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Ab initio Hartree-Fock computation of the electronic static structure factor
for crystalline insulators: Benchmark results on LiF

Alok Shukla*

Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Straße 38, D-01187 Dresden, Germany
~Received 10 August 1998!

In this paper, we present a fullyab initio Hartree-Fock approach aimed at calculating the static structure
factor of crystalline insulators at arbitrary values of momentum transfer. In particular, we outline the compu-
tation of the incoherent scattering function, the component of the structure factor that governs the incoherent
x-ray scattering from solids. The presented theory is applied to crystalline LiF to obtain benchmark Hartree-
Fock values for its incoherent scattering function. Benchmark theoretical values such as this, can be combined
with the experimentally measured static structure factor, to understand the influence of electron correlation
effects on cohesive properties of solids.@S0163-1829~99!11231-1#
-
th

it
s

he
n

-

ir
n

ge
y
e
a

rys-

m

rge

lit-
on

to

ture
nts
ated

lline
of
I. INTRODUCTION

In order to obtain anab initio understanding of the elec
tronic structure of solids, it is essential to understand
nature of electron correlations in them.1 Correlation being a
real-space phenomenon, one possible way of visualizing
through the density-density correlation function defined a

S~r 8,r !5
1

N0
^Fur̂~r 8!r̂~r !uF&, ~1!

where uF& denotes the many-particle wave function of t
system,N0 is the total number of electrons in the system a
r̂(r )5( i 51

N0 d(r2r i) is the density operator withr i being the
coordinates of theith electron. One can easily show

S~r 8,r !5d~r 82r !1~N021!g~r 8,r !, ~2!

where g(r 8,r ) is the electron pair-correlation function de
fined as

g~r 8,r !5
1

r~r !r~r 8!
K FU(

iÞ j
d~r 82r i !d~r2r j !UFL .

~3!

Above, r(r ) denotes the electronic charge density. Pa
correlation function represents the probability that when o
electron is observed say at pointr 8, another electron will be
found in a characteristic volume 1/(N021) located atr .1

Clearly, it can be used to quantify the so-called ‘‘exchan
correlation hole’’ associated with an electron in a man
electron system.1 If we compute the Fourier transform of th
density-density correlator, we obtain the static structure f
tor S(Q) defined by

S~Q!5
1

N0
E drdr 8eiQ•(r2r8)S~r 8,r !

5
1

N0
K FU(

j ,k
eiQ•(r j 2rk)UFL . ~4!
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If we assume that the system under consideration is a c
talline system withN unit cells, each of which hasZ elec-
trons in it so thatN05NZ, we can decomposeS(Q) as a
sum of a ‘‘coherent’’ and an ‘‘incoherent’’ part

S~Q!5
N

Z
dQ,GuF~Q!u21Sinc~Q!, ~5!

where G is a vector of the reciprocal lattice and the for
factor F(Q) defined as

F~Q!5(
j 51

N0

^FueiQ•r j uF&, ~6!

can be easily seen to be the Fourier transform of the cha
density of the system, while

Sinc~Q!5
1

NZ S (
j ,k51

N0

^FueiQ•(r j 2rk)uF&2uF(Q)u2D ~7!

is referred to as the incoherent scattering function in the
erature. It is intuitively obvious that being the expectati
value of a two-electron operator,Sinc(Q) will be sensitive to
electron correlations in the crystal, whileF(Q), which is a
one-electron operator, should be relatively insensitive
such effects. It is easy to verify thatSinc(Q) satisfies limiting
conditions

lim
Q˜0

Sinc~Q!50, ~8!

and

lim
Q˜`

Sinc~Q!51. ~9!

