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Non-fermi-liquid behavior in a disordered Kondo-alloy model
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We study a mean-field model of a Kondo alloy using numerical techniques and analytic approximations. In
this model, randomly distributed magnetic impurities interact with a band of conduction electrons and have a
residual Ruderman-Kittel-Kasuya-Yosida coupling of strengthJ. This system has a quantum-critical point at
J5Jc;TK

0 , the Kondo scale of the problem. TheT dependence of the spin susceptibility near the quantum
critical point is singular withx(0)2x(T)}Tg and nonintegerg. At Jc , g53/4. For J&Jc there are two
crossovers with decreasingT, first to g53/2 and then tog52, the Fermi-liquid value. The dissipative part of
the time-dependent susceptibilityx9(v)}v as v˜0 except at the quantum-critical point where we find
x9(v)}Av. The characteristic spin-fluctuation energy vanishes at the quantum-critical point withvsf;(1
2J/Jc) for J&Jc , andvsf}T3/2 at the critical coupling.@S0163-1829~99!03131-8#
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I. INTRODUCTION

The understanding of metallic states that do not fit with
the framework of Fermi-liquid theory is one of the importa
current challenges of condensed matter physics.1 This issue
is relevant to a large class off-electron materials that prese
anomalies in their thermodynamic and transport propertie
low temperature.2 Two important features characterize th
physics of these systems. One, is the interaction of the c
duction electrons with localized magnetic momentsvia the
Kondo coupling. The other, is the inevitable presence of d
order due to the alloying process. Several models in wh
non-Fermi-liquid~NFL! behavior arises as a consequence
the interplay between disorder and magnetic interacti
have been proposed in the literature. In the Kondo-disor
model of Mirandaet al.,3 randomness in the local hybridiza
tion matrix element between localized and itinerant electr
is thought to be at the origin of NFL behavior. In this theo
the disorder generates a broad distribution of Kondo te
peratures whose tail extends down toTK50. Therefore, a
finite fraction of the localized spins remain unquenched at
temperatures and gives rise to singularities in the thermo
namic and transport properties.

In the metallic spin-glass model,4–6 the focus is on the
consequences of randomness in the Ruderman-Ki
Kasuya-Yosida~RKKY ! intersite couplings. This type o
disorder is modeled by including a spin-glass-like excha
term in the Hamiltonian. The system has a quantum ph
transition when the strength of the magnetic interactionJ
becomes comparable to the Kondo temperature of the un
lying Kondo lattice,TK

(0) . Beyond this point, the ground sta
is no longer a nonmagnetic metal but it exhibits long-ran
spin-glass order. NFL behavior results from the power-l
behavior found in the neighborhood of the quantum-criti
point, a scenario that is similar to that proposed to expl
NFL behavior in systems close to ferro- or antiferromagne
instabilities.7
PRB 600163-1829/99/60~7!/4702~9!/$15.00
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In this paper, we study a mean-field Kondo-alloy mod
recently proposed and discussed by Sengupta and Geor5

In their paper, these authors did not solve the original Ham
tonian but a simpler solvable quantum-rotor problem8 that
was assumed to exhibit the same low-frequency behav
Here, we solve numerically the Kondo-alloy model usi
classical and quantum Monte Carlo techniques. We fin
quantum phase transition atJ5Jc'1.15 TK

0 where the zero-
temperature spin-glass susceptibility of the system diverg
At the critical coupling, theT dependence of the uniform
magnetic susceptibility is singular withx(0)2x(T);T3/4.
This anomalousT dependence is also found above the cro
over line T/Jc;(12J/Jc)

2/3. Below this line, we still find
unconventional behavior but the exponent is different,x(0)
2x(T);T3/2. For JÞJc , the normal behavior,dx;T2, is
recovered at low enough temperature. The numerical res
for the frequency dependence of the susceptibility are v
well described over a wide range of temperature and
quencies by a simple approximate expression that we de
from the original model in the strong-coupling limit. Th
strong coupling solution reduces to that of the simplifi
model of Sengupta and Georges5 in the v˜0 limit. The
spin-fluctuation spectrum is Fermi-liquid-like forv˜0 ev-
erywhere except atJ5Jc . We find x9(v)}v for v&vsf
where the spin-fluctuation frequencyvsf}(12J/Jc) for J
&Jc and vsf}T3/2 at the critical coupling. At the quantum
critical point, x9(v)}Av. This implies a slow decay of the
spin-spin correlation function,̂Sz(t)Sz(0)&;t23/2, that an-
ticipates the appearance of long-range order in the syste

