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Polaron effects on an anisotropic quantum dot in a magnetic field

B. S. Kandemir and T. Altanhan
Department of Physics, Faculty of Sciences, Ankara University, 06100 Tandog˘an, Ankara, Turkey

~Received 18 November 1998!

The polaronic effects for an electron confined in a parabolic quantum dot and a uniform magnetic field are
calculated, taking into account the electron-bulk LO-phonon interaction. The variational wave function is
constructed as a product form of an electronic part and a part of coherent phonons generated by the Lee-Low-
Pines transformation from the vacuum. An analytical expression for the polaron energy is found by the
minimization procedure, and from this expression the ground- and first-excited-state energies are obtained
explicitly. It is shown that the results obtained for the ground-state energy reduce to the existing works in zero
magnetic fields. In the presence of a magnetic field, the confinement of the electron is examined in three
different limiting cases both for the ground and first excited states, depending on certain parameters, such as
the magnetic-field strength, the electron-phonon coupling strength, the polaron radius, and the confinement
length.@S0163-1829~99!03828-X#
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I. INTRODUCTION

Recent technological advances in the fabrication of na
structures have stimulated both experimental and theore
interest in low-dimensional systems.1 This interest arises fo
two major reasons: first, in these systems the length sc
involved are typically of the order of a few nanomete
which paves the way for interesting fundamental phys
and second, they have potential use in designing devices
these structures, quantum wells, quantum wires, and q
tum dots~QD’s! are primarily important, since the electron
in quantum wells and wires are free to move in two dire
tions and one direction, respectively, and in all the ot
directions confinement takes place, whereas the electron
QD’s are confined in all three spatial dimensions. The c
finement feature brings in quantum effects when the elec
wavelength is of the same order as the confinement lengt
is therefore useful to consider quantized energy spectr
the confined electrons and their variations with the confi
ment lengths in order to assess electronic properties of t
nanostructures. Furthermore, it is also of much interest to
the effects of electron-phonon interaction on these prop
ties.

Electron-phonon interaction, which plays an importa
role in electronic and optical properties of polar crystalli
materials in three dimensions, will have pronounced effe
in low-dimensional systems as well. Apart from numero
works on polaronic effects in quantum wells and wires,
cently there has been a considerable number of theore
studies on the same effects including the confinement p
lem in the QD system. The main theme of the latter subjec
the ground-state energies calculated in a spherical QD2–5

and in a QD with parabolic potential,6–10employing all types
of interactions such as with bulk, interface, and surface
phonons. Various other effects involving these phonons h
been investigated theoretically in QD structures.11–16 In par-
ticular, the authors of Refs. 2, 3, and 14 concluded tha
bulk-type LO-phonon contribution into the polaron energ
dominates.

Polaron effects in a QD become more interesting in
PRB 600163-1829/99/60~7!/4834~16!/$15.00
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magnetic field, whose existence now affects the confinem
length in addition to the polaron properties. In the prese
of a magnetic field, there are several theoretical studies.
and Gu17 investigated the cyclotron resonance of a magne
polarons in a QD with a strong magnetic field within th
framework of the Rayleigh-Schro¨dinger perturbation theory
Zhu and Kobayashi18 used the Landau-Pekar variation
treatment to calculate the binding energy of strong-coupl
polarons in QD’s. Recently, some theoretical works on
clotron resonance in QD’s have been done by sev
authors.19,20

In this paper we shall consider a QD embedded in a thr
dimensional~3D! material, where the dot electron is confine
in a parabolic potential and in magnetic fields. Our attent
will be focused on the electron bulk-phonon interaction
fects in QD’s. We develop a variational method, valid for
intermediate electron-phonon coupling strength.

The layout of the present paper as follows. In Sec. II,
construct a wave function as a product of the electronic
phonon parts, containing certain variational parameters,
which the polaron energy is calculated by a minimizati
procedure. In Sec. III, we obtain the ground- and fir
excited-state energies, and compare with other works in
tain limits. A conclusion is given in Sec. IV.

