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Temperature-dependent band structure of a ferromagnetic semiconductor film

R. Schille* and W. Nolting
Institut fir Physik, Humboldt-Universitazu Berlin, InvalidenstraBe 110, D-10115 Berlin, Germany
(Received 6 January 1999

The electronic quasiparticle spectrum of a ferromagnetic film is investigated within the frameworksef the
f model. Starting from the exact solvable case of a single electron in an otherwise empty conduction band
being exchange coupled to a ferromagnetically saturated localized spin system we extend the theory to finite
temperatures. Our approach is a moment-conserving decoupling procedure for suitable defined Green func-
tions. The theory for finite temperatures evolves continuously from the exact limiting case. The restriction to
zero conduction band occupation may be regarded as a proper model description for ferromagnetic semicon-
ductors such as EuO and EuS. Evaluating the theory for a simple cubic film cut parallel(tDéherystal
plane, we find some marked correlation effects which depend on the spin of the test electron, on the exchange
coupling, and on the temperature of the local-moment syst806163-1829)06925-9

I. INTRODUCTION (Ref. 18 have been reported. Succeeding the results for Gd,

Since the mid 1970’s there has been a growing theoreticalb also was found to have a higher surface Curie tempera-
interest in thes-f (or s-d) model}? The model works for ture, relative to the bulk®%°
materials which exhibitocal-moment magnetisnfor mag- Contrary to the groups cited above, Donattal,?! using
netic semiconductors such as the europium chalcogenidepin-resolved photoemission did not find any indication for
EuX (X=0, S, Se, Te (Ref. 3 and for metallic local- an enhanced surface Curie temperature af0Ba1) surfaces.
moment systems such as Gd, Tb, and“Din the local-  Other controversially discussed surface properties of Gd in-
moment magnets, the electronic and the magnetic propertiesude the temperature-dependent behavior of €a@tl) sur-
are caused by different groups of electrons. Whereas elegace stat&~23which is supposed to play an important role in
tronic properties such as electrical conductivity are borne byhe interplay between electronic structure and magnetism. A
itinerant electrons in rather broad bands, e.g, 6d for  thorough account on the surface magnetism of the lan-
Gd, the magnetism is due to a strongly localized partiallythanides has been recently given by Dowte¢ral 12
filled 4f shell. In the case of Gd and Eu compounds tlie 4 It is not only the dimensionally reduced Gd which is of
shell is exactly half-filled and, because of Hund’s rules, hasnterest here, even bulk Gd is far from being completely
its maximal magnetic moment &= ;. understood. In an earlier study Noltirgf al?* have pre-

Many characteristics of the local-moment systems may belicted that thea priori nonmagnetic (8,6s) conduction and
explained by a correlation between the localized magnetizalence bands should exhibit a marked nonuniform magnetic
states and the itinerant electrons. In thé model this cor-  response at different positions in the Brillouin zone and for
relation is represented by an intra-atomic exchange interadifferent subbands. Weakly correlatéglike) dispersions
tion. The difference between thef model and the well- show a Stoner-likél dependence of the exchange splitting.
known Kondo lattice modelis that in the former the On the other hand, stronger correlatattlike) dispersions
exchange interaction is ferromagnetic, favoring parallelsplit below T into four branches, two for each spin direc-
alignment of itinerant electrons and local moments, whereason. Their T dependence mainly concerns the spectral
in the latter it is antiferromagnetic. That is why thé model  weights of the quasiparticle peaks and not so much the en-
has been recently more and more often referred to as thergy positions. Consequently, an exchange caused splitting
ferromagnetic Kondo lattice mod®l. remains even fof >T,. This may be the reason for the fact

The second aspect of this paper is that of reduced dimenhat the experimental situation is controversial. Kémal?®
sionality. Magnetic phenomena at surfaces and in thin filmgound aT-dependent spin splitting of occupied conduction
attract broad attention both theoretically and experimentallielectron states, which collapses in a Stoner-like fashion for
due to the question of phase transitions and the variation of —T.. From photoemission experiments, éti al?%27 con-
magnetic and electronic properties in dimensionally reducedlude that the exchange splitting must be wave-vector depen-
system$~1* One of the most remarkable examples of thedent, collapsing for somk values, while for other no col-
outstanding magnetic properties at surfaces is the existendgpse occurs as a function of increasing temperature. This
of magnetically ordered surfaces at temperatures where tHairly complicated temperature behavior in the bulk material
bulk material is paramagnetic. This effect was first docu-must be expected for Gd films, too.
mented for G@O00I) surfaces by Welleet al® and since It is not at all a trivial task to perform an electronic struc-
then been measured by different groups using a wide rang@re calculation for a ferromagnetic local-moment film in
of experimental techniqué&-8In these experiments for the such a manner as to realistically incorporate correlation ef-
difference between the Curie temperature at the surfacfects. In a previous pap@we proposed a simplified model
Tc (surface), and the Curie temperature of bulk Gdwhich allowed us to exactly calculate the electronic structure
Tc (bulk) values between 17 KRef. 16 and some 60 K of a model film in the limiting case of ferromagnetic satura-

