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Generalized local-density approximation for spherical potentials
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An alternative density functional for the spherical approximation of cell potentials is formulated. It relies on
overlapping atomic spheres for the calculation of the kinetic energy, similar to the atomic sphere approxima-
tion (ASA), however, a shape correction is used that has the same form as the interstitial treatment in the
nonoverlapping muffin-tinMT) approach. The intersite Coulomb energy is evaluated using the Madelung
energy as computed in the MT approach, while the on-site Coulomb energy is calculated using the ASA. The
Kohn-Sham equations for the functional are then solved self-consistently. The ASA is known to give poor
elastic constants and good point defect energies. Conversely the MT approach gives good elastic constants and
poor point defect energies. The proposed new functional maintains the simplicity of the spherical potentials
found in the ASA and MT approaches, but gives good values for both elastic constants and point defects. This
solution avoids a problem, absent in the ASA but suffered by the MT approximation, of incorrect distribution
of site charges when charge transfer is large. Relaxation of atomic positions is thus facilitated. Calculations
confirm that the approach gives similar elastic constants to the MT approximation, and defect formation
energies similar to those obtained with A9&0163-1829)09631-9

[. INTRODUCTION tributed over all the atomic cells. A local change in the in-
terstitial charge around a defect is transferred by the averag-
Traditional band structure techniques based on the muling process to the far reaches of the unit cell. This introduces
tiple scattering Green function approdcekquire the spheri- an artificial charge transfer when the real electron density in
cal approximation of the electronic cell potentials. Althoughthe interstitial regions of different atomic cells is different.
great progress has been made in the development of fullFhis problem becomes worse for large unit cells, such as
potential multiple scattering theofy,calculations using those often used in connection with the locally self-
spherical potentials still remain the norm because of theiconsistent multiple scatterind-SMS) techniqué® In these
speed and simplicity. There are two ways that the sphericadpplications, even a small error in the interstitial charge due
approximation is invoked. The first is the so-called “muffin- to the MT approximation can give an artificial Charge trans-
tin” (MT) approximatiort, where space is divided into non- fer between very distant atoms in the unit cell. This can lead
overlapping spherical volumes centered at each nucleug a |arge error in the Coulomb energy because of the large
within which the potential is spherical, and the interstitial 5j;e of the unit cell.
region between these spheres, where the potential is CON- there has been work directed at overcoming these diffi-
s:tarlt. The Sfcor.]d form |s.the atomic sphere approximag,ties. One approach is to add a perturbative correction to
tion” (ASA),” which approximates the space by a CO"eCt'Onthe ASA density functional by replacing the Coulomb energy

of spheres, centered at the nuclel,_ whose volume equals trES, a more accurate term using the MT charge dersTiyis
volume of the corresponding atomic cell.

Both of these approximations have been quite successflmﬁIS beeg |m|3{r0\t/e(:ht0 E;kl(ietc?rrec%)ni_due to thehfulll-cell
in predicting a wide range of properties of metals and alloysC arge densily fo the otal energyLhis approach al-

However, they suffer severe limitations. In particular, theIOWS one to calculate elastic constants accurately for transi-

ASA cannot give reliable energy differences between struclion metals. However the correction term is not self-

tures that differ in the shape of the atomic cell, thus it isconsistent, thus its reliability cannot be affirmed.
unable to reliably predict the stable structure for materialsAlternatively one may employ a full potential approach.
This is mainly due to the incorrect Coulomb energy contri-However, experience in the past decade has shown that a
bution from the interstitial charge in the ASA. The interstitial general, fully self-consistent full-potential approach for MST
charge plays an important role in determining structurawould be rather cumbersome.

