
PHYSICAL REVIEW B 1 JULY 1999-IVOLUME 60, NUMBER 1
Temperature-dependent band structure of a ferromagnetic semiconductor film
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The electronic quasiparticle spectrum of a ferromagnetic film is investigated within the framework of thes-
f model. Starting from the exact solvable case of a single electron in an otherwise empty conduction band
being exchange coupled to a ferromagnetically saturated localized spin system we extend the theory to finite
temperatures. Our approach is a moment-conserving decoupling procedure for suitable defined Green func-
tions. The theory for finite temperatures evolves continuously from the exact limiting case. The restriction to
zero conduction band occupation may be regarded as a proper model description for ferromagnetic semicon-
ductors such as EuO and EuS. Evaluating the theory for a simple cubic film cut parallel to the~100! crystal
plane, we find some marked correlation effects which depend on the spin of the test electron, on the exchange
coupling, and on the temperature of the local-moment system.@S0163-1829~99!06925-8#
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I. INTRODUCTION

Since the mid 1970’s there has been a growing theore
interest in thes-f ~or s-d) model.1,2 The model works for
materials which exhibitlocal-moment magnetism: for mag-
netic semiconductors such as the europium chalcogen
EuX (X5O, S, Se, Te! ~Ref. 3! and for metallic local-
moment systems such as Gd, Tb, and Dy.4 In the local-
moment magnets, the electronic and the magnetic prope
are caused by different groups of electrons. Whereas e
tronic properties such as electrical conductivity are borne
itinerant electrons in rather broad bands, e.g., 6s, 5d for
Gd, the magnetism is due to a strongly localized partia
filled 4f shell. In the case of Gd and Eu compounds thef
shell is exactly half-filled and, because of Hund’s rules, h
its maximal magnetic moment ofS5 7

2 .
Many characteristics of the local-moment systems may

explained by a correlation between the localized magn
states and the itinerant electrons. In thes-f model this cor-
relation is represented by an intra-atomic exchange inte
tion. The difference between thes-f model and the well-
known Kondo lattice model5 is that in the former the
exchange interaction is ferromagnetic, favoring para
alignment of itinerant electrons and local moments, wher
in the latter it is antiferromagnetic. That is why thes-f model
has been recently more and more often referred to as
ferromagnetic Kondo lattice model.6,7

The second aspect of this paper is that of reduced dim
sionality. Magnetic phenomena at surfaces and in thin fi
attract broad attention both theoretically and experiment
due to the question of phase transitions and the variatio
magnetic and electronic properties in dimensionally redu
systems.8–14 One of the most remarkable examples of t
outstanding magnetic properties at surfaces is the exist
of magnetically ordered surfaces at temperatures where
bulk material is paramagnetic. This effect was first doc
mented for Gd~0001! surfaces by Welleret al.15 and since
then been measured by different groups using a wide ra
of experimental techniques.16–18In these experiments for th
difference between the Curie temperature at the sur
TC (surface), and the Curie temperature of bulk G
TC (bulk) values between 17 K~Ref. 16! and some 60 K
PRB 600163-1829/99/60~1!/462~10!/$15.00
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~Ref. 18! have been reported. Succeeding the results for
Tb also was found to have a higher surface Curie temp
ture, relative to the bulk.19,20

Contrary to the groups cited above, Donathet al.,21 using
spin-resolved photoemission did not find any indication
an enhanced surface Curie temperature of Gd~0001! surfaces.
Other controversially discussed surface properties of Gd
clude the temperature-dependent behavior of a Gd~0001! sur-
face state21–23which is supposed to play an important role
the interplay between electronic structure and magnetism
thorough account on the surface magnetism of the l
thanides has been recently given by Dowbenet al.13

It is not only the dimensionally reduced Gd which is
interest here, even bulk Gd is far from being complete
understood. In an earlier study Noltinget al.24 have pre-
dicted that thea priori nonmagnetic (5d,6s) conduction and
valence bands should exhibit a marked nonuniform magn
response at different positions in the Brillouin zone and
different subbands. Weakly correlated~s-like! dispersions
show a Stoner-likeT dependence of the exchange splittin
On the other hand, stronger correlated (d-like! dispersions
split below TC into four branches, two for each spin dire
tion. Their T dependence mainly concerns the spec
weights of the quasiparticle peaks and not so much the
ergy positions. Consequently, an exchange caused spli
remains even forT.Tc . This may be the reason for the fa
that the experimental situation is controversial. Kimet al.25

found a T-dependent spin splitting of occupied conducti
electron states, which collapses in a Stoner-like fashion
T→TC . From photoemission experiments, Liet al.26,27 con-
clude that the exchange splitting must be wave-vector dep
dent, collapsing for somek values, while for other no col-
lapse occurs as a function of increasing temperature. T
fairly complicated temperature behavior in the bulk mater
must be expected for Gd films, too.

It is not at all a trivial task to perform an electronic stru
ture calculation for a ferromagnetic local-moment film
such a manner as to realistically incorporate correlation
fects. In a previous paper28 we proposed a simplified mode
which allowed us to exactly calculate the electronic struct
of a model film in the limiting case of ferromagnetic satur
462 ©1999 The American Physical Society
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tion and empty conduction band,n50. This case is appli-
cable to a film of a ferromagnetic semiconductor such
EuO, EuS atT50. Its significance arises from the fact th
all relevant correlation effects which are found or expec
to occur at finite band occupations and arbitra
temperatures24,29,30do already appear in this rigorously tra
table special case.31,32

In this paper we extend theT50 special case to finite
temperatures. As a result we will calculate the electro
structure of a local-moment film with a single electron in
otherwise empty conduction band within the whole tempe
ture range fromT50 andT5Tc .