The paper is organized as follows: In Sec. II, we introdu
the model Hamiltonian and use it to derive an effective lo
action for the spin degrees of freedom. In Sec. III, we disc
two equivalent formulations of the effective model that a
well suited for a numerical investigation of the problem
These are based on the formal equivalence between
Kondo-alloy problem and two other models. The first one
a classical one-dimensional Ising chain with short- and lo
4702 ©1999 The American Physical Society
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PRB 60 4703NON-FERMI-LIQUID BEHAVIOR IN A DISORDERED . . .
range ferromagnetic interactions, and may be solved by c
sical Monte Carlo simulation. The second model system
scribes a singleS51/2 quantum spin evolving in the
presence of two magnetic fields, one that is time depend
and random in the longitudinal direction, and another tha
static and fixed in the transverse direction. This problem m
be solved using a quantum Monte Carlo algorithm. The
sults of the simulations are presented in Sec. IV where
also derive a simple analytical approximation that allows
a transparent interpretation of the data. This is followed b
comparison of our results to those obtained by other auth

II. THE MODEL

In a disordered Kondo alloy, randomly distributed spi
interact with a band of conduction electrons through a lo
Kondo coupling. There is also a residual RKKY exchan
interaction between the spins, which is random becaus
the disorder in their positions. Many of the systems stud
experimentally exhibit uniaxial anisotropy as a result
strong crystal-field and spin-orbit effects. Therefore, to a fi
approximation, only the coupling between the component
the localized spins along the easy-axis needs to be con
ered. The simplest model with these characteristics i
Kondo-lattice model with an additional Ising-like rando
exchange term. The Hamiltonian of the model is

H52 (
i , j ,s

t i j cis
1 cj s1Juu

K(
i

Si
zsi

z1
J'

K

2 (
i

~Si
1si

21H.c.!

2
1

2 (
i , j

Ji j Si
zSj

z . ~1!

Here,SW i is a localized spin operator at thei th site of a lattice
of sizeN. The creation and destruction operators for the c
duction electrons are cis

1 and cis and sW i

51/2(a,bcia
1 sW a,bcib is the local electronic spin density. Th

nearest-neighbor electron hopping integral ist i j 5t/Az where
z is the connectivity of the lattice, andJuu

K and J'
K are the

longitudinal and transverse Kondo couplings, respectiv
The nearest-neighbor couplings between the spins,Ji j , are
quenched random variables for which we assume for s
plicity a Gaussian probability distribution with zero mea
and variancê Ji j

2 &5J2/z. The z-dependent normalization o
the off-diagonal couplingst i j and Ji j has been chosen suc
that the results in thez˜` limit to be considered below ar
finite.9

The last term on the right-hand side of Eq.~1! is the
well-known Sherrington Kirkpatrick model10 that has a
phase transition to a spin-glass state atTg

0}J. The local
Kondo coupling favors screening of the localized spins
the conduction electrons below a characteristic tempera
TK

0 . As a consequence of the competition between these
terms, a spin-glass ground state is only possible forJ>Jc

;TK
0 . Therefore,Tg˜0 asJ˜Jc from above and the sys

tem remains paramagnetic down to zero temperature foJ
,Jc . The pointT50, J5Jc where the nature of the groun
state of the system changes defines the quantum-cri
point.7,11
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We investigate the properties of model~1! near the
quantum-critical point in the framework of a dynamic
mean-field theory.12 In this approach, exact in the limit o
infinite lattice connectivity, the degrees of freedom on a
particular lattice site are isolated and treated exactly, wh
the rest of the system is replaced by an effective medium
which the chosen site is coupled. The properties of the ef
tive medium are determined self-consistently from the so
tion of the single-site problem. In the limitz˜`, the con-
figurational average over the random couplings can
performed explicitly13 and the intersite terms in Eq.~1! can
be eliminated.12 This reduces the problem to a magnetic im
purity embedded in an electronic bath and subject to a
namic magnetic selfinteraction.12,13 Ignoring for the moment
the anisotropy of the Kondo coupling in order to simplify th
notation, the effective action of the single-site problem in t
paramagnetic phase may be written as5

Sloc52E
0

bE
0

b

dtdt8cs
1~t!G 0

21~t2t8!cs~t8!

1JKE
0

b

dtSW ~t!•sW~t!2
J2

2 E0

bE
0

b

dtdt8Sz~t!

3x~t2t8!Sz~t8!. ~2!

The functionsx(t) andG0(t), a priori unknown, are de-
termined by the feedback effects of the coupling of the i
purity site to rest of the system through a set of se
consistency conditions. Their precise form depends upon
shape of the noninteracting electronic density of statesN(e)
of the lattice.12 In the case of a semicircular density of state
the self-consistency equations acquire a particularly sim
form. We have

x~t!5^T@Sz~t!Sz~0!#&Sloc
, ~3!

for the magnetic degrees of freedom, and

G 0
21~t2t8!5S 2

]

]t
1m D d~t2t8!2t2G~t2t8! ~4!

for the electronic degrees of freedom. In the above equati
T is the time-ordering operator along the imaginary-time a
0<t<b, m is the chemical potential and

G~t!52^T@c~t!c1~0!#&Sloc
. ~5!