properties, but the ASA is the poorest in describing this In consideration of the fact that for some time to come a
charge. On the other hand, the MT approximation does anajority of MST calculations will use a spherical approxi-
reasonably good job of describing the interstitial charge formation, we propose a scheme that combines the strengths of
transition metals, as reflected in the good elastic constanesach approach, overcomes their limitations, and maintains
obtained for several materials using the MT approximation. the simplicity of spherical approaches. We will present a new
However, the MT approach usually fails in systems whereenergy functional, from which a self-consistent procedure is
there is a large charge transfer. It cannot in general evederived. This procedure contains a bandstructure part that is
predict the correct amount of charge transfer in these sydased on MST within the ASA plus a shape correction, and
tems. This is because, in the reconstruction of the effectivan intersite Coulomb energy part that is analogous to the
potential, the interstitial charge is averaged and then redistandard MT approach. We demonstrate this new approach
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with calculations of elastic constants of a few transition met-

als, and the vacancy formation energy of copper. 2 QiASA'MT
e — ®)
Il. THE ELECTRON DENSITY FUNCTIONAL 2 0,
i
The total energy functional in a typical local density func- ) o ] o

tional approachis written as We will see later that it is the different definitions for the
chargeQ*>*MT that gives rise to the different energy expres-
E[p]l=T[p]+U[pl+Edpl, ) sions in the ASA, MT, and ASA-MT approximations. The

electrostatic energy of the reference system is given by a
where the three terms on the right are the kinetic energyMadelung sum and can also be separated into site diagonal
Coulomb energy, and exchange-correlation energy, respeand off-diagonal parts,
tively for the electron density(r). The kinetic energy is

iven b |
g y Untad p]1= Ut EI U (@] poomp QASAMT)

T= 2 e—f d3F p(r)Ver(r), )
e<Ep E Q|ASA MTM i QASA |V|T (9)

whereX e is the band energy sum obtained using one of the _ ) )

standard bandstructure approaches to the dhger equa- WhereM; is the Madelung matrix. Upon adding and sub-

tion for the potentiaV¢, andEg is the Fermi energy for the tracting the Madelung energy of the reference system,

electrons.

The total Coulomb , in atomi its, is,
e (otal oulomb energy, In atomic units, Is W[p] 2 W[p]-l-U(o)[p]-F 2 Q{\SAMTM QASAMT
r ZZ N
U[p]—fds fd3 PO | 5 22 — UMY, (10
Ir—r’| i [Ri=Ryl
and
—22 fdarzi—r 3 d d ASA-MT
i Ri—r]’ Wilp]=U " p;,Zi]— U p=mR QI ]+Exc[pi],( )
11

whereZ; are the atomic numbers afij are the positions of

. . ; f ) h i= i i(r) is th Il sh f ion f
the nuclei. We separatd into site diagonal and site off- wherep; =p(r) (1) ando;(r) is the cell shape function for

cell i. We now look for an approximation such tHat%[p]

diagonal parts, (0) {QASA MT}]
|
The spherical shape approximations such as MT or ASA
U[p]:U(°)+E Ui(d)[pi Zi1, (4) can be thought of as approximations to the explicit form of
i

the Coulomb and exchange-correlation eneWifp] as a
functional of the electron density(r). Approximate forms
for W[ p] can be constructed by introducing auxiliary densi-
ties that in turn depend op(r). A general form for such a
U@L, Zi]= fdg, fdg LiNpi(r’) pi(r") fdg, |P.(F) density that covers both the MT and ASA cases consists of a
Pis lr—r'| : spherical partpiS(r), that is defined over a sphere of radius
(5) ris, an interstitial partp™, and an additional term contain-
ing AQ;, a charge that will be defined later. The spherical
The Kohn-Sham effective potentf3V is obtained from  part inside the MT sphere is easily defined as the angular
the requirement that the total energy functional is variationapverage of the full charge density,
with respect to the charge density,

with

ps(r)=ifd9p-(r) r<r. (12
SE[ p] 5‘\N[p] i 47 ); ivt)s iMT -

o) Verl(r) + =0, (6)