II. THEORY

We consider an electron, which is interacting with bu
LO phonons and subjected to a QD potential. In the prese
of a uniform magnetic field along thez direction, the Fro¨h-
lich Hamiltonian of an electron-phonon interaction syste
confined in a 3D anisotropic harmonic potential is given

H5HE1(
q

\v0bq
†bq1(

q
~Vqbqe

iq•r1H.c.!, ~1!

where

HE5
1

2m S p1
e

c
AD 2

1
1

2
mv'

2 r'
2 1

1

2
mv i

2z2 ~2!
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is the electronic part, and

uVqu25~\v0!2S 4pa

V D r 0

q'
2 1qz

2
~3!

is the electron-phonon interaction amplitude. In Eq.~1!,
bq

†(bq) is the creation~annihilation! operator of an optica
phonon with a wave vectorq5(q' ,qz) and an energy\v0,
andp andr[„r' ,z) denote the electron momentum and p
sition operators, respectively.a and r 0 are the electron-
phonon coupling constant and polaron radius, respectiv
By using the symmetrical Coulomb gaugeA
5B(2y,x,0)/2 for the vector potential, Eq.~2! can be writ-
ten as a sum of two- and one-dimensional Hamiltonians
the form

HE5H1D~v' ,m!1H2D~v,m!, ~4!

where

H2D~v,m!52
\2

2m
¹ r'

2 1
1

2
mv2r'

2 1
vc

2
Lz ~5!

is the well-known 2D isotopic oscillator Hamiltonian wit
frequencyv25(vc/2)21v'

2 plus (vc/2)Lz , and

H1D~v i ,m!52
\2

2m
¹z

21
1

2
mv i

2z2 ~6!

is the 1D oscillator Hamiltonian. Herevc is the cyclotron
frequency, andv' andv i are the measures of confineme
strengths of the 3D anisotropic harmonic potential in thexy
plane and thez direction, respectively.

The variational state vector for the Hamiltonian in Eq.~1!
will be taken as

uCnml&5un,7m,l & ^ D~ f !u0&ph , ~7!

where

D~ f !5 expF(
q

~bq
†f q2bqf q* !G ~8!

is the well-known Lee-Low-Pines transformation, by whi
coherent boson states are generated through the applic
on the zero-phonon stateu0&ph .

un,7m,l &5un,7m& ^ u l & show the eigenfunctions of a
electron in an anisotropic harmonic potential subjected t
uniform magnetic field in thez direction described by the
Hamiltonian of Eq.~3!, and its coordinate representation
given by

^r un,7m,l &5cn,7m~r'!c l~z!

5Nnml~g7 ,b!e2g7
2 r'

2 /2

3~x7 iy !mLn
m~g7

2 r'
2 !e2b2z2/2Hl~bz!,

~9!

where the functionsLn
m andHl are associated Laguerre pol

nomials and Hermite polynomials, respectively.Nnml is the
normalization constant, and is given by
-

y.

n

ion

a

Nnml~g7 ,b!5~21!n
g7

m11

Ap
F n!

~n1m!! G
1/2 b1/2

@2l l !Ap#1/2
.

~10!

In Eq. ~9!, n andm are the radial and the absolute value
the angular momentum quantum numbers, respectively, al
is the harmonic-oscillator quantum number confined in thz
direction. Hereg7 , b, and f q are used as variational param
eters.

The part ofH2D of the HamiltonianHE was solved in a
previous work,21 and the result is

^n,7m,l uH2Dun,7m,l &

5
\2

2m
g7

2 ~2n1m11!1
1

2
mv2

1

g7
2 ~2n1m11!7m

\vc

2
.

~11!

It is also necessary to find the expectation value ofH1D ,
which is easily achieved by means of Hermite polynomia

^n,7m,l uH1Dun,7m,l &5
\2

2m
b2S l 1

1

2D1
1

2
mv i

2 1

b2

3S l 1
1

2D . ~12!

The expectation value of the total Hamiltonian in Eq.~1!,
including electron-phonon interaction term, is no
En,7m,l5En,7m,l

0 1En,7m ,l
I , where the first term is the sum

of Eqs.~11! and~12! and the last term is the electron-phono
interaction energy, which is given by

En,7m,l
I 5(

q
@\v0u f qu21Vqf qsnml~q,g7 ,b!

1Vq* f q* snml* ~q,g7 ,b!#, ~13!

where

snml~q,g7 ,b!5^n,7m,l ueiq•run,7m,l &

5rnm~q' ,g7!r l~qz ,b!, ~14!

with the matrix elements

rnm~q' ,g7!5^n,7mueiq'•r'un,7m& ~15!

and

r l~qz ,b!5^ l ueiqzu l &. ~16!

