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Fixed-node diffusion Monte Carl@ODMC) is a stochastic algorithm for finding the lowest energy many-
fermion wave function with the same nodal surface as a chosen trial function. It has proved itself among the
most accurate methods available for calculating many-electron ground states, and is one of the few approaches
that can be applied to systems large enough to act as realistic models of solids. In attempts to use fixed-node
DMC for excited-state calculations, it has often been assumed that the DMC energy must be greater than or
equal to the energy of the lowest exact eigenfunction with the same symmetry as the trial function. We show
that this assumption is not justified unless the trial function transforms according to a one-dimensional irre-
ducible representation of the symmetry group of the Hamiltonian. If the trial function transforms according to
a multidimensional irreducible representation, corresponding to a degenerate energy level, the DMC energy
may lie below the energy of the lowest eigenstate of that symmetry. Weaker variational bounds may then be
obtained by choosing trial functions transforming according to one-dimensional irreducible representations of
subgroups of the full symmetry grouf50163-18289)09331-3

I. INTRODUCTION physicists. Most DMC simulations therefore use the approxi-
mate fixed-node methatwhich is numerically stable and

Quantum Monte Carl¢QMC) methods are powerful and often very accurate. The details will be described in Sec. I,
general tools for calculating the ground-state electronic propbut the basic idea is quite simple. A real trial many-electron
erties of atoms, molecules, and solids. Since the computavave function is chosen and used to define a trial nodal
tional cost increases only as the cube of the number of pasurface, which is the surface on which the trial function is
ticles, it is possible to study systems containing hundreds afero and across which it changes sign. In a three-dimensional
electrons subject to periodic boundary conditions. This issystem containindN electrons, the trial wave function is a
enough to model real condensed matter with surprising prefunction of 3N variables, and the trial nodal surface isl 3
cision, as shown by the accuracy of 0.1 eV per atom or better- 1 dimensional in general. The fixed-node DMC algorithm
achieved in QMC calculations of the cohesive energies ofnaintains the nodal surface of the trial wave function, so
solids. By comparison, the errors in local-density-functionalenforcing the fermionic symmetry and producing the lowest
calculations of cohesive energies are often of the order of €nergy many-electron wave function consistent with that
eV per atom. nodal surface.

The two most widely used QMC methods are variational Although VMC and DMC are principally ground-state
Monte Carlo(VMC) and diffusion Monte CarléDMC).>? In methods, they can also provide some information about ex-
VMC a trial many-electron wave function is chosen and ex-cited states. In particular, they can be used to study the low-
pectation values are evaluated using Monte Carlo integraest energy state of each distinct symmetry. In VMC this is
tion, which is more efficient than grid-based quadraturedone by choosing a trial wave function which possesses the
methods for high-dimensional integrals. Most VMC simula-required symmetry for all values of the variational param-
tions of solids use trial wave functions containing a numbereters. The energy obtained after optimizing the trial function
of adjustable parameters, the values of which are determindgd therefore greater than or equal to the eigenvalue of the
by minimizing the energy or its variance. lowest energy eigenstate of that symmetry. A similar tech-

DMC is a stochastic method for evolving a solution of the nique is also used in DMC, although this is much harder to
imaginary-time Schrdinger equation. The imaginary-time justify. The problem is that the DMC trial function is only
evolution gradually enhances the ground-state component afsed to define the trial nodal surface, which may not be
the solution relative to the excited-state components, but thsufficient to fix the symmetry of the state produced by the
algorithm does not maintain the fermionic symmetry of thestochastic DMC algorithm. In any case, practical tests have
starting state. The solution therefore converges towards thehown that this approach often gives excellent results. Ex-
overall ground state, which is bosonic. This difficulty is amples are the study of excitations of the hydrogen molecule
known as the sign problem. by Grimeset al,* and calculations of excitation energies in

Although several exact solutions to the sign problem haveliamond® and silicon’
been proposed, none has the statistical efficiency required to If the trial function used in an excited-state DMC simula-
study the large systems of interest to condensed mattéion has no definite symmetry, the only certainty is that the
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DMC energy must be greater than or equal to the manyto cancel, so improving the accuracy of the calculated energy
electron ground-state energyn cases when the DMC trial difference.

function does have a definite symmetry, however, it is nor- The rest of this paper is organized as follows: Sec. Il

mally assumed that the fixed-node DMC solution has thecontains brief explanations of the DMC method and the

same symmetry as the trial function, and hence that the DMdjxed-node approximation for ground states; Sec. Il shows
energy is greater than or equal to the eigenvalue of the lowthat no general symmetry-constrained variational principle
est energy eigenstate of that symmetry. This Symmetryexists; Sec. IV shows that a variational theo_rem holds for tr_le
constrained variational principle is widely accepted, but we/OWest energy state of each symmetry provided that the trial
show by constructing a specific example that it is not alway§_“”Ct'°” transfqrms according to a onejdlmensmnal |r_reduc—
correct: the fixed-node DMC solution need not have thdPl'€ representation of the group of spatial transforma_tlo_ns of
same symmetry as the trial function; and the fixed—nod&-ﬁrfh_e I_—|am|Ito_n|an; Sec_. V introduces a weaker varlatlon_al

DMC energy may be lower than the energy of the Iowestp”nc!ple which may give energy boun_ds even when the trial

exact eigenstate of that symmetry. function transforms according to an irreducible representa-

The symmetry-constrained DMC variational principle is tion Ofl.d'm.ens'ofn ﬁrea.tlt'ar thﬁn oggs% Slsc. .VI shows that a
guaranteed to hold only when the trial function transformgdeneralization ot the tiling theoretrholds In every case

according to a one-dimensional irreducible representation /€N We can prove that the DMC energy obeys a variational

the symmetry group of the Hamiltonian. The correspondin ound; Secs. VIl and Vil give examples Wh'c.h demonlstr.ate
eigenstate is then nondegenerate, or has only accidental d€ absence of a general symmetry-constrained variational

generacies. If the trial function transforms according to rinciple and illustrate the application of the weaker varia-

multi-dimensional irreducible representation, correspondinéIonal principle; and Sec. IX summarizes and concludes.

to a degenerate energy level, the DMC energy may lie below

the energy of the lowest eigenstate of that symmetry. In such II. FIXED-NODE DIFFUSION MONTE CARLO

cases a weaker variational principle may be obtained by FOR GROUND STATES

choosing a trial function that transforms according to a one- In this section we summarize the known results concern-

dimensional irreducible representation of a subgroup of th(ﬁ1g the application of the fixed-node DMC method to ground

full symmetry group. The DMC energy is then greater thanﬁtatesl:2 The aim is to evaluate expectation values with an

or equal to the eigenvalue of the lowest exact eigenstate wit ntisymmetric ~wave  function ®(X) where X
that subgroup symmetry. This provides a strict var|at|o.naE(X1,X2, ... xy) lists the coordinates o'f al electrons,
lower bound for the DMC energy, but one that usually I'esandxi=(ri s,) specifies the position and spin projection of

below the energy of the _degenerate eigenstate of INterest. o1actroni. We choose wave functions with a fixed to®y
As an example, consider the case of a crystalline solid.