0163-1829/99/6(1)/462(10)/$15.00 PRB 60 462 ©1999 The American Physical Society



PRB 60 TEMPERATURE-DEPENDENT BAND STRUCTURE OF A ... 463

tion and empty conduction band=0. This case is appli-
cable to a film of a ferromagnetic semiconductor such as HF =Hi+Ha=H;— Do, (S,)2 5
EuO, EuS aff=0. Its significance arises from the fact that "
all relevant correlation effects which are found or expectedvhich additionally to the Heisenberg Hamiltonidh; fea-
to occur at finite band occupations and arbitrarytures a single-ion anisotropy tertd, . Dy is the according
temperatureé2°°do already appear in this rigorously trac- anisotropy constant, which is typically smaller by some or-
table special casg:? ders of magnitude than the Heisenberg exchange interaction
In this paper we extend th€=0 special case to finite D0<Jﬁﬁ_
temperatures. As a result we will calculate the electronic The distinguishing feature of thef model is an intra-
structure of a local-moment film with a single electron in anatomic exchange between the conduction electrons and the
otherwise empty conduction band within the whole temperatocalizedf spins,
ture range fromir=0 andT=T..
In the next section we present the model and define the J
corresponding many-body problem. Subsequently the model Hst=— 7 % Sa%ia- ©®)
is evaluated in two steps, in Sec. Il A for the electronic sub-
system and in Sec. Il B for the local-moment system. Sectiofriere,J is thes-f exchange interaction and, is the Pauli
Il is devoted to a detailed discussion of the results obtaine@pin operator of the conduction band electrons. For the ma-
for different film thicknesses and various exchange couplingéerials we are interested in theef coupling is positive {
and temperatures. Comprehensive conclusions with an outz0). In the case wher@<0 the model Hamiltoniar(2) is
look on the possible application of the model to real subthat of the so-called Kondo lattice. Using the second-
stances and on the evaluation of temperature-dependent s@uantized form ofo;, and the abbreviations
face states in Sec. IV complete the paper.

Sp=Siptiz,Sp, z1(h=*1, @)
Il. THEORETICAL MODEL the s-f Hamiltonian can be written as
We investigate a film consisting af equivalent layers J
parallel to the surface of the film. Each lattice site of the film Het=— = X (ZoSF Mo+ SoCih o Ciao)- (8)
is indicated by a greek lettett, B, v, ..., denoting the 2 fau
layer index and a latin letterr, j, k, ..., numbering the

i ithi i | b The most decisive part of thef Hamiltonian (8) is the

Z!tes wit ml a gllve_n a}yer. Each layer dposlsesshes ;WO'second term, which describes spin exchange processes be-
imensional translational symmetry. Accordingly, the ther-y een the conduction electror®) and the localized mo-
modynamic average of any site dependent oper&fprde-

7 ments(4).
pends only on the layer index: In general, the alignment of the localized moments will be
(AL)=(A,). 1) influgnced b_y thes-f interactio_n, which can me_diate an indi-
te ¢ rect interaction]Ruderman-Kittel-Kasuya-YosidéRKKY )]
The completes-f model Hamiltonian via the occupied conduction bafiHowever, here we are
interested in the electronic quasiparticle spectrum of a ferro-
H="Hs+H;i+Hsg (2 magnetic semiconductor according to a simple test electron

in an otherwise empty conduction band. In this case, the

localized spin state cannot be affected by sHeinteraction.

N Furthermore, one knows from experiment that typical
HS=E TﬁBCiijﬁo 3 Heisenberg exchange integrals are smaller by some orders of

ek magnitudes than theis-f counterparts. In this respect, it

describes the itinerant conduction electronssaslectrons. seems appropriate to neglect the Heisenberg exchange inte-

¢y andc;, are, respectively, the creation and annihilationgrals for the calculation of the electronic properties of the

operators of an electron with the spin at the lattice site  System. Accordingly, the Hamiltonig@) can be split into an

Ri,. Tﬁﬂ are the hopping integrals. electronicHs+ Hss and a magnetic part(y which can be

Each lattice siteR;,, is occupied by a localized magnetic Solved separately.

moment, represented by a spin oper&qr. These localized

moments are exchange coupled expressed by the Heisenberg A. The electronic subsystem

