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Non-fermi-liquid behavior in a disordered Kondo-alloy model
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We study a mean-field model of a Kondo alloy using numerical techniques and analytic approximations. In
this model, randomly distributed magnetic impurities interact with a band of conduction electrons and have a
residual Ruderman-Kittel-Kasuya-Yosida coupling of strenptfihis system has a quantume-critical point at
J=JC~Tﬁ, the Kondo scale of the problem. TAedependence of the spin susceptibility near the quantum
critical point is singular withy(0)— x(T)>=T” and nonintegery. At J., y=3/4. ForJ<J. there are two
crossovers with decreasifg first to y=3/2 and then toy=2, the Fermi-liquid value. The dissipative part of
the time-dependent susceptibilify’'(w)>w as w—0 except at the quantum-critical point where we find
X"(w)*w. The characteristic spin-fluctuation energy vanishes at the quantum-critical pointwyyith{1
—JI13,) for J=J., andwec T2 at the critical coupling[S0163-182009)03131-4

[. INTRODUCTION In this paper, we study a mean-field Kondo-alloy model
recently proposed and discussed by Sengupta and Gebrges.

The understanding of metallic states that do not fit withinIn their paper, these authors did not solve the original Hamil-
the framework of Fermi-liquid theory is one of the important tonian but a simpler solvable guantum-rotor prodfietimat
current challenges of condensed matter phy1s|T;Bis issue was assumed to exhibit the same low-frequency behavior.
is relevant to a large class B&lectron materials that present Here, we solve numerically the Kondo-alloy model using
anomalies in their thermodynamic and transport properties @lassical and quantum Monte Carlo techniques. We find a
low temperaturé. Two important features characterize the quantum phase transition &t J.~1.15 Tﬁ where the zero-
physics of these systems. One, is the interaction of the coriemperature spin-glass susceptibility of the system diverges.
duction electrons with localized magnetic momenwis the At the critical coupling, theT dependence of the uniform
Kondo coupling. The other, is the inevitable presence of dismagnetic susceptibility is singular witR(0)— x(T)~ T34
order due to the alloying process. Several models in whicfThis anomaloud dependence is also found above the cross-
non-Fermi-liquid(NFL) behavior arises as a consequence ofover line T/J.~(1—J/J.)?2. Below this line, we still find
the interplay between disorder and magnetic interactionsinconventional behavior but the exponent is differgi{))
have been proposed in the literature. In the Kondo-disorder y(T)~T%2 For J#J., the normal behaviorgy~T?, is
model of Mirandaet al.® randomness in the local hybridiza- recovered at low enough temperature. The numerical results
tion matrix element between localized and itinerant electrongor the frequency dependence of the susceptibility are very
is thought to be at the origin of NFL behavior. In this theory, well described over a wide range of temperature and fre-
the disorder generates a broad distribution of Kondo temguencies by a simple approximate expression that we derive
peratures whose tail extends downT=0. Therefore, a from the original model in the strong-coupling limit. The
finite fraction of the localized spins remain unquenched at alktrong coupling solution reduces to that of the simplified
temperatures and gives rise to singularities in the thermodymodel of Sengupta and Georgeis the w—0 limit. The
namic and transport properties. spin-fluctuation spectrum is Fermi-liquid-like fes—0 ev-

In the metallic spin-glass mod&f® the focus is on the erywhere except al=J.. We find y"(w)* o for o=<wg
consequences of randomness in the Ruderman-Kittelwhere the spin-fluctuation frequenayge<(1—J/J;) for J
Kasuya-Yosida(RKKY) intersite couplings. This type of <J. and wecT32 at the critical coupling. At the quantum-
disorder is modeled by including a spin-glass-like exchangeritical point, X"(w)oc\/a_ This implies a slow decay of the
term in the Hamiltonian. The system has a quantum phasepin-spin correlation functior(,Sz(t)SZ(O)>~t‘3’2, that an-
transition when the strength of the magnetic interaction ticipates the appearance of long-range order in the system.
becomes comparable to the Kondo temperature of the under- The paper is organized as follows: In Sec. Il, we introduce
lying Kondo lattice,T{"’ . Beyond this point, the ground state the model Hamiltonian and use it to derive an effective local
is no longer a nonmagnetic metal but it exhibits long-rangeaction for the spin degrees of freedom. In Sec. IlI, we discuss
spin-glass order. NFL behavior results from the power-lawtwo equivalent formulations of the effective model that are
behavior found in the neighborhood of the quantum-criticalwell suited for a numerical investigation of the problem.
point, a scenario that is similar to that proposed to explairThese are based on the formal equivalence between the
NFL behavior in systems close to ferro- or antiferromagnetickondo-alloy problem and two other models. The first one is
instabilities’ a classical one-dimensional Ising chain with short- and long-
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range ferromagnetic interactions, and may be solved by clas- We investigate the properties of modé€l) near the
sical Monte Carlo simulation. The second model system dequantum-critical point in the framework of a dynamical
scribes a singleS=1/2 quantum spin evolving in the mean-field theor 2 In this approach, exact in the limit of
presence of two magnetic fields, one that is time dependerifinite lattice connectivity, the degrees of freedom on any
and random in the longitudinal direction, and another that iarticular lattice site are isolated and treated exactly, while
static and fixed in the transverse direction. This problem mayhe rest of the system is replaced by an effective medium to
be solved using a quantum Monte Carlo algorithm. The rewhich the chosen site is coupled. The properties of the effec-
sults of the simulations are presented in Sec. IV where wéve medium are determined self-consistently from the solu-
also derive a simple analytical approximation that allows fortion of the single-site problem. In the lim#—o, the con-