NN . o
Any trial function with a definite crystal momentuknsatis- _2':152{' The exApecta.non. value of a spin-independent
fies the many-electron version of Bloch’'s theorem and symmetric operatoA(R) is given by
transforms according to a one-dimensional irreducible repre-

sentation of the translation group, which is a subgroup of the > f d* (X)A(R)D(X)dR

full symmetry group. The weaker variational principle there- S

fore guarantees that the DMC energy must be greater than or (A)= ' @)
equal to the energy of the lowest exact eigenstate with crystal > f O*(X)®(X)dR

momentumk. Unfortunately, most Bloch states are complex s

and so cannot be used as fixed-node DMC trial functionswhereR=(r,,r,, ... ry). For each spin configuratid®the
Real linear combinations of Bloch functions and their com-antisymmetric wave function® (X)=®(x;,X5, ... Xy)

plex conjugates can be used instead, but in most cases thaggy be replaced by a version with permuted arguments,
do not transform according to one-dimensional irreduciblecp(xil,xiz, . ’XiN)’ where the permutation is chosen such

representations and do not lead to useful variational prin
cAples. Ehls is |IIustt)raFedd|n Sec. Vllrl], Wh.erlef we _show thcla_tt —N; are spin down. Since is a dummy variable, we can
the DMC energy obtained using such a trial function may lie,o | pel €10F - - 1) @ (.6, . . Fy), after which the

below the energy of the lowest eigenstate with crystal mo- . ! .
mentumk. sums over spin configurations can be removed. The expecta-

The weaker variational principle is useful, but relies on ation value may then be written as

very careful choice of trial functions and cannot explain all 5 L

the past successes of the fixed-node DMC method for excited j d*(R)A(R)®(R)dR
states. The real explanation of these successes, we believe, is (Ay=
that although the DMC algorithm does not always preserve f Ef)*(R)CT)(R)dR
the symmetry of the trial function, the imposed nodal surface

acts as such a strong restriction that the DMC solution can- e
not stray “too far” from that symmetry. The calculated en-

ergy is therefore close to the variational value that would ~

have been obtained if the symmetry had been preserved. In ~ P(T1:f2, -y

cases when the excited state of interest satisfies the strong S S S T T (T E S D 8
variational principle, the errors in the ground- and excited- ! 1

state energies are guaranteed to have the same sign and tend 3

that the firstN, arguments are spin up and the last=N

: @
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The function ab(rl, ...,fy) is antisymmetric under inter- where EL(R)E<I>{1(R)I:|Q>T(R) is known as the local en-
change of any two of the up-spin argumenis . . . Iy, OF  ergy andF(R)=®;(R)Vr®+(R) as the quantum force. If
any two of the down-spin arguments .1, ... Iy +n,» but the chosen trial wave function is close to the exact ground-

has no definite symmetry under interchange of up- angtate wave function, the local energy is nearly constant and
down-spin arguments. It still obeys the Sttirger equa- the statistical efficiency of the algorithm is optimized.

tion, but the up- and down-spin electrons are now treated as ' f(R,7) is constrained to be positive, E(¥) may be
distinguishable, allowing us to avoid explicit reference to thelNtérpreted as d?scnblng the time evolution of the density of
spin variables. For simplicity, all wave functions in the fol- @ Population of “random walkers” multiplying or dying out

lowing discussion will be chosen to be of this type. as they diffuse "j‘,nd drift through aN3dimensional “con-
DMC is a method for solving the imaginary-time Schro figuration space.” The constraint thiis positive is known
dinger equation as the fixed-node approximatidmecause it forces the nodal

surface of (R, 7) to be the same as that d(R). In
1_, d practice, the distributiorii is represented by a few hundred
~5VRTV(R)—Es|V(R,)=——-V(R,7), (4  walkers propagating stochastically according to rules derived
from Eq.(8). The growth or decay rate of the total number of
whereV? is shorthand fo=\ V2. The potentiaM(R) in-  walkers in the simulation depends on the average value of
cludes the electron-electron interactions as well as the exteE, (R) —Eg, and the constant energy shii is chosen to
nal potential terms, and is assumed to be a local function ognsure that the population remains stable on average.
R. It has Coulomb singularities whenever two charged par- The initial walker positions are normally picked from the
ticles approach each other, but is finite everywhere else. Therobability distributionf (R, 7=0)=[®+(R)]?, resulting in
constant energy shiffg has been introduced to set a conve-an initial population scattered throughout the configuration
nient zero of energy as explained below. The variable space. The nodal surface @f(R) divides this space into
(which is rea] is usually called the imaginary time, but we different nodal pockets, among which the walkers are distrib-
will often abbreviate “imaginary time” to “time” in what  uted. During the simulation, the walkers never cross the fixed

follows. nodal surface separating one pocket from another, and so the
If the starting statel’ (R, 7=0) is written as a linear com- fixed-node DMC algorithm proceeds independently in each
bination of energy eigenfunctions, pocket.

In the long-time limit, the probability density of the
walkers within nodal pocket/, becomes proportional to
V(R 7= O)ZZ ¢i(R), ) 4. (R)D(R), where the “pocket ground statetb,(R) is
the lowest energy real normalized wave function which is
the larger limit of the solution of Eq.(4) takes the form zero outsidev,, and satisfies the fixed-node boundary condi-
_ —(E-Egr tions on the surface of,,. This function generally has gra-
W(R,7—e)=c ¥ (R)e ™ ' ©) dient discontinuities across the surfacevgf, and the action
whereW,(R) is the lowest energy eigenfunction appearing in©f the kinetic energy operator on thfase discontinuities pro-
Eq. (5) andE, is the corresponding eigenvalue. In applica-duces delta function terms which will be denotégd. The
tions to many-electron system¥,(R,7=0) is antisymmet- POCket ground state therefore satisfies the equations
ric and ¥ |(R) is usually the many-electron ground state

T,(R). We will assume that the Hamiltonia is real(pos- Hpo(R)=€,44(R)+ 6, when Rev

sesses time-reversal symmefrin which case¥|(R) may ¢, (R)®1(R)=0 “

also be chosen real and may be obtained by following the

imaginary-time evolution of a real functiow (R, 7). If the #,(R)=0 whenRev,. 9)

Hamiltonian is complexdoes not possess time-reversal sym-
metry), as when there is an applied magnetic field, the fixedSince the walker density is positive, the sign ¢f,(R)
node DMC method discussed in this paper does not applyithin v, is the same as that df+(R), implying that¢,(R)
and it is necessary to use the fixed-phase method of Ortizndd(R) have a nonzero overlap. The form¢f,(R) does
Ceperley, and Martifl, not depend on the details df;(R), but only on the shape of
DMC solves Eq.(4) using a stochastic algorithm, the ef- its nodal surface. The energy given by the DMC simulation
ficiency of which is much improved by an importance sam-in nodal pockev , is equal to the pocket eigenvaleg. This
pling transformatiort? A real trial wave function®+(R) is  need not equal the exact ground-state eigenvElenless

chosen and Eq4) is recast in terms of the product the trial nodal surface is the same as that of the exact ground
stateW(R), in which casep,(R) is proportional to¥ (R)
f(R,7)=¥(R,7®(R), 7 within \‘ja_ 0
which is also real. After some straightforward algebra, These risults were used by Reynom%ﬂ-lo and Mosk-
f(R,7) is found to satisfy the equation owitz et al.™~ to prove that the fixed-node DMC energy is

greater than or equal to the exact ground-state energy. Rey-
d 1, nolds’s proof starts from the solution in a single nodal
— o f(R7)==5VRi(R, 1)+ Ve [F(R)f(R,7)] pocket, and uses the permutatidhshat do not flip spins to
construct a real wave function antisymmetric with respect to
+[EL(R)—Eg]f(R,7), (8) interchanges of electron coordinates of the same spin,
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_ 1 N fixed-node DMC simulation cannot depend on how the walk-
V(R = TNT > (—1)PP(PRI=AS(R). (100  ers are distributed among the pockets.
[ In cases when the trial function does not possess the tiling
L= ) property, the walker population grows most rapidly in nodal
The function¥ ,(R) cannot equal zero everywhere since, atpockets with low values of,, [or, equivalently, low average

any pointR, all terms contributing to the sum in EQLO)  \51yes ofg, (R)— Eg]. SinceEs is chosen such that the total
have the same sign. This follows from the antisymmetry of,

