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Generalized local-density approximation for spherical potentials
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An alternative density functional for the spherical approximation of cell potentials is formulated. It relies on
overlapping atomic spheres for the calculation of the kinetic energy, similar to the atomic sphere approxima-
tion ~ASA!, however, a shape correction is used that has the same form as the interstitial treatment in the
nonoverlapping muffin-tin~MT! approach. The intersite Coulomb energy is evaluated using the Madelung
energy as computed in the MT approach, while the on-site Coulomb energy is calculated using the ASA. The
Kohn-Sham equations for the functional are then solved self-consistently. The ASA is known to give poor
elastic constants and good point defect energies. Conversely the MT approach gives good elastic constants and
poor point defect energies. The proposed new functional maintains the simplicity of the spherical potentials
found in the ASA and MT approaches, but gives good values for both elastic constants and point defects. This
solution avoids a problem, absent in the ASA but suffered by the MT approximation, of incorrect distribution
of site charges when charge transfer is large. Relaxation of atomic positions is thus facilitated. Calculations
confirm that the approach gives similar elastic constants to the MT approximation, and defect formation
energies similar to those obtained with ASA.@S0163-1829~99!09631-9#
u

gh
fu

e
ic
n-
-
le
ia
co
a

on
t

s
ys
he
uc
is
ls

tri
al
ra
hi
s
fo
an
n
er
ve
sy
tiv
di

n-
rag-
ces

in
t.
as

lf-

ue
s-
ad
rge

iffi-
to

gy

ell

nsi-
lf-
d.
h.
at a
T

a
i-
s of
ins

ew
is

at is
nd
the
ach
I. INTRODUCTION

Traditional band structure techniques based on the m
tiple scattering Green function approach1 require the spheri-
cal approximation of the electronic cell potentials. Althou
great progress has been made in the development of
potential multiple scattering theory,2 calculations using
spherical potentials still remain the norm because of th
speed and simplicity. There are two ways that the spher
approximation is invoked. The first is the so-called ‘‘muffi
tin’’ ~MT! approximation,3 where space is divided into non
overlapping spherical volumes centered at each nuc
within which the potential is spherical, and the interstit
region between these spheres, where the potential is
stant. The second form is the ‘‘atomic sphere approxim
tion’’ ~ASA!,4 which approximates the space by a collecti
of spheres, centered at the nuclei, whose volume equals
volume of the corresponding atomic cell.

Both of these approximations have been quite succes
in predicting a wide range of properties of metals and allo
However, they suffer severe limitations. In particular, t
ASA cannot give reliable energy differences between str
tures that differ in the shape of the atomic cell, thus it
unable to reliably predict the stable structure for materia
This is mainly due to the incorrect Coulomb energy con
bution from the interstitial charge in the ASA. The interstiti
charge plays an important role in determining structu
properties, but the ASA is the poorest in describing t
charge. On the other hand, the MT approximation doe
reasonably good job of describing the interstitial charge
transition metals, as reflected in the good elastic const
obtained for several materials using the MT approximatio5

However, the MT approach usually fails in systems wh
there is a large charge transfer. It cannot in general e
predict the correct amount of charge transfer in these
tems. This is because, in the reconstruction of the effec
potential, the interstitial charge is averaged and then re
PRB 600163-1829/99/60~7!/4551~7!/$15.00
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tributed over all the atomic cells. A local change in the i
terstitial charge around a defect is transferred by the ave
ing process to the far reaches of the unit cell. This introdu
an artificial charge transfer when the real electron density
the interstitial regions of different atomic cells is differen
This problem becomes worse for large unit cells, such
those often used in connection with the locally se
consistent multiple scattering~LSMS! technique.6 In these
applications, even a small error in the interstitial charge d
to the MT approximation can give an artificial charge tran
fer between very distant atoms in the unit cell. This can le
to a large error in the Coulomb energy because of the la
size of the unit cell.