a transparent interpretation of the data. This is followed by digurational average over the random couplings can be

comparison of our results to those obtained by other authorgerformed explicitly® and the intersite terms in E¢1) can
be eliminated? This reduces the problem to a magnetic im-

purity embedded in an electronic bath and subject to a dy-
Il. THE MODEL namic magnetic selfinteractidf*® Ignoring for the moment
In a disordered Kondo alloy, randomly distributed spinsthe anisotropy of the Kondo coupling in order to simplify the

interact with a band of conduction electrons through a localotation, the effective action of the single-site problem in the
Kondo coupling. There is also a residual RKKY exchangeP@ramagnetic phase may be writterl as
interaction between the spins, which is random because of B (B
the disorder in their positions. Many of the systems studied  Si.= —f J' drdr’c;(r)ggl(r— 7)C (")
experimentally exhibit uniaxial anisotropy as a result of 0Jo

strong crystal-field and spin-orbit effects. Therefore, to a first B ) (B (B

approximation, only the coupling between the components of +JKJ d7S(7)-s(7)— —J J drd7'S,(7)

the localized spins along the easy-axis needs to be consid- 0 2Jo Jo

ered. The simplest model with these characteristics is a . /

Kondo-lattice model with an additional Ising-like random Xx(r=r)SLr). @

exchange term. The Hamiltonian of the model is The functionsy(7) andGy(7), a priori unknown, are de-

termined by the feedback effects of the coupling of the im-

Jf purity site to rest of the system through a set of self-

2 (S's +H.c) consistency conditions. Their precise form depends upon the

2 9 shape of the noninteracting electronic density of staAtgs)

1 of the lattice!? In the case of a semicircular density of states,

—_— JijSIZSjZ_ (1)  the self-consistency equations acquire a particularly simple
277 form. We have

H= —_2 tCioCiot JﬁE Srsf+
L], |

Here,S is a localized spin operator at thth site of a lattice X(1)=(T[SL1)S,0)])s, )
of sizeN. The creation and destruction operators for the confor the magnetic degrees of freedom, and

duction electrons are ci*(; and ¢, and §i P
=1/25, 4C;,04 5Cig is the local electronic spin density. The Gol(r—7")= ( - ,u) S(r—1')—t2G(r—17') (4)

nearest-neighbor electron hopping integraljist/\/f where
z is the connectivity of the lattice, anﬂﬁ and J¥ are the for the electronic degrees of freedom. In the above equations,
longitudinal and transverse Kondo couplings, respectively?is the time-ordering operator along the imaginary-time axis
The nearest-neighbor couplings between the spips,are  0=7<p, u is the chemical potential and

uenched random variables for which we assume for sim-
d G(1)=—(Te(nc* (0)])s,. (5)

plicity a Gaussian probability distribution with zero mean

and varignce{Jﬁ)=32/_z. The zdependent normalization of | follows that G and y are, respectively, the exact local
the off-diagonal couplings;; andJ;; has been chosen such ejectronic Green function and the imaginary-time-dependent
that the results in the— o limit to be considered below are spin susceptibility. For general(e€), Eq.(4) is replaced by a
finite.’ _ _ _ more complicated implicit conditioH