Hamiltonian

consists of three parts. The first

Starting from the Hamiltonian of the electronic subsystem

== 2 9SS, @ M=t o, ©

all physical relevant information of the system can be de-
Wherle}ﬁ are the exchange integrals. The problem with therived from the retarded single-electron Green function
simple Heisenberg model in the for() is that due to the

Mermin-Wagner theoreffi there is no solution showing col- GiE(E)=((CinriC{go))E

lective magnetic order at finite temperatuire-0. To avoid _

this obstacle we have chosen an extended Hamiltonian for =—ifmdt e‘;{E%[c- (t),ch (0)] ). (10)
the localized moments, g\t Bo +
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Here and in what follow$---,---], ([---,---]) is the Fiuitjaf(E):«Sra(ery—o;Cj+ﬁ0>>E! (19
anticommutator (commutatoy. Conform to the two-

dimensional translational symmetry, we perform a Fourieroriginate form the two terms of thef Hamiltonian(8) and
transformation within the layers of the film will be referred to as the Ising and the spin-flip function,

respectively. Considering the equations of motion for these
GB(E) = 1 S MR -R)GEA(E 11 two Green functions we encounter the two
ke ()= . YGijo(E), 1) higher Green functions(([ S/, Cryo  Hstl- iCs,))e and
] ) ) ] (([Sia"Chy— o+ Hstl - ;cj*B,,)>E. Since we consider an empty
whereN is the number of sites per layek,is an in-plane  conduction band the thermodynamic average in the Green
wave vector from the first two-dimensioneé2D) Brillouin  fynctions has to be computed with the electron vacuum state
zone of the layers, an; represents the in-plane part of the |n=0). From the definition of thes-f Hamiltonian (8) we
position vectorR;,=R;+r,. From Eq.(11) we get the lo-  then see thatn=0|H;=0 and, accordingly,
cal spectral density by
n—0

1 4 At
SEA(E) =~ —ImGEAE+i0"), (12 ({[Sia Hst)-CorriCigo)e = 0.
which is directly related to observable quantities within IS HerlCr oF >>En:>00
a 1/ Estl="Ky—0c1¥|Bo .

angle and spin resolved direct and inverse photoemission
experiments. Finally, the wave-vector summatiorS@f(E) H_ence, fpr the equations of motion of the Ising and the Spin-
yields the layer-dependeritocal) quasiparticle density of flip function we get

states
> (ESE—TIHT b (E)

imjo

1

ParE)= 75 2 S (E). (13 i
o . | =1(SE) 0 + (Sl Cuyr ol i)
In the following discussion all results will be interpreted in (20)
terms of the spectral densiifl2) and the local density of
states(13).

For the solution of the many-body problem posed by Eq.>, (EoY—TUF B (E)=((S . T Chy—o  Hsil = iCilgo) Ve -
(9) we write down the equation of motion of the single- M~

electron Green functiofil0) (21)
On the right-hand side of these equations appear further
E Gﬁ€:ﬁ5ﬁﬁ+2 TikGHE A (([Ciao Hsil - :Cjge))E higher Green functions which prevent a direct solution and
mu require an approximative treatment. The treatment is differ-

(14 ent for the nondiagonal terms, &)+ (k,y) and for the di-
whereﬁﬁﬁz 845, - The formal solution of Eq(14) can be agon'al termsi(a)=(k,v). In the first case we use a self-
found by introducing the self-energy f-”g(E) consistent so-called self-t_energy apprpach which res_ults in a

J decoupling of the equations of motion. For the diagonal

. terms {,a)=(k,y) this approach is replaced by a moment

({[Ciao Hsil- ;Cj,BLr>>E:; Mk (E)GHE(E), (15  technique which takes the local correlations better into ac-

a count.

which contains all information about the correlations be- a. Nondiagonal terméi,«) # (k,y). The definition of the
tween the conduction band and localized moments. Afteself-energy(15) formally corresponds to the substitution
combining Egs.(14) and (15 and performing a two-
dimensional Fourier transform we see that the formal solu- , . ap
tion of Eqg.(14) is given by [Ciao Hsil - mzﬂ Mimo(E)Cmyir 22

Gyo(E)=H[EI-T,—M,(E)]7 1, (16)  Wwithin the brackets of the Green function. The inspection of
] ] ) the spectral decomposition of the two functions in ELtp)
wherel represents then(xn) identity matrix and where the o\ eals that both  ({[Ciag+Herl- ;Cita,)) and
matricesGy,(E), T, andM,,(E) have as elements the + e :
kot =lr K Bkl B o ({Ciae:Cjp,))e have the same pole structure and can differ
Iayer-_dependent function,; (E), Ti", andMi;(E), re- only by the spectral weights of their poles. The equality of
spectively. both sides in Eq(15) is installed by the self-energy compo-