The full calculation ofrnm(q' ,g7) is derived in Ref.21;
here we briefly summarize the results:
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rnm~q' ,g7!5~21!2n
g7

2(m11)

p

n!

~n1m!! (
p50

`
~ i !2p

~2p!!

3E
0

2p

~qx cosw1qy sinw!2pdwE
0

`

r dr

3exp~2g7
2 r2!r2(m1p)@Ln

m~g7
2 r2!#2

5
1

n!m! (
p50

`
~m1p!!

@~p!! #2 S 2
q'

2

4g7
2 D p

Dnm~p!,

~17!

with

Dnm~p!

5
dn

dhn
H FS 11m1p

2
,11

m1p

2
;11m;A2/B2D

~12h!11mB11m1p
J

h50

,

~18!

in which only the even-order terms ofp in the first integral
are included, since the integration over the anglew gives
zero in odd-order terms andr25x21y2, and the definition
of the hypergeometric function2F1 with argumentsA
54h/(12h)2, B5(11h)/(12h) is used. From Eq.~18! it
is easy to verify thatD00(p)5D071(p)51 are independen
of p andD10(p)511p1p2, and thus, by use of these resu
in Eq. ~17!, we see that various values ofrnm(q' ,g7) take
the forms

r005 exp~2x2/2!, r0715 exp~2x2/2!~12x2/2!,

r105 exp~2x2/2!~12x2/2!2, ~19!

where x5q' /A2g7 . The calculation ofr l(qz ,b) can be
straightforwardly carried out and the result is given in ter
of Laguerre polynomials

r l~qz ,b!5e2qz
2/4b2

LlS qz
2

2b2D . ~20!

Minimization of En,7m,l with respect tof q* yields

f q52
Vq*

\v0
snml* ~q,g7 ,b!. ~21!

After substitutingf q into Eq. ~13!, En,7m,l
I becomes

E
n,7m,l

I 52
1

\v0
(

q
uVqu2usnml~q,g7 ,b!u2. ~22!

With the change of variables byq' /A2g75x andqz /A2b
5y, Eq. ~21! simplifies to the form

E
n,7m,l

I 52a\v0

2A2

p

g7
2

b
I nml~V!, ~23!

whereI nml(V) has the following form:
s

I nml~V!5E
0

`

x dxurnm~x2/2!u2E
0

`

dy
e2y2

V2x21y2
Ll

2~y2!.

~24!

Here V25g7
2 /b2 is an important parameter, for which w

will discuss three possible limiting cases.
Hence the expectation value of the Hamiltonian of Eq.~1!

is now

En,7m,l~g7 ,b!5S \2

2m
g7

2 1
1

2
mv2

1

g7
2 D ~2n1m11!

7m
\vc

2
1S \2

2m
b21

1

2
mv i

2 1

b2D S l 1
1

2D
2a\v0

2A2

p
r 0

g7
2

b
I nml~V!. ~25!

In the absence of the electron-phonon interaction, that
whena50 , if we minimizeEn,7m,l

0 with respect tog7 and
b, then we obtaing7

4 5(mv/\)2 andb45(mv i /\)2. If we
now substitute these results into Eq.~24!, we obtain the fa-
miliar result

En,7m,l
0 5\v~2n1m11!1\v iS l 1

1

2D7m
\vc

2
,

~26!

where the first term represents 2D isotropic oscillator eig
values withv25(vc/2)21v'

2 , and the second term is 1D
oscillator eigenvalues withv i . For convenience we intro
duce dimensionless parameters as follows:

S \

mv D 1/2

g75
1

ḡ7

and S \

mv D 1/2

b5
1

b̄
. ~27!

It should be noted that after this changeV becomesV̄2

5b̄2/ḡ7
2 . Finally it is also convenient to makeEn,7m,l di-

mensionless dividing by\v0. Hence the total energy take
the form

Ēn,7m,l~ ḡ7 ,b̄ !5S 1

2ḡ7
2

1
1

2
v̄2ḡ7

2 D ~2n1m11!7m
v̄c

2

1S 1

2b̄2
1

1

2
v̄ i

2b̄2D S l 1
1

2
D

2a
2

p

b̄

ḡ7
2

I n7ml~V̄ !. ~28!

This is our fundamental result, from which we obtain t
ground- and excited-state energies according to the value

V̄ in three different cases.