There has been work directed at overcoming these d
culties. One approach is to add a perturbative correction
the ASA density functional by replacing the Coulomb ener
by a more accurate term using the MT charge density.7 This
has been improved to include corrections due to the full-c
charge density to the ASA total energy.8 This approach al-
lows one to calculate elastic constants accurately for tra
tion metals. However the correction term is not se
consistent, thus its reliability cannot be affirme
Alternatively one may employ a full potential approac
However, experience in the past decade has shown th
general, fully self-consistent full-potential approach for MS
would be rather cumbersome.

In consideration of the fact that for some time to come
majority of MST calculations will use a spherical approx
mation, we propose a scheme that combines the strength
each approach, overcomes their limitations, and mainta
the simplicity of spherical approaches. We will present a n
energy functional, from which a self-consistent procedure
derived. This procedure contains a bandstructure part th
based on MST within the ASA plus a shape correction, a
an intersite Coulomb energy part that is analogous to
standard MT approach. We demonstrate this new appro
4551 ©1999 The American Physical Society
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with calculations of elastic constants of a few transition m
als, and the vacancy formation energy of copper.

II. THE ELECTRON DENSITY FUNCTIONAL

The total energy functional in a typical local density fun
tional approach9,10 is written as

E@r#5T@r#1U@r#1Exc@r#, ~1!

where the three terms on the right are the kinetic ene
Coulomb energy, and exchange-correlation energy, res
tively for the electron densityr(r ). The kinetic energy is
given by

T5 (
e,EF

e2E d3r r~r !Veff~r !, ~2!

where(e is the band energy sum obtained using one of
standard bandstructure approaches to the Shro¨dinger equa-
tion for the potentialVeff , andEF is the Fermi energy for the
electrons.

The total Coulomb energy, in atomic units, is,

U@r#5E d3rE d3r 8
r~r !r~r 8!

ur2r 8u
1 (

i j ,iÞ j

ZiZj

uRi2Rj u

22(
i
E d3r

Zir~r !

uRi2r u
, ~3!

whereZi are the atomic numbers andRi are the positions of
the nuclei. We separateU into site diagonal and site off
diagonal parts,

U@r#5U (o)1(
i

Ui
(d)@r i ,Zi #, ~4!

with

Ui
(d)@r i ,Zi #5E d3rE d3r 8

r i~r !r i~r 8!

ur2r 8u
22E d3r

Zir i~r !

ur u
.

~5!

The Kohn-Sham effective potential10 Veff is obtained from
the requirement that the total energy functional is variatio
with respect to the charge density,

dE@r#

dr~r !
52Veff~r !1

dW@r#

dr~r !
50, ~6!

where

W@r#5U@r#1Exc@r#. ~7!

In order to find a generalized approach to calculate the C
lomb energy which reduces to the standard Coulomb ene
involving the Madelung term in the limit of MT approxima
tion, we introduce a reference system composed of p
chargesQi

ASA-MT at the lattice sites and a compensating u
form electron density,
-

y,
c-

e

l

u-
gy

nt
-

rcomp5

(
i

Qi
ASA-MT

(
i

V i

. ~8!

We will see later that it is the different definitions for th
chargeQi

ASA-MT that gives rise to the different energy expre
sions in the ASA, MT, and ASA-MT approximations. Th
electrostatic energy of the reference system is given b
Madelung sum and can also be separated into site diag
and off-diagonal parts,

UMad@r#5UMad
(o) 1(

i
Ui

(d)@rcomp,Qi
ASA-MT#

5
1

2 (
i j

Qi
ASA-MTMi j Qj

ASA-MT , ~9!

where Mi j is the Madelung matrix. Upon adding and su
tracting the Madelung energy of the reference system,

W@r#5(
i

Wi@r#1U (o)@r#1
1

2 (
i j

Qi
ASA-MTMi j Qj

ASA-MT

2UMad
(o) @$Qi

ASA-MT%#, ~10!

and

Wi@r#5Ui
(d)@r i ,Zi #2Ui

(d)@rcomp,Qi
ASA-MT#1Exc@r i #,

~11!

wherer i5r(r )s i(r ) ands i(r ) is the cell shape function fo
cell i. We now look for an approximation such thatU (o)@r#
5UMad

(o) @$Qi
ASA-MT%#.