To explicitly get the self-energy in Eq15) we evaluate  on5\196(E). Inspecting now the spectral representations

: ijo
the Green function of the two Green function§(S;,”[ Cy, , Hst] - ;C;L’BO.>>E and

J ({Sa”Chye;C{p,))e We Notice that the additional spin opera-
(([Ciag Hsil- iCjpe))E=— E(Zgrﬁ‘j”er Fi®®). (17 tor S.” selects for both only those poles of the original
Green functions without spin operator which are connected
Here the two higher Green functions with a spin-flip of the electron. Hence, the poles of these two
functions build subset of the poles of the two Green func-

Fﬁijyg(E) =<<Slzack'yo' ;CjJrBzr»Ev (18) tions from Eq.(15) and are, therefore, identical to each other.
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Again, only the weights of the poles can differ. In analogy to
Egs. (15 and(22) we now propose to use the plausible an-

satz

<<S|7a0-[cky7(r 1Hsf]f ;Cj+30'>>E

~2 MG o(B)(S, Cmu o Cgo)e - (29)
J7
A similar reasoning can be used for

((SfalCyo Ml - iCjgo) e
~ mz,u. M IZ#‘IO'( E)<<Slzacm,u,17 ;Cj+[30'>>E ’ (24)

with the difference that here the additional spin oper&gpr
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FitP(E)lr—o=h[(S—$)+32,IF5A(E), (299

iljo iijo

Fi2(E)l1—0=h?SG}5(E) ~ 2, AT F(E).

iijo o iljo

(29b

The exact limiting casef28) and (29) suggest the general
structures

Faeb(E)= kUG (E)+\UFE*#(E), (308
FaeB(E)=x@GIE(E)+\BTa5(E). (30D

For the five Green functions of the tygéA;B))e in Egs.
(30) we can calculate the spectral moments

(31)

)"
lﬁﬁ) [A(t),B(O)]+> ,

mia-(
t=0

does not change the original pole structure but merely modi-
fies the spectral weights of the poles. On the right-hand sides

of Egs.(23) and(24) we find the already known spin-flip and

Ising function, respectively. Hence, foi,&)# (k,vy), the

Egs.(14), (17), (20), (21), (23), and(24) build a closed sys-

tem.

b. Diagonal elementéi, o) = (k,y). We start with the ex-
plicit evaluation of the higher Green functions on the right-

hand sides of Eqg20) and (21). For Eq.(21) we get, for
(i,a)=(k,7y),

wheren=1,2, ... .Because of the equivalent relation
1 ©
M{B=— %f dE E"Im((A;B))e, (32)

the moments can be used to fix the coefficiedf3 andA (™
in Egs. (30). After tedious but straightforward calculations,

we get

— 0 J —aa Caa
<<Sia [Cia—a'!Hsf]— ;CjJrB(r>>E: E[ZO’Fiijf(E)_ FII]f(E)]’ K(alo)_:O, KEVZO)_:<S;USZ>_)\(2 <S§>,

ao

(25
where we have abbreviated D) (S, 7SaSh) +2,(S,"S0) 33
- - v (S, "S2) |
Ficiyjaol'g(E):<<SlaUSZaCiafo';Cj+ﬂo'>>E1 (263)
FiP(E)=((S.7SuCiac 1Cpo) E - (26b) ()~

v ()2 —(sh)?
The analogous evaluation of the higher Green function in Eq.
(20) does not require any further higher Green functions,The coefficients are determined ispin correlation func-
because it can be expressed in terms of already known Gredions, which will be determined at a later stage.
functions The Eqgs.(14), (17), (20), (21, (23)—(25), (27), (30), and
(33) represent a closed system, which can be solved self-
((SfalCino Hst] - ;Cj+,8<r>>E consistently. Before proceeding we assume that the self-
(S TG Her] ;Cj+50>>E energy from Eq(15) is a local entity
I MZ(E)=8,M(E). (34
= S (Ui 7 (E) +2,F{F(E) ~ 2,AS(S+ 1) G{5(E)]. |
The reason for th& independence can be traced back to the
neglect of magnon energié¥The restriction to the diagonal
elements in the greek indices denoting the layers is in that
sense the transfer of theindependence in the case of three
: N Gimension®® to the film geometries discussed in this paper.
functionsF{{*#(E) andF{{#(E). Both fulfill exact relations  Furthermore one can show that the assumpt@4) is not
which will be used to derive satisfying approximations. Fornecessary for the following calculations but merely drasti-
spin S=3 we find for all temperatures: cally simplifies them.

