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Symmetry constraints and variational principles in diffusion quantum Monte Carlo calculations
of excited-state energies
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Fixed-node diffusion Monte Carlo~DMC! is a stochastic algorithm for finding the lowest energy many-
fermion wave function with the same nodal surface as a chosen trial function. It has proved itself among the
most accurate methods available for calculating many-electron ground states, and is one of the few approaches
that can be applied to systems large enough to act as realistic models of solids. In attempts to use fixed-node
DMC for excited-state calculations, it has often been assumed that the DMC energy must be greater than or
equal to the energy of the lowest exact eigenfunction with the same symmetry as the trial function. We show
that this assumption is not justified unless the trial function transforms according to a one-dimensional irre-
ducible representation of the symmetry group of the Hamiltonian. If the trial function transforms according to
a multidimensional irreducible representation, corresponding to a degenerate energy level, the DMC energy
may lie below the energy of the lowest eigenstate of that symmetry. Weaker variational bounds may then be
obtained by choosing trial functions transforming according to one-dimensional irreducible representations of
subgroups of the full symmetry group.@S0163-1829~99!09331-5#
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I. INTRODUCTION

Quantum Monte Carlo~QMC! methods are powerful an
general tools for calculating the ground-state electronic pr
erties of atoms, molecules, and solids. Since the comp
tional cost increases only as the cube of the number of
ticles, it is possible to study systems containing hundred
electrons subject to periodic boundary conditions. This
enough to model real condensed matter with surprising
cision, as shown by the accuracy of 0.1 eV per atom or be
achieved in QMC calculations of the cohesive energies
solids. By comparison, the errors in local-density-functio
calculations of cohesive energies are often of the order
eV per atom.

The two most widely used QMC methods are variatio
Monte Carlo~VMC! and diffusion Monte Carlo~DMC!.1,2 In
VMC a trial many-electron wave function is chosen and e
pectation values are evaluated using Monte Carlo inte
tion, which is more efficient than grid-based quadratu
methods for high-dimensional integrals. Most VMC simu
tions of solids use trial wave functions containing a num
of adjustable parameters, the values of which are determ
by minimizing the energy or its variance.

DMC is a stochastic method for evolving a solution of t
imaginary-time Schro¨dinger equation. The imaginary-tim
evolution gradually enhances the ground-state componen
the solution relative to the excited-state components, but
algorithm does not maintain the fermionic symmetry of t
starting state. The solution therefore converges towards
overall ground state, which is bosonic. This difficulty
known as the sign problem.

Although several exact solutions to the sign problem h
been proposed, none has the statistical efficiency require
study the large systems of interest to condensed ma
PRB 600163-1829/99/60~7!/4558~13!/$15.00
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physicists. Most DMC simulations therefore use the appro
mate fixed-node method,3 which is numerically stable and
often very accurate. The details will be described in Sec.
but the basic idea is quite simple. A real trial many-electr
wave function is chosen and used to define a trial no
surface, which is the surface on which the trial function
zero and across which it changes sign. In a three-dimensi
system containingN electrons, the trial wave function is
function of 3N variables, and the trial nodal surface is 3N
21 dimensional in general. The fixed-node DMC algorith
maintains the nodal surface of the trial wave function,
enforcing the fermionic symmetry and producing the low
energy many-electron wave function consistent with t
nodal surface.

Although VMC and DMC are principally ground-stat
methods, they can also provide some information about
cited states. In particular, they can be used to study the l
est energy state of each distinct symmetry. In VMC this
done by choosing a trial wave function which possesses
required symmetry for all values of the variational para
eters. The energy obtained after optimizing the trial funct
is therefore greater than or equal to the eigenvalue of
lowest energy eigenstate of that symmetry. A similar te
nique is also used in DMC, although this is much harder
justify. The problem is that the DMC trial function is onl
used to define the trial nodal surface, which may not
sufficient to fix the symmetry of the state produced by t
stochastic DMC algorithm. In any case, practical tests h
shown that this approach often gives excellent results.
amples are the study of excitations of the hydrogen molec
by Grimeset al.,4 and calculations of excitation energies
diamond5,6 and silicon.7

If the trial function used in an excited-state DMC simul
tion has no definite symmetry, the only certainty is that t
4558 ©1999 The American Physical Society
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DMC energy must be greater than or equal to the ma
electron ground-state energy.2 In cases when the DMC tria
function does have a definite symmetry, however, it is n
mally assumed that the fixed-node DMC solution has
same symmetry as the trial function, and hence that the D
energy is greater than or equal to the eigenvalue of the l
est energy eigenstate of that symmetry. This symme
constrained variational principle is widely accepted, but
show by constructing a specific example that it is not alw
correct: the fixed-node DMC solution need not have
same symmetry as the trial function; and the fixed-no
DMC energy may be lower than the energy of the low
exact eigenstate of that symmetry.

The symmetry-constrained DMC variational principle
guaranteed to hold only when the trial function transfor
according to a one-dimensional irreducible representatio
the symmetry group of the Hamiltonian. The correspond
eigenstate is then nondegenerate, or has only accidenta
generacies. If the trial function transforms according to
multi-dimensional irreducible representation, correspond
to a degenerate energy level, the DMC energy may lie be
the energy of the lowest eigenstate of that symmetry. In s
cases a weaker variational principle may be obtained
choosing a trial function that transforms according to a o
dimensional irreducible representation of a subgroup of
full symmetry group. The DMC energy is then greater th
or equal to the eigenvalue of the lowest exact eigenstate
that subgroup symmetry. This provides a strict variatio
lower bound for the DMC energy, but one that usually li
below the energy of the degenerate eigenstate of interes

As an example, consider the case of a crystalline so
Any trial function with a definite crystal momentumk satis-
fies the many-electron version of Bloch’s theorem and
transforms according to a one-dimensional irreducible rep
sentation of the translation group, which is a subgroup of
full symmetry group. The weaker variational principle ther
fore guarantees that the DMC energy must be greater tha
equal to the energy of the lowest exact eigenstate with cry
momentumk. Unfortunately, most Bloch states are compl
and so cannot be used as fixed-node DMC trial functio
Real linear combinations of Bloch functions and their co
plex conjugates can be used instead, but in most cases
do not transform according to one-dimensional irreduci
representations and do not lead to useful variational p
ciples. This is illustrated in Sec. VIII, where we show th
the DMC energy obtained using such a trial function may
below the energy of the lowest eigenstate with crystal m
mentumk.

The weaker variational principle is useful, but relies on
very careful choice of trial functions and cannot explain
the past successes of the fixed-node DMC method for exc
states. The real explanation of these successes, we belie
that although the DMC algorithm does not always prese
the symmetry of the trial function, the imposed nodal surfa
acts as such a strong restriction that the DMC solution c
not stray ‘‘too far’’ from that symmetry. The calculated e
ergy is therefore close to the variational value that wo
have been obtained if the symmetry had been preserve
cases when the excited state of interest satisfies the st
variational principle, the errors in the ground- and excite
state energies are guaranteed to have the same sign and
-
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to cancel, so improving the accuracy of the calculated ene
difference.

The rest of this paper is organized as follows: Sec.
contains brief explanations of the DMC method and t
fixed-node approximation for ground states; Sec. III sho
that no general symmetry-constrained variational princi
exists; Sec. IV shows that a variational theorem holds for
lowest energy state of each symmetry provided that the
function transforms according to a one-dimensional irred
ible representation of the group of spatial transformations
the Hamiltonian; Sec. V introduces a weaker variation
principle which may give energy bounds even when the t
function transforms according to an irreducible represen
tion of dimension greater than one; Sec. VI shows tha
generalization of the tiling theorem8 holds in every case
when we can prove that the DMC energy obeys a variatio
bound; Secs. VII and VIII give examples which demonstra
the absence of a general symmetry-constrained variati
principle and illustrate the application of the weaker var
tional principle; and Sec. IX summarizes and concludes.