In the next section we present the model and define
corresponding many-body problem. Subsequently the mo
is evaluated in two steps, in Sec. II A for the electronic su
system and in Sec. II B for the local-moment system. Sec
III is devoted to a detailed discussion of the results obtai
for different film thicknesses and various exchange coupli
and temperatures. Comprehensive conclusions with an
look on the possible application of the model to real su
stances and on the evaluation of temperature-dependen
face states in Sec. IV complete the paper.

II. THEORETICAL MODEL

We investigate a film consisting ofn equivalent layers
parallel to the surface of the film. Each lattice site of the fi
is indicated by a greek lettera, b, g, . . . , denoting the
layer index and a latin letteri , j , k, . . . , numbering the
sites within a given layer. Each layer possesses t
dimensional translational symmetry. Accordingly, the th
modynamic average of any site dependent operatorAia de-
pends only on the layer indexa:

^Aia&[^Aa&. ~1!

The completes-f model Hamiltonian

H5Hs1Hf1Hs f ~2!

consists of three parts. The first

Hs5 (
i j ab

Ti j
abcias

1 cj bs ~3!

describes the itinerant conduction electrons ass electrons.
cias

1 andcj bs are, respectively, the creation and annihilati
operators of an electron with the spins at the lattice site
Ria . Ti j

ab are the hopping integrals.
Each lattice siteRia is occupied by a localized magnet

moment, represented by a spin operatorSia . These localized
moments are exchange coupled expressed by the Heisen
Hamiltonian

Hf52 (
i j ab

Ji j
abSiaSj b , ~4!

whereJi j
ab are the exchange integrals. The problem with

simple Heisenberg model in the form~4! is that due to the
Mermin-Wagner theorem33 there is no solution showing col
lective magnetic order at finite temperatureT.0. To avoid
this obstacle we have chosen an extended Hamiltonian
the localized moments,
s
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Hf* 5Hf1HA5Hf2D0(
ia

~Sia
z !2, ~5!

which additionally to the Heisenberg Hamiltonian,Hf fea-
tures a single-ion anisotropy termHA . D0 is the according
anisotropy constant, which is typically smaller by some
ders of magnitude than the Heisenberg exchange interac
D0!Ji j

ab .
The distinguishing feature of thes-f model is an intra-

atomic exchange between the conduction electrons and
localizedf spins,

Hs f52
J

\ (
ia

Sias ia . ~6!

Here,J is the s-f exchange interaction ands ia is the Pauli
spin operator of the conduction band electrons. For the
terials we are interested in thes-f coupling is positive (J
.0). In the case whereJ,0 the model Hamiltonian~2! is
that of the so-called Kondo lattice. Using the secon
quantized form ofs ia and the abbreviations

Sj b
s 5Sj b

x 1 izsSj b
y , z↑(↓)561, ~7!

the s-f Hamiltonian can be written as

Hs f52
J

2 (
ias

~zsSia
z nias1Sia

s cia2s
1 cias!. ~8!

The most decisive part of thes-f Hamiltonian ~8! is the
second term, which describes spin exchange processe
tween the conduction electrons~3! and the localized mo-
ments~4!.

In general, the alignment of the localized moments will
influenced by thes-f interaction, which can mediate an ind
rect interaction@Ruderman-Kittel-Kasuya-Yosida~RKKY !#
via the occupied conduction band.30 However, here we are
interested in the electronic quasiparticle spectrum of a fe
magnetic semiconductor according to a simple test elec
in an otherwise empty conduction band. In this case,
localized spin state cannot be affected by thes-f interaction.
Furthermore, one knows from experiment that typic
Heisenberg exchange integrals are smaller by some orde
magnitudes than theirs-f counterparts. In this respect,
seems appropriate to neglect the Heisenberg exchange
grals for the calculation of the electronic properties of t
system. Accordingly, the Hamiltonian~2! can be split into an
electronicHs1Hs f and a magnetic partHf* which can be
solved separately.

A. The electronic subsystem

Starting from the Hamiltonian of the electronic subsyste

H* 5Hs1Hs f , ~9!

all physical relevant information of the system can be d
rived from the retarded single-electron Green function

Gi j s
ab~E!5^^cias ;cj bs

1 &&E

52 iE
0

`

dt e2
i
\ Et^@cias~ t !,cj bs

1 ~0!#1&. ~10!
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Here and in what follows@•••,•••#1 (@•••,•••#2) is the
anticommutator ~commutator!. Conform to the two-
dimensional translational symmetry, we perform a Four
transformation within the layers of the film

Gks
ab~E!5

1

N (
i j

eik(Ri2Rj )Gi j s
ab~E!, ~11!

whereN is the number of sites per layer,k is an in-plane
wave vector from the first two-dimensional~2D! Brillouin
zone of the layers, andRi represents the in-plane part of th
position vector,Ria5Ri1ra . From Eq.~11! we get the lo-
cal spectral density by

Sks
ab~E!52

1

p
Im Gks

ab~E1 i01!, ~12!

which is directly related to observable quantities with
angle and spin resolved direct and inverse photoemis
experiments. Finally, the wave-vector summation ofSks

ab(E)
yields the layer-dependent~local! quasiparticle density o
states

ras~E!5
1

\N (
k

Sks
aa~E!. ~13!