The spherical shape approximations such as MT or A
can be thought of as approximations to the explicit form
the Coulomb and exchange-correlation energyW@r# as a
functional of the electron densityr(r ). Approximate forms
for W@r# can be constructed by introducing auxiliary den
ties that in turn depend onr(r ). A general form for such a
density that covers both the MT and ASA cases consists
spherical part,r i

S(r ), that is defined over a sphere of radiu
r iS, an interstitial part,r int, and an additional term contain
ing DQi , a charge that will be defined later. The spheric
part inside the MT sphere is easily defined as the ang
average of the full charge density,

r i
S~r !5

1

4pEi
dV r i~r !, r ,r iMT . ~12!

If r iS.r iMT , then forr outside the MT radius but insider iS,
the definition ofrS(r ) in terms of the full charge density i
not clear. Specifically, the site electron density is zero
those volumes that are insider S but outside the WS cell. In
this case the standard interpretation is that a space of e
volume outsider S but inside the WS cell is mapped into th
volume, and then an angular average of the charge is
formed. Thus

r i
S~r !5

1

4pEi
dV r i~r 8@r # !, r iS.r .r iMT , ~13!
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wherer 8@r # indicates the mapping. This mapping leaves
interstitial space of volumeV i2V i

S, that lies inside the
‘‘ i th’’ WS cell. WhereV i is the cell volume, and

V i
S5

4p

3
r iS

3 .

This volume vanishes whenr iS5r iWS. We introduce the
function si(r )51 (0) for points,r , inside ~outside! this in-
terstitial region. If the electron density is nearly flat in th
outer portion of the cell or ifr iS is very close tor iMT the
exact nature of the mapping in Eq.~13! is inconsequential.
We adhere to the ASA convention and will therefore lea
the mapping unspecified with the understanding that it w
typically have little impact on results. The interstitial char
density is determined by the charge in the entire interst
volume, i.e., that outside the MT spheres,

r int5
1

V int (i
FZi2E d3r r i

S~r !Q~r iMT2r !G , ~14!

whereV int5( i(V i24p/3r iMT
3 ). Note that this definition is

independent ofr iS, and in the limit of r iS5r iWS, r int re-
mains unchanged although the volume it occupies goe
zero. Finally, we add a number of electronsDQi to adjust the
nd
a

ali

n
.

ity
ug

th
n

e
ll

l

to

total site charge. As we will see later, this term is required
one includes a shape correction to the ASA. IfDQi50 the
standard MT~ASA! densities are recovered whenr iS
5r iMT(r iWS). Combining all three terms, we have

r i
ASA-MT~r !5r i

S~r !1DQid~r 2r iS!1r intsi~r !. ~15!

The region occupied byr int has zero volume whenr S
5r WS. When r S5r MT , si is the volume in the cell that is
outside the ‘‘muffin-tin.’’ At values ofr iS betweenr iMT and
r iWS, the shape of this electron density becomes complica
becausesi(r ) is complicated. It is still, however, usable an
leads to spherical potentials, because it only enters the
ergy as a prefactor tor int which depends only on the spher
cal part of the electron density. Furthermore, this form p
vides a continuous link between the MT and AS
approaches. The calculations presented in this work are d
with r iS5r iWS.