II. FIXED-NODE DIFFUSION MONTE CARLO
FOR GROUND STATES

In this section we summarize the known results conce
ing the application of the fixed-node DMC method to grou
states.1,2 The aim is to evaluate expectation values with
antisymmetric wave function F(X), where X
[(x1 ,x2 , . . . ,xN) lists the coordinates of allN electrons,
andxi5(r i ,szi) specifies the position and spin projection
electroni. We choose wave functions with a fixed totalSz

5( i 51
N szi . The expectation value of a spin-independe

symmetric operatorÂ(R) is given by

^A&5

(
S
E F* ~X!Â~R!F~X!dR

(
S
E F* ~X!F~X!dR

, ~1!

whereR[(r1 ,r2 , . . . ,rN). For each spin configurationS the
antisymmetric wave functionF(X)5F(x1 ,x2 , . . . ,xN)
may be replaced by a version with permuted argume
F(xi 1

,xi 2
, . . . ,xi N

), where the permutation is chosen su

that the firstN↑ arguments are spin up and the lastN↓5N
2N↑ are spin down. SinceR is a dummy variable, we can
relabel (r i 1

,r i 2
, . . . ,r i N

) as (r1 ,r2 , . . . ,rN), after which the
sums over spin configurations can be removed. The expe
tion value may then be written as

^A&5

E F̃* ~R!Â~R!F̃~R!dR

E F̃* ~R!F̃~R!dR
, ~2!

where

F̃~r1 ,r2 , . . . ,rN!

[F~r1 ,↑;r2 ,↑; . . . ;rN↑,↑;rN↑11 ,↓; . . . ;rN ,↓ !.

~3!
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The function F̃(r1 , . . . ,rN) is antisymmetric under inter
change of any two of the up-spin argumentsr1 , . . . ,rN↑ or

any two of the down-spin argumentsrN↑11 , . . . ,rN↑1N↓, but
has no definite symmetry under interchange of up- a
down-spin arguments. It still obeys the Schro¨dinger equa-
tion, but the up- and down-spin electrons are now treate
distinguishable, allowing us to avoid explicit reference to t
spin variables. For simplicity, all wave functions in the fo
lowing discussion will be chosen to be of this type.

DMC is a method for solving the imaginary-time Schr¨-
dinger equation,

S 2
1

2
¹R

2 1V~R!2ESDC~R,t!52
]

]t
C~R,t!, ~4!

where¹R
2 is shorthand for( i 51

N ¹ i
2 . The potentialV(R) in-

cludes the electron-electron interactions as well as the ex
nal potential terms, and is assumed to be a local functio
R. It has Coulomb singularities whenever two charged p
ticles approach each other, but is finite everywhere else.
constant energy shiftES has been introduced to set a conv
nient zero of energy as explained below. The variablet
~which is real! is usually called the imaginary time, but w
will often abbreviate ‘‘imaginary time’’ to ‘‘time’’ in what
follows.

If the starting stateC(R,t50) is written as a linear com
bination of energy eigenfunctions,

C~R,t50!5(
i

ciC i~R!, ~5!

the larget limit of the solution of Eq.~4! takes the form

C~R,t˜`!5clC l~R!e2(El2ES)t, ~6!

whereC l(R) is the lowest energy eigenfunction appearing
Eq. ~5! and El is the corresponding eigenvalue. In applic
tions to many-electron systems,C(R,t50) is antisymmet-
ric and C l(R) is usually the many-electron ground sta

C0(R). We will assume that the HamiltonianĤ is real~pos-
sesses time-reversal symmetry!, in which caseC l(R) may
also be chosen real and may be obtained by following
imaginary-time evolution of a real functionC(R,t). If the
Hamiltonian is complex~does not possess time-reversal sy
metry!, as when there is an applied magnetic field, the fix
node DMC method discussed in this paper does not ap
and it is necessary to use the fixed-phase method of O
Ceperley, and Martin.9

DMC solves Eq.~4! using a stochastic algorithm, the e
ficiency of which is much improved by an importance sa
pling transformation.10 A real trial wave functionFT(R) is
chosen and Eq.~4! is recast in terms of the product

f ~R,t!5C~R,t!FT~R!, ~7!

which is also real. After some straightforward algeb
f (R,t) is found to satisfy the equation

2
]

]t
f ~R,t!52

1

2
¹R

2 f ~R,t!1“R•@F~R! f ~R,t!#

1@EL~R!2ES# f ~R,t!, ~8!
d
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whereEL(R)[FT
21(R)ĤFT(R) is known as the local en

ergy andF(R)[FT
21(R)“RFT(R) as the quantum force. I

the chosen trial wave function is close to the exact grou
state wave function, the local energy is nearly constant
the statistical efficiency of the algorithm is optimized.

If f (R,t) is constrained to be positive, Eq.~8! may be
interpreted as describing the time evolution of the density
a population of ‘‘random walkers’’ multiplying or dying ou
as they diffuse and drift through a 3N-dimensional ‘‘con-
figuration space.’’ The constraint thatf is positive is known
as the fixed-node approximation,3 because it forces the noda
surface ofC(R,t) to be the same as that ofFT(R). In
practice, the distributionf is represented by a few hundre
walkers propagating stochastically according to rules deri
from Eq.~8!. The growth or decay rate of the total number
walkers in the simulation depends on the average value
EL(R)2ES , and the constant energy shiftES is chosen to
ensure that the population remains stable on average.

The initial walker positions are normally picked from th
probability distribution f (R,t50)5@FT(R)#2, resulting in
an initial population scattered throughout the configurat
space. The nodal surface ofFT(R) divides this space into
different nodal pockets, among which the walkers are dist
uted. During the simulation, the walkers never cross the fi
nodal surface separating one pocket from another, and so
fixed-node DMC algorithm proceeds independently in ea
pocket.

In the long-time limit, the probability densityf of the
walkers within nodal pocketva becomes proportional to
fa(R)FT(R), where the ‘‘pocket ground state’’fa(R) is
the lowest energy real normalized wave function which
zero outsideva and satisfies the fixed-node boundary con
tions on the surface ofva . This function generally has gra
dient discontinuities across the surface ofva , and the action
of the kinetic energy operator on these discontinuities p
duces delta function terms which will be denotedda . The
pocket ground state therefore satisfies the equations

Ĥfa~R!5eafa~R!1da

fa~R!FT~R!>0
J when RPva

fa~R!50 when R¹va . ~9!

Since the walker density is positive, the sign offa(R)
within va is the same as that ofFT(R), implying thatfa(R)
andFT(R) have a nonzero overlap. The form offa(R) does
not depend on the details ofFT(R), but only on the shape o
its nodal surface. The energy given by the DMC simulati
in nodal pocketva is equal to the pocket eigenvalueea . This
need not equal the exact ground-state eigenvalueE0 unless
the trial nodal surface is the same as that of the exact gro
stateC0(R), in which casefa(R) is proportional toC0(R)
within va .

These results were used by Reynoldset al.10 and Mosk-
owitz et al.11 to prove that the fixed-node DMC energy
greater than or equal to the exact ground-state energy. R
nolds’s proof starts from the solution in a single nod
pocket, and uses the permutationsP that do not flip spins to
construct a real wave function antisymmetric with respec
interchanges of electron coordinates of the same spin,
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C̄a~R!5
1

N↑!N↓!
(
P

~21!Pfa~PR![Âfa~R!. ~10!