In the following discussion all results will be interpreted
terms of the spectral density~12! and the local density o
states~13!.

For the solution of the many-body problem posed by E
~9! we write down the equation of motion of the singl
electron Green function~10!

E Gi j s
ab 5\d i j

ab1(
mm

Tim
amGm js

mb 1^^@cias ,Hs f#2 ;cj bs
1 &&E ,

~14!

whered i j
ab[dabd i j . The formal solution of Eq.~14! can be

found by introducing the self-energyMi j s
ab (E)

^^@cias ,Hs f#2 ;cj bs
1 &&E5(

mm
Mims

am ~E!Gm js
mb ~E!, ~15!

which contains all information about the correlations b
tween the conduction band and localized moments. A
combining Eqs. ~14! and ~15! and performing a two-
dimensional Fourier transform we see that the formal so
tion of Eq. ~14! is given by

Gks~E!5\@E I2Tk2Mks~E!#21, ~16!

whereI represents the (n3n) identity matrix and where the
matricesGks(E), Tk , and Mks(E) have as elements th
layer-dependent functionsGks

ab(E), Tk
ab , and M ks

ab(E), re-
spectively.

To explicitly get the self-energy in Eq.~15! we evaluate
the Green function

^^@cias ,Hs f#2 ;cj bs
1 &&E52

J

2
~zsGi i j s

aab1Fii j s
aab!. ~17!

Here the two higher Green functions

G ik j s
agb~E!5^^Sia

z ckgs ;cj bs
1 &&E , ~18!
r

n

.

-
r

-

Fii j s
aab~E!5^^Sia

2sckg2s ;cj bs
1 &&E , ~19!

originate form the two terms of thes-f Hamiltonian~8! and
will be referred to as the Ising and the spin-flip functio
respectively. Considering the equations of motion for the
two Green functions we encounter the tw
higher Green functions^^@Sia

z ckgs ,Hs f#2 ;cj bs
1 &&E and

^^@Sia
2sckg2s ,Hs f#2 ;cj bs

1 &&E . Since we consider an empt
conduction band the thermodynamic average in the Gr
functions has to be computed with the electron vacuum s
un50&. From the definition of thes-f Hamiltonian ~8! we
then see that̂n50uHs f50 and, accordingly,

^^@Sia
z ,Hs f#2ckgs ;cj bs

1 &&E→
n→0

0,

^^@Sia
2s ,Hs f#2ckg2s ;cj bs

1 &&E→
n→0

0.

Hence, for the equations of motion of the Ising and the Sp
flip function we get

(
mm

~Edkm
gm2Tkm

gm!G im js
amb ~E!

5\^Sa
z &dk j

gb1^^Sia
z @ckgs ,Hs f#2 ;cj bs

1 &&E ,

~20!

(
mm

~Edkm
gm2Tkm

gm!Fim js
amb ~E!5^^Sia

2s@ckg2s ,Hs f#2 ;cj bs
1 &&E .

~21!

On the right-hand side of these equations appear fur
higher Green functions which prevent a direct solution a
require an approximative treatment. The treatment is diff
ent for the nondiagonal terms (i ,a)Þ(k,g) and for the di-
agonal terms (i ,a)5(k,g). In the first case we use a sel
consistent so-called self-energy approach which results
decoupling of the equations of motion. For the diagon
terms (i ,a)5(k,g) this approach is replaced by a mome
technique which takes the local correlations better into
count.

a. Nondiagonal terms( i ,a)Þ(k,g). The definition of the
self-energy~15! formally corresponds to the substitution

@cias ,Hs f#2→(
mm

Mims
am ~E!cmms ~22!

within the brackets of the Green function. The inspection
the spectral decomposition of the two functions in Eq.~15!
reveals that both ^^@cias ,Hs f#2 ;cj bs

1 &&E and
^^cias ;cj bs

1 &&E have the same pole structure and can dif
only by the spectral weights of their poles. The equality
both sides in Eq.~15! is installed by the self-energy compo
nentsMi j s

ab (E). Inspecting now the spectral representatio
of the two Green functionŝ̂ Sia

2s@ckgs ,Hs f#2 ;cj bs
1 &&E and

^^Sia
2sckgs ;cj bs

1 &&E we notice that the additional spin oper
tor Sia

2s selects for both only those poles of the origin
Green functions without spin operator which are connec
with a spin-flip of the electron. Hence, the poles of these t
functions build subset of the poles of the two Green fun
tions from Eq.~15! and are, therefore, identical to each oth
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Again, only the weights of the poles can differ. In analogy
Eqs.~15! and ~22! we now propose to use the plausible a
satz

^^Sia
2s@ckg2s ,Hs f#2 ;cj bs

1 &&E

'(
mm

Mkm2s
gm ~E!^^Sia

2scmm2s ;cj bs
1 &&E . ~23!