The last term on the right-hand side of Eq) is the The solution of this set of coupled self-consistent equa-
well-known Sherrington Kirkpatrick mod®l that has a tions is still a very difficult task. It may be argued, however,
phase transition to a spin-glass stateTgt-J. The local  that knowledge of the exact bath Green function is not es-
Kondo coupling favors screening of the localized spins bysential for the understanding of the low-frequency spin dy-
the conduction electrons below a characteristic temperaturgamics of the model. This follows from a perturbative
TR . As a consequence of the competition between these twargumertt that establishes that the long-time behavior of the
terms, a spin-glass ground state is only possibleJfsid, exact bath Green function is qualitatively the same as that of
~Tﬁ. Therefore,T;—0 asJ—J. from above and the sys- a bath of noninteracting electrons, i.§o(7)~1/7. But the
tem remains paramagnetic down to zero temperature) for form of the low-energy effective action for the localized
<J.. The pointT=0, J=J. where the nature of the ground spins is determined precisely by the asymptotic behavior of
state of the system changes defines the quantum-criticéthe electronic Green function. Therefore, if we ignore &j.
point.”1! and fix Go(iw,) =7 .deNy(e)/(iw,+ u— €) where Ny(e)
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is the unrenormalized density of states, we will still get a V(1) )\ 2 o
qualitatively correct description of the low-frequency spin > =2a(—) sin 22—+ J%x(7), (10
dynamics of the model. ar B B

Further progress can be made by performing a Hubbard-
Stratonovich transformation that decouples the last term i®1d 7o IS @ short time cutoff of the order of the inverse
Eq. (2). Introducing a set of time-dependent random fieldsP@ndwidth 0; the electron baﬂl‘ TheKcoupllng constant
n(7) that couple to the spin operatdfsthe partition func- = (1+26/7)° where 5= —tan “(w7oJ)j/4) is the phase

tion of the problem may be rewritten as shift for scattering of electrons from a local potenUﬁM
InEQ.(9), r, i=1 ,2h are the positions on the time
1(8(8 , axis of successive spln f|IpS generated by the transverse part
:f D7 ex;{— _f f dzd7’ 7(7) of the Kondo coupling and the functior(7) represents the

interaction between pairs of spin-flips. The first term on the
righthand side of Eq(10) is familiar from the work on the
Z[ 7], (6)  Kondo modef® It arises from the singular response of the
conduction electron bath to a spin flip on the impurity site.
where The second term is characteristic of the alloy model and
represents the reaction of the rest of the spins to the local
ZK[ﬂ]:f De(r)Det(r) Tr (Texp—S), 7 perturbation. Itis interesti.ng to notice that the partition func-
S, tion of a recently studied extended two-band Hubbard
and model’ can be cast in a form equivalent to H@).
Equation(9) is not yet in a form suitable for computation
B (B . . , , of the magnetic correlation function. We shall next establish
Sk=— J’o jo drd7'c, (1)Go (7= 7")Cy(7") a formal equivalence betweély¢ and the average partition
function of a single quantur8= 1/2 spin in the presence of a
B - B random Gaussian time-dependent longitudinal féld) and
+JKJO d7S(7)-s( T)_Jfo drS,(m)n(7). (8) 3 static transverse fiel, a problem that can be solved nu-
merically using the quantum Monte Carlo method of Refs.

Equation(8) is the action of a single Kondo impurity in a 15 and 18. The partition function of the quantum spin prob-
time-dependent magnetic fieldn(r) in the z direction. €M Zgsis
Within dynamic mean-field theory the partition function of
the Kondo alloy is thus given by the average over all the _f B }fﬁfﬁ , 1 s
realizations of the random field of the partition function of Zos= | D& ex 2Jo Jo drdr’&(n)Q (r7)E(r")
the modified Kondo problem of E@8). 8
Equations (6)—(8) subject to condition(3) define the X Tr Tex;{f dr[&(n)S(7) +TS(7)]|,
mean-field model of the Kondo alloy. In the next section we S, 0
shall show that this model may be cast in two different forms wh h | ¢ f th q
both of which are well suited for setting up schemes for theV/N€reQ(7) is the correlation function of the random com-

numerical solution of the problem. ponent of the magnetic field.
P To demonstrate the equivalence of E(.and(11), we

first perform a Trotter decomposition of the time-ordered
exponential in Eq(11),

Xx M=) (7))

(11)

. METHOD

A. Formulation of the problem
M

H exdArh(7)-S], (12)

As we are only interested in the spin dynamics of the
system, the electronic degrees of freedom in @®j.may be
integrated out. In the case of the single-impurity Kondo
model this leads to the well known Coulomb gaswhereAr=g/M. We next introduce a complete set of inter-
representatiolf of the partition function of the problem. The mediate statebrk><ak| at each imaginary time slicg,. The
same is true for the generalized problem of E8). as the matrix elements in the Trotter expansion may be evaluated
additional random term commutes with the longitudinal partusing the expression
of the Kondo coupling. The Anderson-Yuval technitfue

TeX[{J dTh 7)- S(T)

may therefore be applied to E(). After averaging the re- (olexp{ A E(T)S(7)+TS()]}e")
sulting expression over the distribution of random fields, Eq.
(6) may be rewritten as Aré(r)o| &

ar
(r(r’+5mr 2 +O(A72), (13)