The functionC̄a(R) cannot equal zero everywhere since,
any pointR, all terms contributing to the sum in Eq.~10!
have the same sign. This follows from the antisymmetry
the trial functionFT(R), which guarantees that all permut
tions P for which the pointPR lies in nodal pocketva have
the same parity~positive if the sign of the trial function atR
is the same as the sign of the trial function inva , negative

otherwise!. The functionC̄a(R) is, however, equal to zero
everywhere on the trial nodal surface. This can be dedu
from the knowledge thatfa(R) is equal to zero there~as
well as in many other places!, and that the nodal surfaces o
antisymmetric functions such asFT(R) are not altered by
permutations.

The real antisymmetric functionC̄a(R) is now substi-
tuted into the standard quantum mechanical variational p
ciple to give

E0<
E C̄aĤC̄adR

E C̄aC̄adR
5

E C̄aĤÂfadR

E C̄aÂfadR

5

E C̄aĤfadR

E C̄afadR
5ea , ~11!

where we have used the fact thatÂ commutes withĤ, that it

is self-adjoint, and that it is idempotent@so thatÂC̄a(R)

5C̄a(R)#. The d function terms appearing inĤfa do not
contribute to the energy expectation value because they

cur on the fixed nodal surface whereC̄a(R)50. If the nodal
surface ofFT(R) is the same as the nodal surface of t
exact ground state, the equality holds and the pocket eig
value ea is equal toE0; but if FT(R) does not have the
correct nodal surface thenea.E0. The energyea produced
by the DMC simulation in nodal pocketva is therefore mini-
mized and equal to the exact ground-state energy when
trial nodal surface is exact. Sinceea is also expected to de
pend smoothly on the shape of the nodal surface, it follo
that the error inea is in general second order in the error
the nodal surface.

For systems with reasonably well behaved local potent
and real ground-state wave functions, the tiling theore8

states that all the ground-state nodal pockets are relate
permutation symmetry. A derivation of this theorem appe
in Sec. VI. The tiling theorem holds even when the grou
state is degenerate, in which case every possible real li
combination of the degenerate ground states possesse
tiling property. Many DMC simulations use trial wave fun
tions with the same nodal surface as the density-functio
ground state. Since the density-functional Hamiltonian ha
local potential, such trial states always satisfy the tiling th
rem. This guarantees that the value ofea is the same in every
nodal pocket, and hence that the energy obtained in
t
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fixed-node DMC simulation cannot depend on how the wa
ers are distributed among the pockets.

In cases when the trial function does not possess the ti
property, the walker population grows most rapidly in nod
pockets with low values ofea @or, equivalently, low average
values ofEL(R)2ES#. SinceES is chosen such that the tota
walker population stays roughly constant, and since fix
node DMC walkers never cross from one nodal pocket i
another, the walkers in less favorable pockets are gradu
annihilated. Although many different nodal pockets m
have contained walkers initially, the population becom
more and more concentrated in the pocket or pockets w
the lowest value ofea , and it becomes more and more like
that only these pockets will be occupied. The DMC energy
therefore almost certain to converge to the lowest of
pocket eigenvalues of the nodal volumes initially occup
with walkers,EDMC5mina(ea). This means that the energ
obtained in a DMC simulation which does not possess
tiling property may depend on the initial distribution o
walkers.

III. ABSENCE
OF A GENERAL VARIATIONAL PRINCIPLE

FOR FIXED-NODE DMC CALCULATIONS OF EXCITED
STATES

In a few cases, the exact nodal surface of an excited-s
wave function can be determined using symmetry argume
alone. An example is the first excited state of a particle i
one-dimensional square well, which has a single nodal p
located at the well center. The trial wave function can th
be chosen to have exactly the same nodal surface as
excited state, and the fixed-node DMC simulation gives
exact excited-state eigenvalue. This result holds whethe
not the trial wave function is orthogonal to all the low
energy eigenstates.

In practice, however, the exact nodal surface is rarely
termined by symmetry alone, and it is rarely possible
choose a trial function with exactly the same nodal surface
the excited state of interest. Furthermore, the wave func
of an arbitrary excited state need not possess the tiling p
erty, and so the DMC energy may depend on the initial d
tribution of the walkers.

As an example, consider a hydrogen atom in its 2s state,
C2s(r ), with eigenvalueE2s . The exact nodal surface is
sphere of radiusr 0, the value of which cannot be determine
using symmetry arguments. If the imposed nodal surfac
exact, the pocket eigenvalues in the inner and outer poc
will both be exactly equal toE2s ; but if the nodal surface is
a sphere of radiusaÞr 0, the pocket eigenvaluee. of the
wave functionC. in the outer pocket will not equal the
pocket eigenvaluee, of the wave functionC, in the inner
pocket.

Consider the case when the fixed node is too close to
nucleus,a,r 0. According to the variational principle ap
plied to the outer pocket, the value ofe. must be bounded
above by the energy expectation value of the trial functio

FT
.~r !5H 0, a<r<r 0

C2s~r !, r .r 0 .
~12!
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This expectation value is the exact 2s eigenvalueE2s .
Clearly, we could construct a lower energy trial function
removing the kink inFT

.(r ) at r 5r 0, and hencee.,E2s .
Similarly, we can take the pocket ground state from the in
pocket,C, , and use it as a variational trial function withi
the exact 2s nodal surfacer 5r 0,

FT
,~r !5H C,~r !, r ,a

0, a<r<r 0 .
~13!

In this case the energy expectation value of the trial funct
is e, , while the minimum possible expectation value for
wave function with a node atr 0 is E2s . Again, we could
construct a lower energy trial function by removing the ki
at r 5a, and hencee,.E2s . Note that variational argument
like these can be used whenever the exact nodal pocket c
pletely encloses the trial pocket or vice versa, irrespective
dimension or symmetry. This will prove useful in Sec. VII

The last paragraph showed that ifa,r 0 then e.,E2s
,e, ; if a.r 0, a similar derivation givese,,E2s,e. .
The two pockets have different energies unlessa5r 0. How
does this affect the fixed-node DMC algorithm? As long
the lower energy pocket contains plenty of walkers initial
the walker population in the higher energy pocket will a
most certainly die out. The fixed-node DMC energy will th
tend to the pocket eigenvalue of the lower energy poc
which is always less than or equal toE2s . The DMC energy
is thereforemaximizedwhena5r 0. If a is increased through
r 0, the t˜` DMC walker population switches from th
outer nodal pocket to the inner one, and the slope of
graph of the DMC energy versusa changes discontinuously
It follows that the error in the fixed-node DMC energy is fir
order in the error in the nodal surface, not second order a
is for the ground state. This example shows that there is
variational principle when fixed-node DMC is used to stu
general excited states: the error in the DMC energy of
excited state may increase linearly with the error in the no
surface; and the DMC energy need not be minimized w
the nodal surface is exact.