We can now use Eqg$23)—(25), (27), (30), and(33) to

(27)

As Eq. (25), the above relation is still exact. To get a close
system of equations we are left with the determination of th

FiOP(E)|s=1/0= $2,8FA(E), (289  evaluate the Ising and the spin-flip functions in E@®) and
(21). As the result we get the Fourier transformed Ising and
l-iffj“f(EHs: 2= %ﬁzGﬁﬁ(E)—zUﬁFﬁj"‘f(E). (28b) spin-flip functions. According to Eq17) we can restrict our

attention to the diagonal elemeng;?(E) and Fy " (E).
On the other hand, in the case of ferromagnetic saturatiomfter subsequen summation we eventually get, using Egs.
(SE)=S, it holds for arbitrary spin: (16) and (34),
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n3 Tigd= N(S)ogl-

<3 -

X NG+ (z,5—\Y)

( z,[ k3 —1h2S(S+1)]

x}q‘, Fecbt (h+z, >\<2>)2 rggf)], (359

8 Fons egag[M%E Fasts 2
q q

«? ING?

ORI rs;zf)], (@sb
q q
where we have introduced

1
=N 2 Gi(®). (36)

The set of equation&35) can be solved to express the sums
STl (E) and S Fﬁ;f(E) in terms of the single-electron

Green functionGy, (E) However, by inspecting Eq$35)

we see that these expressions will still contain the layer an

spin-dependent self-enerdy (E).
To solve this problem we combine Eq45) and(17) and
get, after Fourier transformation,

aGaﬁ_

J
=S e S Rl @

Combining this equation with the results obtained for
aL kel (E) and S4F P (E) from Egs.(35) we eventually
get an implicit set of equations for the layer and spin-

dependent electronic self-energy

(38)

« J . oo Zo(E)
MG(E)=—5mG(E), my(E)= N(E)’

where the numerator and the denominator, respectively, are

given by

g RS+ = {[K<2>— 25(S+1)1Ge—[(AD+\ 2
J2
+z,m* VA(SE)+hkBIGIe L+ 71z 72S(S+1)

XOAD+AD+2z,m* )+ «@(mi—m* )1GeGee,,

(393
J (2) ay~aa (1) a aa
— 5{(% +Z At MG+ (Mg +mE )GGE
J2
+ 5 {mE+A)(m? ,+2,\0)
+z, AP (m* +1)}GIGae (39b)
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The implicit set of equation&38) and(39) now enables us
to self-consistently evaluate the self-energy of the system
provided that thd-spin correlation functions from Eq$33)
are known. These will be evaluated in the next section.

B. The local-moment system

The system of localized-moments is described by the
extended Heisenberg Hamiltoni@s) which we write down
again for convenience:

E IPS,.S

ijap

5 DOE (S)2. (40)

Here we want to stress once more that the single-ion anisot-
ropy constantD, is small compared to the Heisenberg ex-
change interactiorD0<Ji‘j“ﬁ. By defining the magnon Green
function

DiP(E)=((SiiSip)e (41)
we can calculate théspin correlation functions by evaluat-
ing the equation of motion

E DIP(E)=2428,5(S0) + (([Sh Hi 1 Sjp)e- (42)

he evaluation of this equation of motion involves the de-

oupling of the higher Green functions on its right-hand side,
originating from the Heisenberg ter; and the anisotropy
termH, using the random phase approximati®PA) and a
decoupling proposed by Linéé respectively. The details of
the calculation can be found in a previous pafidfor brev-
ity we restrict ourselves to present here only the results. For
the layer-dependent magnetizations of fhepin system we

et

(S2) _(1+90) " H(S—gu) +¢¢” (S+1+0,)
h S RN ’
(43)
where
1 Xaay(K)
=Y ; 27 e 001 (44)

where, again,N is the number of sites per layer angl
=1/kgT. The summationz,, in Eq. (44) runs over then
poIesEy(k) of the Green funcnorDﬁ“'B(E) and they ,,,(K)

is the weight of theyth pole in the diagonal element of the
Green functionD*(E). The poles and the weights can be
calculated from the solution of E¢42):

(SD 0
DEA(E)=2h2 (EI-A)"L (45

0 (S

Sap— 23S
(46)

= Do®,+ 227 JEN(SL)
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The ®, come from the decoupling of the higher Green func- 4
tion on the right-hand side of E¢42) which originates from
the anisotropy Hamiltoniaft{, according to Line¥*° and
are given by 3r