III. RESULTS AND DISCUSSION

We now consider Eq.~28! in three different cases ofV̄,
each of which corresponds to a physical case and reduce
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FIG. 1. Cyclotron frequency dependence of the magnetopolaron energy levelsĒn,m,l in a quantum dot with an anisotropic parabol
confinement~a! at a52 and~b! at a55. The thick and thin solid lines represent the unperturbed@n7ml# and perturbed (n7ml) energy
levels, respectively.
in
e

certain conditions, to the ground-state results of exist
works, and gives also the first excited states in a magn
field.

A. V̄25b̄2/ḡ7
2 51

This is the case that corresponds to takingv̄5v̄ i in Eq.
~28!, sinceb̄5ḡ7 , so one obtains the result
g
ticĒn,7m,l~ b̄ !5S 1

2b̄2
1

1

2
mv̄2b̄2D S 2n1m1 l 1

3

2D7m
v̄c

2

2a
2

p

1

b̄
I n7ml~1!. ~29!

This is to be minimized with respect tob̄. For a50, it can
be easily seen that the variation with respect tob̄ gives b̄2
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FIG. 2. Cyclotron frequency dependence of the magnetopolaron self-energiesĒp
n,m,l in a quantum dot with an anisotropic parabol

confinement~a! at a50.5 and~b! at a52 for v̄'50. ~c! Same as~a!, and~d! same as~b!, but v̄'52.
t

ic
o

og-
51/v̄ which yields Ēn,7m,l5@2n1m1 l 1(3/2)#v̄
7m(v̄c/2); for the zero-magnetic-field case,v̄' becomes
equal tov̄ i , and from Eq.~29! it should also be noted tha
Ēn,7m,l reduces to theĒn,l5(2n11)v̄'1@ l 1(1/2)#v̄' ,
which is the well-known energy eigenvalue of a 3D isotrop
oscillator. In the presence of a magnetic field, and further
the assumption thatv̄'50, we come to the resultĒn,7m,l

5@n1(m7m)/21(1/2)#v̄c1@ l 1(1/2)#(v̄c/2), which is
n

the energy eigenvalues of an electron moving in a hom
enous magnetic field and a 1D parabolic potential.

When aÞ0, minimization of Eq.~29! with respect tob̄

results in a fourth-order equation forb̄,

b̄41en7ml~a,v̄ !b̄2g~v̄ !50, ~30!

whereg(v̄)51/v̄2 and
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FIG. 2. ~Continued!.
b
h
e

oot

en7ml~a,v̄ !5

2a

p
I n7ml~1!Y F4S 2n1m1 l 1

3

2D v̄2G .
~31!

This can be solved analytically in terms ofa and v̄ for
certain values of (n,7m,l ). The solutions to Eq.~30! give
two imaginary and two real roots. As the former roots can
omitted, one of the real roots gives minimized energies t
we used in our calculation, and the second one has not b
e
at
en

considered since it gives maximum energies. The real r
giving the minimized energies can be easily found as

b~a,v̄ !5 1
2 $2@an7ml~a,v̄ !#1/21@2an7ml~a,v̄ !

1 1
2 cn7ml~a!v̄22@an7ml~a,v̄ !#21/2#1/2%,

~32!

with
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FIG. 3. The magnetopolaron self-energiesĒp
n,m,l as a function of confinement lengthu' ~a! in the absence of a magnetic field and~b! at

v̄c51, for a50.5.
of
l
rob-

etic

e
on-
m
d

an7ml~a,v̄ !5216321/3bn7ml
21 ~a,v̄ !

1~12321/3v̄2!21bn7ml~a,v̄ !,
~33!

bn7ml~a,v̄ !5$2734cn7ml
2 ~a!v̄21@729316cn7ml

4 ~a!v̄4

1442368364v̄6#1/2%1/3,

in which cn7ml(a)54v̄2en7ml(a,v̄). By substituting Eq.
~32! back into Eq.~29!, and using the results forI n7ml(1)
which are evaluated in Appendix A for different values
three quantum numbers (n, m, l ), one obtains the analytica
results for the ground state and the excited states of the p
lem.