IV. THE LOWEST ENERGY EIGENSTATE
OF EACH SYMMETRY

We now address the question of whether there is a va
tional principle for fixed-node DMC simulations of the low
est energy state of each symmetry. We denote byG the group
of spatial transformationsT ~combinations of rotations, re
flections, translations, and inversions of all electrons sim
taneously! which leave the many-electron Hamiltonian i
variant. For simplicity, we consider this group to be finite12

and of orderg. The full symmetry group of the Hamiltonia
is the direct product ofG with the permutation and time
reversal groups. All the symmetry arguments in this pa
can easily be recast in terms of the full symmetry gro
instead ofG, but real many-electron wave functions ha
such simple time-reversal and permutation symmetries~they
transform according to the one-dimensional identity rep
sentation of the time-reversal group and the one-dimensi
antisymmetric representation of the permutation group! that
this is unnecessary. Since the arguments based on the s
group G are somewhat easier to grasp, we choose to w
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with this group in what follows.
We begin by showing that a symmetry-constrained va

tional principle holds whenever the chosen trial function
real and has an invariant nodal surface. This theorem
stated without proof in a paper by Caffarel and Claverie13

Here we sketch a proof.
A real trial functionFT(R) is said to have an invarian

nodal surface if the transformed function,

Q̂~T !FT~R![FT~T21R!, ~14!

has the same nodal surface asFT(R) for all coordinate trans-
formationsTPG. Note that the nodal surface is defined as t
surface on whichFT(R) is zero and across which it change
sign; FT(R) may also have additional zeros where the s
does not change, but these are not on the nodal surface
need not be invariant.

The proof relies on the properties of the functionx(R)
defined by

x~R!5H 0 on the trial nodal surface

11 in nodal pockets whereFT>0

21 in nodal pockets whereFT<0.

~15!

Given any pointR not on the nodal surface, and any spat
transformationTPG, it is clear that x(R)5hx(T21R),
whereh561. Furthermore, since the functionsx(R) and
x(T21R) have the same nodal surface and so change
together asR changes, the sign ofh must be independent o
R. This shows that all symmetriesTPG either leavex(R)
unchanged or multiply it by21, from which it follows that
x(R) transforms according to a one-dimensional irreduci
representationGG

r of G.
We can now adapt the proof of the ground-state va

tional principle given in Sec. II. Take the pocket ground st

fa and antisymmetrize it to obtain a functionC̄a as in Eq.
~10!. Now apply the group theoretical projection operator14

P̂r5
1

g (TPG GG
r ~T !Q̂~T !, ~16!

whereGG
r (T ) is the one-by-one matrix representingT. The

application of P̂r produces a new antisymmetric stateC̄a
r

which transforms according to the one-dimensional irred
ible representationGG

r . Since the original pocket ground sta
fa(R) had a nonzero overlap withx(R), which is itself an
antisymmetric function of symmetryGG

r , the antisymmetric

GG
r component projected out by applyingÂ and thenP̂r to

fa cannot be zero.

The energy expectation value ofC̄a
r is greater than or

equal to the energyE0
r of the lowest antisymmetric state o

symmetryGG
r ,
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E0
r <

E C̄a
r* ĤC̄a

r dR

E C̄a
r* C̄a

r dR
5

E C̄a
r* ĤP̂rÂfadR

E C̄a
r* P̂rÂfadR

5

E C̄a
r* ĤfadR

E C̄a
r* fadR

5ea . ~17!

In analogy with the ground-state proof of Sec. II, these m
nipulations rely on the self-adjointness and idempotency

the operatorsÂ andP̂r , both of which commute withĤ. It is

also important thatC̄a
r* (R) is equal to zero everywhere o

the surface ofva , so that thed function terms in the expres

sion for Ĥfa(R) from Eq. ~9! do not contribute to the ex
pectation value. This is guaranteed because the fixed n
surface is invariant.

Note that the symmetry of the trial function played no p
in this derivation; the only thing that mattered was the
variance of the trial nodal surface. In most DMC simulatio
however, the trial function does have a definite symme
and so transforms according to a specific irreducible rep
sentation ofG. Given that functions transforming accordin
to different irreducible representations are orthogonal,
that the definition ofx(R) ensures that̂xuFT&.0, it fol-
lows that any trial function with a definite symmetry and
invariant nodal surface must transform according to the sa
one-dimensional irreducible representation as the co
spondingx(R). This implies that a real trial function trans
forming according to an irreducible representation of dim
sion greater than one cannot have an invariant nodal surf

The converse is also true: any real trial functionFT(R)
transforming according to a one-dimensional irreducible r
resentation must have an invariant nodal surface. This
lows from the transformation law,

Q̂~T !FT~R!5GG
r ~T !FT~R!, ~18!

and the observation that the real normalized functionFT(R)
remains real and normalized under all transformations inG.
The one-by-one matrixGG

r (T ) is therefore equal to61, and

the nodal surface ofQ̂(T )FT(R) is the same as that o
FT(R).

Putting everything together, we can now conclude t
whenever the real trial function transforms according to
one-dimensional irreducible representation ofG, the nodal
surface is invariant, and the DMC energy is greater than
equal to the energy of the lowest exact eigenfunction w
that symmetry. This is the symmetry-constrained variatio
principle mentioned in the Introduction. If the trial functio
transforms according to an irreducible representation of
mension greater than one, the nodal surface cannot be in

ant, and thed functions produced whenĤ is applied tofa

need not all occur whereC̄a
r* 50. The above proof of the

symmetry-constrained variational principle therefore bre
down. In Sec. VIII we give an example of a system with
trial function transforming according to an irreducible rep
sentationGG

r of dimensiondr52 for which EDMC,E0
r .
-
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The restriction of the variational principle to trial func
tions transforming according to one-dimensional irreduci
representations can be understood in a very simple way.
problem being solved in a fixed-node DMC simulation is n
the imaginary-time Schro¨dinger equation of Eq.~4!, but the
imaginary-time Schro¨dinger equation subject to the add
tional boundary conditions specified by the trial nodal s
face. As a result, the relevant symmetry group is not

group G of symmetries ofĤ, but the subgroupGFN that
leaves both the Hamiltonian and the fixed nodal surfa
~boundary conditions! invariant. The fixed-node eigenfunc
tions need only conform to the symmetries inGFN, and their
transformation properties should be analyzed in terms of
irreducible representations ofGFN, not G. If the real trial
function transforms according to a one-dimensional irred
ible representation ofG, the fixed nodal surface is invarian
and the groupsG and GFN are the same. The symmetry
constrained variational principle discussed in this sect
does not apply unless this is the case.

V. IRREDUCIBLE REPRESENTATIONS OF DIMENSION
GREATER THAN ONE

Can anything be said when the trial function transfor
according to an irreducible representation of dimens
greater than one? Suppose that the real trial functionFT,l

r (R)
transforms as thel th row of an irreducible representationGG

r

with dimensiondr.1. We already know that the nodal su
face of FT,l

r (R) cannot be invariant with respect to all th
operations inG, but it may be invariant under a subset
those operations. Any such subset forms a proper subgr
GFN, which in general depends on the row indexl.

As in Sec. IV, we define the functionx(R) which is equal
to 11 in all nodal pockets whereFT,l

r (R)>0, equal to
21 in all nodal pockets whereFT,l

r (R)<0, and equal to
zero everywhere on the nodal surface ofFT,l

r (R). By con-
struction,x(R) transforms according to a one-dimension
irreducible representation ofGFN ~although not ofG). Since
all the pocket ground statesfa have nonzero overlaps with
x(R), they all have nonzero components of the same s
group symmetry asx(R). We can therefore reuse th
symmetry-projection argument leading to Eq.~17! to show
that the fixed-node DMC energy is greater than or equa
the eigenvalue of the lowest energy exact eigenfunction w
the same subgroup symmetry asx(R). This provides a rig-
orous variational principle, but the subgroupGFN that leaves
the trial nodal surface invariant is usually small and its ir
ducible representations provide a correspondingly limited
of symmetry labels. The bounds obtained are therefore w
and this variational principle is of little use unless optimiz
as explained below.

