ! (2;) (20)

Minimization of Ej, -, with respect tofac yields

*
f4= = Frapg Ohmi(@ V5 B). (21)
After substitutingf, into Eq. (13), En +m, becomes

| 1 2 2

B ™ Fran % Vol oami(a = .82 (22

With the change of variables hy, /\2y-=x andq,/\23
=y, Eq. (21) simplifies to the form

o 2\2 ¥4

=—ahwg— p- ,3

wherel ,,(Q) has the following form:

nmI(Q) (23)

n,¥m,l

values withw?=(w/2)?+ w? , and the second term is 1D
oscillator eigenvalues withw|. For convenience we intro-
duce dimensionless parameters as follows:

( % )1/2 1
— | Yx==
Mo Y=

1/2 1

,3='3-

It should be noted that after this change becomes()?
% . Finally it is also convenient to make, -, di-

=B%l7-
mensionless dividing by wy. Hence the total energy takes
the form

Ho

(27)

and

_ _ 1 1_ We
En+mi(ys.8)= E-’—Ew y+ (2n+m+1)+m?
1 1 1
+ T"'_;HZ 211+ =
2p% 2
2 B
_a;—_2|n+ml(Q) (28

This is our fundamental result, from which we obtain the
ground- and excited-state energies according to the values of

Q in three different cases.

IIl. RESULTS AND DISCUSSION

We now consider Eq(28) in three different cases (ﬁ
each of which corresponds to a physical case and reduces, on
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FIG. 1. Cyclotron frequency dependence of the magnetopolaron energy Eyg]sin a quantum dot with an anisotropic parabolic
confinemenia) at «=2 and(b) at «a=5. The thick and thin solid lines represent the unpertufsedml] and perturbedr{= ml) energy
levels, respectively.

certain conditions, to the ground-state results of existing — — (1 — 3\ _ E
works, and gives also the first excited states in a magneticE”'+m~'('8)_(2E2 + o H® B7 || 2n+m+i+ 2 +m 2
field.
21
_a; Elniml(l)- (29

A Q2=g2/2=1

This is the case that corresponds to takﬁg ;H in Eq.  This is to be minimized with respect ]5 For a=0, it can
(28), sinceB= vy, so one obtains the result be easily seen that the variation with respecptgives 3°
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FIG. 2. Cyclotron frequency dependence of the magnetopolaron self-en@;g'?é'sin a quantum dot with an anisotropic parabolic
confinementa) at «=0.5 and(b) at «=2 for o, =0. (c) Same aga), and(d) same agb), butw, =2.

the energy eigenvalues of an electron moving in a homog-
enous magnetic field and a 1D parabolic potential.

When a# 0, minimization of Eq.(29) with respect to3
results in a fourth-order equation f@,

=1/o which yields E,+m =[2n+m+I+(3/2)]e
Im(ZCIZ); for the zero-magnetic-field casaL becomes
equal toZ”, and from Eq.(29) it should also be noted that
En+mi reduces to theE, ;=(2n+1)w, +[1+(1/2)]w, ,
which is the well-known energy eigenvalue of a 3D isotropic
oscillator. In the presence of a magnetic field, and further on B*+ersma,w)B—g(w)=0, (30)

the assumption thab, =0, we come to the resul, - m, -
=[n+(MFxm)/2+ (1/2)]w+[1+ (1/2)](w/2), which is  whereg(w)=1/w? and
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en+mKa,w):7T|n+m(1)//[4

. B(adv%:%{—[an:mﬂaﬂuﬂlm+[—aﬂ:mma,w)
This can be solved analytically in terms af and o for . — — 11
certain values ofif, ¥m,|). The solutions to Eq(30) give +2Chzmil @) [anzmle,0)]" 1,
two imaginary and two real roots. As the former roots can be (32
omitted, one of the real roots gives minimized energies that
we used in our calculation, and the second one has not beavith

FIG. 2. (Continued.