2/2S(S+1)— z
- (S+1) 3ﬁ<8a>(1+2%>. @ "
(S v

Having obtained the layer-dependent magnetizat{dBs
and thep, we can now express all the othiespin correla
tion functions appearing in Eq633) via the relations

0 5 10 15 20

(S4Sa)=2h(S)¢a. (483 % 01

0.2 0.3 0.4

T (eV)
((S2)2)=h2S(S+1)(S)(1+2¢,), (48b)
FIG. 1. Layer-dependent magnetizatidis) of a 20-layer s.c.-
233\ _ 43 2/g2 100 film for the layersa=1,2,...,10. The magnetizations in-
((S))=17S(S+1) @+ A(SHIS(S+1) + ¢,] (100 Y 9
crease from the surface layer towards the center of the film. Inset:
— (S22 (1+2¢,), (480 Dependence of the Curie temperatiiggon the film thickness of

. ) s.¢.{100) films.
and the general spin-operator equality

S7 S =h2S(S+1)+2z,AS,— (%)% (49 Curie temperature on the film thicknessThe complete set
of f-spin correlation functions according to Edg43), (44),

Mediated by Eqs(33), (38), and(39), thef-spin correlation (4g) and(49) calculated for the center layer of the 20-layer
functions contain the whole temperature dependence of th§m can be seen in Fig. 2.

electronic subsysten®).

IIl. RESULTS B. The temperature-dependent electronic structure

We have evaluated our theory for a film with simple cubic alNe discuss our results in terms of the spectral density
(s.c) structure consisting of layers parallel to the100  Sko(E), defined in Eq(12), and the local quasiparticle den-
plane of the crystal. The electron hopping and the Heisensity of states, Eq.(13). We start our discussion of the
berg exchange integrals shall be restricted within a tight!émperature-dependent electronic band structure with a spe-

binding approximation to nearest neighbor coupling pial Iimitipg case which gives us an in.sight in_to the underly-
ing physics of the problem. The special limiting case of fer-

Tfj‘ﬁ: 5f‘f+AT““+ 5ﬁ~3i1'raﬁ, (50) romagnetic saturatiom=0 and empty conduction band

' =0, is exactly solvable, both, for the bulk matettal>?°and
33P= 56, 3ot 5P 3B, (51)  for film geometrie$® The limiting case, therefore, provides a

] . . good testing ground for the theory for finite temperatures
respectively. Heré\ denotes the relative positions of nearestjyresented in Sec. 11 A.

neighbors, both within the same layer, for 100): A
=(0,1),(0,1,(1,0),(10). T*? is the hopping between the 1
layerse and B=a*1 andJ®“ is the exchange interaction
within the layera. For the following discussion, furthermore
the hopping integrals and the exchange interaction have been
assumed to be uniform within the whole film,

P N,

e
.
-

[}
[=4
8 .-
Taa:Ta,BET’ Jaa:‘]aﬁz‘]ff’ (52) g —_:::::—_‘_ _________
where J¢; should not be mixed up with the-f exchange % — <S5
interactionJ. For explicit values we choosé=—0.1 eV, ® :‘_‘3§:S>,Sz
J;¢=0.01 eV, and the single-ion anisotropy,/J;;=0.01. 8 —— <88°
£ — (8>S -,
g ||, e
A. f-spin correlation functions - :2522% -~
Before we can start calculating the electronic excitaton | 77 _=m-—7 77T T
spectra, we first have to evaluate the local-moment system A N
. . . o T L L L
considered in Sec. Il B. For example, Fig. 1 shows the layer- 0 0 02 04 0.6 08 1

dependent magnetizations of a 20-layer(8@0 film as a
function of temperature. As for all other film thicknesses the
layer-dependent magnetizatio(S;,) increase from the sur- FIG. 2. The differenf-spin correlation functions from Eqé33)

face layers ¢=1,20) towards the center layera€10,11)  calculated for the center layersr£10,11) of the 20-layer film
of the film. The inset of Fig. 1 displays dependence of thefrom Fig. 1.
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Sy, =0 p,(E)

M
PR gy U I
) \J [
J=0.2 A : :
J=03 =" . J.
T 0.5 0 0.5 1
E (eVv)
FIG. 4. Density of statep (E) of a s.c.€100 monolayer for
T=0 and for differents-f interactionsJ.