It follows that G and x are, respectively, the exact loca
electronic Green function and the imaginary-time-depend
spin susceptibility. For generalN(e), Eq.~4! is replaced by a
more complicated implicit condition.14

The solution of this set of coupled self-consistent eq
tions is still a very difficult task. It may be argued, howeve
that knowledge of the exact bath Green function is not
sential for the understanding of the low-frequency spin d
namics of the model. This follows from a perturbativ
argument5 that establishes that the long-time behavior of t
exact bath Green function is qualitatively the same as tha
a bath of noninteracting electrons, i.e.,G0(t);1/t. But the
form of the low-energy effective action for the localize
spins is determined precisely by the asymptotic behavio
the electronic Green function. Therefore, if we ignore Eq.~4!
and fix G0( ivn)5*2`

` deN0(e)/( ivn1m2e) whereN0(e)
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is the unrenormalized density of states, we will still get
qualitatively correct description of the low-frequency sp
dynamics of the model.

Further progress can be made by performing a Hubb
Stratonovich transformation that decouples the last term
Eq. ~2!. Introducing a set of time-dependent random fie
h(t) that couple to the spin operators,15 the partition func-
tion of the problem may be rewritten as

Z5E Dh~t!expF2
1

2E0

bE
0

b

dtdt8h~t!

3x21~t2t8!h~t8!GZK@h#, ~6!

where

ZK@h#5E Dc~t!Dc1~t! Tr
Sz

~T exp2SK!, ~7!

and

SK52E
0

bE
0

b

dtdt8cs
1~t!G 0

21~t2t8!cs~t8!

1JKE
0

b

dtSW ~t!•sW~t!2JE
0

b

dtSz~t!h~t!. ~8!

Equation~8! is the action of a single Kondo impurity in
time-dependent magnetic fieldJh(t) in the z direction.
Within dynamic mean-field theory the partition function
the Kondo alloy is thus given by the average over all
realizations of the random field of the partition function
the modified Kondo problem of Eq.~8!.

Equations ~6!–~8! subject to condition~3! define the
mean-field model of the Kondo alloy. In the next section
shall show that this model may be cast in two different for
both of which are well suited for setting up schemes for
numerical solution of the problem.

III. METHOD

A. Formulation of the problem

As we are only interested in the spin dynamics of t
system, the electronic degrees of freedom in Eq.~6! may be
integrated out. In the case of the single-impurity Kon
model this leads to the well known Coulomb g
representation16 of the partition function of the problem. Th
same is true for the generalized problem of Eq.~8! as the
additional random term commutes with the longitudinal p
of the Kondo coupling. The Anderson-Yuval technique16

may therefore be applied to Eq.~7!. After averaging the re-
sulting expression over the distribution of random fields, E
~6! may be rewritten as

ZCG5 (
n50

` E
0

b

dt1E
0

t12t0
dt2 . . . E

0

t2n212t0

3dt2nS J'
K

2 D 2n

expF(
i , j

~21! i 1 jV~t i2t j !G , ~9!

where
d-
in
s

e

s
e

t

.

]2V~t!

]t2
52aS p

b D 2

sin22
pt

b
1J2x~t!, ~10!

and t0 is a short time cutoff of the order of the invers
bandwidth of the electron bath. The coupling constanta
5(112d/p)2 where d52tan21(pt0Juu

K/4) is the phase
shift for scattering of electrons from a local potentialJuu

K/4.
In Eq. ~9!, t i , i 51, . . . ,2n are the positions on the tim

axis of successive spin-flips generated by the transverse
of the Kondo coupling and the functionV(t) represents the
interaction between pairs of spin-flips. The first term on t
righthand side of Eq.~10! is familiar from the work on the
Kondo model.16 It arises from the singular response of th
conduction electron bath to a spin flip on the impurity si
The second term is characteristic of the alloy model a
represents the reaction of the rest of the spins to the lo
perturbation. It is interesting to notice that the partition fun
tion of a recently studied extended two-band Hubba
model17 can be cast in a form equivalent to Eq.~9!.