(r) If rig>riuT, then forr outside the MT radius but insides,
the definition ofpS(r) in terms of the full charge density is
not clear. Specifically, the site electron density is zero in
those volumes that are insidg but outside the WS cell. In
W[p]=U[p]+E . 7 . . e
Lp]=Ulp]*Exd ] @ this case the standard interpretation is that a space of equal
In order to find a generalized approach to calculate the Coutolume outside s but inside the WS cell is mapped into this
lomb energy which reduces to the standard Coulomb energyolume, and then an angular average of the charge is per-
involving the Madelung term in the limit of MT approxima- formed. Thus
tion, we introduce a reference system composed of point 1
ASA-MT ; ; ; ;
at the lattice sites and a compensating uni- pS(r)= Eﬁdﬂ pi(r'[r]), Fis>r>ryr, (13

where

chargeQ;
form electron density,
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wherer’[r] indicates the mapping. This mapping leaves artotal site charge. As we will see later, this term is required if
interstitial space of volume),—Q7, that lies inside the one includes a shape correction to the ASAAR;=0 the
“ith” WS cell. Where(); is the cell volume, and standard MTASA) densities are recovered wheng
=riut(riws). Combining all three terms, we have
4
QOS=—¢3.. ) ,
Tl M) =pR(r) +AQS(r —rig)+p™Msi(r). (15

This volume vanishes whens=r;ys. We introduce the The region occupied by™ has zero volume whemg
function si(r)=1 (0) for points,r, inside (outside this in-  =r,5. Whenrg=ryr, S is the volume in the cell that is
terstitial region. If the electron density is nearly flat in the outside the “muffin-tin.” At values ofr;5 betweenr;y; and
outer portion of the cell or ifrjs is very close torjyr the  r,,s, the shape of this electron density becomes complicated
exact nature of the mapping in E€L3) is inconsequential. becauses;(r) is complicated. It is still, however, usable and
We adhere to the ASA convention and will therefore leaveleads to spherical potentials, because it only enters the en-
the mapping unspecified with the understanding that it willergy as a prefactor tp'™ which depends only on the spheri-
typically have little impact on results. The interstitial chargecal part of the electron density. Furthermore, this form pro-
density is determined by the charge in the entire interstitialides a continuous link between the MT and ASA
volume, i.e., that outside the MT spheres, approaches. The calculations presented in this work are done
with ris=rws-

it L We follow the standard MT and ASA d f ap-
. L [ s L procedure of ap
P i 2.: Zi f dr p(NOriwr=r)|, (14 proximatingW; by replacingp; in E,, andU{? by p/SAMT
. 3 ) . and replacingp®™P by
where )"™=3,;(Q;—47/3r ;). Note that this definition is
independent of g, and in the limit ofr;s=r;ys, p™ re- pxcxosn/?ém:pcom;{@(ris_r)+si(r)], (16)

mains unchanged although the volume it occupies goes to
zero. Finally, we add a number of electrak®; to adjust the  so that

WASAMTL 5 1= U@ pASAMT 71— U piSaMT QP AMT+ Bl p71+ p M 0™ (Qi — Q) + 1o p(119)) AQ;

comp
ASA-MT ASA-MT /.y ASA-MT ASA-MT ASA-MT /.y
:f 43 d3r,Pi (r)pi (r )_zf & Pi (r)z; _j 4 dgr,pcomp (r)pcomp (r')
=g f =g
pASA-MT ) ASA-MT
com 1 i i
+2 [ g P FE P16~ 09+ cp T A, iy

whereu,. ande,. are the exchange-correlation potential and

energf/u écensity,xcrespectively. Wg have used aplinear expan- pell= f d®r pfAMT=QP+AQ+p™(Q;— ), (19)
sion to obtain the exchange-correlation energy which is valid

for the case WherysiS for r>r 7 is slowly varying and large  where

compared to the electron density associated Wi . We

continue following the standard MT and ASA procedure and fis

take U(® to be equal tdJ(®),. They therefore cancel in Eq. QiS:f d3r pi(r). (20)
(10) leaving the Madelung enerdy.explicitly, 0

The sum over all sites of the cell charge gives the total num-
WASAMT[ 1= WASAMTT 51 ber of electron is the system and is used to determine the
i Fermi level. The essence of the various spherical approxima-
1 tions, ASA or MT, is the choice of;5 and Q"™ The
+§ ; QiASA-MTM”.QJASA-MT, (189  ASA, whereAQ;=0 andr;s=r;ys, is derived by taking