A similar reasoning can be used for

^^Sia
z @ckgs ,Hs f#2 ;cj bs

1 &&E

'(
mm

Mkms
gm ~E!^^Sia

z cmms ;cj bs
1 &&E , ~24!

with the difference that here the additional spin operatorSia
z

does not change the original pole structure but merely m
fies the spectral weights of the poles. On the right-hand s
of Eqs.~23! and~24! we find the already known spin-flip an
Ising function, respectively. Hence, for (i ,a)Þ(k,g), the
Eqs.~14!, ~17!, ~20!, ~21!, ~23!, and~24! build a closed sys-
tem.

b. Diagonal elements( i ,a)5(k,g). We start with the ex-
plicit evaluation of the higher Green functions on the rig
hand sides of Eqs.~20! and ~21!. For Eq. ~21! we get, for
( i ,a)5(k,g),

^^Sia
2s@cia2s ,Hs f#2 ;cj bs

1 &&E5
J

2
@zsḞ ii j s

aab~E!2F̈ ii j s
aab~E!#,

~25!

where we have abbreviated

Ḟ ii j s
aab~E!5^^Sia

2sSia
z cia2s ;cj bs

1 &&E , ~26a!

F̈ ii j s
aab~E!5^^Sia

2sSia
s cias ;cj bs

1 &&E . ~26b!

The analogous evaluation of the higher Green function in
~20! does not require any further higher Green functio
because it can be expressed in terms of already known G
functions

^^Sia
z @cias ,Hs f#2 ;cj bs

1 &&E

1zs^^Sia
2s@cia2s ,Hs f#2 ;cj bs

1 &&E

5
J\

2
@G i i j s

aab~E!1zsFii j s
aab~E!2zs\S~S11!Gi j s

ab~E!#.

~27!

As Eq. ~25!, the above relation is still exact. To get a clo
system of equations we are left with the determination of

functionsḞ ii j s
aab(E) andF̈ ii j s

aab(E). Both fulfill exact relations
which will be used to derive satisfying approximations. F
spin S5 1

2 we find for all temperatures:

Ḟ ii j s
aab~E!uS51/25 1

2 zs\Fii j s
aab~E!, ~28a!

F̈ ii j s
aab~E!uS51/25 1

2 \2Gi j s
ab~E!2zs\G i i j s

aab~E!. ~28b!

On the other hand, in the case of ferromagnetic saturat
^Sa

z &[S, it holds for arbitrary spin:
-

i-
es

-

q.
,
en

e

r

n,

Ḟ ii j s
aab~E!uT505\@~S2 1

2 !1 1
2 zs#Fii j s

aab~E!, ~29a!

F̈ ii j s
aab~E!uT505\2SGi j s

ab~E!2zs\G i i j s
aab~E!. ~29b!

The exact limiting cases~28! and ~29! suggest the genera
structures

Ḟ ii j s
aab~E!5kas

(1)Gi j s
ab~E!1las

(1)Fii j s
aab~E!, ~30a!

F̈ ii j s
aab~E!5kas

(2)Gi j s
ab~E!1las

(2)G i i j s
aab~E!. ~30b!

For the five Green functions of the type^^A;B&&E in Eqs.
~30! we can calculate the spectral moments

MAB
(n)5 K S i\

]

]t D
n

@A~ t !,B~0!#1L
t50

, ~31!

wheren51,2, . . . .Because of the equivalent relation

MAB
(n)52

1

p\E2`

`

dE En Im^^A;B&&E , ~32!

the moments can be used to fix the coefficientskas
(m) andlas

(m)

in Eqs. ~30!. After tedious but straightforward calculation
we get

kas
(1)50, kas

(2)5^Sa
2sSa

s&2las
(2)^Sa

z &,

las
(1)5

^Sa
2sSa

sSa
z &1zs^Sa

2sSa
s&

^Sa
2sSa

s&
, ~33!

las
(2)5

^Sa
2sSa

sSa
z &2^Sa

z &^Sa
2sSa

s&

^~Sa
z !2&2^Sa

z &2
.

The coefficients are determined byf-spin correlation func-
tions, which will be determined at a later stage.

The Eqs.~14!, ~17!, ~20!, ~21!, ~23!–~25!, ~27!, ~30!, and
~33! represent a closed system, which can be solved s
consistently. Before proceeding we assume that the s
energy from Eq.~15! is a local entity

M ks
ab~E![dabMs

a~E!. ~34!

The reason for thek independence can be traced back to
neglect of magnon energies.29 The restriction to the diagona
elements in the greek indices denoting the layers is in
sense the transfer of thek independence in the case of thre
dimensions29 to the film geometries discussed in this pap
Furthermore one can show that the assumption~34! is not
necessary for the following calculations but merely dras
cally simplifies them.

We can now use Eqs.~23!–~25!, ~27!, ~30!, and ~33! to
evaluate the Ising and the spin-flip functions in Eqs.~20! and
~21!. As the result we get the Fourier transformed Ising a
spin-flip functions. According to Eq.~17! we can restrict our
attention to the diagonal elementsGkqs

aab(E) and Fkqs
aab(E).

After subsequentq summation we eventually get, using Eq
~16! and ~34!,
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\(
q

Gkqs
aab5AN\^Sa

z &Gks
ab2G0s

aa

3H Ms
a(

q
Gkqs

aab2
J

2 S zs@kas
(2)2\2S~S11!#

3ANGks
ab1~zs\2las

(1)!

3(
q

Fkqs
aab1~\1zslas

(2)!(
q

Gkqs
aabD J , ~35a!

\(
q

Fkqs
aab52G02s

aa H M 2s
a (

q
Fkqs

aab1
J

2 S kas
(2)ANGks

ab

2zslas
(1)(

q
Fkqs

aab1las
(2)(

q
Gkqs

aabD J , ~35b!

where we have introduced

G0s
aa~E!5

1

N (
k

Gks
aa~E!. ~36!