. , : walker population stays roughly constant, and since fixed-
the trial function®+(R), which guarantees that all permuta- ,4e DMC walkers never cross from one nodal pocket into
tions P for which the pointPR lies in nodal pockev, have

k = MU ) | a another, the walkers in less favorable pockets are gradually
the same paritypositive if the sign of the trial function ®  gnpihjlated. Although many different nodal pockets may
is the same as the sign of the trial functionvip, negative  nhave contained walkers initially, the population becomes
otherwise. The functionWV ,(R) is, however, equal to zero more and more concentrated in the pocket or pockets with
everywhere on the trial nodal surface. This can be deducethe lowest value o€, , and it becomes more and more likely
from the knowledge thaw,(R) is equal to zero theréas that only these pockets will be occupied. The DMC energy is
well as in many other placgsand that the nodal surfaces of therefore almost certain to converge to the lowest of the
antisymmetric functions such aB{(R) are not altered by pocket eigenvalues of the nodal volumes initially occupied
permutations. with walkers, Epyc=min,(e,). This means that the energy

The real antisymmetric functio@a(R) is now substi- obtained in a DMC simulation which does not possess the

tuted into the standard quantum mechanical variational printlling property may depend on the initial distribution of

ciple to give walkers.
j ¥ AY dR f ¥ AAé.dR Ill. ABSENCE
E < _ OF A GENERAL VARIATIONAL PRINCIPLE
0= — — a — FOR FIXED-NODE DMC CALCULATIONS OF EXCITED
v,¥,dR J ¥, AddR STATES
o In a few cases, the exact nodal surface of an excited-state
v Heo, dR wave function can be determined using symmetry arguments
=€, (1D alone. An example is the first excited state of a particle in a
T one-dimensional square well, which has a single nodal point
V,9,dR . .
located at the well center. The trial wave function can then

R R be chosen to have exactly the same nodal surface as the
where we have used the fact thatcommutes wittH, that it ~ excited state, and the fixed-node DMC simulation gives the

is self-adjoint, and that it is idempotefgo that,zl\I_fa(R) exact excited-state eigenvalue. This result holds whether or

— ; .- not the trial wave function is orthogonal to all the lower
=¥ _,(R)]. The 6 function terms appearing iAl ¢, do not energy eigenstates.

contribute to the energy expectation value because they oc- " hractice, however, the exact nodal surface is rarely de-

cur on the fixed nodal surface wheig,(R)=0. If the nodal termined by symmetry alone, and it is rarely possible to

surface of®+(R) is the same as the nodal surface of thechoose a trial function with exactly the same nodal surface as

exact ground state, the equality holds and the pocket eigenhe excited state of interest. Furthermore, the wave function

value €, is equal toEg; but if ®(R) does not have the of an arbitrary excited state need not possess the tiling prop-

correct nodal surface thes),>E,. The energye, produced erty, and so the DMC energy may depend on the initial dis-

by the DMC simulation in nodal pocket, is therefore mini-  tribution of the walkers.

mized and equal to the exact ground-state energy when the As an example, consider a hydrogen atom in issfate,

trial nodal surface is exact. Sineg, is also expected to de- W,¢(r), with eigenvalueE,;. The exact nodal surface is a

pend smoothly on the shape of the nodal surface, it followsphere of radius,, the value of which cannot be determined

that the error ine, is in general second order in the error in using symmetry arguments. If the imposed nodal surface is

the nodal surface. exact, the pocket eigenvalues in the inner and outer pockets
For systems with reasonably well behaved local potentialsvill both be exactly equal t&,; but if the nodal surface is

and real ground-state wave functions, the tiling thedrema sphere of radius#r,, the pocket eigenvalue.. of the

states that all the ground-state nodal pockets are related hyave functionW. in the outer pocket will not equal the

permutation symmetry. A derivation of this theorem appearpocket eigenvalue. of the wave function? _ in the inner

in Sec. VI. The tiling theorem holds even when the groundpocket.

state is degenerate, in which case every possible real linear Consider the case when the fixed node is too close to the

combination of the degenerate ground states possesses igcleus,a<r,. According to the variational principle ap-

tiling property. Many DMC simulations use trial wave func- plied to the outer pocket, the value ef must be bounded

tions with the same nodal surface as the density-functionadbove by the energy expectation value of the trial function,

ground state. Since the density-functional Hamiltonian has a

local potential, such trial states always satisfy the tiling theo-

rem. This guarantees that the valuecsgfis the same in every 0,

> _
nodal pocket, and hence that the energy obtained in the er ()= Wol(r), r>ry. (12
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This expectation value is the exack ZigenvalueE,s.  with this group in what follows.
Clearly, we could construct a lower energy trial function by ~ We begin by showing that a symmetry-constrained varia-
removing the kink in®7(r) atr=rg, and hences= <E,. tional principle holds whenever the chosen trial function is
Similarly, we can take the pocket ground state from the innereal and has an invariant nodal surface. This theorem was
pocket, ¥ _, and use it as a variational trial function within stated without proof in a paper by Caffarel and Clavétie.
the exact 3 nodal surface =ry, Here we sketch a proof.
A real trial function®(R) is said to have an invariant
W(r), r<a (13  nodal surface if the transformed function,

< ey
br(r)= 0, asr=ry.

In this case the energy expectation value of the trial function -

is e, while the minimum possible expectation value for a QN P+(R)=P(T 'R), (14
wave function with a node at; is E,;. Again, we could

construct a lower energy trial function by removing the kink

atr=a, and hence_>E,,. Note that variational arguments ; : .
like these can be used whenever the exact nodal pocket Cor{p_rmatlonsTe g Note th_at the nodal surface |s_def_|ned as the
urface on whichlb+(R) is zero and across which it changes

pletely encloses the trial pocket or vice versa, irrespective of' _ " .
dimension or symmetry. This will prove useful in Sec. Vil Si9n ®7(R) may also have additional zeros where the sign
The last paragraph showed thatafr, then e. <E, does not change, but these are not on the nodal surface and
S

<e.; if a>rq, a similar derivation gives_<E,;<e- . need not be inve_lriant. ) )
The<two pockcoats have different energ%es ur?lessrzz. ng '!'he proof relies on the properties of the functig(R)
does this affect the fixed-node DMC algorithm? As long asd€fined by

the lower energy pocket contains plenty of walkers initially,

the walker population in the higher energy pocket will al- .

most certainly die out. The fixed-node DMC energy will then 0 onthe trial nodal surface

tend to the pocket eigenvalue of the lower energy pocket, x(R)=1{ +1 innodal pockets whereb;=0 (15)
which is always less than or equal,. The DMC energy
is thereforemaximizedvhena=r,,. If ais increased through
ro, the 7—o DMC walker population switches from the

outer nodal pocket to the inner one, and the slope of thsjyen any pointR not on the nodal surface, and any spatial
graph of the DMC energy versaschanges discontinuously. i ansformation 7e G, it is clear that y(R)=7x(7 'R),

It follows that the error in the fixed-node DMC energy is first \yhere »=+1. Furthermore, since the functiongR) and
order in the error in the nodal surface, not second order as B}(T—lR) have the same nodal surface and so change sign
is for the ground state. This example shows that there is Nfhgether aRR changes, the sign of must be independent of
variational principle when fixed-node DMC is used to StudyR “This shows that all symmetrieBe G either leavey(R)
general excited states: the error in the DMC energy of th%inchanged or multiply it by-1, from which it follows that

has the same nodal surfacedg(R) for all coordinate trans-

—1 innodal pockets whereb=<0.