Equation~9! is not yet in a form suitable for computatio
of the magnetic correlation function. We shall next establ
a formal equivalence betweenZCG and the average partition
function of a single quantumS51/2 spin in the presence of
random Gaussian time-dependent longitudinal fieldj(t) and
a static transverse fieldG, a problem that can be solved nu
merically using the quantum Monte Carlo method of Re
15 and 18. The partition function of the quantum spin pro
lem ZQS is

ZQS5E Dj expF2
1
2E0

bE
0

b

dtdt8j~t!Q21~t,t8!j~t8!G
3Tr

Sz

T expF E
0

b

dt@j~t!Sz~t!1GSx~t!# G , ~11!

whereQ(t) is the correlation function of the random com
ponent of the magnetic field.

To demonstrate the equivalence of Eqs.~9! and ~11!, we
first perform a Trotter decomposition of the time-order
exponential in Eq.~11!,

T expF E
0

b

dthW ~t!•SW ~t!G;)
k51

M

exp@DthW ~tk!•SW #, ~12!

whereDt5b/M . We next introduce a complete set of inte
mediate statesusk&^sku at each imaginary time slicetk . The
matrix elements in the Trotter expansion may be evalua
using the expression

^suexp$Dt@j~t!Sz~t!1GSx~t!#%us8&

'eDtj(t)sFdss81dss̄8

GDt

2
1O~Dt2!G , ~13!

valid in the limit Dt˜0. After averaging over the fieldj(t)
and taking the limitM˜`, the partition function of the
model may be expressed as a sum of contributions of in
vidual ‘‘spin histories,’’ each of these being one of the po
sible sequences of the eigenvaluess(t)561/2 of the inter-
mediate states. We find
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ZQS5 (
n50

` E Ds (n)expF1

2E0

bE
0

b

dtdt8s (n)~t!

3Q~t2t8!s (n)~t8!1n ln GG , ~14!

wheres (n)(t) is a spin history withn spin flips in the inter-
val 0<t<b and the integration is over their position
Equation~9! follows from Eq. ~14! by integrating twice by
parts the first term in the exponential, provided that
chooseG5J'

K and that we identifyQ(t) with the righthand
side of Eq.~10!. The original problem has thus been reduc
to the evaluation of the partition function of Eq.~11! subject
to the condition~3!.

An alternative numerical method may be formulated
taking advantage of the asymptotic equivalence19,20 between
the Coulomb gas representation~9! of the Kondo problem
and the partition function of aclassical one-dimensional
Ising spin chain with nearest-neighbor and long-range in
actions. This problem may be solved numerically using st
dard classical Monte Carlo techniques as has been rec
done for the single-impurity anisotropic Kondo model
Ref. 20. It may be shown by a straightforward generalizat
of the methods of Ref. 19 that the Ising-chain model relev
for our problem is

ZI5(
$Si %

expF(
i<L

KNNSiSi 111 (
i , j <L

KLR~ i 2 j !SiSj G ,
~15!

where theSi561 are Ising variables and the number of sit
in the chain isL5b/t0. The spin-spin interaction consists o
a short-range part,KNN'21/2 ln(JKt0/2), and a long-range
part given by

KLR~ i 2 j !5
1

4 H 2a~p/N!2

sin2@p~ j 21!/N#
1J2t0

2x~t0u i 2 j u!J .

~16!

It is worth noticing that, while both of these approach
can be used to solve the present strongly anisotropic Kon
alloy model, only the first one can be generalized to the c
of a non-Ising spin-spin interaction.

B. Numerical methods

We have simulated the mean-field Kondo-alloy model
ing the two formulations described in the previous section
each has its own advantages and drawbacks. In partic
while the systematic error introduced by the discretization
the imaginary time is larger for the quantum simulation
statistical fluctuations are far more important in the class
case. We have empirically found that the latter method
more accurate for the computation of the static susceptib
at low temperatures whereas the former one gives bette
sults for the overall frequency dependence of the spin co
lation function.

The numerical procedure used to solve the self-consis
problem is as follows:~i! an approximation tox(t) is used
as input in either Eqs.~10! or ~16!. ~ii ! the spin-spin corre-
lation function is obtained from a Monte Carlo simulatio
e

d
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~see below!. ~iii ! a newx(t) is computed from condition~3!
and used as a new input in step~i!. This procedure is iterated
until successive values of the correlation function differ
less than a fixed tolerance level~see below!. This takes from
four to fifteen iterations depending on the temperature
the values of the parameters.