The set of equations~35! can be solved to express the sum
(qGkqs

aab(E) and (qFkqs
aab(E) in terms of the single-electron

Green functionGks
ab(E). However, by inspecting Eqs.~35!

we see that these expressions will still contain the layer
spin-dependent self-energyMs

a(E).
To solve this problem we combine Eqs.~15! and~17! and

get, after Fourier transformation,

Ms
aGks

ab52
J

2AN
S zs(

q
Gkqs

aab1(
q

Fkqs
aabD . ~37!

Combining this equation with the results obtained
(qGkqs

aab(E) and (qFkqs
aab(E) from Eqs. ~35! we eventually

get an implicit set of equations for the layer and sp
dependent electronic self-energy

Ms
a~E!52

J

2
ms

a~E!, ms
a~E!5

Zs
a~E!

Ns
a~E!

, ~38!

where the numerator and the denominator, respectively,
given by

Zs
a5zs\2^Sa

z &1
J

2
$@kas

(2)2\2S~S11!#G0s
aa2@~las

(1)1las
(2)

1zsm2s
a !\^Sa

z &1\kas
(2)#G02s

aa %1
J2

4
$zs\2S~S11!

3~las
(1)1las

(2)1zsm2s
a !1kas

(2)~ms
a2m2s

a !%G0s
aaG02s

aa ,

~39a!

Ns
a5\22

J

2
$~\1zslas

(2)1ms
a!G0s

aa1~zslas
(1)1m2s

a !G02s
aa %

1
J2

4
$~ms

a1\!~m2s
a 1zslas

(1)!

1zslas
(2)~m2s

a 1\!%G0s
aaG02s

aa . ~39b!
d

r

-

re

The implicit set of equations~38! and~39! now enables us
to self-consistently evaluate the self-energy of the sys
provided that thef-spin correlation functions from Eqs.~33!
are known. These will be evaluated in the next section.

B. The local-moment system

The system of localizedf-moments is described by th
extended Heisenberg Hamiltonian~5! which we write down
again for convenience:

Hf* 52 (
i j ab

Ji j
abSiaSj b2D0(

ia
~Sia

z !2. ~40!

Here we want to stress once more that the single-ion ani
ropy constantD0 is small compared to the Heisenberg e
change interaction,D0!Ji j

ab . By defining the magnon Gree
function

Di j
ab~E!5^^Sia

1 ;Sj b
2 &&E , ~41!

we can calculate thef-spin correlation functions by evalua
ing the equation of motion

E Di j
ab~E!52\2dab^Sa

z &1^^@Sia
1 ,Hf* #2 ;Sj b

2 &&E . ~42!

The evaluation of this equation of motion involves the d
coupling of the higher Green functions on its right-hand si
originating from the Heisenberg term.Hf and the anisotropy
termHA using the random phase approximation~RPA! and a
decoupling proposed by Lines,34 respectively. The details o
the calculation can be found in a previous paper.35 For brev-
ity we restrict ourselves to present here only the results.
the layer-dependent magnetizations of thef-spin system we
get

^Sa
z &

\
5

~11wa!2S11~S2wa!1wa
2S11~S111wa!

wa
2S112~11wa!2S11

,

~43!

where

wa5
1

N (
k

(
g

xaag~k!

ebEg(k)21
, ~44!

where, again,N is the number of sites per layer andb
51/kBT. The summation(g in Eq. ~44! runs over then
polesEg(k) of the Green functionDk

ab(E) and thexaag(k)
is the weight of thegth pole in the diagonal element of th
Green functionDk

aa(E). The poles and the weights can b
calculated from the solution of Eq.~42!:

Dk
ab~E!52\2S ^S1

z& 0

�

0 ^Sn
z&
D ~E I2A!21, ~45!

with

~A!ab

\
5S D0Fa12(

g
J0

ag^Sg
z& D dab22Jk

ab^Sa
z &.

~46!
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TheFa come from the decoupling of the higher Green fun
tion on the right-hand side of Eq.~42! which originates from
the anisotropy HamiltonianHA according to Lines34,35 and
are given by

Fa5
2\2S~S11!23\^Sa

z &~112wa!

^Sa
z &

. ~47!

Having obtained the layer-dependent magnetizations~43!
and thewa we can now express all the otherf-spin correla-
tion functions appearing in Eqs.~33! via the relations

^Sa
2Sa

1&52\^Sa
z &wa , ~48a!

^~Sa
z !2&5\2S~S11!^Sa

z &~112wa!, ~48b!

^~Sa
z !3&5\3S~S11!wa1\2^Sa

z &@S~S11!1wa#

2\^~Sa
z !2&~112wa!, ~48c!

and the general spin-operator equality

Sia
s Sia

2s5\2S~S11!1zs\Sia
z 2~Sia

z !2. ~49!

Mediated by Eqs.~33!, ~38!, and~39!, the f-spin correlation
functions contain the whole temperature dependence of
electronic subsystem~9!.

III. RESULTS

We have evaluated our theory for a film with simple cub
~s.c.! structure consisting ofn layers parallel to the~100!
plane of the crystal. The electron hopping and the Heis
berg exchange integrals shall be restricted within a tig
binding approximation to nearest neighbor coupling

Ti j
ab5d i , j 1D

ab Taa1d i j
a,b61Tab, ~50!