We follow the standard MT and ASA procedure of a
proximatingWi by replacingr i in Exc andUi

(d) by r i
ASA-MT ,

and replacingrcomp by

rcomp
ASA-MT5rcomp@Q~r iS2r !1si~r !#, ~16!

so that
Wi
ASA-MT@r#5Ui

(d)@r i
ASA-MT ,Zi #2Ui

(d)@rcomp
ASA-MT ,Qi

ASA-MT#1Exc@r i
S#1r intexc~r int!~V i2V i

S!1mxc~r i
S~r iS!!DQi

5E d3r d3r 8
r i

ASA-MT~r !r i
ASA-MT~r 8!

ur2r 8u
22E d3r

r i
ASA-MT~r !Zi

r
2E d3r d3r 8

rcomp
ASA-MT~r !rcomp

ASA-MT~r 8!

ur2r 8u

12E d3r
rcomp

ASA-MT~r !Qi
ASA-MT

r
1Exc@r i

S#1r intexc~r int!~V i2V i
S!1mxc„r i

S~r iS!…DQi , ~17!
m-
the

ma-
wheremxc andexc are the exchange-correlation potential a
energy density, respectively. We have used a linear exp
sion to obtain the exchange-correlation energy which is v
for the case wherer i

S for r .r MT is slowly varying and large
compared to the electron density associated withDQi . We
continue following the standard MT and ASA procedure a
takeU (o) to be equal toUMad

(o) . They therefore cancel in Eq
~10! leaving the Madelung energy,11 explicitly,

WASA-MT@r#5(
i

Wi
ASA-MT@r#

1
1

2 (
i j

Qi
ASA-MTMi j Qj

ASA-MT . ~18!

At this point we have a fairly general form for the dens
functional that depends on the electron density only thro
r i

ASA-MT andQi
ASA-MT . The densityr i

ASA-MT depends on the
spherical average ofr(r ) and onDQi which has not, at this
point, been specified. Likewise the dependence ofQi

ASA-MT

on r(r ) has yet to be specified. It is convenient to define
cell charge,
n-
d

d

h

e

Qi
cell5E d3r r i

ASA-MT5Qi
S1DQi1r int~V i2V i

S!, ~19!

where

Qi
S5E

0

r iS
d3r r i

S~r !. ~20!

The sum over all sites of the cell charge gives the total nu
ber of electron is the system and is used to determine
Fermi level. The essence of the various spherical approxi
tions, ASA or MT, is the choice ofr iS and Qi

ASA-MT . The
ASA, whereDQi50 andr iS5r iWS, is derived by taking

lim
ASA

Qi
ASA-MT5Qi

ASA5Zi2Qi
cell . ~21!

It is easy to see that, in the ASA,rcomp50. One arrives at the
MT approximation, whereDQi50 andr iS5r iMT , by setting

lim
MT

Qi
ASA-MT5Qi

MT5Zi2Qi
cell1r intV i . ~22!
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This leads torcomp5r int. In order to benefit from the more
accurate description of the Madelung Coulomb energy in
MT approximation we follow the MT procedure and ma
the following definition:

Qi
ASA-MT5Zi2Qi

cell1r intV i . ~23!

This gives a Madelung energy that corresponds torcomp

5r int which is the same interstitial charge as in the MT ca
However, the major difference between the MT approa
and the ASA-MT approach is that the interstitial part of t
on-site Coulomb energy is calculated usingr int in the MT
approach, but usingr i

S in the ASA-MT approach.
We now turn our attention to the definition ofDQi . This

quantity is introduced as a means of assigning a physic
reasonable amount of charge to the cell densityrASA-MT. If
r S5r MT and all atoms are equivalent thenDQi is zero be-
cause the total number of electrons in the cell must equalZi .
However, if there are inequivalent atoms,DQi is given by

TABLE I. Calculated equilibrium lattice constantsa and bulk
moduli B0 for Cu, Ni, and Fe as compared with experimental da

a B0

~atomic units! ~Mbar!
Expt. ASA-MT Expt. ASA-MT

Cu 6.83 6.78 1.37 1.43
Ni 6.66 6.59 1.80 1.82
Fe 5.42 5.28 1.78 0.98
n
th
n
e

e

.
h

ly

the integrated difference over the interstitial volume of cei
between the electron density andr int. In the MT approxima-
tion the electron densities in the interstitial regions are giv
by the plane wave solutions for a constant potential,VMT that
match to the MST solutions on the surfaces of the M
spheres. We extend this definition to larger values ofr S by
defining,