The simulations of the classical problem defined by E
~15! have been done using a standard Monte Carlo heat-
algorithm for Ising chains of up to 256 sites. The quantu
problem of Eq.~11! has been simulated as follows. Th
imaginary-time axis is discretized in slices of widthDt
5b/M and the time-ordered exponential appearing in E
~11! is approximated by a Trotter product ofM factors. The
statistical weight of a given configuration$j(t)% is thus ex-
pressed in terms of the trace of a product of 232 random
matrices. The corresponding contribution to the spin corre
tion function x(t,t8) is computed by inserting two addi
tional sz Pauli matrices at the appropriate places in the m
trix product. It is important to choose the parameterM
appropriately. IfM is too small, the systematic error intro
duced by the Trotter approximation is large. IfM is too large,
however, the algorithm is prone to numerical instability. W
found that the choiceb&0.25Mt0 with M<128 is a satis-
factory compromise. This sets a lower limit to the tempe
tures that we can simulate,t0Tmin'0.03. The simulation is
most conveniently done in the space of the Masuba
frequency components of the field, j(vn)
5*0

bdtj(t)exp(2ivnt).15 These are finite in number as
consequence of the discretization of time:vn52pnT with
n50, . . . ,M21. In an elemental Monte Carlo move,
change of the complex fieldj(vn) for a single frequency is
attempted. A full Monte Carlo step is complete when
emental changes have been attempted for all the Matsu
frequencies.

The accuracy of the numerical calculations presented
low is determined by two factors, namely, the statistical er
of the Monte Carlo calculation and the stopping criteri
used in the enforcement the self-consistency condition
typical quantum Monte Carlo run consisted of 43105 Monte
Carlo steps per time slice. This corresponds to an abso
error of the order of 231023 in x(t). As we mentioned
above, the simulations based on Eq.~15! are noisier than
those based on Eq.~11!, which requires an order of magn
tude more MC steps to reach the same level of accuracy.
self-consistency loop was stopped when two successive
ues of the static local susceptibility differed by less th
0.5%, which is about twice the size of the statistical error.
the basis of these figures, we estimate that our final res
for xT are accurate to within 1%.

IV. RESULTS

We have simulated the mean-field Kondo alloy model
fixed values of the Kondo couplings and several values oJ
for T>0.05 TK

0 whereTK
0 is the single-site Kondo tempera

ture~see below!. The first step in the calculation is the choic
of the parametersa, J'

K and t0 that define the underlying
single-impurity Kondo problem@cf. Eq. ~9!#. As the low-
temperature properties of all antiferromagnetic Kondo m
els are described by the same fixed point, we are free
choose these parameters using criteria of numerical co
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nience. For the particular casea51/2 and for all values of
J' , the Kondo model is equivalent to a simple exactly so
able problem, the resonant model.21 We have made this
choice as it provides us with means to test our numer
methods by comparison of the Monte Carlo results with
analytical solution. We have takent0

21 as the unit of energy
and we have arbitrarily setJ'53/2t0

21.
Figure 1 showsx(t) as a function of the scaled variab

t/b for J50 and several temperatures. The correlation fu
tion in imaginary time is real and symmetric aroundt
5b/2 as a consequence of time-reversal invariance. Its m
mum value steadily decreases with decreasing tempera
The expected behavior of the zero-temperature dynamic
ceptibility in the long-time limit is16 x(t)}t22. At finite
temperatures this expression generalizes tox(t)
;(p/b)2sin22(pt/b).22 We have fitted our data fort;b/2
with the expression

x~t!5S p

b D 2 A

sin2
pt

b
1sin2

pt̃

b

, ~17!

whereA is aT-dependent amplitude and the cutofft̃ is of the
order of the inverse of the Kondo temperature to be defi
below. The fits, shown by the solid lines in the figure, are
excellent agreement with the numerical data.

The static spin susceptibility has been computed from
Monte Carlo results using the expression13 xT5*0

bdtx(t).
The results thus obtained are shown in Fig. 2. We also s
for comparison the susceptibility of the resonant model,

xT5
1

2p2T
fS 1

2
1b

D

4p D , ~18!

wheref(z)5d2 ln G(z)/dz2 and D is the width of the reso-
nant level. The latter has been determined by fitting the d
for t0T<0.2 to Eq. ~18! with the result D50.827 t0

21.
There is very good agreement between the theoretical

FIG. 1. Dynamic spin susceptibility in imaginary time forJ
50 for b/t0518, 20, 24, 28, and 32, from top to bottom. Th
symbols are the Monte Carlo data. The solid lines are the fits
ferred to in the text.
-

al
e

-

i-
re.
s-

d

e

w

ta

x-

pression and the Monte Carlo results in this temperat
range. Deviations from the theoretical result are expec
~and observed! at higher temperatures as Eq.~18! is only
valid for Tt0!1. Taking theT˜0 limit of Eq. ~18! we find
the zero-temperature susceptibilityx052/(pD)'0.77 t0.
Defining the Kondo temperature byx051/(2 TK

0 ), we ob-
tain TK

0 t0'0.65.
We have similarly computed thet-dependent susceptibil

ity of the system for several values ofJÞ0 andT. The over-
all shape of the curves thus obtained is similar to that
those of Fig. 1 but the decay of the correlations becom
slower and slower asJ increases. This is shown in Fig.
where we show results obtained for several values ofJ at our
lowest temperature,Tt053221. This slowing down of the
spin dynamics, which is accompanied of an increase of
susceptibility, is a precursor effect of the phase transit
that, as we shall see next, takes place for sufficiently largJ.

e-

FIG. 2. Temperature dependence of the susceptibility forJ50.
The circles are the Monte Carlo results. The dashed line repres
the susceptibility of the resonant model.