Ji j
ab5d i , j 1D

ab Jaa1d i j
a,b61Jab, ~51!

respectively. HereD denotes the relative positions of neare
neighbors, both within the same layer, for s.c.-~100!: D

5(0,1),(0,1̄),(1,0),(1̄,0). Tab is the hopping between th
layersa and b5a61 andJaa is the exchange interactio
within the layera. For the following discussion, furthermor
the hopping integrals and the exchange interaction have b
assumed to be uniform within the whole film,

Taa5Tab[T, Jaa5Jab[Jf f , ~52!

where Jf f should not be mixed up with thes-f exchange
interactionJ. For explicit values we chooseT520.1 eV,
Jf f50.01 eV, and the single-ion anisotropyD0 /Jf f50.01.

A. f-spin correlation functions

Before we can start calculating the electronic excitat
spectra, we first have to evaluate the local-moment sys
considered in Sec. II B. For example, Fig. 1 shows the lay
dependent magnetizations of a 20-layer s.c.~100! film as a
function of temperature. As for all other film thicknesses t
layer-dependent magnetizations^Sa

z & increase from the sur
face layers (a51,20) towards the center layers (a510,11)
of the film. The inset of Fig. 1 displays dependence of
-

he

n-
t-

t

en

n
m
r-

e

e

Curie temperature on the film thicknessn. The complete set
of f-spin correlation functions according to Eqs.~43!, ~44!,
~48!, and~49! calculated for the center layer of the 20-lay
film can be seen in Fig. 2.

B. The temperature-dependent electronic structure

We discuss our results in terms of the spectral den
Sks

aa(E), defined in Eq.~12!, and the local quasiparticle den
sity of states, Eq.~13!. We start our discussion of th
temperature-dependent electronic band structure with a
cial limiting case which gives us an insight into the under
ing physics of the problem. The special limiting case of fe
romagnetic saturationT50 and empty conduction bandn
50, is exactly solvable, both, for the bulk material31,32,29and
for film geometries.28 The limiting case, therefore, provides
good testing ground for the theory for finite temperatu
presented in Sec. II A.

FIG. 1. Layer-dependent magnetizations^Sa
z & of a 20-layer s.c.-

~100! film for the layersa51,2, . . .,10. The magnetizations in
crease from the surface layer towards the center of the film. In
Dependence of the Curie temperatureTC on the film thicknessn of
s.c.-~100! films.

FIG. 2. The differentf-spin correlation functions from Eqs.~33!
calculated for the center layers (a510,11) of the 20-layer film
from Fig. 1.
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It turns out that forT50 the s5↑ spectrum is rather
simple, since a↑ electron has no chance to exchange its s
with the ferromagnetically saturated localizedf-spin system.
The quasiparticle band structure is therefore identical to
free Bloch dispersion, only rigidly shifted by a constant e
ergy amount of2 1

2 JS, due to the first Ising-like term in the
s-f Hamiltonian~8!.

Figure 3 shows the spin-↓ spectral density of a s.c.-~100!
monolayer for the special case of ferromagnetic saturat
T50, for differents-f interactionsJ. For J50 the spectral
density represents ad function located at the point of the fre
two-dimensional Bloch dispersion. For smalls-f exchange

FIG. 3. Spectral densitySk↓(E) of a s.c.-~100! monolayer for
ferromagnetic saturation of the local-moment system (T50, ^Sz&
5S) as a function of energy and wave vector fromG5(0,0) to
M5(p,p) for T50 and different values of thes-f exchange inter-
actionJ.
n

e
-

n,

coupling, J.0, a slight deformation of the original Bloch
dispersion sets in and the quasiparticle peaks get a fi
width indicating a finite lifetime. For intermediate and stron
couplings the spectral density splits into two parts cor
sponding to two different spin exchange processes betw
the excited spin-↓ electron and the localizedf-spin system.
The higher energetic part of the spectrum represents a p
ization of the immediate spin neighborhood of the electr
due to a repeated emission and reabsorption of magnons
result is a polaronlike quasiparticle called themagnetic po-
laron. The low-energetic part of the spectrum is a scatter
band which corresponds to the simple emission of a mag
by the spin-↓ electron, which is necessarily connected with
spin-flip of the electron.28

From the spectral density of Fig. 3 we get, using Eq.~13!,
the local quasiparticle density of statesr↓(E) of a mono-
layer, displayed in Fig. 4. Here we see that the splitting
the spectral density discussed above transfers itself to
quasiparticle density of states as a gap forJ*0.2. As for the
spectral density, the density of states of the spin-↑ electron is
only rigidly shifted and therefore not displayed.

However, this does not hold any longer for finite tempe
tures,T.0. Figure 5 exhibits the density of states of a s.
~100! monolayer for differents-f interactions and differen
temperatures. The dotted lines represent the case of va
ing s-f exchange,J50, where spin-↓ and spin-↑ spectra are
equal. Since the electrons are not coupled to the lo
moment system, we also have no temperature depende
For finite s-f interaction we see from Fig. 4 that in the spi
↓ density of states spectral weight is transferred from
high-energetic polaron peak to the low-energetic scatte
peak. To explain this effect we have to consider the elem
tary processes which build the spectrum. The low-energ
scattering peak of the spin-↓ electron consists of two elemen
tary processes.