-, considered since it gives maximum energies. The real root
| giving the minimized energies can be easily found as

(31)

2n+ +|+3
n+m 2
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FIG. 3. The magnetopolaron self-energE{‘;m" as a function of confinement length (a) in the absence of a magnetic field al at

w.=1, for a=0.5.

an=mi(@,0)=—16x2Y0 1 (a,0)

+(12x2Y342) 1, - (@),

_ _ (33
Br=mi( @, 0)={27X4c2. (@) w?+[729X 16Ch~ (@) 0*
+442368< 640°] V315,

in which ¢, = (@) = 4w?e,+m (e, ). By substituting Eq.

(32 back into Eq.(29), and using the results fdr,+ (1)

which are evaluated in Appendix A for different values of
three quantum numbers(m, ), one obtains the analytical
results for the ground state and the excited states of the prob-
lem.

For the ground-state energy in the absence of a magnetic
field , Eq.(29) reduces to the energy obtained bypiree and
Brunealf who recently showed that their results for the
ground-state energy are valid for any strength of electron-
phonon coupling , by comparing them with those of Yildirim
and Erelebi?? who also studied the problem in weak- and
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FIG. 4. Cyclotron frequency dependence of the magnetopolaron self-eng’,b'i'ébin a quantum dot with an anisotropic parabolic

confinement(a) at «=0.5 and(b) at «=2, for , =2 andw;=8.

strong-coupling limits. In order to see this, from Eg9) one
writes the ground-state energy in the following form:

e a
Mmoo ——==,

2 mp
where we have usegyy(1)= \/7/2 (see Appendix A Equa-
tion (34) is exactly the same as E(L5) in Ref. 8, provided

that one substitutes the variational parametewith 1/y23

1
TEZ + szﬂz (34)

— — 3
Eooo(ﬁ)—2<

and w/2 with K. In Ref. 8, Eq.(34) is minimized with
respect tg3, and a special form of E¢31) was obtained and
solved approximately for some asymptotic limits. While our
analytical treatment allows us to find the excited-state ener-

gies in addition to the ground-state ones as a functiow of
together with Eq(32) it also unifies all expressions for the
ground-state energy found by other autht?snot only in
any strength of electron-phonon interaction coupling but also
in a nonzero magnetic field. Furthermore it gives excited-
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state energies in any coupling strengths and in a magnetic

. _ _ 1\ _ 0
field. Ensmi=(2n+m+ D)o+ | 1+ = | wjTm—
It is well known that the Landau levels of an unperturbed 2 2
electron in a uniform magnetic field are no longer linear in a o
J— w _
cyclotron frequencyw. which is proportional to the mag- —a— ——l = m(Q). (35
netic field when the electron-phonon interaction is switched ™ ‘/;H

on. As expected, they are also shifted by an amount of po-
laron self-energy, and bend up when the magnetic field iny, Appendix A, we present the details of calculation of the
creases. We observe these properties in Fig. 1, that shows the — )

ground- and first-excited-state energies of the polaron corré[‘tegr"fs'ln::m'(%) mxollved '3 igi(35i1 for somels values of
sponding to the various combinations of three different quant™ ™ 1)- From Egs(A10) and(A11), the integral appearing

_ , — in the evaluation of the ground state is found to be
tum numbersi, = m,l) as a function ofw, for «=2 and 5,

at Zl=0. Since the confinement frequenc_M , expressed
in terms of the LO-phonon frequenayy, is directly related

e L . /| _ 1 1-02
to thE dlmensmnleis conflr?ement length, =1, /rq lood Q)= — —arcta _ _ (36)
=V2lw, , the case fow, =0 defines a 2D magnetopolaron QV1-02 Q

with one-dimensional confinement along theaxis with a

confinement frequency(;/2), which itself depends oB. . .
Hence, aB increases, the magnetopolaron is strongly local- We hote that t_he ground-stgte energy obtained by substi-
ized in two dimensions, and therefore effectively becomes &Ution of Eq.(36) into Eq. (35) yields the result of Yildinm