B o} T2n—17T0
Zee= ngo fo dTlfo d7p... fo valid in the limit A 7— 0. After averaging over the fielé(r)
and taking the limitM —«, the partition function of the
model may be expressed as a sum of contributions of indi-
©  vidual “spin histories,” each of these being one of the pos-
sible sequences of the eigenvalugs) = £ 1/2 of the inter-
where mediate states. We find

JK 2n
Xden(%) exp[z (—1)"IV(r—1)|,

i<j
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” 1(8 (B
ZQSIE fDa(n)eX[{—f f drdr o™(7)
A=0 2Jo Jo

XQ(r— 7)™ (7' )+nInT (14)

’

whereo("(7) is a spin history witm spin flips in the inter-
val Osr<pB and the integration is over their positions.
Equation(9) follows from Eg. (14) by integrating twice by

parts the first term in the exponential, provided that we

chooserJf and that we identifyQ(7) with the righthand
side of Eq.(10). The original problem has thus been reduce
to the evaluation of the partition function of E{.1) subject
to the condition(3).

An alternative numerical method may be formulated by
taking advantage of the asymptotic equivalénéBbetween
the Coulomb gas representati¢® of the Kondo problem
and the partition function of alassical one-dimensional
Ising spin chain with nearest-neighbor and long-range inter
actions. This problem may be solved numerically using stan
dard classical Monte Carlo techniques as has been recen
done for the single-impurity anisotropic Kondo model in
Ref. 20. It may be shown by a straightforward generalizatio
of the methods of Ref. 19 that the Ising-chain model releva
for our problem is

ZFE
{

exli{i;_ KNNSiSi+1+i<JZ§L Kir(i _J')Sis'},
(15

where theS;= *1 are Ising variables and the number of sites
in the chain isL = B/ 7. The spin-spin interaction consists of
a short-range paryn=~—1/2InJkm/2), and a long-range
part given by

It is worth noticing that, while both of these approaches

1

o 2a(mIN)?
KLR(l_J):Z

2 2 L
sinz[q-r(j—l)/N]+J Tox(7oli J|)}-

(16)

can be used to solve the present strongly anisotropic Kond&

alloy model, only the first one can be generalized to the cas
of a non-Ising spin-spin interaction.

B. Numerical methods
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(see below (iii) a newy(7) is computed from conditio(3)

and used as a new input in stéjp This procedure is iterated
until successive values of the correlation function differ by
less than a fixed tolerance levske below. This takes from
four to fifteen iterations depending on the temperature and
the values of the parameters.

The simulations of the classical problem defined by Eqg.
(15) have been done using a standard Monte Carlo heat-bath
algorithm for Ising chains of up to 256 sites. The quantum
problem of Eq.(11) has been simulated as follows. The
imaginary-time axis is discretized in slices of widthr

T BI/M and the time-ordered exponential appearing in Eg.

(112) is approximated by a Trotter product bf factors. The
statistical weight of a given configuratidg(7)} is thus ex-
pressed in terms of the trace of a product of 2 random
matrices. The corresponding contribution to the spin correla-
tion function y(7,7') is computed by inserting two addi-
tional o, Pauli matrices at the appropriate places in the ma-
trix product. It is important to choose the parameddr
appropriately. IfM is too small, the systematic error intro-
ced by the Trotter approximation is largeMfis too large,

tﬁgwever, the algorithm is prone to numerical instability. We

]

ound that the choicgg=0.29M 7, with M=<128 is a satis-
actory compromise. This sets a lower limit to the tempera-
tures that we can simulategT ,;;=0.03. The simulation is
most conveniently done in the space of the Masubara-
frequency components of the field, &(wy)

= [Bdré(r)exp(—iw,n).r® These are finite in number as a
consequence of the discretization of time;=27nT with
n=0,...M—1. In an elemental Monte Carlo move, a
change of the complex field(w,) for a single frequency is
attempted. A full Monte Carlo step is complete when el-
emental changes have been attempted for all the Matsubara
frequencies.