Because of finite deviation of thef-spin system from satu
ration for T.0, the ↓ electron has a finite probability o
entering the local frame as spin-↑ electron. This probability
is zero for ^Sz&5S (T50) and increases with increasin
temperature. On the other hand, the spin-↓ electron can first
emit a magnon and by that process reverse its spin, becom
a spin-↑ electron in the external frame of coordinates. T
spectral weight produced by the first elementary process
duces the spectral weight of the high-energetic polaron p

FIG. 4. Density of statesr↓(E) of a s.c.-~100! monolayer for
T50 and for differents-f interactionsJ.
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therefore shifting spectral weight from the high-energetic
laron peaks towards the low-energetic scattering peak.

For the spin-↑ electron we see from Fig. 5 that for finit
temperatures an additional peak rises at the high-energ
side of the spectra with increasing temperature. We can
plain this effect by the spin-↑ electron absorbing a magno
and subsequently, as spin-↓ electron forming a polaron. Her
the magnon absorption by a spin-↑ electron is equivalent to
the magnon emission by a spin-↓ electron. In the case o
ferromagnetic saturation the system does not contain
magnons, which is the reason why there is no scattering p
in the spin-↑ spectrum atT50. As a result of the shifting of
spectral weights towards lower energies for the spin-↓ elec-
tron and towards higher energies for the spin-↑ electron the
densities of states for the two spin directions approach e
other with increasing temperature.

In the limiting case ofT→TC the system has eventuall
lost its ability to distinguish between the two possible sp
directions of the test electron because of the loss of mag
tization of the underlying local-moment system̂Sz&→0.
Hence as for the case of vanishings-f interaction for T
5TC the density of states of the spin-↓ electron equals tha
of the spin-↑ electron. Another feature which can be se
from Fig. 5 is that the positions of the four quasipartic
subbands, two for each spin direction, do not change w
temperature.

To further discuss the temperature effects we present
Figs. 6 and 7 the spectral density and the local density

FIG. 5. Density of statesrs(E) of a s.c.-~100! monolayer for
differents-f interactionsJ and different temperaturesT ~in units of
TC). The dotted lines represent the case ofJ50 where there is no
distinction between spin-↓ and spin-↑ electron,r↓(E)5r↑(E).
-

tic
x-

ny
ak

ch

e-

h

th
of

states, respectively, of a s.c.-~100! double layer (n52) for
J50.2 and different temperatures. Again we see that
spectra for the two spin directions approach each other
T→TC . Another feature which can already be observed
Fig. 5 is that the increase of temperature results in the n
rowing of the subbands. For the case of intermediate c
pling, J50.2, according to Figs. 6 and 7 this band narrowi
results in the opening of a gap between the scattering and
polaron band with increasing temperature.

This temperature enhanced band splitting has alre
been found for the three-dimensional case.29 It can be ex-
plained for the spin-↑ electron by the fact that for propaga
ing in its own low-energetic subband it needs to find
appropriate lattice site. In the case of ferromagnetic satu
tion there is no restriction for the propagation of the spin↑
electrons since spin-flip processes are impossible. With
creasing temperature there is an increasing deviation of
local moments resulting in the possible magnon absorp
by the spin-↑ electron and subsequent changing to the hig
energetic polaron subband. Hence, the spin-↑ electron, to

FIG. 6. Spectral densitySks(E)5Sks
11(E)5Sks

22(E) of a s.c.-
~100! double layer as a function of energy and wave vector fr
G5(0,0) toM5(p,p) for J50.2 eV and different temperaturesT
~in units of TC).
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470 PRB 60R. SCHILLER AND W. NOLTING
propagate in its own subband needs to move further
tances with increasing temperature resulting in a reduced
fective hopping and in a decreased bandwidth.

In addition to the discussed temperature effects, Figs
and 7 exhibit a typical two-peak structure which is caused
the coupling of the two layers. This two-peak structure
replaced in the case of a film consisting ofn equivalent lay-
ers by ann-peak structure. Generally, the spectra of the d
cussed local-moment films are characterized by an inter
between correlation (J), temperature effects, and geomet
of the film. Figures 8 and 9 display results for the loc
density of states and the layer-dependent spectral density
20-layer s.c.-~100! film. Additionally to the dependence o
thes-f exchange interaction and the temperature depend
we notice that the spectral density and the density of st
show a typical layer dependence due to the broken tran
tional symmetry at the surfaces of the film.28 For the center
layers (a510,11) of the 20-layer film we see from Fig.

FIG. 7. Density of statesrs(E)5rs
1(E)5rs

2(E), of a s.c.-~100!
double layer forJ50.2 and different temperaturesT ~in units of
TC). The curves forT50 are furthest away from the paramagne
solutionT5TC ~bold line!.

FIG. 8. Local density of statesrs
a(E), of the first (a51,20),

second (a52,19), and center (a510,11) layer of a 20-layer s.c.
~100! film for different s-f interactionsJ and different temperature
T/TC50,0.4,0.7,0.9,0.98,1. The curves forT50 are furthest away
from the paramagnetic solutionT5TC ~bold line!.
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that the local density of states of the spin-↑ electron atT
50 has already become pretty similar to the well-know
tight-binding density of states of the three-dimensional s
lattice whereas the density of states of the surface lay
(a51,20) exhibits the characteristic semi-elliptic profile.