2D system in which the polaronic effects are enhanced. I@nd Erelebi’” provided that one replaceg. by 1/A; and
order to understand the influence of the electron-phonon ing? by 1/x,; it also gives 2D limit(1D confinementresults
teraction on electronic levels, we have also plotted unperef Ref. 22 by substitution of relevant parameters with the
turbed energy levels of an electron by thick solid lines in theparameters defined there, in the absence of magnetic field. So
same figure. By comparison of Figsial and 1b), one ob-  our result for the ground-state energy is consistent with that
serves that the difference in energy levels increases with irfrom Refs. 8 and 22, and also includes the magnetic-field
creasing electron-phonon coupling strength For a more  dependence. For this limit we can easily obtain the first-
detailed study, we also present plots that show a variation afxcited-state energies. This requires evaluating certain inte-
the polaron self-energies for different,(=m,l) with . for ~ grals, which can be obtained from Eq#10) and (A12)—

some values of andw, in Fig. 2. A first observation from (A16) and are of the following forms:

these figures appears to show that the polaron self-energy for

the ground state is the largest and appears to lie below the

others, as expected. One also notices that the polaron selfi 0(5)_ _ ﬁ/\% ﬁAJF 1 EAJF EAZ |
energies for different quantum numbers, £m,|) increase 1 32 16 27 16 |00
with increasing electron-phonon coupling strength by com- (37
parison of Figs. @) and 2Zb) with Fig. 2(c) and 2d), and

with decreasing confinement lendthby comparison of Fig.

0+

2(a) with Fig. 2(c), and Fig. Zb) with Fig. 2(d). In Fig. 3, we — 3T \/E_Z — 3=,
demonstrate the dependence of polaron self-energies for dif- looi(2) == —g— = Q%+ 1+ Q%A+ 707A% 409
ferent quantum numbersn{+m,l) on the dimensionless

confinement lengthi, for some fixed values ab, anda. It \/;—2 1— 33—,

should be noted that the polaron self-energies for different B TQ A1+ EQ + ZQ Al (38)

(n,¥m,l) increase with decreasing confinement lenigth
The casew.=0 has also been interpreted by the authors of

Ref. 8 for several values of electron-phonon coupling — 9 15 105
strengtha. |1oo(Q):[1—A+ §A2— 1_6A3+ ﬁ/ﬁ}'ooo
B. (_12=E2/;2¢<1 +g/\[136—§—:23/&+ ;—;2]\2— ;152/\3},
With this condition, 32<y2 , one has to minimize Eq. (39)
(28) with respect to bott8 and y- . This yields two coupled
equations which have complicated dependenciesron:,  where we have definedl = 1/(1- Q). Inserting Eqs(37)—

o), o, , andl,,(Q) for the relevant variational param- (39) together with Eq(36) into Eq. (35) yields the ground-
eters, so that it seems impossible to solve them; however, And first-excited-state energies of the polaron. They are plot-
one can use the valugg®=1/w| and y2 =1/w correspond- ted in Fig. 4. as a function of cyclotron frequenayj for

ing to =0 as a first approximation, then E@8) takes the two different values ot at fixed confinement frequencieg
form and w, . Here the increase of electron-phonon interaction
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1 L L L L L

0 0.5 1 1.5 2 2.5 3
{b) Uz

FIG. 5. The magnetopolaron self-energ@}s’"" as a function of confinement length (a) for w, =2 andw,=0 and(b) for w, =2 and
w:=10, ata=0.5. (c) Same aga), and(d) same agb), but «=2.

causes a lowering in energy levels for the same reasons aectron is localized in thy plane perpendicular to the
pointed out above. For comparison, the polaron self-energiesmagnetic field, by comparison of Figs(ab and 5c) with
for the ground and first excited states are also plotted in Figs(b) and 5d);

5 as a function of confinement length for two different

values ofe and w. at a fixed confinement frequeney, . — =
One can easily observe that the polaron self-energies in- C.Q%=plyz>1

crease not only with increasing electron-phonon interaction By using Eqs(B1) and(B2), one obtains the value of the
by comparison of Figs.(8 and §b) with 5(c) and 8d), but  integral appearing in the calculation of the ground state in
also with increasing cyclotron frequency due to the fact thathis case as
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FIG. 5. (Continued.