excited state may increase linearly with the error in the nodal gy transforms according to a one-dimensional irreducible
surface; and the DMC energy need not be minimized whe epresentatiod”; of G.

the nodal surface is exact. We can now adapt the proof of the ground-state varia-
tional principle given in Sec. Il. Take the pocket ground state

¢, and antisymmetrize it to obtain a functioh, as in Eq.
(10). Now apply the group theoretical projection operdtbr,

IV. THE LOWEST ENERGY EIGENSTATE
OF EACH SYMMETRY

We now address the question of whether there is a varia-
tional principle for fixed-node DMC simulations of the low-
est energy state of each symmetry. We denoté the group D=
of spatial transformation§ (combinations of rotations, re-
flections, translations, and inversions of all electrons simul-
taneously which leave the many-electron Hamiltonian in- ; . ) )
variant. For simplicity, we consider this group to be fitte WhereI'g(7) is the one-by-one matrix representifig The
and of orderg. The full symmetry group of the Hamiltonian application of P produces a new antisymmetric stat€,
is the direct product ofy with the permutation and time- which transforms according to the one-dimensional irreduc-
reversal groups. All the symmetry arguments in this papeible representatioi;. Since the original pocket ground state
can easily be recast in terms of the full symmetry groupg,(R) had a nonzero overlap witg(R), which is itself an
instead ofG, but real many-electron wave functions have antisymmetric function of symmetr};;, the antisymmetric

such simple time-reversal and permutation symmetitesy r . .~ A
transform according to the one-dimensional identity repre-rg component projected out by applying and then?” to

sentation of the time-reversal group and the one-dimensionéill'a cannot be zero. —

antisymmetric representation of the permutation gydbpt The energy expectation value &f;, is greater than or
this is unnecessary. Since the arguments based on the spaggual to the energf, of the lowest antisymmetric state of
group G are somewhat easier to grasp, we choose to workymmetryl';,,

> I'YTHQT), (16)

Te§G

Q|
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- A= — aa A The restriction of the variational principle to trial func-
f VFHWPLAR f VFHP Ag,dR tions transforming according to one-dimensional irreducible
Eos< = representations can be understood in a very simple way. The
f VP dR J VP A, dR problem being solved in a fixed-node DMC simulation is not
the imaginary-time Schabnger equation of Eq4), but the

imaginary-time Schrdinger equation subject to the addi-

J'\I_f;*ﬁqsadR tional boundary conditions specified by the trial nodal sur-
= =¢,. (17)  face. As a result, the relevant symmetry group is not the
f\?;* ¢,dR group G of symmetries ofH, but the subgrougigy that

leaves both the Hamiltonian and the fixed nodal surface

In analogy with the ground-state proof of Sec. Il, these ma{boundary conditionsinvariant. The fixed-node eigenfunc-
nipulations rely on the self-adjointness and idempotency ofions need only conform to the symmetriestgy, and their
the operatorszl and75r, both of which commute with. It is f[ransfo_rmatmn propertl_es should be analyzed in terms_ of the
i — . irreducible representations &gy, not G. If the real trial
also important that;* (R) is equal to zero everywhere on fynction transforms according to a one-dimensional irreduc-
the surface of/,, so that thes function terms in the expres- jple representation of;, the fixed nodal surface is invariant
sion for H¢,(R) from Eq. (9) do not contribute to the ex- and the groupsj and Ggy are the same. The symmetry-
pectation value. This is guaranteed because the fixed nodabnstrained variational principle discussed in this section
surface is invariant. does not apply unless this is the case.

Note that the symmetry of the trial function played no part
in this derivation; the only thing that mattered was the in-
variance of the trial nodal surface. In most DMC simulations,
however, the trial function does have a definite symmetry,

and so transforms according to a specific irreducible repre- Can anything be said when the trial function transforms
sentation ofg. Given that functions transforming according according to an irreducible representation of dimension
to different irreducible representations are orthogonal, angreater than one? Suppose that the real trial functibn(R)
that the definition ofy(R) ensures tha{y|®r)>0, it fol- * yansforms as théth row of an irreducible representatidi,
!ows .that any trial function with a definite symmetry and anyitn dimensiond,>1. We already know that the nodal sur-
invariant nodal surface must transform according to the samg, .o Of‘DrTJ(R) cannot be invariant with respect to all the

one-dimensional irreducible representation as the Correéperations inG, but it may be invariant under a subset of

spoqdingx(R). _This impl_ies tha_t a real trial funption rans- sse operations. Any such subset forms a proper subgroup,
forming according to an irreducible representation of dimen- —, which in general depends on the row index

sion greater than one cannot have an invariant nodal surface: As in Sec. IV, we define the functiop(R) which is equal
The CONVErse IS glso true: any real t_r|al f‘!”c“@”.(R) to +1 in all nodal pockets where’ (R)=0, equal to
transforming according to a one-dimensional irreducible rep—_1 in all nodal kets wheré" (R} <0 4 |t
resentation must have an invariant nodal surface. This fol- ~ " &l nodal pockets wher T1(R)<0, and equal to
lows from the transformation law, zero everywhere on the nodal surface%?y,(R). By con-
struction, y(R) transforms according to a one-dimensional
S TYD(R) =Y TVb(R ’ 18 irreducible representation @y (although not ofG). Slncg
QT P+(R)=T(TPx(R) (18) all the pocket ground states, have nonzero overlaps with
and the observation that the real normalized functiorfR) ~ x(R), they all have nonzero components of the same sub-
remains real and normalized under all transformation§.in  group Symmetry asy(R). We can therefore reuse the
The one-by-one matrik;(7) is therefore equal te-1, and ~ Symmetry-projection argument leading to E7) to show
the nodal surface ofg(ﬂd) (R) is the same as that of that t_he fixed-node DMC energy is greater_than or e_qual to
D(R) T the eigenvalue of the lowest energy exact eigenfunction with
T . - . . _
Puting everyting togthr, we can now conciuce a7 U001 STy B Tne rovdes o o
whenever the real trial function transforms according to aq . principle, but I 9groviN L
he trial nodal surface invariant is usually small and its irre-

one-dimensional irreducible representationhfthe nodal . . X . -
o . . ducible representations provide a correspondingly limited set
surface is invariant, and the DMC energy is greater than or .
. : ... of symmetry labels. The bounds obtained are therefore weak
equal to the energy of the lowest exact eigenfunction with . o PR : S
27 ) . nd this variational principle is of little use unless optimized
that symmetry. This is the symmetry-constrained variationaf® .
o ; . ‘ . .~ as explained below.
principle mentioned in the Introduction. If the trial function If the nod @ (R) were exact on Id form a trial
transforms according to an irreducible representation of di- " € fo €s o T'I(I I)' ere e at?’ ot_e co?d_ﬁo ? a
mension greater than one, the nodal surface cannot be invaFHnC lon from any real inear combination ot difterent rows
. - ) and always obtain the same DMC energy. When the nodes
ant, and thes functions produced wheH is applied to¢,  gre not exact, however, the DMC method breaks dhigold
need not all occur wher®'*=0. The above proof of the degeneracy, and the variational lower bound on the DMC
symmetry-constrained variational principle therefore break€nergy depends on the precise linear combination of rows
down. In Sec. VIII we give an example of a system with achosen in constructing the trial wave function. This freedom
trial function transforming according to an irreducible repre-can be exploited to improve the weak variational principle.