At this point we have a fairly general form for the density AsA ! o

functional that depends on the electron density only through

pSAMT and QMSAMT | The densityp!***™MT depends on the It is easy to see that, in the ASA°™=0. One arrives at the
spherical average gf(r) and onAQ; which has not, at this MT approximation, wherd Q;=0 andr;s=r;yr, by setting
point, been specified. Likewise the dependenc®p? ™7

on p(r) has yet to be specified. It is convenient to define the lim QiASA-MT: Q:\"T:zi _Qice”+piin ) (22)
cell charge, MT
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TABLE |. Calculated equilibrium lattice constangsand bulk  the integrated difference over the interstitial volume of cell
moduli B, for Cu, Ni, and Fe as compared with experimental data.petween the electron density apﬂt. In the MT approxima-
tion the electron densities in the interstitial regions are given

a Bo by the plane wave solutions for a constant potentigl; that
(atomic unit3 (Mbar) match to the MST solutions on the surfaces of the MT
Expt. ASA-MT Expt. ASA-MT spheres. We extend this definition to larger values by
Cu 6.83 6.78 1.37 1.43 defining,
Ni 6.66 6.59 1.80 1.82 AQ,=q; _Pim(Qi _Qis)' (24)
Fe 5.42 5.28 1.78 0.98

where g; is the integral, of the square of plane waves
matched to the MST solutions at, from the sphere of
This leads top™=p™. In order to benefit from the more radiusrg to the WS cell boundary with the convention that
accurate description of the Madelung Coulomb energy in theontributions to the integral insideg; are negative and those
MT approximation we follow the MT procedure and make from outsider 5 are positive. AS g increases the magnitude
the following definition: of g; is reduced because the volume of integration insigle
approaches the volume outside. Wheyrr 1, for a given
self-consistent iteration, the Fermi energy is independent of

This gives a Madelung energy that correspondspt®™ yvhether or noA Q; i; set to zero because the sum of a0,

= p™ which is the same interstitial charge as in the MT case!S Z€r0 by construction. However, for other choices othe
However, the major difference between the MT approacH:erm',level, and hence_the elgenvalue sum will be affe_cted at
and the ASA-MT approach is that the interstitial part of the®2Ch iteration. ReplacingQ; in Egs. (23) and (19) by its
on-site Coulomb energy is calculated usiplf in the MT  definition according to Eq(24) we obtain

approach, but usingiS in th.e ASA-MT apprpach. _ QiASA—MT:Zi —QiS—Qi +pinQ, (25)

We now turn our attention to the definition &fQ; . This
quantity is introduced as a means of assigning a physicallnd
reasonable amount of charge to the cell dengfty"™MT. If cel_ 351 26
r<=ryr and all atoms are equivalent th&rQ; is zero be- i =QIt G (26)
cause the total number of electrons in the cell must egual  Using the definitions op*™MT | ™ andQ**AMT in Eq.
However, if there are inequivalent atomsQ; is given by  (17) we find,

ASA—MT:Zi _Qicell_|_pintQi ) (23)

S Sipt S int(y S712
pi(r)pi(r’) pi(r)Z;  6[p™Q7] , .
! ! _ ZJ' d3r ! ' ! +47TplntQﬁSA MTriZS+ EXC[pIS]

ASA-MTF 1 3¢ 437
W, [pi] jd rder ] ; Br e
AQi+2(QP-Z)
&)_ 27

+ "M ecp™) (= QD) + uclpi(119)AQ; + AQi( fe

The requirement that the functional derivative of the en-contribution comes from the derivative with respectpff‘}
ergy with respect to the electron density be zero gives thgvhich depends implicitly om>(r) for r<ryr and therefore
one-electron effective potential. There are two contributiongontributes only to the potential inside the MT radius. This
to theVg. The firstis from the derivative with respect to the introduces a discontinuity in the effective potentialr g,
explicit spherical electron densityis(r), which gives a con-  which must be dealt with explicitly in the solution of radial

tribution to the potential for alr insider;s. The second wave equations. Using Eq&5) and (14), we can take the