_ 1 _ p—
lood Q) = E —————In[Q+VQ2%-1], (40

2 ovoz-1

the same behavior under the variation of cyclotron frequency
and of electron-phonon coupling strength at fixed confine-
ment frequencie®| andw, (Fig. 6). In order to understand

better how polaron self-energies for the ground and the first

which differs from Eq.( (36). Exactly the same results hold €Xcited states are influenced by the change of confinement

for the integralsl g5 1o(Q2), 1901(2), andlloo(Q) as for the
previous case, provided that now one uses &) for

looo(Q2) instead of Eq.(36). So, in this limit, we find the

lengthu, , we plot them in Fig. 7.

IV. CONCLUSION

ground- and the first-excited-state energies by inserting Egs. In this paper, we have performed a variational calculation

(37)—(39) together with Eq(40) into Eq. (35). They exhibit

to obtain the ground- and first-excited-state energies of a
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FIG. 6. Cyclotron frequency dependence of the magnetopolaron energy Ey,g]sin a quantum dot with an anisotropic parabolic
confinemeni(@) at «=0.5 and(b) at a=2, for w, =8 andw=2.

polaron in a parabolic QD. It is assumed that the electron- A QD may have many electrons, changing from a few
interface—LO-phonon interaction can be negligible in com-electrons to a thousand. Electron-electron interaction that
parison with bulk LO phonons. The ground-state energies inmay be important in certain problems can be negligable in
zero magnetic fields have reduced to the results obtained some cases. For example, it was shown that magneto-optical
other methods. The first-excited-state energies are also oklbsorption lines by many electrons do not differ from those
tained, but to our knowledge there exists no study withof only one electror? In the present approach we have ne-
which we can compare our results. The present method iglected these interactions for the sake of simplifying our cal-
valid for intermediate coupling strength. Therefore, our re-culations. The confinement lengths andu, are expressed
sults can be experimentally realized for semiconductor dotsn terms of the polaron radiug and are dimensionless. Only
such as CuCl and CdSe. the values ofu;, andu, larger than unity are meaningful,
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FIG. 7. The magnetopolaron self-energis™ as a function of confinement length (@) for w;=2 andw,=0 and(b) for w;=2 and
=10, ata=0.5.(c) Same aga), and(d) same agb), but «=2.

since the Frblich Hamiltonian is valid in the continuum ACKNOWLEDGMENT
approximation.

In summary, we have analytically calculated the ground.l_e
and first excited states of the magnetopolaron in an anis
tropic QD. We have observed that effects of the electron-
phonon interaction, besides those of confinement in all direc-
tions, have a great importance in analyzing the localization
properties of the electron. Furthermore, the presence of a
magnetic field makes these effects more prominent, as can be In this and in Appendix B we evaluate the integral given
observed from the figures. in Eq. (28), i.e.,
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APPENDIX A
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FIG. 7. (Continued.
_ e V2 in which ®(Bu) = (2/\/) [6*dt exp(—t?) is the well-known
Inm,(Q)=J X dx|pnm(x2/2)|2J' dy_i2 L2(y?), probability integral, then we obtain
x> +y
(A1)
for different values of three quantum numbers (n, 1) and lnmo(1) = gfo dX|prm(X22)|2[1— D (x)]e.  (A3)
Q, which we require in the text. First we will consider the
02=1
case of() . If we use the following integral, with this 1ne remaining integral ovexin Eq. (A3) can be easily per-
choice of the parameteﬂz over the variable/ and forl = formed by means of the integral identity
in Eq. (A1),%3
2,,2

. g+
- _ 2q-1_
|(|O,Q)—f0 dx[1—®(px)]x* 2 Vmap? (A4)

o e # y
|0(M,B):f0d Vot =[1- q’(ﬁ#)]*eﬁ“
(A2)
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By using the various values gf,,, given by Eqgs.(19) and
(A4), one finds the following results:

Jr 23 423\
lood D=5 lorad D= "5 lod D)= g0 -
(85)

B. S. KANDEMIR AND T. ALTANHAN
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furthermore, the other integrals to be appeared in calculation
can be obtained from EqA11), by repeated differentiation
partially of Eq.(A11) with respect to the parametgr.