FIG. 3. TheJ dependence of the dynamic spin susceptibility
imaginary time at fixed temperature,T t051/32. The values ofJt0

are 0, 0.6, 0.65, 0.7, and 0.75, from bottom to top. The symbols
the Monte Carlo data. The lines are guides for the eye.
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A necessary condition for the stability of the parama
netic phase is that the inequality isY(T)[12JxT>0
holds.13 Y(T) is plotted versus temperature in Fig. 4 for se
eral values ofJ. The symbols are the Monte Carlo data. T
dashed lines are fits of the results to a model that will
discussed below and that allows us to extrapolate the re
down to T˜0. We see thatY(T50) vanishes forJ
50.75 t0

21;1.15 TK
0 , which identifies it as the critica

coupling. ForJ.Jc Y(T) vanishes at a finite temperatur
Tg .

Before discussing in detail the temperature dependenc
the uniform susceptibility in the vicinity of the critical cou

FIG. 4. The J- and T-dependence ofY(J,T)512JxT . The
paramagnetic phase is stable forY(J,T).0.
e

-

-

e
lts

of

pling, we shall make a disgression in order to derive a sim
model in terms of which the numerical data can be analy
in a transparent way. We start by noticing that the frequen
dependent susceptibility may be related to the fluctuation
the auxiliary fieldj(t). Using Eqs.~11! and ~3! one may
readily show that

^uj~ ivn!u2&5Q~ ivn!@11x~ ivn!Q~ ivn!#, ~19!

where the expectation value on the left-hand side of
equation is taken with respect to the probability distributi
P@j(t)#}exp(2bF) with

F@j~t!#5F@0#1
kT

2 (
n

uj~vn!u2

Q~vn!

2kT lnK T expF E
0

b

dtj~t!Sz~t!G L
G

. ~20!

Here, bF@0#52 ln@2 cosh(bG/2)# and ^(•••)&G

5Tr@(•••)exp(bGSx)#/Tr@exp(bGSx)#. Assuming for the mo-
ment that the transverse part of the effective field domina
over its fluctuating longitudinal component,G@^j2(t)&1/2,
the free-energy~20! may be expanded up to second order
j

F@j~t!#5F@0#1
kT

2 (
n

@Q21~vn!2x (0)~vn!#uj~vn!u2

1•••, ~21!

where the zeroth-order transverse susceptibilityx (0)(vn)
5Gmx /(G21vn

2) andmx51/2 tanh(bG/2). Combining Eqs.
~21! and ~19! we derive the following expression for th
frequency-dependent susceptibility
x~vn!5
12x (0)~vn!K~vn!2A@12x (0)~vn!K~vn!#22@2Jx (0)~vn!#2

2J2x (0)~vn!
, ~22!
rit-
the
is
x-
will

e

whereK(vn) is the Fourier transform of the first term on th
right-hand side of Eq.~10!. In the limit Tt0 , uvnut0!1 this
is

K~vn!5
2pa

t0
~12uvnut01••• !. ~23!

Substituting this expansion in Eq.~19! we find

x~vn!5
1

J2 H vn
2

G
1TK1ãuvnu

2AFvn
2

G
1TK1ãuvnuG2

2J2J , ~24!
where ã5pa, TK5G2ã/t0 and we have assumedT!G.
From Eqs. ~24! and ~19! we can estimatê j2(t)&'(J2

12a/t0
2) at largeG. We, therefore, expect Eq.~24! to be

valid provided the condition

Gt0@max$Jt0 ,A2a%, ~25!

is satisfied. It is clear that Eq.~25! will not be fulfilled by the
bare parameters, in general. We can, however, imagine w
ing down a set of renormalization-group equations for
flow of the different couplings as the high-energy cutoff
reduced. By analogy with the single-impurity case, we e
pect that in the paramagnetic phase the Kondo couplings
flow to the strong-coupling fixed-pointG[J'

K
˜`. There-

fore, we expect Eq.~24! to become appropriate below som
energy scale with renormalized values of the couplings.
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The derivation of the renormalization-group equations
the Kondo-alloy model is outside the scope of this work23

We shall instead consider Eq.~24! as a phenomenologica
equation containing three renormalized parameters,TK , ã,
andG to be determined by a fit of the numerical results.