If the nodes ofFT,l
r (R) were exact one could form a tria

function from any real linear combination of different row
and always obtain the same DMC energy. When the no
are not exact, however, the DMC method breaks thisdr-fold
degeneracy, and the variational lower bound on the DM
energy depends on the precise linear combination of ro
chosen in constructing the trial wave function. This freedo
can be exploited to improve the weak variational principl

The dr functionsFT,l
r (R) ( l 51,2, . . . ,dr) are a basis for
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the irreducible representationGG
r of G, and hence transform

into linear combinations of each other under all coordin
transformationsTPG. This implies that they also transform
into linear combinations of each other under all coordin
transformationsTPGs , whereGs is any proper subgroup o
G. The subset of the matricesGG

r (T ) for which TPGs is
therefore a representation ofGs . This representation is not in
general irreducible.

To enumerate the different possibilities, begin by det
mining all the proper subgroupsGs of G. For each such sub
group, consider the representation ofGs consisting of the
matricesGG

r (T) with TPGs . This representation may be de
composed into its irreducible components with respect toGs ,

GG
r 5nq1

GGs

q1% nq2
GGs

q2% •••% nqm
GGs

qm, ~19!

where the positive integernqi
is the number of times the

irreducible representationGGs

qi of Gs appears, so dr

5( inqi
dqi

. The irreducible representations ofGs appearing

in Eq. ~19! are said to be compatible14 with GG
r . Note that

since the group containing only the identity element is
ways a subgroup ofG, it is always possible to find at leas
one subgroup for which the reduction ofGG

r contains a one-
dimensional irreducible representationGGs

qi .

A trial function transforming as thel th row of GG
r may

contain components along all the compatible representat
of Gs , but it is always possible to construct linear combin
tions,

FT
qi~R!5(

l 51

dr

cl
qiFT,l

r ~R!, ~20!

transforming according to each particular compatible rep
sentationGGs

qi . Every real functionFT
qi(R) corresponding to a

one-dimensional representation ofGs has an invariant noda
surface with respect toGs . A DMC energy calculated using
the nodes of such a function therefore satisfies the variati
principle EDMC>E0

qi.
Clearly, the strength of the variational principle obtain

depends on the choices of the subgroupGs and the one-
dimensional representationGGs

qi . In some cases, one can find

subgroup Gs with a one-dimensional representationGGs

qi

which is compatible withGG
r but incompatible with all those

irreducible representationsGG
r 8 for which E0

r 8,E0
r . A DMC

energy calculated using the trial functionFT
qi(R) is then

guaranteed to be greater than or equal toE0
r . In general, if

one knows the ordering of the energy levels beforehand,
can use the compatibility analysis to find the on
dimensional irreducible representationGGs

qi which gives the

most stringent energy bound for the eigenvalue of intere
As an application of this symmetry-constrained var

tional principle, consider a crystal with space groupG. We
wish to establish whether it is possible to use fixed-no
DMC to obtain a variational estimate of the eigenval
E0(k) of the lowest energy eigenstate with crystal mome
tum k. The relevant subgroupGs is the translation group
e
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which is Abelian and has only one-dimensional irreducib
representations. These are labeled by the crystal momen
k, and so the statement of the symmetry-constrained va
tional principle is very straightforward: if the DMC tria
function has crystal momentumk, the DMC energy is
greater than or equal toE0(k). It is worth noting that this
statement holds whether or not the lowest energy state
crystal momentumk is degenerate. In the degenerate case
trial function transforms according to a multidimensional
reducible representation ofG, but it still has crystal momen-
tum k and so still transforms according to a one-dimensio
irreducible representation of the translation subgroupGs .
This is sufficient to guarantee that the DMC energy is grea
than or equal toE0(k).

The symmetry-constrained DMC variational principle f
the lowest energy state of crystal momentumk is unfortu-
nately much less useful than it appears, because most B
states are complex and cannot be used as fixed-node D
trial functions. Instead, the standard approach is to use a
linear combination of a Bloch function and its complex co
jugate.@This is justified by the assumption of time-revers
invariance, which guarantees that ifCk is an eigenfunction
with eigenvalueE0(k) then so isCk* #. Since such trial func-
tions contain components with two different wave vectorsk
and2k, they do not transform according to a single irredu
ible representation of the translation group. The symme
constrained variational theorem is therefore inapplicable,
it is possible that the DMC energy may lie belowE0(k). In
Sec. VIII we show by means of a specific example that su
calculations may indeed produce a DMC energy which
lower thanE0(k).

An important exception arises when the wave vectork is
equal to half a reciprocal lattice vector, in which casek and
2k are alternative labels for the same irreducible repres
tation of the translation group. The linear combination ofCk
andCk* is then a pure Bloch function, and the normal pro
of the symmetry-constrained variational principle applies.
long ask equals half a reciprocal lattice vector, the DM
energy is greater than or equal to the energy of the low
exact eigenstate with crystal momentumk.

VI. GENERALIZATIONS OF THE TILING THEOREM

In his paper on fermion nodes,8 Ceperley stated that th
tiling theorem could be generalized to the case where th
were other discrete symmetries present. A more pre
statement is that, given a Hamiltonian with a reasonable
cal potential and a symmetry groupG, the tiling theorem
applies to any real state which is the lowest energy eig
function of a symmetryGG

r with dimensiondr51. This can
be demonstrated via a simple generalization of Ceperle
proof8 of the ground-state tiling theorem.

Consider the real antisymmetric stateC0
r (R) which is the

lowest energy eigenfunction transforming according to
one-dimensional irreducible representationGG

r . This function
may have many nodal pockets, but pick one at random
color it blue. Now apply a symmetry operator from the gro
containing the spatial symmetries~rotations, translations, re
flections, and inversions! and the permutations. Since th
nodal surface is invariant, this symmetry operator maps
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region of space within the blue nodal pocket into itself
into one of the other nodal pockets. If the blue pocket
mapped into some other nodal pocket, this pocket is equ
lent to the blue one by symmetry and is also colored bl
Repeat this process for every operator in the group, unti
the pockets equivalent to the original one have been fo
and colored blue.

There are now two possibilities: the blue regions may
the entire configuration space, in which case the nodal po
ets are all equivalent by symmetry and the tiling theor
holds; or there may be other inequivalent nodal pock
which have not yet been found. We can rule out the sec
possibility using the following argument.

Assume that the blue nodal pockets do not fill the co
figuration space, and that the local potentialV(R) and all its
derivatives are finite except at the Coulomb singularities
curring when two charged particles approach each other
long as the system is not one dimensional~in which case
different arguments are required!, this ensures that almos
every point on the nodal surface lies a finite distance aw
from the nearest singularity in the potential. The eigenfu
tion C0

r (R) may therefore be expanded as a power se
with a finite radius of convergence about almost any pointRs

on the nodal surface. If the gradient ofC0
r (R) is assumed to

be zero over any finite area of the nodal surface surround
Rs , it can be shown that every term in this series has to
zero, and hence thatC0

r (R)50 everywhere within the radiu
of convergence. Since any solution of the Schro¨dinger equa-
tion can be analytically continued around the isolated sin
larities in the potential, this further implies thatC0

r (R) is
zero everywhere. We therefore conclude that the gradien
C0

r (R) must be nonzero almost everywhere on the no
surface.