In order to find the result of the remaining integral required

in the text, i.e.ly1(1), one has t@onsider the integral

ey

oo1)= | “xaxe [ “ay—— ALY o)

where the value opgo given in Eq.(19) and L,(y?)=(1
—y?) are used. To evaluate the integral oyen Eq. (A6)
one also needs the relations

1 szz
lo(p,B)= ___|0(Mﬁ) J'y y V2t B2
NCE ;R
=2, 2 @ 1m0 (Bw)] (A7)
and
1 9 ® e rY
|4(Myﬁ):_ﬂ£|z(ﬂ,ﬁ):f0 y de2+Bz

_m m

2
i 22 587K 10 ()],

(A8)

which are derived by repeated differentiation partially of Eq.

(A2) with respect to the parametgr. On substituting these
and Eqg.(A2) in Eqg. (A6), one obtains the integrals over
which have the same structure as in E8). So the result is

98\m

looa(1) = 20 " (A9)

In the following we will evaluate Eq(Al) for the case of

62<1. As we have done above, we start with the chse
=0, so that Eq(A1) can be written in the form

_y2

an(Q)—f delpnm(lezﬂzf dy 022 +y

_ j AX| prr(X212) [ 1— D (%) 12X,
20 Jo

(A10)

again by using Eq(A2). If the values ofp,,, for different
values ofn and m given in Eq(19) are replaced into Eg.
(A10), one first needs to use the integral

*® 2.2 1 arcta
|o<m=fo dA1-0(7)e === ®,

(A11)

()=~ 5 ol >=fw22dz[1—<b(z>]e-ﬂzzz
2l 21 9 olm 0
1 |arctanu 1
= - , Al12
2w u® pA(1+u?) (AL
1 74 2,2
|4(M)=—2—a— ozp)=| 2°d41-d(z)]e *
1 3 arctanu 3 2
Wa|  ub p(A+p?)  pi(1+p?)?
(A13)
1 9 * 6 252
le(p)=— 20 o0 la(p)= zd2[1—<1>(2)]e a
1 |15arctanu 15 10
s8Vm| p®(1+p?)  ph(1+p?)?
8 (A14)
wi(1+pu?)®
1 “ s 22
|8(M):_mo-,_ o(m)= o2 d41-®(z)]e *
1 |105arctanu 105 70
16y u p¥(1+p?)  ub(1+p?)?
56 48 (AL5)
w1+ p?)® w1+ p?)*

which on substitution intg EqA10) give the results used in
the text. Finally, forl 5o4(€2), we evaluate the integral

_y2

_u2\2
lgo1(1)= fdee deQ2X2+y( y9)
(Al16)

by means of Eqs(A7) and (A8) together with the help of
Egs.(A14) and(A15); hence one finds the result used in the
text.

APPENDIX B

In Appendix A we require the result of integrgh10), in

which the condition€22=1 andQ2<1 are imposed, respec-
tively. Here we must evaluate it by considering the integral
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o) = f:dz[l—dnﬁz)]eﬂzzzzv—l

v+1

2
M

B

v V+1_v
2" 2 2

+1; , (BY)

2 ) . (
\/;Vﬂv 21
but now we have the conditior§2>1, so that u?=1

—(1/(_)2)<1. In Eq.(Bl) ,F; is the well-known hypergeo-
metric function. Forn=m=0, it can be easily shown that
Eqg. (A10) results in

| 1+up
g )= 27 F(11-3- 2)—ﬁ SR E
00 2 e M2t )T 2 e 2w

(B2)
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where we have used ,F;(3,1;3;u2)=In[(1+w)/
(1—w))/2u.2* In attempting to evaluate EGA10) for values

n and m different from zero, and also E@¢A16) under the
conditionQ2?>1 with n=m=0, one needs to evaluate inte-
grals concerning,F; with different arguments such as
F1(3,2:3:12), oF1(3,3;3; 1% and so on. In handling this
kind of integrals, it is necessary to use an important
identity?*

d ab
gz2habiciz)=-—5Fi(at+1b+1c+1:2).

Finally, we obtain the previous results, E¢37)—(39), as in

the case of22<1, but with differentl oo Q) given by Eq.
(B2).
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