TABLE II. Shear moduli for Cu, Ni, and Fe calculated at the experimental lattice constants. All numbers

are in Mbar.
C11—Cp2 Cu
Exp MT ASA ASA-MT Exp MT ASA ASA-MT
Cu 0.47 0.36 —0.48 0.36 0.75 1.60 —0.96 1.56
Ni 0.99 0.85 0.03 0.83 1.25 221 —-0.65 2.11

Fe 0.96 1.08 0.63 1.04 1.12 1.63 -0.93 154
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derivative with respect tp(r) of the Coulomb parts of the are site dependent. Recall however, that the chgrge de-
potential energy and obtain the electrostatic part of the porived from a sum of free electron solutions in a constant

tential,

ASA-MT _ _
' opi(r)
—V1O(ripur—r),

whereV? andV, are constants,

SUASAMT f .20 2z
r—___
r=r| T

r<rig, (28)

2290 29

iS

and

V1=Ei Vit

. i 4T .
QMY =3 My QT pM O Amr QST

A ASA-MT
(0= QP)| 5Pt — (30
iS

Vi0 is the potential at the origin from a lattice of point charges

potential,V;. The appropriate value of this constant is deter-
mined by minimizing the energy with respectdo. Noting
that SUASAMT/ s5q,=[d3 SUASAMT5pS(r)8(r—rig), we
obtain

Vi= ¢S M (19 + md pi(rig) 1. (31)

This implies that the MST solution is to be referenced from
a different constant potential for each site. This is inconsis-
tent with determination of the eigenvalue sum within the
MST approach. However, we are at liberty to solve the MST
equations with a site independent constant poter\iahnd
afterwards correct the eigenvalue sum to any desired level of
perturbation in the difference betwedhandV;. We chose

to include only first order perturbation corrections, and fur-
ther choose the value of that renders these to be zero,
namely,

Eiini
EQi.

V=

(32

in a compensating uniform background but with the contri-

bution from the uniform charge within g subtracted and the

potential fromAQ; added.V; is from derivatives with re-

Finally, collecting the pieces discusseg above and setting
the zero of energy for the potential td we have the

spect top™ and is a shift in the potential at the MT radius, ASA-MT energy functional
similar to the MT step in the case of the MT approximation. ’
The derivative with respect tq; involves the density in
the interstitial region and is site dependent. It can potentially
give contributions to the potential that are not spherical andvhere

E[p]=TA"MT[p]+ UASAMT ]+ EGAMT 0], (33)

TR )= 3 =3 | & pVien(n), 39
e<Eg i
ri S(r)2z, r Sy’ 6 comp() $12
RSN 1S [_J s g3, Pi1) |+2f d3rp§(r)f POl s [__2 (™07
i 0 r r’ i 595 lis
: S_z.
+ A peomPS) QiASA-MTrizs+AQi(AQ. + Zr(Q. Z.)) } N % > Q{\SA—MTMHQJ_ASA—MT, (35)
i is i]
and
B M= 2 {Ed T+ 0 p™)( Q= O + 1 p(r 9 1AQ1- (36
The exchange-correlation potentigly>” ™[ p;1= 6E2"™MT/ 5p; , is given by
: i—Q? o(r—ris)
M 1= i I T = s P™O (Pt — D) ———— + s (1) ] ———— AQ;. (37
Qint Amris

The self-consistent effective potential is then,
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—27Z, 2 (r ns . pr’) (- 05 _
Vier(r)=— '+;f0n13r'pS<r'>+2fr 6r = =V | Vit sl o) | O (Finr =)+ il o] =V
, o(r—rig)
+ i PN = AQ;, (39)
47Tris

wherepu,(x) is the derivative ofu,(X) with respect tox. This completes our derivation of the new energy functional. The last
term in the effective potential involving a delta functiorratr;sis neglected in our calculations. This term introduces a small
change in the phase shifts of the corresponding spherical potentials.