sentationl'y; of dimensiond, =2 for which Epyc<Eg. Thed, functions®7 (R) (I=1,2, ... d,) are a basis for

V. IRREDUCIBLE REPRESENTATIONS OF DIMENSION
GREATER THAN ONE
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the irreducible representatidf‘@ of G, and hence transform Which is Abelian and has only one-dimensional irreducible
into linear combinations of each other under all coordinatdepresentations. These are labeled by the crystal momentum
transformationsTe G. This implies that they also transform K, and so the statement of the symmetry-constrained varia-
into linear combinations of each other under all coordinatdional principle is very straightforward: if the DMC trial
transformationsTe G5, wheregs is any proper subgroup of function has crystal momenturk, the DMC energy is

G. The subset of the matrice8j(7) for which Te G; is greater than or equal tBy(k). It is worth noting that this

therefore a representation @f. This representation is not in Statément holds whether or not the lowest energy state of
general irreducible. crystal momentunk is degenerate. In the degenerate case the

To enumerate the different possibilities, begin by deterlrial fL_lnction transforms according tp a multidimensional ir-
mining all the proper subgroup of G. For each such sub- reducible repre§entat|on of but it st!II has crystal momen-
group, consider the representation @f consisting of the f[um k qnd so still transfprms according to a one-dimensional
matricesT'(7) with T e Gs. This representation may be de- irreducible representation of the translation subgreip

composed into its irreducible components with respe¢ito This is sufficient to guarantee that the DMC energy is greater
than or equal tdeq (k).

r_ a; az Um The symmetry-constrained DMC variational principle for
Fg=ng,lg ®Ng l'g ®- - &g I (19 the lowest energy state of crystal momentinis unfortu-
nately much less useful than it appears, because most Bloch
_ states are complex and cannot be used as fixed-node DMC
irreducible representationfg's of Gs appears, sod, trial functions. Instead, the standard approach is to use a real
:Zi”qidqi' The irreducible representations 6f appearing !inear com_bir?at.ion _o_f a Bloch function a.nd its cpmplex con-
in Eq. (19) are said to be compatibfewith I';;. Note that J_ugat_e.[Thls is justified by the assumption of time-reversal
since the group containing only the identity element is al'nvarance, which guarantees' thit\mk IS an e|genfunct|0n
ways a subgroup of, it is always possible to find at least Vith eigenvalueEy(k) then so is¥y ]. Since such trial func-
one subgroup for which the reduction B}, contains a one- tions contain components with two dnfferent wave ve_ctkrs,
dimensional ireducible representatiB@i. gnd— k, they do_not transform accprdmg to a single irreduc-

s ible representation of the translation group. The symmetry-
A trial function transforming as théth row of Frg may  constrained variational theorem is therefore inapplicable, and
contain components along all the compatible representatiorigis possible that the DMC energy may lie beldwy(k). In
of G, but it is always possible to construct linear combina-Sec. VIII we show by means of a specific example that such
tions, calculations may indeed produce a DMC energy which is
lower thanEq(k).

@ N gy An important exception arises when the wave vektis
(DTI(R):;:L ¢ ®1(R), (20) equal to half a reciprocal lattice vector, in which c&sand
—k are alternative labels for the same irreducible represen-
transforming according to each particular compatible repretation of the translation group. The linear combinationtof
sentatiorl“g‘. Every real functionp_?_i(R) corresponding to a andW¥y is then a pure Bloch function, and the normal proof

S of the symmetry-constrained variational principle applies. As

surface with respect t6,. A DMC energy calculated using long ask equals half a reciprocal lattice vector, the DMC

the nodes of such a function therefore satisfies the variationdg] < 97 "> greater t_han or equal to the energy of the lowest
o a exact eigenstate with crystal momentim
principle Epyc=E,'.

Clearly, the strength of the variational principle obtained

depends on the choices of the subgraiipand the one- | GENERALIZATIONS OF THE TILING THEOREM
dimensional representatid'r‘g'. In some cases, one can find a
S

where the positive integem, is the number of times the

d

one-dimensional representation @f has an invariant nodal

In his paper on fermion nodésCeperley stated that the
tiling theorem could be generalized to the case where there
which is compatible witH;; but incompatible with all those were othel_r discretg symmetrigs present. A more precise
irreducible representatiorié’g/ for which EB,<EB- A DMC stalltement_lsI tha(tj, given a Hamiltonian \k/]wth_? rears],onable lo-
energy calculated using the trial functiohﬂ‘(R) is then 2 potential and a symmetry g_ro@ the tiling theorem

) applies to any real state which is the lowest energy eigen-
guaranteed to be greater than or equakfo In general, if function of a symmetryl';; with dimensiond,=1. This can

one knows t:e ordering.glfl_the enelrgy_ levels fl.)e;orerr:and, ONfie demonstrated via a simple generalization of Ceperley’s
can use the compatibility analysis to find the one-,.,,# of the ground-state tiling theorem.

dimensional irreducible representaticb‘@‘S which gives the Consider the real antisymmetric sta§(R) which is the

most stringent energy bound for the eigenvalue of interest.lowest energy eigenfunction transforming according to the
As an application of this symmetry-constrained varia-one-dimensional irreducible representaﬂ@ This function
tional principle, consider a crystal with space graipWe  may have many nodal pockets, but pick one at random and
wish to establish whether it is possible to use fixed-nodecolor it blue. Now apply a symmetry operator from the group
DMC to obtain a variational estimate of the eigenvaluecontaining the spatial symmetriéstations, translations, re-
Eo(k) of the lowest energy eigenstate with crystal momen-lections, and inversionsand the permutations. Since the
tum k. The relevant subgrougs is the translation group, nodal surface is invariant, this symmetry operator maps the

subgroup G; with a one-dimensional representatidﬁgi
S
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region of space within the blue nodal pocket into itself orof that symmetry. This conclusion contradicts E22), and
into one of the other nodal pockets. If the blue pocket isso the assumption that the blue nodal pockets do not fill the
mapped into some other nodal pocket, this pocket is equivazonfiguration space must have been incorrect. All the nodal
lent to the blue one by symmetry and is also colored bluepgckets of¥;, are therefore equivalent by symmetry.
Repeat this process for every operator in the group, until all Thjs proves the tiling theorem for any real state which is
the pockets equivalent to the original one have been foung,q |owest energy eigenfunction of a symmelty with di-
and colored blue. Dol . . mensiond,=1. An obvious corollary is that there is also a

There are now two possibilities: the blue regions may fill ... .

: ) . . . tiling theorem for the lowest energy state transforming ac-

the entire configuration space, in which case the nodal pock-

ets are all equivalent by symmetry and the tiling theoremcording to any one-dimensional irreducible representation of

holds; or there may be other inequivalent nodal pocketélny subgroupgs of G. This statement is analogous to the

which have not yet been found. We can rule out the seconiyeaker variational principle discussed in Sec. V. In every
possibility using the following argument. case when we have demonstrated the existence of a DMC