DQi5qi2r int~V i2V i
S!, ~24!

where qi is the integral, of the square of plane wav
matched to the MST solutions atr S, from the sphere of
radiusr S to the WS cell boundary with the convention th
contributions to the integral insider S are negative and thos
from outsider S are positive. Asr S increases the magnitud
of qi is reduced because the volume of integration insider S
approaches the volume outside. Whenr S5r MT , for a given
self-consistent iteration, the Fermi energy is independen
whether or notDQi is set to zero because the sum of allDQi
is zero by construction. However, for other choices ofr S the
Fermi level and hence the eigenvalue sum will be affecte
each iteration. ReplacingDQi in Eqs. ~23! and ~19! by its
definition according to Eq.~24! we obtain

Qi
ASA-MT5Zi2Qi

S2qi1r intV i ~25!

and

Qi
cell5Qi

S1qi . ~26!

Using the definitions ofr i
ASA-MT , rcomp, andQi

ASA-MT in Eq.
~17! we find,

.

Wi
ASA-MT@r i #5E d3r d3r 8

r i
S~r !r i

S~r 8!

ur2r 8u
22E d3r

r i
S~r !Zi

r
2

6@r intV i
S#2

5r iS
14pr intQi

ASA-MTr iS
2 1Exc@r i

S#

1r intexc„r
int)~V i2V i

S!1mxc„r i
S~r iS!…DQi1DQi S DQi12~Qi

S2Zi !

r iS
D . ~27!
is

l

The requirement that the functional derivative of the e
ergy with respect to the electron density be zero gives
one-electron effective potential. There are two contributio
to theVeff . The first is from the derivative with respect to th
explicit spherical electron density,r i

S(r ), which gives a con-
tribution to the potential for allr inside r iS. The second
-
e
s

contribution comes from the derivative with respect tor int

which depends implicitly onr i
S(r ) for r ,r MT and therefore

contributes only to the potential inside the MT radius. Th
introduces a discontinuity in the effective potential atr MT ,
which must be dealt with explicitly in the solution of radia
wave equations. Using Eqs.~25! and ~14!, we can take the
bers
TABLE II. Shear moduli for Cu, Ni, and Fe calculated at the experimental lattice constants. All num
are in Mbar.

C112C12 C44

Exp MT ASA ASA-MT Exp MT ASA ASA-MT

Cu 0.47 0.36 20.48 0.36 0.75 1.60 20.96 1.56
Ni 0.99 0.85 0.03 0.83 1.25 2.21 20.65 2.11
Fe 0.96 1.08 0.63 1.04 1.12 1.63 20.93 1.54
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derivative with respect tor(r ) of the Coulomb parts of the
potential energy and obtain the electrostatic part of the
tential,

f i
ASA-MT5

dUASA-MT

dr i~r !
5E d3r 8

2r i
S~r !

ur2r 8u
2

2Zi

r
2Vi

0

2V1Q~r iMT2r !, r ,r iS, ~28!

whereVi
0 andV1 are constants,

Vi
05(

j
M i j Qj

ASA-MT14pr intr iS
2 2

2DQi

r iS
, ~29!

and

V15(
i

Vi1

V intVi15(
j

V iM i j Qj
ASA-MT1

4p

5
r intV i

Sr iS
2 14pr iS

2 Qi
ASA-MT

1~V i2V i
S!F4p

3
r intr iS

2 1
2Qi

ASA-MT

r iS
G . ~30!

Vi
0 is the potential at the origin from a lattice of point charg

in a compensating uniform background but with the con
bution from the uniform charge withinr iS subtracted and the
potential fromDQi added.V1 is from derivatives with re-
spect tor int and is a shift in the potential at the MT radiu
similar to the MT step in the case of the MT approximatio

The derivative with respect toqi involves the density in
the interstitial region and is site dependent. It can potenti
give contributions to the potential that are not spherical a
-

-

.

ly
d

are site dependent. Recall however, that the chargeqi is de-
rived from a sum of free electron solutions in a consta
potential,V̄i . The appropriate value of this constant is det
mined by minimizing the energy with respect toqi . Noting
that dUASA-MT/dqi5*d3r dUASA-MT/dr i

S(r )d(r 2r iS), we
obtain

V̄i5f i
ASA-MT~r iS!1mxc@r i

S~r iS!#. ~31!