M

coupling, J>0, a slight deformation of the original Bloch
dispersion sets in and the quasiparticle peaks get a finite
width indicating a finite lifetime. For intermediate and strong
couplings the spectral density splits into two parts corre-
sponding to two different spin exchange processes between
the excited spin- electron and the localizefispin system.
The higher energetic part of the spectrum represents a polar-
ization of the immediate spin neighborhood of the electron
due to a repeated emission and reabsorption of magnons. The

M result is a polaronlike quasiparticle called thegnetic po-
laron. The low-energetic part of the spectrum is a scattering
band which corresponds to the simple emission of a magnon
by the spin} electron, which is necessarily connected with a
spin-flip of the electrorf®

From the spectral density of Fig. 3 we get, using &),
the local quasiparticle density of statpg(E) of a mono-
layer, displayed in Fig. 4. Here we see that the splitting of
the spectral density discussed above transfers itself to the
quasiparticle density of states as a gapJar0.2. As for the
spectral density, the density of states of the spelectron is

M only rigidly shifted and therefore not displayed.

However, this does not hold any longer for finite tempera-
tures, T>0. Figure 5 exhibits the density of states of a s.c.-
(100 monolayer for differens-f interactions and different
temperatures. The dotted lines represent the case of vanish-

FIG. 3. Spectral densit, (E) of a s.c.¢€100 monolayer for ing s-f exchange) =0, where spin; and spint spectra are

ferromagnetic saturation of the local-moment systefe-0, (S,) equal. Since the electrons are not coupled to the local-
=S) as a function of energy and wave vector frdiw=(0,0) to ~ Mmoment system, we also have no temperature dependence.

M= () for T=0 and different values of thef exchange inter- FOr finites-f interaction we see from Fig. 4 that in the spin-
action J. | density of states spectral weight is transferred from the
high-energetic polaron peak to the low-energetic scattering
peak. To explain this effect we have to consider the elemen-
It turns out that forT=0 the o=1 spectrum is rather tary processes which build the spectrum. The low-energetic
simple, since & electron has no chance to exchange its spirscattering peak of the spihelectron consists of two elemen-
with the ferromagnetically saturated localizedpin system. tary processes.
The quasiparticle band structure is therefore identical to the Because of finite deviation of tHespin system from satu-
free Bloch dispersion, only rigidly shifted by a constant en-ration for T>0, the | electron has a finite probability of
ergy amount of- 3JS, due to the first Ising-like term in the entering the local frame as spinelectron. This probability
s-f Hamiltonian(8). is zero for(S,)=S (T=0) and increases with increasing
Figure 3 shows the spih-spectral density of a s.€1:000  temperature. On the other hand, the spialectron can first
monolayer for the special case of ferromagnetic saturatiorgmit a magnon and by that process reverse its spin, becoming
T=0, for differents-f interactionsJ. For J=0 the spectral a spin{ electron in the external frame of coordinates. The
density represents &function located at the point of the free spectral weight produced by the first elementary process re-
two-dimensional Bloch dispersion. For smalf exchange duces the spectral weight of the high-energetic polaron peak
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FIG. 5. Density of stateg,(E) of a s.c.€100) monolayer for f Meor M
differents-f interactions] and different temperaturés(in units of 1
Tc). The dotted lines represent the caselsf0 where there is no \
distinction between spif-and spint electron,p|(E)=p(E). T=1 0\
therefore shifting spectral weight from the high-energetic po- ¢ M
laron peaks towards the low-energetic scattering peak. k

For the spint electron we see from Fig. 5 that for finite
tgmperatures an add.ltlohal pea_k rises at the high-energet tiOO) double layer as a function of energy and wave vector from
S|d¢ of _the spectra with increasing temperat_ure. We can e = (0,0) toM = (r, ) for J=0.2 eV and different temperatur@s
plain this effect by the spin- electron absorbing a magnon (in units of Tc).
and subsequently, as spirelectron forming a polaron. Here
the magnon absorption by a spinelectron is equivalent to
the magnon emission by a spjnelectron. In the case of states, respectively, of a s(@.00 double layer (=2) for
ferromagnetic saturation the system does not contain any=0.2 and different temperatures. Again we see that the
magnons, which is the reason why there is no scattering peaipectra for the two spin directions approach each other for
in the spin{ spectrum al=0. As a result of the shifting of T—T.. Another feature which can already be observed in
spectral weights towards lower energies for the gpilec-  Fig. 5 is that the increase of temperature results in the nar-
tron and towards higher energies for the spiedectron the rowing of the subbands. For the case of intermediate cou-
densities of states for the two spin directions approach eacpling, J=0.2, according to Figs. 6 and 7 this band narrowing
other with increasing temperature. results in the opening of a gap between the scattering and the