Assume that the blue nodal pockets do not fill the con-variational principle, we have therefore also been able to
figuration space, and that the local potenti4R) and all its demonstrate the existence of a tiling theorem. Our analysis
derivatives are finite except at the Coulomb singularities ochas been restricted to the physically interesting case of a
curring when two charged particles approach each other. Acal potential which is finite everywhere except at Coulomb
long as the system is not one dimensiofial which case singularities, but our conclusions may be somewhat more
different arguments are requitedhis ensures that almost general than this suggests.
every point on the nodal surface lies a finite distance away The familiar many-fermion ground-state tiling theorem
from the nearest singularity in the potential. The eigenfuncimay be viewed as a special case of the subgroup tiling theo-
tion W(R) may therefore be expanded as a power seriesem mentioned above. The permutation group is always a
with a finite radius of convergence about almost any pRint  subgroup of the full symmetry groufwhich contains both
on the nodal surface. If the gradient¥f,(R) is assumed to spatial and permutation symmetrieand the many-fermion
be zero over any finite area of the nodal surface surroundinground state is the lowest energy state which transforms ac-
Rs, it can be shown that every term in this series has to beording to the one-dimensional antisymmetric irreducible
zero, and hence thadty(R) =0 everywhere within the radius representation of that subgroup. The subgroup tiling theorem
of convergence. Since any solution of the Sclimger equa- therefore guarantees that the many-fermion ground state pos-
tion can be analytically continued around the isolated singusesses the tiling property. Note that the tiling property holds
larities in the potential, this further implies thdt((R) is  with respect to the permutation subgroup, not the full sym-
zero everywhere. We therefore conclude that the gradient ahetry group. This means that it is only the elements of the
W§(R) must be nonzero almost everywhere on the nodapermutation subgroup that need be applied to the initial blue
surface. pocket to find all equivalent pockets and turn the whole con-
figuration space blue.

The above derivation of the subgroup tiling theorem only
applies to states that transform according to one-dimensional

Now consider the trial functio@r(R), which is defined
to equal¥(R) within the blue pockets and zero elsewhere.
e oo el repesentatons f e chosen subggSuch

P ' 9 states may also transform according to multidimensional ir-

tinuities on the nodal surfaces separating the blue pocketr%ducibIe representations of the full symmetry gragipso

from t.he rest of cc_)nf|gurat|on space. It satisfies thethe tiling theorem is not restricted to nondegenerate energy
Schralinger-like equation,

levels. In systems with degenerate many-fermion ground
states, for example, any real linear combination of the degen-
erate ground states is antisymmetric and so possesses the
tiling property with respect to the permutation subgroup.
This result holds even though the nodal surface is not invari-

where the symbob" denotes the delta functions produced by ant under all the operators from the full symmetry group.
the action of the kinetic energy operator on the gradient dis- The most important consequence of the generalized tiling
I . A theorem is exactly as in the ground-state case. It is common
continuities. Thed functions occur wher&"=0 and so do . . .
: for a fixed-node DMC trial wave function to have the same
not affect the energy expectation value, . . :
nodal surface as an energy eigenfunction calculated using an
approximate method such as local-density-functional theory.
7 (22) The approximate Hamiltonian is chosen to have the same
(W5l Wo) (W' symmetries as the exact Hamiltonian, but may also have ex-
, ) , tra symmetries which are not relevant to the argument and
We know, however, that a state which has gradient d'sconr'nay be ignored. If the approximate Hamiltonian has a rea-

tinuities aimost everywhere on a finite area of the nodal surg,napy well behaved local potential, its eigenstates have the

face cannot be an eigenfunction unless the potential is i”_ﬁéame tiling properties with respect @as the corresponding

nite almost everywhere on that area. Since we are assuming., .t eigenstates. The lowest energy eigenstate transforming
that this is not the case, the functioh’ must contain according to any one-dimensional irreducible representation
excited-state components of symmelty and cannot have of G or any subgroup of therefore satisfies the tiling theo-
the same energy expectation value as the lowest energy statm. This ensures that the energy produced by a DMC simu-

HW"(R)=ELW (R)+ &, (21)

 (WHHIWE) (WA
- _
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lation using the nodal surface of such a state is independent @ -1 ® -1

of the initial walker distribution. .s ------ ‘ i
1 2 i

VII. TIGHT-BINDING EXAMPLE

FIG. 1. The single-electron trial staté® ¥, and(b) ¥, from

hThls Eecﬂon and thﬁ next (?Ielscrlbe fS|mp!e exam;;les Fh g. (24). The dashed lines show where the nodal surfaces cross the
show what happens when a trial wave function trans Ormlngblane of the molecule. The expansion coefficient@gfandW¥, in

according to an irreducible representation witt> 1 is used  (grms of the tight-binding basis functions are also shown.
to define the trial nodal surface for a DMC simulation. We

find that the DMC energy may indeed be lower than the 2

eigenvalue of the lowest exact eigenstate with the same sym- V,(N=2, &|r— dj|)e2mi”,

metry as the trial function. This demonstrates that the varia- j=0

tional principle of Eq.(17) does not apply whed,>1. (23

In searching for a suitable example system, we found it
convenient to impose the following restrictioris: the group 2
of the Hamiltonian is finitefii) the trial wave function and W_(r)=2, &(r—dj))e 12m~,
its nodal surface can be easily visualized; &iiid the exact =0
eigenstates of the Hamiltonian and the pocket ground states
of Eg. (9) can be calculated without numerical error. .Thesewhere do. dy, andd, are the position vectors of the three
restrictions are unnecessary, but make the analysis mu

oler. T i iteriorii t ch ¢ rotons. These two Bloch functions transform into linear
simpier. 10 sa isfy criteriortii), we MUST ChOOSE & SYSIEM ¢, mpinations of each other under the operations of the point
containing at most three electrons in one dimension or

%roup(there is no need to include time-reversal symmetry

single electron in two or three dimensions. The nodal sur; 4 ¢0:m a basis for%ah' Taking linear combinations of ,

faces of one-dimensional systems are not easily altered be- qw f h 't .
cause they are almost entirely determined by the antisymm@-n -+ one can form the real functions,
try of the wave function, so we decided to concentrate on

one-electron systems in two and three spatial dimensions.

The first system we studied was an electron confined to a W) =&(r—dif) = &(Ir—dy)),
rectangular box in two or three dimensions. Although this (24)
system does have multidimensional irreducible representa-
tions, we failed to find an example in which the DMC energy Wo(r)=2&(|r—do|)— &(lr—dyi|) — &(Jr—dy)),

calculated using a trial state of a given symmetry was less
than the eigenvalue of the lowest energy eigenstate of that
symmetry. The second system we tried was more successfuhich form an alternative basis for the same irreducible rep-
We start by discussing a simple tight-binding realization ofresentation.
this system, and then in Sec. VIII present an alternative re- Figure 1 shows the nodal surfacesbf and¥, along
alization based on a separable solution of the Stihger  with the expansion coefficients from E{4). The nodal
equation. surface of¥; does not depend on the particular spherically
Consider a molecule containing one electron moving insymmetric tight-binding basis functions chosen and turns out
the potential of three protons fixed at the corners of an equito be an exact excited-state nodal surface. The nodal surface
lateral triangle. The symmetry group of the Hamiltonian ofof ¥, is not exact, however, and its precise shape depends
this system is calledDg,.** A convenient way to generate on the details of the atomiclike orbitals used in the tight-
DMC trial wave functions with specific symmetries is to binding model. Different choices of(|r|) give trial func-
solve the Schidinger equation within a tight-binding ap- tions with the same symmetries but different nodal surfaces.
proximation using a single spherically symmetric atomiclike By changingé(|r|), it is possible to change the relative sizes
orbital ¢(|r|) centered on each proton. Once a tight-bindingof the two nodal pockets o ,, causing one to grow at the
eigenfunction has been found and used to define a trial nodalxpense of the other. As in the example of tlsestate of the
surface, the fixed-node DMC algorithm can be used to solvél atom discussed earlier, this suggests that in many cases the
the original Hamiltonian exactly subject to the fixed-nodepocket eigenvalue of one of the two nodal pockets will be
constraint. too high while that of the other is too low. The DMC energy
The ground state of the molecule is a nondegenerateill then lie below the energy of the exact eigenstate of
nodeless function transforming according to the identity repinterest. In Sec. VIII we numerically solve a specific ex-
resentation. Some of the excited-state eigenfunctions must teample with the same symmetry properties as this system and
doubly degenerate, however, since the symmetry gidgp  observe exactly this behavior.
has two two-dimensional irreducible representations, one of Here we apply the weaker variational principle described
which is caIIedF%Bh. in the preceding section to the degenerate excited state with