This implies that the MST solution is to be referenced fro
a different constant potential for each site. This is incons
tent with determination of the eigenvalue sum within t
MST approach. However, we are at liberty to solve the M
equations with a site independent constant potential,V̄, and
afterwards correct the eigenvalue sum to any desired leve
perturbation in the difference betweenV̄ and V̄i . We chose
to include only first order perturbation corrections, and fu
ther choose the value ofV̄ that renders these to be zer
namely,

V̄5

(
i

qi V̄i

(
i

qi

. ~32!

Finally, collecting the pieces discussed above and set
the zero of energy for the potential toV̄ we have the
ASA-MT energy functional,

E@r#5TASA-MT@r#1UASA-MT@r#1Exc
ASA-MT@r#, ~33!

where
TASA-MT@r#5 (
e,EF

e2(
i
E d3r r i

S~r !Vieff~r !, ~34!

UASA-MT@r#5(
i

H 2E
0

r iS
d3r

r i
S~r !2Zi

r
12E d3r r i

S~r !E r

d3r 8
r i

S~r 8!

r 8
J 1(

i
H 2

6

5 (
i

@rcompV i
S#2

r iS

14prcomp(
i

Qi
ASA-MTr iS

2 1DQi S DQi12~Qi
S2Zi !

r iS
D J 1

1

2 (
i j

Qi
ASA-MTMi j Qj

ASA-MT , ~35!

and

Exc
ASA-MT5(

i
$Exc@r i

S#1r intexc~r int!~V i2V i
S!1mxc@r i

S~r S!#DQi%. ~36!

The exchange-correlation potential,mxc
ASA-MT@r i #5dExc

ASA-MT/dr i , is given by

mxc
ASA-MT@r i #5mxc@r i

S~r !#2mxc@r int#Q~r iMT2r !
V i2V i

S

V int
1mxc8 @r i

S~r !#
d~r 2r iS!

4pr iS
2

DQi . ~37!

The self-consistent effective potential is then,
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Vieff~r !5
22Zi

r
1

2

r E
0

r

d3r 8rS~r 8!12E
r

r iS
d3r 8

rS~r 8!

r 8
2Vi

02 FV11mxc~r int!
~V i2V i

S!

V int GQ~r iMT2r !1mxc@r i
S~r !#2V̄

1mxc8 @r i
S~r !#

d~r 2r iS!

4pr iS
2

DQi , ~38!

wheremxc8 (x) is the derivative ofmxc(x) with respect tox. This completes our derivation of the new energy functional. The
term in the effective potential involving a delta function atr 5r iS is neglected in our calculations. This term introduces a sm
change in the phase shifts of the corresponding spherical potentials.

In the calculations described below in which we usedr S5r WS, we haveDQi5qi , and the energy becomes

E@r#5 (
e,EF

e2(
i
E d3r r i

S~r !Vieff~r !1(
i

H 2E
0

r iWS
d3r

r i
S~r !2Zi

r
2

2Ziqi

r iWS
12E d3r r i

S~r !E r

d3r 8
r i

S~r 8!

r 8
J

1(
i

H 2qiQi
S1qi

2

r iWS
2

6

5

@rcompV i #
2

r iWS
14prcompQi

ASA-MTr iWS
2 J 1(

i
$Exc@r i

S#1mxc„r i
S~r WS!…qi%

1
1

2 (
i j

Qi
ASA-MTMi j Qj

ASA-MT , ~39!

where

Vieff~r !5
2

r E0

r

d3r 8rS~r 8!12E
r

r iWS
d3r 8

rS~r 8!

r 8
2

2Zi

r
2Vi

02V1Q~r iMT2r !1mxc@r i
S~r !#2V̄ ~40!
s

lu

is
rg
is
o

a
ro

s
e
ea
x

on
t-
-
n
e
n

nl
e

A.

r-
ice

nt,
of

n-

ex-
of
n,
es

cy
A
ns-
the
e,

e
site.

arge
itial
and

Qi
ASA-MT5Qi

S1qi1r intV i2Zi . ~41!