For the ground-state energy in the absence of a magn
field , Eq.~29! reduces to the energy obtained by Le´pine and
Bruneau,8 who recently showed that their results for th
ground-state energy are valid for any strength of electr
phonon coupling , by comparing them with those of Yıldırı
and Erçelebi,22 who also studied the problem in weak- an
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FIG. 4. Cyclotron frequency dependence of the magnetopolaron self-energiesĒp
n,m,l in a quantum dot with an anisotropic parabol

confinement~a! at a50.5 and~b! at a52, for v̄'52 andv̄ i58.
ur
er-

e

lso
d-
strong-coupling limits. In order to see this, from Eq.~29! one
writes the ground-state energy in the following form:

Ē000~ b̄ !5
3

2 S 1

2b̄2
1

1

2
v̄2b̄2D 7m

v̄c

2
2

a

Ap

1

b̄
, ~34!

where we have usedI 000(1)5Ap/2 ~see Appendix A!. Equa-
tion ~34! is exactly the same as Eq.~15! in Ref. 8, provided
that one substitutes the variational parameterb̄ with 1/A2b
and v̄/2 with K2. In Ref. 8, Eq. ~34! is minimized with
respect tob, and a special form of Eq.~31! was obtained and
solved approximately for some asymptotic limits. While o
analytical treatment allows us to find the excited-state en

gies in addition to the ground-state ones as a function ofv̄,
together with Eq.~32! it also unifies all expressions for th
ground-state energy found by other authors,8,22 not only in
any strength of electron-phonon interaction coupling but a
in a nonzero magnetic field. Furthermore it gives excite
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state energies in any coupling strengths and in a magn
field.

It is well known that the Landau levels of an unperturb
electron in a uniform magnetic field are no longer linear in

cyclotron frequencyv̄c which is proportional to the mag
netic field when the electron-phonon interaction is switch
on. As expected, they are also shifted by an amount of
laron self-energy, and bend up when the magnetic field
creases. We observe these properties in Fig. 1, that show
ground- and first-excited-state energies of the polaron co
sponding to the various combinations of three different qu

tum numbers (n,7m,l ) as a function ofv̄c for a52 and 5,

at v̄'50. Since the confinement frequencyv̄' , expressed
in terms of the LO-phonon frequencyv0, is directly related
to the dimensionless confinement lengthu'5 l' /r 0

5A2/v̄', the case forv̄'50 defines a 2D magnetopolaro
with one-dimensional confinement along thez axis with a
confinement frequency (v̄c/2), which itself depends onB.
Hence, asB increases, the magnetopolaron is strongly loc
ized in two dimensions, and therefore effectively become
2D system in which the polaronic effects are enhanced
order to understand the influence of the electron-phonon
teraction on electronic levels, we have also plotted unp
turbed energy levels of an electron by thick solid lines in
same figure. By comparison of Figs. 1~a! and 1~b!, one ob-
serves that the difference in energy levels increases with
creasing electron-phonon coupling strengtha. For a more
detailed study, we also present plots that show a variatio
the polaron self-energies for different (n,7m,l ) with v̄c for
some values ofa andv̄' in Fig. 2. A first observation from
these figures appears to show that the polaron self-energ
the ground state is the largest and appears to lie below
others, as expected. One also notices that the polaron
energies for different quantum numbers (n,7m,l ) increase
with increasing electron-phonon coupling strength by co
parison of Figs. 2~a! and 2~b! with Fig. 2~c! and 2~d!, and
with decreasing confinement lengthl' by comparison of Fig.
2~a! with Fig. 2~c!, and Fig. 2~b! with Fig. 2~d!. In Fig. 3, we
demonstrate the dependence of polaron self-energies for
ferent quantum numbers (n,7m,l ) on the dimensionless
confinement lengthu' for some fixed values ofv̄c anda. It
should be noted that the polaron self-energies for differ
(n,7m,l ) increase with decreasing confinement lengthl' .
The casev̄c50 has also been interpreted by the authors
Ref. 8 for several values of electron-phonon coupli
strengtha.

B. V̄25b̄2/ḡ7
2 <1

With this condition,b̄2,ḡ7
2 , one has to minimize Eq

~28! with respect to bothb̄ andḡ7 . This yields two coupled
equations which have complicated dependencies ona, v̄c ,

v̄ i , v̄' , and I n7ml(V̄) for the relevant variational param
eters, so that it seems impossible to solve them; howeve
one can use the valuesb̄251/v̄ i and ḡ7

2 51/v̄ correspond-
ing to a50 as a first approximation, then Eq.~28! takes the
form
tic

d
o-
-

the
e-
-

l-
a

In
n-
r-
e

n-

of

for
he
lf-

-

if-

t

f

if

Ēn,7m,l5~2n1m11!v̄1S l 1
1

2
D v̄ i7m

v̄c

2

2a
2

p

v̄

Av̄ i

I n7ml~V̄ !. ~35!