The accuracy of the numerical calculations presented be-
low is determined by two factors, namely, the statistical error
of the Monte Carlo calculation and the stopping criterion
used in the enforcement the self-consistency condition. A
typical quantum Monte Carlo run consisted of 40° Monte
Carlo steps per time slice. This corresponds to an absolute
rror of the order of X102 in y(7). As we mentioned
bove, the simulations based on E&5) are noisier than
those based on E@l1), which requires an order of magni-
tude more MC steps to reach the same level of accuracy. The
self-consistency loop was stopped when two successive val-
ues of the static local susceptibility differed by less than

We have simulated the mean-field Kondo-alloy model us0.5%, which is about twice the size of the statistical error. On
ing the two formulations described in the previous section aghe basis of these figures, we estimate that our final results
each has its own advantages and drawbacks. In particuldiQr xt are accurate to within 1%.
while the systematic error introduced by the discretization of

the imaginary time is larger for the quantum simulations,

IV. RESULTS

statistical fluctuations are far more important in the classical

case. We have empirically found that the latter method is We have simulated the mean-field Kondo alloy model for
more accurate for the computation of the static susceptibilitfixed values of the Kondo couplings and several value3 of
at low temperatures whereas the former one gives better rdor T=0.05 Tg whereTy is the single-site Kondo tempera-
sults for the overall frequency dependence of the spin correture(see below The first step in the calculation is the choice

lation function.

of the parameters, Jf and 7, that define the underlying

The numerical procedure used to solve the self-consistersingle-impurity Kondo problenicf. Eq. (9)]. As the low-

problem is as follows(i) an approximation tg/(7) is used
as input in either Eq910) or (16). (ii) the spin-spin corre-
lation function is obtained from a Monte Carlo simulation

temperature properties of all antiferromagnetic Kondo mod-

els are described by the same fixed point, we are free to
choose these parameters using criteria of numerical conve-
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FIG. 1. Dynamic spin susceptibility in imaginary time fdr FIG. 2. Temperature dependence of the susceptibilitydfeD.
=0 for f/7,=18, 20, 24, 28, and 32, from to_p to bottom. _The The circles are It:)he Monte (?arlo results. The dashSd Iiney]represents
symbols are the Monte Carlo data. The solid lines are the fits "Che susceptibility of the resonant model.
ferred to in the text.

pression and the Monte Carlo results in this temperature

nience. For the particular case=1/2 and for all values of range. Deviations from the theoretical result are expected
J, , the Kondo model is equivalent to a simple exactly solv-(and observedat higher temperatures as E@.8) is only
able problem, the resonant modélwe have made this valid for Try<1. Taking theT—O0 limit of Eq. (18) we find
choice as it provides us with means to test our numericalhe zero-temperature susceptibilifyy=2/(7A)~0.77 7.
methods by comparison of the Monte Carlo results with theDefining the Kondo temperature byo=1/(2 Tﬁ), we ob-
analytical solution. We have takery * as the unit of energy tain TR 79~0.65.
and we have arbitrarily set, = 3/27, ". We have similarly computed thedependent susceptibil-

Figure 1 showsy(7) as a function of the scaled variable ity of the system for several values &% 0 andT. The over-
7/ B for J=0 and several temperatures. The correlation funcall shape of the curves thus obtained is similar to that of
tion in imaginary time is real and symmetric around those of Fig. 1 but the decay of the correlations becomes
= /2 as a consequence of time-reversal invariance. Its minislower and slower ag increases. This is shown in Fig. 3
mum value steadily decreases with decreasing temperatur@here we show results obtained for several valuesaifour
The expected behavior of the zero-temperature dynamic sufswest temperature] 7o=32"1. This slowing down of the
ceptibility in the long-time limit i8° x(7)«7 2. At finite  spin dynamics, which is accompanied of an increase of the
temperatures this expression generalizes to(7)  susceptibility, is a precursor effect of the phase transition
~ (7l B)%sin (w7 B).2* We have fitted our data for~3/2  that, as we shall see next, takes place for sufficiently large
with the expression

a2 A
olfl W
i — +sif — 0.1
Sir? 3 +sir? 5 -

whereA is aT-dependent amplitude and the cutefis of the
order of the inverse of the Kondo temperature to be defined =
below. The fits, shown by the solid lines in the figure, are in =
excellent agreement with the numerical data.

The static spin susceptibility has been computed from the
Monte Carlo results using the expressiogr=[5dx(7).
The results thus obtained are shown in Fig. 2. We also show
for comparison the susceptibility of the resonant model,

0.01 |

1 1

A 0.00 0.25 0.50 0.75 1.00
=—¢(—+ —) (18
T 27T \2 '6411' /B
where ¢(2) =d*InT'(2)/dZ and A is the width of the reso- FIG. 3. TheJ dependence of the dynamic spin susceptibility in