The ratioTK /J is determined by the static uniform su
ceptibility alone. Settingvn50 in Eq. ~24! we have

JxT5
TK

J
2ATK

2

J2
21. ~26!

We thus see that the instability of the paramagnetic phas
signaled by the vanishing of the quantity under the squ
root in Eq. ~26!. We may therefore takeD5TK

2 /J221 as a
measure of the distance to the quantum-critical point
rewrite the susceptibility in the form

JxT5A11D2AD. ~27!

Notice that, even if the assumptions made in the deri
tion of Eq. ~27! are not valid, the latter can still be regarde
as a parametrization of the susceptibility in terms of a n
quantity,D(T,J). The interest of this parametrization stem
from the fact that theT- and J-dependence ofD is very
simple. We show in Fig. 5 the numerical values ofD ob-
tained inserting the Monte Carlo results for the static susc
tibility in Eq. ~27!. The dashed lines are fits to the simp
functional form

D~T!5D01~T/T0!3/2, ~28!

where the parametersD0 andT0 are functions ofJ but not of
T. The fits are very accurate over the entire tempera
range of our simulations. The lowest curve, correspondin
our estimated value for the critical coupling, has been fit
with D050. Examination of theJ dependence ofD0 shows
that, nearJc , D0˜a(12J/Jc), with a'1. The parameter
T0 has a finite limit,T0'0.27 TK

0 asJ˜Jc .

FIG. 5. TheJ and T dependence ofD. The symbols are the
Monte Carlo data. The dashed lines are the fits to the expressio
Eq. ~28!.
r

is
re

d

-

p-

re
to
d

Equations~27! and ~28! imply that, in the neighborhood
of the critical coupling, the uniform susceptibility has a no
Fermi-liquid T dependence

JcxT'5
12S T

T0
D 3/4

for D0
2/3!T/T0!1,

12AD02
1

2AD0
S T

T0
D 3/2

for T/T0!D0
2/3.

~29!

The values of the exponentg found in the two regions
defined above correspond to those obtained by o
authors4–6 in the quantum critical and quantum disordered
~QDI! regions in their analysis of metallic spin-glass mode
A third region ~QDII! should exist at lower temperature
where the normal Fermi-liquidT2 behavior is recovered
This second crossover is not visible in our data because
we shall see, it occurs below the lowest temperature that
can reach in our quantum Monte Carlo simulations.

The remaining two parameters in Eq.~24! may be deter-
mined from an analysis of the fullvn andT dependence of
the susceptibility. This is shown in Fig. 6 for two coupling
J50.65 Jc andJ5Jc . The symbols are the quantum Mon
Carlo data. The dashed lines are plots of Eq.~24! with G, ã
and TK adjusted to fit the data. The quality of the fits
excellent for all the valuesJ andT considered. It is remark-
able thatall our numerical results could be fitted with th

in

FIG. 6. Thev andT dependence of the dynamic susceptibili
for two values of the couplingJ. The symbols are the Monte Carl
data. The lines are fits to the expression in Eq.~24!.
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same values ofGt0'2.4 and ã'1.48. The full J- and
T-dependence is therefore in the effective Kondo tempe
ture, TK . The values ofTK obtained from the fits of the
frequency dependence of the susceptibility are consis
with those determined above from the static susceptibilit

At this point, we can discuss the connection between
results and those of Sengupta and Georges.5 Phrased in our
language, their approximation forx(vn) is obtained by ig-
noring the transverse field term in Eq.~11!, and solving the
remaining Ising problem in the spherical approximation. T
expression for the dynamic susceptibility that results fr
this procedure is

x~vn!'
1

J2
$l1ãuvnu2A@l1ãuvnu#22J2%, ~30!

wherel is a Lagrange multiplier introduced to impose t
spherical constraint,

^Sz~t!Sz~t!&5
1

b (
n52`

`

x~vn!51/4. ~31!

As it stands, expression~31! diverges because Eq.~30! does
not have the correctvn

22 high-frequency behavior. A high
energy cutoffL must therefore be introduced in the simp
fied model.