The tight-binding Hamiltonian has only three eigenstatesSymmetryI's_ of the groupDsy, . The largest subgroujsy

the nodeless ground state and a degenerate pair of excitethd D5 each have six elements. If the subgrdbp is used,
states which can be written as the Bloch functions, the compatibility relation of Eq(19) becomes
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F3

: :r% (25) moving in a triangular potential in three dimensions. The
3h 3

wave function®(r) obeys the Schidinger equation,
wherel’3DS is two dimensional. This result is not useful since

. . . . . 1
we are seeking a reduction that contains one-dimensional (_ —V2+V(r))\]f(r):Eq/(r), (28)
representations. Using the subgrddg, results in two one- 2
dimensional representations where
3 =r2 org . (26) cog30)

3h 3h 3h V(r)= 5{2 , (29)
However, any trial wave function that transforms as either P
ngh or F?:% is complex and therefore unsuitable for fixed- with p, ¢, and z the usual cylindrical coordinates. The
node DMC. boundary conditions ar# (p,6,z)=0 for p=1 or|z|==/2,

If we use the smaller subgrou@,, , which has four ele- confining the particle within a cylinder.
ments, we obtain the compatibility relation Writing ¥ (r) =R(p)®(68)Z(2), the Schrdinger equation
. L . separates into
1_‘DSh:FCZvEBI‘CZW (27) 2
1dz

from which we can construct real trial wave functions and 3 d_ZZZEZZ’ (30
apply the weaker variational principle. In fact, the trial func-
tions ¥, and ¥, already have the correct transformation )
properties:¥,; transforms as the one-dimensional represen- _ E d“® +cog360)0=E,0 (31)
tationl“"'zV, while ¥, transforms as the one-dimensional rep- 2 g2 o
resentationFézV. The groupC,, therefore preserves the
nodal _surfaces o, andV,. .Becau.se the symmetry corre- _ i i(l)d_R) +| E,+ E R=ER. (32)
sponding to the representatuﬁﬂng is compatible with the 2pdp\ " dp p?

ground-state symmetry as well as wity,_, a DMC simu-  The Jowest energy eigenfunction of EQO) is
lation using the trial function¥, satisfies only the weaker

variational principle Epyc=E,, where E, is the overall -~ \E
ground-state energy. The representaifc@;V is not compat- 2(2)= Wcos{z), (33

ible with the ground-state symmetry, however, and SO §yjth eigenvalueE,=1/2. Equation32) may be simplified by

simulation using the trial functioW; gives a stronger varia- he substitutions = 2(E—E,)p andv=2E ,, which yield
tional principle. For the example studied in the next sectionggggers equation z ’

it turns out that th@%Sh state of interest is the lowest energy

exact eigenstate with which the representaiign is com- ,dR dR
. L . 2v . rc —-+r—+(rc—v°)R=0. (39
patible. The strong variational principle therefore applies and dr2 dr

Epwc=EZ, whereE? is the exacl?  eigenvalue. It is im- . .
pMc= Eq =0 27" Dapy g o The general solutions are the Bessel and Neumann functions,

portant to appreciate that this is not a general result; it is noj (r) andN,(r), but onlyJ,(r) is well behaved at the ori-

always possible to pick a trial function that maintains the . ve Y

strong variational principle for a given symmetry.

No-te that the strpng variational principle .applies bepause R(p):‘]JTa( 2(E— E,)p), (35)
the trial wave function¥'; transforms according to the irre-
ducible representatioﬁ“C2V of the subgrougC,, . If we had  with the energyE determined by the boundary condition at

chosen a different pair of trial functions, constructed by tak-"~ 1,

ing linear combinations of'; and ¥,, both would have — B
contained components alorii, andT't, . The only sub- I 25;(V2(E~E7)=0.

group preserving the nodes would then have been the groupquation(31) can be transformed into Mathieu’s equafidn

of the identity, and the only variational principle would have by a simple change of variables, but here we solve it numeri-
been with respect to the overall ground-state enegy,c  cally by expanding the eigenfunctions (normalized sines
=E,. This illustrates the general rule that the strongest variaand cosines,

tional principles are obtained by choosing trial functions

which transform according to specific one-dimensional irre- o0 1 N % cognéb) - sin(né)

ducible representations of specific subgroupg of (0)=ao N an Jr n Jr |/

(37

and diagonalizing the corresponding Hamiltonian matrix.
We now present an explicit solution of a different ex- The results converge rapidly withl, and choosingVl =50
ample with the sam®3, symmetry group as the triangular gives very accurate eigenvalues for the lowest few eigen-
molecule discussed above. Consider a particle of unit masstates.

gin. Hence

(36)

VIIl. SEPARABLE EXAMPLE
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1.0 . . : 1.0 .
—— Eo=-0.10881 —— Eo=-0.72147
---- Eo= 031703 ---- Eo= 0.32354
PN ——- Ey= 0.31703 7\ ——- Ep= 0.32354
=] =]
2 g
g g
g g
) 5
g g
g E
= =1
&0 o0
=] =]
< <
1.0 L L I -1.0 L L I
0.0 2.0 4.0 6.0 0.0 20 4.0 6.0
0 0

FIG. 3. Angular eigenfunction® () of the separable Hamil-
FIG. 2. Angular eigenfunction® (6) of the separable Hamil- tonian of Eq.(28) with V(r)=[cos(¥)+5 cos(&)]/p>. The func-
tonian of Eq.(28) with V/(r) =cos(¥)/p>. The functionsg@ and(b)  tions(a) and(b) are analogous to the tight-binding statesand(b)
are analogous to the tight-binding statasand(b) shown in Fig. 1. shown in Fig.(1). The corresponding angular eigenvallgg are
The corresponding angular eigenvallesare also shown. also shown.

The three lowest energy angular eigenfunctions are shown
in Fig. 2. As stated in Sec. VII, the lowest energy eigenstateen
is a nodeless function invariant under all elements of th(%h
symmetry group of the Hamiltonian. The next two states ar

The trial nodal pocket that is too largemall) enclosegis
closed bythe corresponding exact nodal pocket. We can
erefore apply the variational argument used in the discus-
d " i formi basis for the irreducibl E'§ion of the 3 state of the hydrogen atom to show that the
a eg?”e“’;‘e pair forming a basis for e rreducible reprepocket eigenvalue from the pocket that is too small must be
sentatlonl"DSh. One of the two has nodes #-=0 and ¢ greater than the exact eigenvalue, while the pocket eigen-
=, and will be called¥, in analogy with the correspond- value from the pocket that is too large must be less than the
ing state from Sec. VII; the other has nodesfat+1.7934  exact eigenvalue. As in the Hs2example, therefore, the
radians, and will be callet,. Note thatW, is the lowest DMC energy is always< the exact eigenvalue. The maxi-
energy eigenfunction transforming according to the onemum of the DMC energy, equal to the exgg%gh ground-
dimensional irreducible representaﬂEézV of the subgroup 44 eigenvalue, is attained only when the nodal angle is
C,,; it therefore possesses the tiling property with respect texact; and the slope of the graph of DMC energy against
C,,. The FéZV symmetry of ¥, is shared by the overall nodal angle changes discontinuously at this point. The error

ground state, however, 3B, is not the lowest eigenstate of in the DMC energy is first order, not second order, in the

that subgroup symmetry and does not satisfy a tiling theo€!Tor in the nodal angle.