In Appendix A, we present the details of calculation of t

integralsI n7ml(V̄) involved in Eq.~35! for some values of
(n, m, l ). From Eqs.~A10! and~A11!, the integral appearing
in the evaluation of the ground state is found to be

I 000~V̄ !5
1

V̄A12V̄2

arctanFA12V̄2

V̄
G . ~36!

We note that the ground-state energy obtained by sub
tution of Eq.~36! into Eq. ~35! yields the result of Yıldırım
and Erçelebi,22 provided that one replacesḡ7

2 by 1/l1 and

b̄2 by 1/l2; it also gives 2D limit~1D confinement! results
of Ref. 22 by substitution of relevant parameters with t
parameters defined there, in the absence of magnetic field
our result for the ground-state energy is consistent with t
from Refs. 8 and 22, and also includes the magnetic-fi
dependence. For this limit we can easily obtain the fir
excited-state energies. This requires evaluating certain i
grals, which can be obtained from Eqs.~A10! and ~A12!–
~A16! and are of the following forms:

I 0710~V̄ !52
3Ap

32
L21

3Ap

16
L1F12

1

2
L1

3

16
L2G I 000,

~37!

I 001~V̄ !52
3Ap

8
2

Ap

4
V̄21F11V̄2L1

3

4
V̄4L2G I 000

2
Ap

2
V̄2LF11

1

2
V̄21

3

4
V̄2LG , ~38!

I 100~V̄ !5F12L1
9

8
L22

15

16
L31

105

256
L4G I 000

1
Ap

2
LF 9

16
2

23

32
L1

170

256
L22

105

256
L3G ,

~39!

where we have definedL51/(12V̄2). Inserting Eqs.~37!–
~39! together with Eq.~36! into Eq. ~35! yields the ground-
and first-excited-state energies of the polaron. They are p
ted in Fig. 4. as a function of cyclotron frequency (v̄c) for
two different values ofa at fixed confinement frequenciesv̄ i
and v̄' . Here the increase of electron-phonon interact
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FIG. 5. The magnetopolaron self-energiesĒp
n,m,l as a function of confinement lengthuz ~a! for v̄'52 andv̄c50 and~b! for v̄'52 and

v̄c510, ata50.5. ~c! Same as~a!, and~d! same as~b!, but a52.
s
gi
Fi

i
tio

ha

e
in
causes a lowering in energy levels for the same reason
pointed out above. For comparison, the polaron self-ener
for the ground and first excited states are also plotted in
5 as a function of confinement lengthuz for two different
values ofa and v̄c at a fixed confinement frequencyv̄' .
One can easily observe that the polaron self-energies
crease not only with increasing electron-phonon interac
by comparison of Figs. 5~a! and 5~b! with 5~c! and 5~d!, but
also with increasing cyclotron frequency due to the fact t
as
es
g.

n-
n

t

electron is localized in thexy plane perpendicular to the
magnetic field, by comparison of Figs. 5~a! and 5~c! with
5~b! and 5~d!;

C. V̄25b̄2/ḡ7
2 >1

By using Eqs.~B1! and~B2!, one obtains the value of th
integral appearing in the calculation of the ground state
this case as
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FIG. 5. ~Continued!.
d

q

ncy
ne-

first
ent

ion
f a
I 000~V̄ !5
Ap

2

1

V̄AV̄221
ln@V̄1AV̄221#, ~40!

which differs from Eq.~36!. Exactly the same results hol

for the integralsI 0710(V̄), I 001(V̄), and I 100(V̄) as for the
previous case, provided that now one uses Eq.~40! for

I 000(V̄) instead of Eq.~36!. So, in this limit, we find the
ground- and the first-excited-state energies by inserting E
~37!–~39! together with Eq.~40! into Eq. ~35!. They exhibit
s.

the same behavior under the variation of cyclotron freque
and of electron-phonon coupling strength at fixed confi
ment frequenciesv̄ i andv̄' ~Fig. 6!. In order to understand
better how polaron self-energies for the ground and the
excited states are influenced by the change of confinem
lengthu' , we plot them in Fig. 7.