In the calculations described below in which we usegé r\ys, we haveAQ;=q;, and the energy becomes

Miws 3(r)2z, idi r IS /
E[p]= > 6—2 fd3r pf(r)vieﬁ(r)+zi |_fo & pi(r)2Z;  2Zq +2f dsl’pis(r)f P :t )]

€<Ep r liws

20iQP+q7 6 [p™mA; ]2 _
+E|{ — -— I +4mpeom {\SAMTriZWS +Ei {Exc[PiS]+ch(PiS(|'WS))Qi}

Fiws S Tliws
1
+ E ; QiASA-MTM i Qj’-\SA-MT’ (39)
where
2(r 4, niws . p(r')  2Z —
vieﬁ<r>=;fod3r p5<r'>+2fr == = VP Vi i =)+ nd p0)] -V (40
|
and The bulk modulus from ASA-MT for Fe appears to be sur-
ASAMT S - prisingly small. This is because at the experimental lattice
i =Qi+qi+p"Qi—Z;. (41)  constant the LDA gives a moment that is too large (234

for the ASA-MT). At the ASA-MT equilibrium lattice con-
We note that the ASA-MT approach actually represents &tant, of 5.28 atomic units, the moment is 24and the

spectrum of approximations, according to the choice9f |k modulus is 2.04 MBar. The lattice constant, moment,
since there is no restriction within the approach on the valug,q pulk modulus agree very well with the MT results of
of rs. At one end of the spectrum, wheg=rys, We can  noruzz et all? The error inCy;— Cy, is reasonably small,
setAQ;=0 and have essentially a conventional ASA. In thisyhjle the calculated values fdE,, are consistently off by
case, the above derivation provides a variational energymost a factor of two. The ASA-MT approach gives essen-
functional for the ASA. It is interesting to note that from this tially the same values as the MT f,— C,, andC., for all
derivation the zero scale of the energy in the ASA is N0ty aterials, but the ASA gives mostly negative values, as ex-
arbitrary, but is determined by E¢32), which in the ASA  ected. We speculate that the error in the ASA-MT values of
limit is simply the weighted average of the ASA potential at Cy4 is due mostly to the nonspherical charge distribution,

rws over all atoms. Only with this choice of the energy zerogjnce 4 full potential method such as FLAPW usually gives
the variational property of the total energy is maintained. ., ,ch more accurate values 6.

Another test of the method is to calculate the vacancy

. APPLICATIONS formation energy. This is usually calculated using the ASA

To test our theory, we calculated the second order elasti%r:caesggiigg daSVFi)trk? X\;i:c?r?cri]eio\?zrnovtvgllea\s\/tgecglk:: ?Jrlgfegatﬂz'
constants of Cu, Ni, and Fe. Although the ASA usually gives y :

reasonable bulk moduli, it is known to give negative shear’2¢ancy formation energy of Cu for an unrelaxed lattice,

modulus for many systems. On the other hand, MT approxi- TABLE III. Vacancy formation energy for Cu compared to the
mation typically gives fair elastic constants for transition experimental value, and the calculated charge on the vacancy site.
metals’ We used the LSMS to calculate the equilibrium lat- Note the calculated values are for unrelaxed lattices. The charge
tice constants, bulk modulyat the experimental lattice con- transfer in parentheses for the MT case is before the interstitial
stant3, By, and the shear moduli at experimental lattice con-average is taken.

stantsC,,—C45, andC,y, for Cu, Ni, and Fe. The results are
compared with the experimental values in Tables I, Il, and Exp MT ASA ASA-MT
lll. As in a typical LDA calculation, the error in the bulk
modulus varies from 10% to 50%. We have tabulated onl
the ASA-MT values of the bulk moduli because thevacancy charge — —1.133 (-0.876) —0.848 —0.857
ASA-MT agrees almost exactly with both the MT and ASA.

VVacancy energy 1.3 eV 4.3 eV 28eV 24eV
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using the MT approximation, the ASA, and the ASA-MT of the vacancy charge highlights the fact that the ASA-MT
approach. The results are listed in Table Il and are comapproach yields a charge density that is significantly closer to
pared with the experimental valt@.In this table we also the ASA charge density than the MT one.

compare the amount of charge on the vacancy site given by

three methods. It is e\/_lden_t that the ASA and the_AS_A-MT ACKNOWLEDGMENTS
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