Comparison of Eqs.~24! and ~30! shows that the two
expressions become equivalent at low frequencies prov
we identify TK with l and ãG with L. The fact that the
Monte Carlo data could be fitted using Eq.~24! with T- and
J-independent values ofã andG justifiesa posteriorithe use
of a constant cutoff in the simplified model. Once this
fixed, the parameterl can be determined from conditio
~31!. Since the numerical data do satisfy this normalizati
it is not surprising that the determination ofTK from fits of
the Monte Carlo data and that ofl from enforcement of Eq.
~31! result in the same temperature dependence. This
gests that Eq.~24! may be used in conjunction with the no

FIG. 7. The crossover between anomalous and Fermi-liquid
havior obtained from Eq.~24! and condition~31!.
a-

nt
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e
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g-

malization condition to estimate theT dependence ofD in
the temperature range where we do not possess nume
data. We show in Fig. 7 the result of applying this proced
to the case ofJ50.8 Jc . We see that the expected crossov
from a T3/2 law to normalT2 behavior occurs at a tempera
ture T!'0.06 TK

0 . This is at the lower end of the tempera
ture range that we can reach. The crossover temperature
ther diminishes asJ˜Jc where it vanishes. This explain
why normal behavior has not been seen in our simulatio

The imaginary part of the magnetic response can now
determined by analytic continuation of Eq.~24!. The general
expression is complicated and not very illuminating. Ho
ever, in the low-frequency limit,v!ãG, and forJ˜Jc , Eq.
~24! can be cast in the scaling form

Jcx9~v!5ADFS 2ãv

JcD
D , ~32!

where the universal scaling functionF(x)

F~x!5
1

A2
x@~11x2!1/211#21/2. ~33!

e-

FIG. 8. The relaxation function,x9(v)/v. The curves have
been obtained by analytic continuation of the fits of the imagina
time Monte Carlo data.~a! T/TK50.05 andJt050.55, 0.6, 0.65,
0.7, and 0.75, from top to bottom.~b! J5Jc andb/t0532, 28, 24,
20, and 16, from top to bottom.
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This expression is equivalent to that found in Refs. 4–6.
The low-frequency behavior ofx9(v) as J˜Jc follows

from the above equations

Jcx9~v!'5
ãv

JcD
for v!JcD,

S ãv

Jc
D 1/2

for JcD!v!ãG.

~34!

The dissipative part of the susceptibility in the limitv˜0 is
Fermi-liquid-like everywhere except at the quantum-critic
point. However, the characteristic spin-fluctuation frequen
vsf}JcD vanishes asJ˜Jc with vsf}(12J/Jc) for J&Jc
andvsf}T3/2 at the critical coupling. The behavior ofx9(v)
at Jc is non-Fermi-liquid-like,x9(v)}Av, which reflects the
slow decay of the time-dependent spin-spin correlation fu
tion, ^Sz(t)Sz(0)&;t23/2 that anticipates the appearence
long-range order in the system. The nontrivialT-dependence
of the spin-fluctuation frequency in the vicinity of th
quantum-critical point that is responsible for the singular
havior of the susceptibility gives rise to anomalous powers
other thermodynamic and transport properties as well. In p
ticular, Eqs.~32! and~33! imply that the temperature correc
tions to the specific heat and the resistivity behave, resp
tively, asdC/T}2AT anddr}T3/2, in the quantum-critical
region.4,5

The full v-dependence of the absorptive part of the d
namic susceptibility is shown in Fig. 8 for several tempe
tures at the critical coupling and several values ofJ at T
50.05 TK

0 . These curves have been computed by anal
cally continuing the fits of the imaginary-frequency Mon
Carlo data. These curves are very similar in shape to th
obtained in Ref. 20 for the single-impurity Kondo model a
may be characterized by an effective Kondo temperature
l
y

-
f

-
n
r-

c-

-
-

i-

se

at

decreases with the distance to the quantum-critical p
where it vanishes. Indeed, Eqs.~32! and ~33! imply that the
effective Kondo scalevK , defined as the half width of the
relaxation functionx9(v)/v, is vK;TK

(0)AD.

V. CONCLUSIONS

In this paper, we have studied numerically a Kondo latt
model with random exchange between localized spins
mapping of this model to a self-consistent single-spin pr
lem, exact in the limit of large lattice coordination, allowe
us to obtain a complete numerical solution of the proble
The system has a quantum-critical point between a nor
metal and a spin-glass state. There is a region in theT2J
plane near the quantum-critical point where the character
spin-fluctuation energy varies as a nontrivial power of te
perature (vsf}T3/2). This gives rise to non-Fermi-liquid be
havior in thermodynamic and transport properties. At lo
enough temperature normal Fermi liquid behavior
recovered, except at the critical coupling. Our numerical
sults can be very well described over a large range of
quency and temperature by a simple model that we deriv
the strong-coupling limit. This model is closely related to t
M-component quantum-rotor and mean-field models t
have been previously discussed in the literature.4–6 Some
interesting questions remain open, notably, to what ex
the assumption that the electronic bath remains unrenorm
ized is a valid one. The enforcement of the self-consiste
condition ~4! poses some important technical difficultie
which we hope to be able to overcome in future work.
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