nant level. The latter has bgen determined by fitting t_hle dat@naginary time at fixed temperaturg, 7,= 1/32. The values alr,
for 7,7<0.2 to Eq.(18) with the resultA=0.827 7,~.  are 0, 0.6, 0.65, 0.7, and 0.75, from bottom to top. The symbols are
There is very good agreement between the theoretical exhe Monte Carlo data. The lines are guides for the eye.
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T ' T ' T T pling, we shall make a disgression in order to derive a simple
0.7 J~115T 5--09 ] model in terms of which the numerical data can be analyzed
L Y™ I K Lo~ AA ] : .
0000 S Aaly in a transparent way. We start by noticing that the frequency-
06p .- ©90C AAA—A”V,,V——V::XQ 1 dependent susceptibility may be related to the fluctuations of
_____ 2857 v e ® o the auxiliary field£(7). Using Egs.(11) and (3) one may
- - ¥V o a ;
o WQ—Q:’E,»E:E/@": . readily show that
e | o¢” Lo a7 w® ] . . . .
Foap 0 e® e a - (|€i0n))=Qlio)[1+ x(iw)Qlioy)], (19
< E - . .
03k ,,/’ﬂ Rl o VS where the expectation value on the left-hand side of the
[ /9’9 & A v j:*’:g:‘;’s | equation is taken with respect to the probability distribution
02k o O U065 - PLE(T) ]cexp(=BF) with
L E’m o Ji=07 |
/ / ® J1,=0.75 kT |&(w )|2
L q B Ji=08 ] l=FA0T+ — n
V. _ FED=A0I+ 5 2 "5
0.0 / A 10 . I A ] . ]

0.00 0.05 0.10 0.15 0.20

B
— kTIn<Texp{ fo dré(7)S,(7)

> . (20
r

Here, BF0]=—In[2cosh@l/2)] and  ((---))r
FIG. 4. TheJ- and T-dependence of/(J,T)=1—Jx;. The =TH[(- - - )expBSY VT exp(B'S)]. Assuming for the mo-

e

K

paramagnetic phase is stable ¥(J,T)>0. ment that the transverse part of the effective field dominates

N N over its fluctuating longitudinal componerit>(£?(7))Y2,
A necessary condition for the stability of the paramag-the free-energy20) may be expanded up to second order in

netic phase is that the inequality ¥(T)=1-Jy;=0

holds®® Y(T) is plotted versus temperature in Fig. 4 for sev-

eral values ofl. The symbols are the Monte Carlo data. The kT

dashed lines are fits of the results to a model that will be F£(7)]=F[0]+ — 2 [Q Hwn) — X w)]|&(wn)|?

discussed below and that allows us to extrapolate the results "

down to T—0. We see thatY(T=0) vanishes forJ +..

=0.75 7,*~1.15 T%, which identifies it as the critical

coupling. ForJ>J, Y(T) vanishes at a finite temperature, Where the zeroth-order transverse susceptibijft)’(w,)

Ty- =I'm,/(I'*+ wﬁ) and m,=1/2 tanhBI'/2). Combining EQs.
Before discussing in detail the temperature dependence ¢21) and (19) we derive the following expression for the

the uniform susceptibility in the vicinity of the critical cou- frequency-dependent susceptibility

1— ¥ V(wp)K(wp) = V[1= ¥ (0p)K(0n) P~ [23x () ]°

) 22
2‘]2X(O)(wn) (22

X(wy)=

whereK (w,) is the Fourier transform of the first term on the where o= 7a, TKZF_;/TO and we have assumebk<T.

right-hand side of Eq0). Inthe limit T7y, |wy|mo<1this  From Egs.(24) and (19) we can estimate( £%( 7))~ (J?

1S +2al73) at largel’. We, therefore, expect Eq24) to be
valid provided the condition

2T
K(wn):T_O(l_lwn|TO+"')- (23) I 70> max{J7o,\2a}, (25)

is satisfied. It is clear that EQR5) will not be fulfilled by the
bare parameters, in general. We can, however, imagine writ-
ing down a set of renormalization-group equations for the

Substituting this expansion in E¢L9) we find

2 flow of the different couplings as the high-energy cutoff is
1)en a duced logy with the single-impuri
X(0g)=—{ =+ T+ alw,| reduced. By analogy with the single-impurity case, we ex-
2T pect that in the paramagnetic phase the Kondo couplings will

> flow to the strong-coupling fixed—poirﬁsz-»oo. There-
32 (24) fore, we expect Eq(24) to become appropriate below some
' energy scale with renormalized values of the couplings.