rem. This analysis is confirmed by the results of a full calcula-
Consider how DMC might be used to find the eigenvaluetion given in Fig. 4, which shows how the angular pocket

of the lowest energy"3  doublet. We do not want to im- eigenvaluesE, of the two pockets depend on the angular

pose the exact nodal surface since DMC would then give thgzgé\/&d&h ic;f tg]: lgroialwﬁgikte;ecﬁggegf do(f;to i.sAt\goe;(r-nall
exact answer and we would learn little about variational prin—p =0 9 P

ciples, so we seek a trial function with a different nodal and vice versa. Figure 5 shows the depe_ndence of the total
surface but the same symmetry. We choose to generate suB cket eigenvalueg on the angular half-width of the nodal

a trial function by solving the Schdinger equation for a pocket centgred qg:ot confirming that an increasg in an-
different triangular potential gular half-width gives rise to a decrease in total eigenvalue

and vice versa. The numerical results therefore support the
conclusions of the variational argument.
b 1V2+ cog39) . cog60) Note, finally, that Eq.(31) can be interpreted as the
=— = )% , (38 o . . . -
2 p? p? Schralinger equation for a one-dimensional crystal with pe-
riodic boundary conditions, in which casg; and ¥, are
where n is an adjustable parameter. The first three angulareal linear combinations of Bloch waves with equal and op-
eigenfunctions of this Hamiltonian when=5 are shown in  posite crystal momenta. Seen from this viewpoint, the degen-
Fig. 3. Since the cos@ term does not change the symmetry eracy of¥'; and ¥, arises from the time-reversedomplex-
group, these eigenfunctions still belong to the same irreducsonjugation symmetry of the real Hamiltonian rather than
ible representations. However, the nodal angle¥of has  from its spatial symmetry, but the failure of the symmetry-
moved slightly in response to the perturbation. One of theconstrained variational principle is still apparent. This con-
two nodal volumes of this trial wave function is therefore firms the assertion made in Sec. V: a DMC simulation using
slightly too small, while the other is slightly too large. a real trial state constructed from Bloch states with equal and
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symmetry operations that leave both the Hamiltonian and the
trial nodal surface(boundary conditions invariant. This
“group of the fixed-node Hamiltonian” is a subgroup of the
e more familiar “group of the Hamiltonian,'G.
036 - et i If the trial function transforms according to a real one-
i dimensional irreducible representatibh of G, all symmetry
- operations inG simply multiply the trial function by a real
number. This does not change the nodal surface and hence
- G=Grn. The symmetry-constrained variational principle
-~ then implies(i) that the fixed-node DMC energy is greater
osg L -~ i than or equal to the eigenvalue of the lowest energy exact
eigenstate that transforms according to the same one-
dimensional irreducible representation as the trial state; and
(i) that the error in the DMC energy is in general second
1.70 175 1.80 185 1900  order in the difference between the nodal surfaces of the
Angular Half Width of Nodal Pocket Centered on Origin lowest energy exact eigenstate that transformE'aand the

trial function.
FIG. 4. The angular pocket eigenvalugg of the two nodal - . . . . .
pockets of the separable example from Sec. VIll. The Hamiltonia If the irreducible representation to which the trial function

is that of Eq.(28) with V(r)=cos(3)/p? and the eigenvalues are rbelongs is of dimension grea?er than one, it is inevitabl_e that
plotted as functions of the angular half-width of the nodal pocketSOMe of the symmetry operations frgawill change the trial
centered or9=0. The vertical line shows the nodal surface of the nodal Sgrfacg. The nodal surfaces of th_e staltgsand ¥,
exact excited statd’ . shown in Fig. 1 are examples of this. The symmetry-
constrained variational principle need not apply in such

opposite crystal momenta may yield an energy below that otases, because the symmetrized stafeused in its deriva-
the lowest exact eigenstate with that crystal momentum. tion need not be zero everywhere on the trial nodal surface.
The 6 functions produced when the kinetic energy operator
is applied to the fixed-node pocket ground statefrom Eg.

(9) may therefore contribute to the expectation value in Eq.

The main lesson to be learned from this work is that sym-(17)-
metry arguments cannot be applied to fixed-node DMC un- In such cases, a weaker version of the symmetry-
less the symmetries of both the Hamiltonian and the nodagonstrained variational principle can be obtained by reana-
surface of the trial wave function are taken into account. Thdyzing the problem using only the symmetries in the sub-
fixed-node DMC algorithm solves the Hamiltonian subject togroupGey . The idea is to forget all the symmetry operations
the boundary conditions imposed by the trial nodal surfacewhich change the nodes of the trial function, and consider
and so the relevant symmetry grodg, contains only those only those which leave the trial nodal surface invariant. The

symmetry-constrained variational principle then applies as

74 , , long as the symmetries are labeled using the irreducible rep-
resentations ofgy .

In summary, a useful DMC variational principle exists
72+ 1 whenever the trial state transforms according to a one-
e dimensional irreducible representatibh of G or any sub-

P group ofG. In many DMC simulations, the nodal surface of
P the trial state is the same as that of an eigenstate of an ap-
e proximate Hamiltonian such as the local-density-functional
Hamiltonian. If the state used to define the nodal surface is
P the lowest energy eigenstate with symmelty of an ap-
- proximate Hamiltonian with a reasonable local potential, the
generalized tiling theorem discussed in Sec. VI shows that
all the nodal pockets are equivalent by symmetry. The DMC
energy is therefore independent of the initial distribution of
walkers among the nodal pockets.

The ordinary fixed-node approximation provides a good
example of these ideas. The many-electron ground state is
never the overall ground statevhich is bosonig, and may

FIG. 5. The total pocket eigenvaluEsof the two nodal pockets € degenerate, in which case we cannot prove the existence
of the separable example from Sec. VIII. The Hamiltonian is that of0f @ variational principle by analyzing the problem using the
Eq. (28) with V(r)=cos(¥)/p? and the eigenvalues are plotted as full symmetry group. We can, however, use the permutation
functions of the angular half-width of the nodal pocket centered orgroup, which is always a subgroup of the full symmetry
6=0. The vertical line shows the nodal surface of the exact excite@roup. The many-electron trial function transforms according
stateW,. to the one-dimensional antisymmetric irreducible representa-
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tion of this subgroup. The weaker variational principle there-dimensional irreducible representations of subgroups;,of
fore guarantees that the fixed-node DMC energy is greateind may be found following the procedure explained in Sec.
than or equal to the energy of the many-electron groundy. If this procedure is not carried out, trial functions belong-
state; and the generalized tiling theorem guarantees that thgg to multidimensional irreducible representationgafsu-
exact many-electron ground state possesses the tiling proptly have nodal surfaces with very little spatial symmetry. In
erty with respect to permutations. This shows that thémany cases, the only symmetry operations that leave the
ground-state versions of the fixed-node variationalnodal surface invariant are the elements of the permutation
principle’® and tiling theorerh may be regarded as special group, and the only variational principle that survives is the
cases of the more general versions discussed in this papefpne relating to the many-electron ground state.

The different members of a set of trial functions forming
a basis for a multidimensional irreducible representatio@ of
have different nodal surfaces and need not all produce the
same fixed-node DMC energy. The strength of the weaker
variational principle may therefore be optimized by using We thank the Engineering and Physical Sciences Re-
specific linear combinations of these basis functions. Theearch Council, U.K., for financial support under Grant Nos.
best linear combinations transform according to one-GR/L40113 and GR/M05348.
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