In the limiting case ofT— T the system has eventually polaron band with increasing temperature.
lost its ability to distinguish between the two possible spin  This temperature enhanced band splitting has already
directions of the test electron because of the loss of magnédeen found for the three-dimensional c&%ét can be ex-
tization of the underlying local-moment syste(®’)—0.  plained for the spirf- electron by the fact that for propagat-
Hence as for the case of vanishiisgf interaction for T ing in its own low-energetic subband it needs to find an
=T, the density of states of the spinelectron equals that appropriate lattice site. In the case of ferromagnetic satura-
of the spin electron. Another feature which can be seention there is no restriction for the propagation of the spin-
from Fig. 5 is that the positions of the four quasiparticle electrons since spin-flip processes are impossible. With in-
subbands, two for each spin direction, do not change witltreasing temperature there is an increasing deviation of the
temperature. local moments resulting in the possible magnon absorption

To further discuss the temperature effects we present withy the spint electron and subsequent changing to the higher
Figs. 6 and 7 the spectral density and the local density oénergetic polaron subband. Hence, the gpialectron, to

FIG. 6. Spectral densit,,(E)=St:(E)=S%(E) of a s.c.-
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FIG. 7. Density of statep,(E) = pL(E) = p2(E), of a 5.c.€100 FIG. 9. Spectral densitg;, as a function of wave vectdrfrom

I'=(0,0) toM = (7, 7) (horizontal axesand energ\E from —1 to
1 eV (vertical axey of the first (@=1,20), second¢=2,19), and
center @=10,11) layer of a 20-layer s.¢€1:00) film for J=0.2 eV
and different temperaturd units of T¢).

double layer forJ=0.2 and different temperaturés (in units of
Tc). The curves foiT=0 are furthest away from the paramagnetic
solutionT=T¢ (bold line).

propagate in its own subband needs to move further disFh

tances with increasing temperature resultln_g in a reduced et g has already become pretty similar to the well-known
fective hopping and in a decreased bandwidth.

- . . ight-binding density of states of the three-dimensional s.c.
In addition to the discussed temperature effects, Figs. %’lattice whereas the density of states of the surface layers

and 7 eXh.'b't a typical two-peak stru.cture which is caused p%a= 1,20) exhibits the characteristic semi-elliptic profile.
the coupling of the two layers. This two-peak structure is

replaced in the case of a film consistingroéquivalent lay-

ers by ann-peak structure. Generally, the spectra of the dis- IV. SUMMARY

cussed local-moment films are characterized by an interplay
between correlationJ)), temperature effects, and geometry
of the film. Figures 8 and 9 display results for the local
density of states and the layer-dependent spectral density o
20-layer s.c100) film. Additionally to the dependence on
thes-f exchange interaction and the temperature dependen

at the local density of states of the sgirelectron atT

We have investigated the electronic quasiparticle band-
structure of a ferromagnetic semiconductor film. A single
ftest electron ¢ bangd is coupled by an intra-atomis-f in-
t&rband exchange to a system of localizéddoments. That
may be regarded as a proper model description for Euo and

tice that th iral densit d the density of st t‘EeLJS. Our approach uses a moment-conserving decoupling
we notice that the spectral density and the density of states,.oqyre for suitable defined Green functions. The fact that
show a typical layer dependence due to the broken transla:

tonal v at th ¢ f the fifhEor th A ur theory evolves continuously from the exactly solvable
lonal symmetry at Ihe surfaces of the firh-or the center limiting case of ferromagnetic saturatfGrgives it a certain
layers (@=10,11) of the 20-layer film we see from Fig. 8

trustworthiness.

The exchange coupling of the conduction electron to the
local-moment system gives rise to a correlation induced
splitting of the quasiparticle spectra. A polaron part may be
interpreted as a repeated emission and reabsorption of mag-
nons by the conduction electron resulting in a new quasipar-
ticle, the magnetic polaron. A rather broad scattering peak is
due to a simple magnon emission or absorption by the con-
duction electron. This pronounced splitting depends on the
actual value of the exchange interactidnFor small values
of J only a renormalization of the one-electron energy occurs
resulting in a deformation of the free Bloch dispersion. For
higher values ofl, the mentioned splitting of the spectra into
polaron part and scattering part sets in.

We intend to apply the presented model to study the tem-
perature dependent electronic structure of EuO and EuS
films. Therefore the electronic part of the Hamiltonie)
and thes-f exchange interactiof6) have to be modified to

FIG. 8. Local density of states?(E), of the first @=1,20), include the multiband aspect of real substances. This will be
second &=2,19), and center¢=10,11) layer of a 20-layer s.c.- done by substituting the tight-binding band struct(&6) by
(100 film for differents-f interactions) and different temperatures a realistic one taken from a band structure calculation.
T/Tc=0,0.4,0.7,0.9,0.98,1. The curves fb=0 are furthest away Another highly interesting field which we want to use our
from the paramagnetic solutioh=T¢ (bold line). theory for is the evaluation of the temperature dependence of
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