N

Wn

T +TK+Z¥|(Dn|

-¢
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FIG. 5. TheJ and T dependence ofA. The symbols are the g o04f ‘.59\ A BJ=12 T
Monte Carlo data. The dashed lines are the fits to the expression in =2 W _ ¢
Eq. (28) " N pas e VTS
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The derivation of the renormalization-group equations for i © g e 1
the Kondo-alloy model is outside the scope of this work. ool 9 §§§§ggﬁﬁﬂﬂm
We shall instead consider ER4) as a phenomenological o 5 10 15 20
equation containing three renormalized paramefgs, a, o /(2nT)

andI’ to be determined by a fit of the numerical results.
The ratioT¢ /J is determined by the static uniform sus-  FIG. 6. Thew andT dependence of the dynamic susceptibility

ceptibility alone. Settings,=0 in Eq.(24) we have for two values of the coupling. The symbols are the Monte Carlo
data. The lines are fits to the expression in &4).
T [T2
JXT:TK_ J—:—l. (26) Equations(27) and (28) imply that, in the neighborhood

of the critical coupling, the uniform susceptibility has a non-

We thus see that the instability of the paramagnetic phase germi-liquidT dependence

signaled by the vanishing of the quantity under the square

3/4
root in Eg.(26). We may therefore takAzTﬁ/JZ—l as a 1_<l) for Ag/3<-|-/-|-0<1,
measure of the distance to the quantum-critical point and To
rewrite the susceptibility in the form Jext~
1 T 3/2 oa
Ixr= /1+A_\/Z. (27) 1—\/A—0—2\/—A_O<T—O) for T/T0<AO .

Notice that, even if the assumptions made in the deriva- (29

tion of Eq.(27) are not valid, the latter can still be regarded
as a parametrization of the susceptibility in terms of a new,o
quantity,A(T,J). The interest of this parametrization stems

fr_om the fact that_the'l_'— and J-depend_ence o is very (QDI) regions in their analysis of metallic spin-glass models.

simple. We show in Fig. 5 the numerical valuesdfob-  A"4hirg region (QDII) should exist at lower temperatures

tgm_ed inserting the Monte Carlo results for_the static SUSCeQzhere the normal Fermi-liquid? behavior is recovered.

tibility in Eq. (27). The dashed lines are fits to the simple 5 second crossover is not visible in our data because, as

functional form we shall see, it occurs below the lowest temperature that we

_ 32 can reach in our quantum Monte Carlo simulations.

A(T)= A0+ (T/To)™, (28) The remaining two parameters in EQ4) may be deter-

where the parameters, andT, are functions ofl but not of ~ Mmined from an analysis of the fulb, andT dependence of

T. The fits are very accurate over the entire temperaturéhe susceptibility. This is shown in Fig. 6 for two couplings,

range of our simulations. The lowest curve, corresponding td =0.65 J. andJ=J.. The symbols are the quantum Monte

our estimated value for the critical coupling, has been fittedCarlo data. The dashed lines are plots of &) with T, P

with Ay=0. Examination of thel dependence oA, shows and T adjusted to fit the data. The quality of the fits is

that, neard., Ag—a(1—J/J;), with a~1. The parameter excellent for all the valued andT considered. It is remark-

T has a finite limit,T;=~0.27 Tﬁ asJ—J.. able thatall our numerical results could be fitted with the

The values of the exponent found in the two regions
fined above correspond to those obtained by other
authoré=®in the quantum critical and quantum disordered |
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FIG. 7. The crossover between anomalous and Fermi-liquid be-
havior obtained from Eq.24) and condition(31).
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same values off 7g~2.4 and a~1.48. The full J- and =
T-dependence is therefore in the effective Kondo tempera-
ture, Tx. The values ofT obtained from the fits of the ©°
frequency dependence of the susceptibility are consisten
with those determined above from the static susceptibility.

At this point, we can discuss the connection between our .
results and those of Sengupta and Georgebrased in our 0.1 1E-3 0.01 0.1 1
language, their approximation for(w,) is obtained by ig- ' '

T.0
noring the transverse field term in E@.1), and solving the 0

remaining Ising problem in the spherical approximation. The G, 8. The relaxation functiony”(w)/w. The curves have

expression for the dynamic susceptibility that results frompeen obtained by analytic continuation of the fits of the imaginary-

this procedure is time Monte Carlo data(a) T/Tx=0.05 andJ7,=0.55, 0.6, 0.65,
0.7, and 0.75, from top to bottonth) J=J. and 8/ =32, 28, 24,

1 ~ T T—— 20, and 16, from top to bottom.
X(wn)mﬁ{)\+a|wn|_ [)\+a|wn|]2_‘]2}1 (30

_ S . malization condition to estimate thE dependence oA in
where\ is a Lagrange multiplier introduced to impose the the temperature range where we do not possess numerical

J=J

spherical constraint, data. We show in Fig. 7 the result of applying this procedure
o to the case 0§=0.8 J.. We see that the expected crossover

(SA7)S,(7))= = S (wy)=1/4. 3y from aT%?2 law to normalT? behavior occurs at a tempera-

n=— ture T*~0.06 T . This is at the lower end of the tempera-

ture range that we can reach. The crossover temperature fur-
ther diminishes asl—J. where it vanishes. This explains
why normal behavior has not been seen in our simulations.
The imaginary part of the magnetic response can now be
determined by analytic continuation of E@4). The general
%xpressmn is complicated and not very illuminating. How-
ever, in the low-frequency limitp<aI', and forJ—J., Eq.
(24) can be cast in the scaling form

As it stands, expressiof31) diverges because E(B0) does
not have the Correczbrf2 high-frequency behavior. A high-
energy cutoffA must therefore be introduced in the simpli-
fied model.