IV. SUMMARY

We have investigated the electronic quasiparticle ba
structure of a ferromagnetic semiconductor film. A sing
test electron (s band! is coupled by an intra-atomics-f in-
terband exchange to a system of localized 4f moments. That
may be regarded as a proper model description for Euo
EuS. Our approach uses a moment-conserving decoup
procedure for suitable defined Green functions. The fact
our theory evolves continuously from the exactly solvab
limiting case of ferromagnetic saturation28 gives it a certain
trustworthiness.

The exchange coupling of the conduction electron to
local-moment system gives rise to a correlation induc
splitting of the quasiparticle spectra. A polaron part may
interpreted as a repeated emission and reabsorption of m
nons by the conduction electron resulting in a new quasip
ticle, the magnetic polaron. A rather broad scattering pea
due to a simple magnon emission or absorption by the c
duction electron. This pronounced splitting depends on
actual value of the exchange interactionJ. For small values
of J only a renormalization of the one-electron energy occ
resulting in a deformation of the free Bloch dispersion. F
higher values ofJ, the mentioned splitting of the spectra in
polaron part and scattering part sets in.

We intend to apply the presented model to study the te
perature dependent electronic structure of EuO and E
films. Therefore the electronic part of the Hamiltonian~3!
and thes-f exchange interaction~6! have to be modified to
include the multiband aspect of real substances. This wil
done by substituting the tight-binding band structure~50! by
a realistic one taken from a band structure calculation.

Another highly interesting field which we want to use o
theory for is the evaluation of the temperature dependenc

FIG. 9. Spectral densitySks
aa as a function of wave vectork from

G5(0,0) toM5(p,p) ~horizontal axes! and energyE from 21 to
1 eV ~vertical axes! of the first (a51,20), second (a52,19), and
center (a510,11) layer of a 20-layer s.c.-~100! film for J50.2 eV
and different temperatures~in units of TC).
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surface states. In a previous paper we have calculated su
states for the special case ofT50 andn50 by modifying
the hopping in the vicinity of the surface.36 The extension of
these calculations to finite temperatures promises to give
understanding of recent experimental results concerning
temperature dependence of electronic states on surface
rare earths.
re
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lin, 1986!, p. 16.

11K. Binder, in Phase Transitions and Critical Phenomena, edited
by C. Domb and J. L. Lebowitz~Academic Press, London
1989!, Vol. 8, Chap. 1.

12R. Wu and A. J. Freeman, J. Magn. Magn. Mater.99, 81 ~1991!.
13P. A. Dowben, D. N. McIlroy, and D. Li, inHandbook of the

Physics and Chemistry of Rare Earth, edited by J. K. A.
Gschneidner and L. Eyring~Elsevier, Amsterdam, 1997!, Vol.
24, Chap. 159.

14T. Herrmann and W. Nolting, J. Phys.: Condens. Matter11, 89
~1999!.

15D. Weller, S. F. Alvarado, W. Gudat, K. Schro¨der and M. Cam-
pagna, Phys. Rev. Lett.54, 1555~1985!.

16C. Rau and S. Eichner, Phys. Rev. B34, 6347~1986!.
17C. Rau and M. Robert, Phys. Rev. Lett.58, 2714~1987!.
18H. Tang, D. Weller, T. G. Walker, J. C. Scott, C. Clappert, H.

Hopster, A. W. Pang, D. S. Desser, and D. P. Pappas, Phys. R
Lett. 71, 444 ~1993!.

19C. Rau, C. Jin, and M. Robert, J. Appl. Phys.63, 3667~1988!.
20C. Rau, C. Jin, and M. Robert, Phys. Lett. A138, 334 ~1989!.
21M. Donath, B. Gubanka, and F. Passek, Phys. Rev. Lett.77, 5138

~1996!.
22A. V. Fedorov, K. Starke, and G. Kaindl, Phys. Rev. B50, 2739

~1994!.
23E. Weschke, C. Schu¨ssler-Langeheine, R. V. Meier, A. Fedorov,

K. Starke, F. Hu¨binger, and G. Kaindl, Phys. Rev. Lett.77, 3415
~1996!.

24W. Nolting, T. Dambeck, and G. Borstel, Z. Phys. B94, 409
~1994!.

25B. Kim, A. B. Andrews, J. L. Erskine, K. J. Kim, and B. N.
Harmon, Phys. Rev. Lett.68, 1931~1992!.

26D. Li, J. Zhang, P. A. Dowben, and M. Onellion, Phys. Rev. B
45, 7272~1992!.

27D. Li, J. Zhang, P. A. Dowben, R. T. Wu, and M. Onellion, J.
Phys. C4, 3929~1992!.

28R. Schiller, W. Müller, and W. Nolting, J. Magn. Magn. Mater.
169, 39 ~1997!.

29W. Nolting, S. M. Jaya, and S. Rex, Phys. Rev. B54, 14 455
~1996!.

30W. Nolting, S. Rex, and S. M. Jaya, J. Phys.: Condens. Matter9,
1301 ~1997!.

31S. R. Allan and D. M. Edwards, J. Phys. C15, 2151~1982!.
32W. Nolting and U. Dubil, Phys. Status Solidi B130, 561 ~1985!.
33N. M. Mermin and H. Wagner, Phys. Rev. Lett.17, 1133~1966!.
34M. E. Lines, Phys. Rev.156, 534 ~1967!.
35R. Schiller and W. Nolting, Solid State Commun.110, 121

~1999!.
36R. Schiller, W. Müller, and W. Nolting, Eur. Phys. J. B2, 249

~1998!.