Now consider the trial functionC̃ r(R), which is defined
to equalC0

r (R) within the blue pockets and zero elsewhe
This trial function is antisymmetric and transforms accord
to the irreducible representationGG

r , but has gradient discon
tinuities on the nodal surfaces separating the blue poc
from the rest of configuration space. It satisfies t
Schrödinger-like equation,

ĤC̃ r~R!5E0
r C̃ r~R!1d r , ~21!

where the symbold r denotes the delta functions produced
the action of the kinetic energy operator on the gradient

continuities. Thed functions occur whereC̃ r50 and so do
not affect the energy expectation value,

E0
r 5

^C0
r uĤuC0

r &

^C0
r uC0

r &
5

^C̃ r uĤuC̃ r&

^C̃ r uC̃ r&
. ~22!

We know, however, that a state which has gradient disc
tinuities almost everywhere on a finite area of the nodal s
face cannot be an eigenfunction unless the potential is
nite almost everywhere on that area. Since we are assum

that this is not the case, the functionC̃ r must contain
excited-state components of symmetryGG

r and cannot have
the same energy expectation value as the lowest energy
r
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of that symmetry. This conclusion contradicts Eq.~22!, and
so the assumption that the blue nodal pockets do not fill
configuration space must have been incorrect. All the no
pockets ofC0

r are therefore equivalent by symmetry.
This proves the tiling theorem for any real state which

the lowest energy eigenfunction of a symmetryGG
r with di-

mensiondr51. An obvious corollary is that there is also
tiling theorem for the lowest energy state transforming
cording to any one-dimensional irreducible representation
any subgroupGs of G. This statement is analogous to th
weaker variational principle discussed in Sec. V. In eve
case when we have demonstrated the existence of a D
variational principle, we have therefore also been able
demonstrate the existence of a tiling theorem. Our anal
has been restricted to the physically interesting case o
local potential which is finite everywhere except at Coulom
singularities, but our conclusions may be somewhat m
general than this suggests.

The familiar many-fermion ground-state tiling theore
may be viewed as a special case of the subgroup tiling th
rem mentioned above. The permutation group is alway
subgroup of the full symmetry group~which contains both
spatial and permutation symmetries!, and the many-fermion
ground state is the lowest energy state which transforms
cording to the one-dimensional antisymmetric irreducib
representation of that subgroup. The subgroup tiling theo
therefore guarantees that the many-fermion ground state
sesses the tiling property. Note that the tiling property ho
with respect to the permutation subgroup, not the full sy
metry group. This means that it is only the elements of
permutation subgroup that need be applied to the initial b
pocket to find all equivalent pockets and turn the whole c
figuration space blue.

The above derivation of the subgroup tiling theorem on
applies to states that transform according to one-dimensi
irreducible representations of the chosen subgroupGs . Such
states may also transform according to multidimensional
reducible representations of the full symmetry groupG, so
the tiling theorem is not restricted to nondegenerate ene
levels. In systems with degenerate many-fermion grou
states, for example, any real linear combination of the deg
erate ground states is antisymmetric and so possesse
tiling property with respect to the permutation subgrou
This result holds even though the nodal surface is not inv
ant under all the operators from the full symmetry group.

The most important consequence of the generalized ti
theorem is exactly as in the ground-state case. It is comm
for a fixed-node DMC trial wave function to have the sam
nodal surface as an energy eigenfunction calculated usin
approximate method such as local-density-functional theo
The approximate Hamiltonian is chosen to have the sa
symmetries as the exact Hamiltonian, but may also have
tra symmetries which are not relevant to the argument
may be ignored. If the approximate Hamiltonian has a r
sonably well behaved local potential, its eigenstates have
same tiling properties with respect toG as the corresponding
exact eigenstates. The lowest energy eigenstate transfor
according to any one-dimensional irreducible representa
of G or any subgroup ofG therefore satisfies the tiling theo
rem. This ensures that the energy produced by a DMC si
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lation using the nodal surface of such a state is indepen
of the initial walker distribution.

VII. TIGHT-BINDING EXAMPLE

This section and the next describe simple examples
show what happens when a trial wave function transform
according to an irreducible representation withdr.1 is used
to define the trial nodal surface for a DMC simulation. W
find that the DMC energy may indeed be lower than
eigenvalue of the lowest exact eigenstate with the same s
metry as the trial function. This demonstrates that the va
tional principle of Eq.~17! does not apply whendr.1.

In searching for a suitable example system, we foun
convenient to impose the following restrictions:~i! the group
of the Hamiltonian is finite;~ii ! the trial wave function and
its nodal surface can be easily visualized; and~iii ! the exact
eigenstates of the Hamiltonian and the pocket ground st
of Eq. ~9! can be calculated without numerical error. The
restrictions are unnecessary, but make the analysis m
simpler. To satisfy criterion~ii !, we must choose a system
containing at most three electrons in one dimension o
single electron in two or three dimensions. The nodal s
faces of one-dimensional systems are not easily altered
cause they are almost entirely determined by the antisym
try of the wave function, so we decided to concentrate
one-electron systems in two and three spatial dimension

The first system we studied was an electron confined
rectangular box in two or three dimensions. Although t
system does have multidimensional irreducible represe
tions, we failed to find an example in which the DMC ener
calculated using a trial state of a given symmetry was l
than the eigenvalue of the lowest energy eigenstate of
symmetry. The second system we tried was more succes
We start by discussing a simple tight-binding realization
this system, and then in Sec. VIII present an alternative
alization based on a separable solution of the Schro¨dinger
equation.

Consider a molecule containing one electron moving
the potential of three protons fixed at the corners of an e
lateral triangle. The symmetry group of the Hamiltonian
this system is calledD3h .14 A convenient way to generat
DMC trial wave functions with specific symmetries is
solve the Schro¨dinger equation within a tight-binding ap
proximation using a single spherically symmetric atomicli
orbital j(ur u) centered on each proton. Once a tight-bindi
eigenfunction has been found and used to define a trial n
surface, the fixed-node DMC algorithm can be used to so
the original Hamiltonian exactly subject to the fixed-no
constraint.

The ground state of the molecule is a nondegene
nodeless function transforming according to the identity r
resentation. Some of the excited-state eigenfunctions mu
doubly degenerate, however, since the symmetry groupD3h
has two two-dimensional irreducible representations, one
which is calledGD3h

3 .

The tight-binding Hamiltonian has only three eigenstat
the nodeless ground state and a degenerate pair of ex
states which can be written as the Bloch functions,
nt
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C1~r !5(
j 50

2

j~ ur2dj u!ei2p j /3,

~23!

C2~r !5(
j 50

2

j~ ur2dj u!e2 i2p j /3,

whered0 , d1, and d2 are the position vectors of the thre
protons. These two Bloch functions transform into line
combinations of each other under the operations of the p
group ~there is no need to include time-reversal symmet!
and form a basis forGD3h

3 . Taking linear combinations ofC1

andC2 , one can form the real functions,

C1~r !5j~ ur2d1u!2j~ ur2d2u!,
~24!

C2~r !52j~ ur2d0u!2j~ ur2d1u!2j~ ur2d2u!,

which form an alternative basis for the same irreducible r
resentation.

Figure 1 shows the nodal surfaces ofC1 and C2 along
with the expansion coefficients from Eq.~24!. The nodal
surface ofC1 does not depend on the particular spherica
symmetric tight-binding basis functions chosen and turns
to be an exact excited-state nodal surface. The nodal sur
of C2 is not exact, however, and its precise shape depe
on the details of the atomiclike orbitals used in the tig
binding model. Different choices ofj(ur u) give trial func-
tions with the same symmetries but different nodal surfac
By changingj(ur u), it is possible to change the relative siz
of the two nodal pockets ofC2, causing one to grow at the
expense of the other. As in the example of the 2s state of the
H atom discussed earlier, this suggests that in many case
pocket eigenvalue of one of the two nodal pockets will
too high while that of the other is too low. The DMC energ
will then lie below the energy of the exact eigenstate
interest. In Sec. VIII we numerically solve a specific e
ample with the same symmetry properties as this system
observe exactly this behavior.