IV. CONCLUSION

In this paper, we have performed a variational calculat
to obtain the ground- and first-excited-state energies o
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FIG. 6. Cyclotron frequency dependence of the magnetopolaron energy levelsĒn,m,l in a quantum dot with an anisotropic parabol

confinement~a! at a50.5 and~b! at a52, for v̄'58 andv̄ i52.
on
m
s
d

o
it
d
re
ot

w
that

in
tical
se
e-
al-

y
l,
polaron in a parabolic QD. It is assumed that the electr
interface–LO-phonon interaction can be negligible in co
parison with bulk LO phonons. The ground-state energie
zero magnetic fields have reduced to the results obtaine
other methods. The first-excited-state energies are also
tained, but to our knowledge there exists no study w
which we can compare our results. The present metho
valid for intermediate coupling strength. Therefore, our
sults can be experimentally realized for semiconductor d
such as CuCl and CdSe.
-
-
in
by
b-

h
is
-
s,

A QD may have many electrons, changing from a fe
electrons to a thousand. Electron-electron interaction
may be important in certain problems can be negligable
some cases. For example, it was shown that magneto-op
absorption lines by many electrons do not differ from tho
of only one electron.19 In the present approach we have n
glected these interactions for the sake of simplifying our c
culations. The confinement lengthsu' anduz are expressed
in terms of the polaron radiusr 0 and are dimensionless. Onl
the values ofu' and uz larger than unity are meaningfu
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FIG. 7. The magnetopolaron self-energiesĒp
n,m,l as a function of confinement lengthu' ~a! for v̄ i52 andv̄c50 and~b! for v̄ i52 and

v̄c510, ata50.5. ~c! Same as~a!, and~d! same as~b!, but a52.
n
is
on
e
io
of
n

nd

en
since the Fro¨hlich Hamiltonian is valid in the continuum
approximation.

In summary, we have analytically calculated the grou
and first excited states of the magnetopolaron in an an
tropic QD. We have observed that effects of the electr
phonon interaction, besides those of confinement in all dir
tions, have a great importance in analyzing the localizat
properties of the electron. Furthermore, the presence
magnetic field makes these effects more prominent, as ca
observed from the figures.
d
o-
-

c-
n
a
be
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APPENDIX A

In this and in Appendix B we evaluate the integral giv
in Eq. ~28!, i.e.,
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FIG. 7. ~Continued!.
e

I nml~V̄ !5E
0

`

x dxurnm~x2/2!u2E
0

`

dy
e2y2

V̄2x21y2
Ll

2~y2!,

~A1!

for different values of three quantum numbers (n, m, l ) and

V̄, which we require in the text. First we will consider th

case ofV̄251. If we use the following integral, with this

choice of the parameterV̄, over the variabley and for l 50
in Eq. ~A1!,23

I 0~m,b!5E
0

`

dy
e2m2y2

y21b2
5@12F~bm!#

p

2b
eb2m2

,

~A2!
in which F(bm)5(2/Ap)*0
bmdt exp(2t2) is the well-known

probability integral, then we obtain

I nm0~1!5
p

2E0

`

dxurnm~x2/2!u2@12F~x!#ex2
. ~A3!

The remaining integral overx in Eq. ~A3! can be easily per-
formed by means of the integral identity23

I ~p,q!5E
0

`

dx@12F~px!#x2q215

GS q1
1

2D
2Apqp2q

. ~A4!
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By using the various values ofrnm given by Eqs.~19! and
~A4!, one finds the following results:

I 000~1!5
Ap

2
, I 0710~1!5

23Ap

60
, I 100~1!5

423Ap

1260
.

~A5!

In order to find the result of the remaining integral requir
in the text, i.e.,I 001(1), one has toconsider the integral

I 001~1!5E
0

`

x dxe2x2E
0

`

dy
e2y2

x21y2
~12y2!2, ~A6!

where the value ofr00 given in Eq. ~19! and L1(y2)5(1
2y2) are used. To evaluate the integral overy in Eq. ~A6!
one also needs the relations

I 2~m,b!52
1

2m

]

]m
I 0~m,b!5E

0

`

y2dy
e2m2y2

y21b2

5
Ap

2m
2

pb

2
eb2m2

@12F~bm!# ~A7!

and

I 4~m,b!52
1

2m

]

]m
I 2~m,b!5E

0

`

y4dy
e2m2y2

y21b2

5
Ap

4m3
2

Ap

2

b2

m
1

p

2
b3eb2m2

@12F~bm!#,

~A8!

which are derived by repeated differentiation partially of E
~A2! with respect to the parameterm. On substituting these
and Eq.~A2! in Eq. ~A6!, one obtains the integrals overx,
which have the same structure as in Eq.~A4!. So the result is

I 001~1!5
98Ap

240
. ~A9!