We note that the ASA-MT approach actually represent
spectrum of approximations, according to the choice ofr S,
since there is no restriction within the approach on the va
of r S. At one end of the spectrum, whenr S5r WS, we can
setDQi50 and have essentially a conventional ASA. In th
case, the above derivation provides a variational ene
functional for the ASA. It is interesting to note that from th
derivation the zero scale of the energy in the ASA is n
arbitrary, but is determined by Eq.~32!, which in the ASA
limit is simply the weighted average of the ASA potential
r WS over all atoms. Only with this choice of the energy ze
the variational property of the total energy is maintained.

III. APPLICATIONS

To test our theory, we calculated the second order ela
constants of Cu, Ni, and Fe. Although the ASA usually giv
reasonable bulk moduli, it is known to give negative sh
modulus for many systems. On the other hand, MT appro
mation typically gives fair elastic constants for transiti
metals.5 We used the LSMS to calculate the equilibrium la
tice constants, bulk modulus~at the experimental lattice con
stants!, B0, and the shear moduli at experimental lattice co
stantsC112C12, andC44, for Cu, Ni, and Fe. The results ar
compared with the experimental values in Tables I, II, a
III. As in a typical LDA calculation, the error in the bulk
modulus varies from 10% to 50%. We have tabulated o
the ASA-MT values of the bulk moduli because th
ASA-MT agrees almost exactly with both the MT and AS
a
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The bulk modulus from ASA-MT for Fe appears to be su
prisingly small. This is because at the experimental latt
constant the LDA gives a moment that is too large (2.34mB
for the ASA-MT!. At the ASA-MT equilibrium lattice con-
stant, of 5.28 atomic units, the moment is 2.14mB and the
bulk modulus is 2.04 MBar. The lattice constant, mome
and bulk modulus agree very well with the MT results
Moruzzi et al.12 The error inC112C12 is reasonably small,
while the calculated values forC44 are consistently off by
almost a factor of two. The ASA-MT approach gives esse
tially the same values as the MT forC112C12 andC44 for all
materials, but the ASA gives mostly negative values, as
pected. We speculate that the error in the ASA-MT values
C44 is due mostly to the nonspherical charge distributio
since a full potential method such as FLAPW usually giv
much more accurate values forC44.

Another test of the method is to calculate the vacan
formation energy. This is usually calculated using the AS
since the MT approximation does not treat the charge tra
fer associated with vacancies very well. We calculated
vacancy formation energy of Cu for an unrelaxed lattic

TABLE III. Vacancy formation energy for Cu compared to th
experimental value, and the calculated charge on the vacancy
Note the calculated values are for unrelaxed lattices. The ch
transfer in parentheses for the MT case is before the interst
average is taken.

Exp MT ASA ASA-MT

Vacancy energy 1.3 eV 4.3 eV 2.8 eV 2.4 eV

Vacancy charge — 21.133 (20.876) 20.848 20.857
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using the MT approximation, the ASA, and the ASA-M
approach. The results are listed in Table III and are co
pared with the experimental value.13 In this table we also
compare the amount of charge on the vacancy site given
three methods. It is evident that the ASA and the ASA-M
results are very close in this case, and both are significa
better than the MT value. The remaining difference betwe
the ASA-MT value and the experimental value is proba
from nonspherical charge effects~especially the dipole
terms! and energy due to lattice relaxation. The comparis
d
2

S
,

-

by

tly
n

n

of the vacancy charge highlights the fact that the ASA-M
approach yields a charge density that is significantly close
the ASA charge density than the MT one.
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