Here we apply the weaker variational principle describ
in the preceding section to the degenerate excited state
symmetryGD3h

3 of the groupD3h . The largest subgroupsC3h

andD3 each have six elements. If the subgroupD3 is used,
the compatibility relation of Eq.~19! becomes

FIG. 1. The single-electron trial states~a! C1 and ~b! C2 from
Eq. ~24!. The dashed lines show where the nodal surfaces cross
plane of the molecule. The expansion coefficients ofC1 andC2 in
terms of the tight-binding basis functions are also shown.
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GD3h

3 5GD3

3 , ~25!

whereGD3

3 is two dimensional. This result is not useful sin

we are seeking a reduction that contains one-dimensi
representations. Using the subgroupC3h results in two one-
dimensional representations

GD3h

3 5GC3h

5
% GC3h

6 . ~26!

However, any trial wave function that transforms as eith
GC3h

5 or GC3h

6 is complex and therefore unsuitable for fixe

node DMC.
If we use the smaller subgroup,C2v , which has four ele-

ments, we obtain the compatibility relation

GD3h

3 5GC2v

1
% GC2v

4 , ~27!

from which we can construct real trial wave functions a
apply the weaker variational principle. In fact, the trial fun
tions C1 and C2 already have the correct transformatio
properties:C1 transforms as the one-dimensional repres
tationGC2v

4 , while C2 transforms as the one-dimensional re

resentationGC2v

1 . The group C2v therefore preserves th

nodal surfaces ofC1 andC2. Because the symmetry corre
sponding to the representationGC2v

1 is compatible with the

ground-state symmetry as well as withGD3h

3 , a DMC simu-

lation using the trial functionC2 satisfies only the weake
variational principleEDMC>E0, where E0 is the overall
ground-state energy. The representationGC2v

4 is not compat-

ible with the ground-state symmetry, however, and so
simulation using the trial functionC1 gives a stronger varia
tional principle. For the example studied in the next secti
it turns out that theGD3h

3 state of interest is the lowest energ

exact eigenstate with which the representationGC2v

4 is com-

patible. The strong variational principle therefore applies a
EDMC>E0

3, whereE0
3 is the exactGD3h

3 eigenvalue. It is im-

portant to appreciate that this is not a general result; it is
always possible to pick a trial function that maintains t
strong variational principle for a given symmetry.

Note that the strong variational principle applies beca
the trial wave functionC1 transforms according to the irre
ducible representationGC2v

4 of the subgroupC2v . If we had

chosen a different pair of trial functions, constructed by ta
ing linear combinations ofC1 and C2, both would have
contained components alongGC2v

4 and GC2v

1 . The only sub-

group preserving the nodes would then have been the g
of the identity, and the only variational principle would ha
been with respect to the overall ground-state energy,EDMC
>E0. This illustrates the general rule that the strongest va
tional principles are obtained by choosing trial functio
which transform according to specific one-dimensional ir
ducible representations of specific subgroups ofG.

VIII. SEPARABLE EXAMPLE

We now present an explicit solution of a different e
ample with the sameD3h symmetry group as the triangula
molecule discussed above. Consider a particle of unit m
al

r

-
-

a

,

d

ot

e

-

up

-

-

ss

moving in a triangular potential in three dimensions. T
wave functionC(r ) obeys the Schro¨dinger equation,

S 2
1

2
¹21V~r ! DC~r !5EC~r !, ~28!

where

V~r !5
cos~3u!

r2
, ~29!

with r, u, and z the usual cylindrical coordinates. Th
boundary conditions areC(r,u,z)50 for r>1 or uzu>p/2,
confining the particle within a cylinder.

Writing C(r )5R(r)Q(u)Z(z), the Schro¨dinger equation
separates into

2
1

2

d2Z

dz2
5EzZ, ~30!

2
1

2

d2Q

du2
1cos~3u!Q5EuQ, ~31!

2
1

2r

d

dr S r
dR

dr D1S Ez1
Eu

r2 D R5ER. ~32!

The lowest energy eigenfunction of Eq.~30! is

Z~z!5A2

p
cos~z!, ~33!

with eigenvalueEz51/2. Equation~32! may be simplified by
the substitutionsr 5A2(E2Ez)r andn5A2Eu, which yield
Bessel’s equation,

r 2
dR

dr2
1r

dR

dr
1~r 22n2!R50. ~34!

The general solutions are the Bessel and Neumann functi
Jn(r ) andNn(r ), but only Jn(r ) is well behaved at the ori-
gin. Hence

R~r!5JA2Eu
„A2~E2Ez!r…, ~35!

with the energyE determined by the boundary condition
r51,

JA2Eu
„A2~E2Ez!…50. ~36!

Equation~31! can be transformed into Mathieu’s equation15

by a simple change of variables, but here we solve it num
cally by expanding the eigenfunctions in~normalized! sines
and cosines,

Q~u!5a0

1

A2p
1 (

n51

M S an

cos~nu!

Ap
1bn

sin~nu!

Ap
D ,

~37!

and diagonalizing the corresponding Hamiltonian matr
The results converge rapidly withM, and choosingM550
gives very accurate eigenvalues for the lowest few eig
states.
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The three lowest energy angular eigenfunctions are sh
in Fig. 2. As stated in Sec. VII, the lowest energy eigenst
is a nodeless function invariant under all elements of
symmetry group of the Hamiltonian. The next two states
a degenerate pair forming a basis for the irreducible rep
sentationGD3h

3 . One of the two has nodes atu50 and u

5p, and will be calledC1 in analogy with the correspond
ing state from Sec. VII; the other has nodes atu561.7934
radians, and will be calledC2. Note thatC1 is the lowest
energy eigenfunction transforming according to the o
dimensional irreducible representationGC2v

4 of the subgroup

C2v ; it therefore possesses the tiling property with respec
C2v . The GC2v

1 symmetry ofC2 is shared by the overal

ground state, however, soC2 is not the lowest eigenstate o
that subgroup symmetry and does not satisfy a tiling th
rem.

Consider how DMC might be used to find the eigenva
of the lowest energyGD3h

3 doublet. We do not want to im

pose the exact nodal surface since DMC would then give
exact answer and we would learn little about variational pr
ciples, so we seek a trial function with a different nod
surface but the same symmetry. We choose to generate
a trial function by solving the Schro¨dinger equation for a
different triangular potential,

Ĥ52
1

2
¹21

cos~3u!

r2
1m

cos~6u!

r2
, ~38!

wherem is an adjustable parameter. The first three angu
eigenfunctions of this Hamiltonian whenm55 are shown in
Fig. 3. Since the cos(6u) term does not change the symmet
group, these eigenfunctions still belong to the same irred
ible representations. However, the nodal angle ofC2 has
moved slightly in response to the perturbation. One of
two nodal volumes of this trial wave function is therefo
slightly too small, while the other is slightly too large.