In the following we will evaluate Eq.~A1! for the case of

V̄2,1. As we have done above, we start with the casl
50, so that Eq.~A1! can be written in the form

I nm0~V̄ !5E
0

`

x dxurnm~x2/2!u2E
0

`

dy
e2y2

V̄2x21y2

5
p

2V̄
E

0

`

dxurnm~x2/2!u2@12F~V̄x!#eV̄2x2
,

~A10!

again by using Eq.~A2!. If the values ofrnm for different
values ofn and m given in Eq.~19! are replaced into Eq
~A10!, one first needs to use the integral23

I 0~m!5E
0

`

dz@12F~z!#e2m2z2
5

1

Ap

arctanm

m
;

~A11!
.

furthermore, the other integrals to be appeared in calcula
can be obtained from Eq.~A11!, by repeated differentiation
partially of Eq.~A11! with respect to the parameterm:

I 2~m!52
1

2m

]

]m
I 0~m!5E

0

`

z2dz@12F~z!#e2m2z2

5
1

2Ap
Farctanm

m3
2

1

m2~11m2!
G , ~A12!

I 4~m!52
1

2m

]

]m
I 2~m!5E

0

`

z4dz@12F~z!#e2m2z2

5
1

4Ap
F3 arctanm

m5
2

3

m4~11m2!
2

2

m2~11m2!2G ,

~A13!

I 6~m!52
1

2m

]

]m
I 4~m!5E

0

`

z6dz@12F~z!#e2m2z2

5
1

8Ap
F15 arctanm

m7
2

15

m6~11m2!
2

10

m4~11m2!2

2
8

m2~11m2!3G , ~A14!

I 8~m!52
1

2m

]

]m
I 6~m!5E

0

`

z8dz@12F~z!#e2m2z2

5
1

16Ap
F105 arctanm

m9
2

105

m8~11m2!
2

70

m6~11m2!2

2
56

m4~11m2!3
2

48

m2~11m2!4G , ~A15!

which on substitution into Eq.~A10! give the results used in

the text. Finally, forI 001(V̄), we evaluate the integral

I 001~1!5E
0

`

x dxe2x2E
0

`

dy
e2y2

V̄2x21y2
~12y2!2

~A16!

by means of Eqs.~A7! and ~A8! together with the help of
Eqs.~A14! and~A15!; hence one finds the result used in t
text.

APPENDIX B

In Appendix A we require the result of integral~A10!, in

which the conditionsV̄251 andV̄2,1 are imposed, respec
tively. Here we must evaluate it by considering the integ



-
t

-
s

nt

PRB 60 4849POLARON EFFECTS ON AN ANISOTROPIC QUANTUM . . .
I 0~m!5E
0

`

dz@12F~bz!#em2z2
zn21

5

GS n11

2 D
Apnbn 2F1S n

2
,
n11

2
;
n

2
11;

m2

b2D , ~B1!

but now we have the conditionV̄2.1, so that m251

2(1/V̄2),1. In Eq. ~B1! 2F1 is the well-known hypergeo
metric function. Forn5m50, it can be easily shown tha
Eq. ~A10! results in

I 000~V̄ !5
Ap

2

1

V̄2 2F1S 1

2
,1;

3

2
;m2D5

Ap

2

1

V̄2

lnS 11m

12m D
2m

,

~B2!
us

. B
where we have used 2F1( 1
2 ,1;3

2 ;m2)5 ln@(11m)/
(12m)#/2m.24 In attempting to evaluate Eq.~A10! for values
n and m different from zero, and also Eq.~A16! under the

conditionV̄2.1 with n5m50, one needs to evaluate inte
grals concerning2F1 with different arguments such a

2F1( 3
2 ,2;5

2 ;m2), 2F1( 5
2 ,3;7

2 ;m2) and so on. In handling this
kind of integrals, it is necessary to use an importa
identity24

d

dz2F1~a,b;c;z!5
ab

c 2F1~a11,b11;c11;z!.

Finally, we obtain the previous results, Eqs.~37!–~39!, as in

the case ofV̄2,1, but with differentI 000(V̄) given by Eq.
~B2!.
s.
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