Comparison of Eqs(24) and (30) shows that the two
expressions become equivalent at low frequencies provide

we identify Tx with A and aI' with A. The fact that the
Monte Carlo data could be fitted using Eg4) with T- and

J-independent values af and[ justifiesa posteriorithe use o

of a constant cutoff in the simplified model. Once this is Jx"(w)= \/—QJ( 3 A) (32
fixed, the parametek can be determined from condition

(31). Since the numerical data do satisfy this normalization
it is not surprising that the determination ©f from fits of
the Monte Carlo data and that effrom enforcement of Eq. 1
(31) result in the same temperature dependence. This sug- D(x)= —=x[(1+x2)V2+1]712 (33)
gests that Eq(24) may be used in conjunction with the nor- J2

where the universal scaling functigh(x)
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This expression is equivalent to that found in Refs. 4—6. decreases with the distance to the quantum-critical point
The low-frequency behavior gf”(w) asJ—J; follows  where it vanishes. Indeed, E482) and(33) imply that the
from the above equations effective Kondo scalevy, defined as the half width of the
B relaxation functiony”(w)/ o, is wx~TO VA,

aw
for <JAA,
JA O=ve V. CONCLUSIONS

Jex (@)= ~ \12 (34) In this paper, we have studied numerically a Kondo lattice
(ﬂ) for JA<w<al. model with random exchange between localized spins. A
Je ¢ mapping of this model to a self-consistent single-spin prob-

The dissipative part of the susceptibility in the limit-0 is lem, exact in the limit of large lattice coordination, allowed

Fermi-liquid-like everywhere except at the quantum-criticalflj_i 0 obttam ﬁ completetnumeqpallsolgt![og (t)f the problem.l

point. However, the characteristic spin-fluctuation frequency e system has a quantum-critical point between a norma

0o d A vanishes agd—J, with weer(1—J/J,) for J=<J metal and a spin-glass state. The_re is a region inTthe o

a;dwcfmT3’2 at the criticalccouplings The behavior Qf’(w)c plane near the quantum-critical point where the characteristic
s .

atJ. is non-Fermi-liquid-like " () =\, which reflects the spin-fluctuation energy varies as a nontrivial power of tem-

3/ . . . _ ._ . . _
slow decay of the time-dependent spin-spin correlation funcperature (5 ). This gives rise to non-Fermi-liquid be

tion, (S,(t)S,(0))~t 32 that anticipates the appearence of havior in thermodynamic and transport properties. At low-

. . enough temperature normal Fermi liquid behavior is
long-range order in the system. The nontriviallependence " . .

: . , S recovered, except at the critical coupling. Our numerical re-
of the spin-fluctuation frequency in the vicinity of the

guantume-critical point that is responsible for the singular be-SUItS can be very well described over a large range of fre-

guency and temperature by a simple model that we derive in

havior of the susceptibility gives rise to anomalous POWers in[he strong-coupling limit. This model is closely related to the
other thermodynamic and transport properties as well. In par: '

ticular, Eqs.(32) and(33) imply that the temperature correc- M-component quantum-rotor and mean-field models that

tions to the specific heat and the resistivity behave, respe(p-awe been previously discussed in the literafufeSome

. ~ 32 o interesting questions remain open, notably, to what extent
:g’geilghfssac”“ VT and p=T*% in the quantum-critical the assumption that the electronic bath remains unrenormal-

The full w-dependence of the absorptive part of the dy ized is a valid one. The enforcement of the self-consistency

. S L “condition (4) poses some important technical difficulties,
namic susceptibility is shown in Fig. 8 for several tempera-, ) p P

e . which we hope to be able to overcome in future work.
tures at the critical coupling and several valuesJadit T
=0.05 Tﬂ. These curves have been computed by analyti-
cally continuing the fits of the imaginary-frequency Monte
Carlo data. These curves are very similar in shape to those One of us(M. J. R) acknowledges the support of Funda-
obtained in Ref. 20 for the single-impurity Kondo model andcion Antorchas, CONICET (PID No. 4547/96, and
may be characterized by an effective Kondo temperature tha&§NPCYT (PMT-PICT1855.
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