FIG. 2. Angular eigenfunctionsQ(u) of the separable Hamil-
tonian of Eq.~28! with V(r )5cos(3u)/r2. The functions~a! and~b!
are analogous to the tight-binding states~a! and~b! shown in Fig. 1.
The corresponding angular eigenvaluesEu are also shown.
n
e
e
e
e-

-
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e

e
-
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ch
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e

The trial nodal pocket that is too large~small! encloses~is
enclosed by! the corresponding exact nodal pocket. We c
therefore apply the variational argument used in the disc
sion of the 2s state of the hydrogen atom to show that t
pocket eigenvalue from the pocket that is too small must
greater than the exact eigenvalue, while the pocket eig
value from the pocket that is too large must be less than
exact eigenvalue. As in the H 2s example, therefore, the
DMC energy is always< the exact eigenvalue. The max
mum of the DMC energy, equal to the exactGD3h

3 ground-

state eigenvalue, is attained only when the nodal angl
exact; and the slope of the graph of DMC energy aga
nodal angle changes discontinuously at this point. The e
in the DMC energy is first order, not second order, in t
error in the nodal angle.

This analysis is confirmed by the results of a full calcu
tion given in Fig. 4, which shows how the angular pock
eigenvaluesEu of the two pockets depend on the angu
half-width of the nodal pocket centered onu50. As ex-
pected,Eu is too large when the nodal pocket is too sm
and vice versa. Figure 5 shows the dependence of the
pocket eigenvaluesE on the angular half-width of the noda
pocket centered onu50, confirming that an increase in an
gular half-width gives rise to a decrease in total eigenva
and vice versa. The numerical results therefore support
conclusions of the variational argument.

Note, finally, that Eq.~31! can be interpreted as th
Schrödinger equation for a one-dimensional crystal with p
riodic boundary conditions, in which caseC1 and C2 are
real linear combinations of Bloch waves with equal and o
posite crystal momenta. Seen from this viewpoint, the deg
eracy ofC1 andC2 arises from the time-reversal~complex-
conjugation! symmetry of the real Hamiltonian rather tha
from its spatial symmetry, but the failure of the symmetr
constrained variational principle is still apparent. This co
firms the assertion made in Sec. V: a DMC simulation us
a real trial state constructed from Bloch states with equal

FIG. 3. Angular eigenfunctionsQ(u) of the separable Hamil-
tonian of Eq.~28! with V(r )5@cos(3u)15 cos(6u)#/r2. The func-
tions ~a! and~b! are analogous to the tight-binding states~a! and~b!
shown in Fig.~1!. The corresponding angular eigenvaluesEu are
also shown.
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opposite crystal momenta may yield an energy below tha
the lowest exact eigenstate with that crystal momentum.

IX. CONCLUSIONS

The main lesson to be learned from this work is that sy
metry arguments cannot be applied to fixed-node DMC
less the symmetries of both the Hamiltonian and the no
surface of the trial wave function are taken into account. T
fixed-node DMC algorithm solves the Hamiltonian subject
the boundary conditions imposed by the trial nodal surfa
and so the relevant symmetry groupGFN contains only those

FIG. 4. The angular pocket eigenvaluesEu of the two nodal
pockets of the separable example from Sec. VIII. The Hamilton
is that of Eq.~28! with V(r )5cos(3u)/r2, and the eigenvalues ar
plotted as functions of the angular half-width of the nodal poc
centered onu50. The vertical line shows the nodal surface of t
exact excited stateC2.

FIG. 5. The total pocket eigenvaluesE of the two nodal pockets
of the separable example from Sec. VIII. The Hamiltonian is tha
Eq. ~28! with V(r )5cos(3u)/r2, and the eigenvalues are plotted
functions of the angular half-width of the nodal pocket centered
u50. The vertical line shows the nodal surface of the exact exc
stateC2.
f
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-

al
e

e,

symmetry operations that leave both the Hamiltonian and
trial nodal surface~boundary conditions! invariant. This
‘‘group of the fixed-node Hamiltonian’’ is a subgroup of th
more familiar ‘‘group of the Hamiltonian,’’G.

If the trial function transforms according to a real on
dimensional irreducible representationG r of G, all symmetry
operations inG simply multiply the trial function by a rea
number. This does not change the nodal surface and h
G5GFN. The symmetry-constrained variational princip
then implies~i! that the fixed-node DMC energy is great
than or equal to the eigenvalue of the lowest energy ex
eigenstate that transforms according to the same o
dimensional irreducible representation as the trial state;
~ii ! that the error in the DMC energy is in general seco
order in the difference between the nodal surfaces of
lowest energy exact eigenstate that transforms asG r and the
trial function.

If the irreducible representation to which the trial functio
belongs is of dimension greater than one, it is inevitable t
some of the symmetry operations fromG will change the trial
nodal surface. The nodal surfaces of the statesC1 and C2
shown in Fig. 1 are examples of this. The symmet
constrained variational principle need not apply in su

cases, because the symmetrized stateC̄a
r used in its deriva-

tion need not be zero everywhere on the trial nodal surfa
The d functions produced when the kinetic energy opera
is applied to the fixed-node pocket ground statefa from Eq.
~9! may therefore contribute to the expectation value in E
~17!.

In such cases, a weaker version of the symme
constrained variational principle can be obtained by rea
lyzing the problem using only the symmetries in the su
groupGFN. The idea is to forget all the symmetry operatio
which change the nodes of the trial function, and consi
only those which leave the trial nodal surface invariant. T
symmetry-constrained variational principle then applies
long as the symmetries are labeled using the irreducible
resentations ofGFN.

In summary, a useful DMC variational principle exis
whenever the trial state transforms according to a o
dimensional irreducible representationG r of G or any sub-
group ofG. In many DMC simulations, the nodal surface
the trial state is the same as that of an eigenstate of an
proximate Hamiltonian such as the local-density-functio
Hamiltonian. If the state used to define the nodal surfac
the lowest energy eigenstate with symmetryG r of an ap-
proximate Hamiltonian with a reasonable local potential,
generalized tiling theorem discussed in Sec. VI shows t
all the nodal pockets are equivalent by symmetry. The DM
energy is therefore independent of the initial distribution
walkers among the nodal pockets.

The ordinary fixed-node approximation provides a go
example of these ideas. The many-electron ground sta
never the overall ground state~which is bosonic!, and may
be degenerate, in which case we cannot prove the exist
of a variational principle by analyzing the problem using t
full symmetry group. We can, however, use the permutat
group, which is always a subgroup of the full symmet
group. The many-electron trial function transforms accord
to the one-dimensional antisymmetric irreducible represe

n

t

f

n
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tion of this subgroup. The weaker variational principle the
fore guarantees that the fixed-node DMC energy is gre
than or equal to the energy of the many-electron grou
state; and the generalized tiling theorem guarantees tha
exact many-electron ground state possesses the tiling p
erty with respect to permutations. This shows that t
ground-state versions of the fixed-node variation
principle10 and tiling theorem8 may be regarded as speci
cases of the more general versions discussed in this pap

The different members of a set of trial functions formin
a basis for a multidimensional irreducible representation oG
have different nodal surfaces and need not all produce
same fixed-node DMC energy. The strength of the wea
variational principle may therefore be optimized by usi
specific linear combinations of these basis functions. T
best linear combinations transform according to on
-
er
d
the
p-

e
l

r.

e
er

e
-

dimensional irreducible representations of subgroups oG,
and may be found following the procedure explained in S
V. If this procedure is not carried out, trial functions belon
ing to multidimensional irreducible representations ofG usu-
ally have nodal surfaces with very little spatial symmetry.
many cases, the only symmetry operations that leave
nodal surface invariant are the elements of the permuta
group, and the only variational principle that survives is
one relating to the many-electron ground state.
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