One can perform the measurement of the static struc
factor of a many-electron system in a variety of experime
such as electron scattering and x-ray scattering. For isol
atoms and molecules both electrons2 and x-rays3 are fre-
quently used for such measurements, however, for crysta
systems, x-ray scattering appears to be the method
4539 ©1999 The American Physical Society
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4540 PRB 60ALOK SHUKLA
choice.4–8 In such measurements, the quantityQ in equations
above is identified with the momentum transferred by
incident particle~electron or photon!, to the many-electron
system under investigation. Keeping in mind the relations
between the static structure factor and the pair-correla
function@cf. Eqs.~2! and~4!#, it is thus possible to obtain th
pair-correlation function from these measurements. Ho
ever, in what follows, we will devote exclusively on th
x-ray scattering-based experiments. The coherent x-ray s
tering ~Bragg scattering!, i.e., when the momentum transfe
Q is equal to one of the vectorsG of the reciprocal lattice, is
governed predominantly by the form factorF(Q). However,
by concentrating on the measurements corresponding
those values of momentum transfer that are not equal to
reciprocal lattice vector, one can—according to Eq.~5!—
directly measure the incoherent scattering function. The
periments that concentrate on this region ofQ correspond to
incoherent x-ray scattering. For the case of incoherent s
tering of x-rays from a crystalline solid at finite temper
tures, assuming that the energy of the incoming x-rays
much higher compared to the binding energies of the c
stituent electrons, but still low compared to the rest energ
the electronm0c2 ~so that the relativistic effects can be n
glected!, the scattering cross section, for a solid composed
light elements, can be approximated as5–7

ds

dV
.r 0

2NF S k

k0
D 2

~ ẽ0•ẽ!2Sinc~Q!1STDS~Q!G , ~10!

where r 0 is the classical electron radius,k0 and k are the
wave vectors of incoming and outgoing photons,ẽ0 and ẽ
are the corresponding polarization vectors,Q5k2k0 is the
momentum transfer whileSTDS(Q) is the structure factor due
to the thermal diffuse scattering caused both by the therm
and the zero-point vibrations of the lattice. Thus,STDS(Q)
quantifies the contribution of phonons to the x-ray scatteri
and can be computed by taking one-phonon, and higher
der terms into account.6,7 Therefore, by measuring the inco
herent x-ray scattering cross section for different values
the momentum transferQ, combined with the knowledge o
STDS(Q), one can, using Eq.~10!, extract the incoheren
scattering functionSinc(Q) of the system under conside
ation.

Sacchetti and coworkers5,8 have been the proponents
using the incoherent x-ray scattering to measure the s
structure factor of crystalline compounds, for its subsequ
use in the analysis of electron correlation effects. They h
performed a series of accurate measurements of the s
structure factor of the metallic system Be~Ref. 6! and the
covalent system diamond7 to obtain their pair-correlation
functions, and analyzed various contributions to the grou
state energies of these compounds. In their latest experim
performed on crystalline LiF, they have, for the first tim
subjected an ionic system to a similar analysis.9 However, in
order to quantify the contribution of electron correlation e
fects to the experimentally measured static structure facto
such experiments, benchmark Hartree-Fock~HF! results for
the quantity are needed. It is the purpose of this pape
present a formalism using which one can perform su
benchmark HF calculations within anab initio framework.
Indeed, Calzuolaet al.,9 by comparing their experimentall
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measured values of the static structure factor, to the ben
mark HF values presented here, have estimated the cor
tion contribution to the cohesive energy of LiF. Therefo
the aim of these calculations isnot to explain the experimen
tal data, but rather to provide a theoretical reference, w
respect to which the correlation effects can be quantified
the experimentally measured quantities. The formalism
computing the static structure factor presented here is ba
on a Wannier-function-basedab initio HF approach devel-
oped recently by us.10,11The approach has since been appli
to compute the ground state properties of a number
ionic12,13 and covalent compounds14,15, including the form
factor @F(Q)# of LiF.11

The remainder of the paper is organized as follows.
Sec. II, we describe our formalism for theab initio evalua-
tion of the incoherent scattering function within an HF a
proach. An explicit formula is presented which represe
Sinc(Q) in terms of the Wannier functions of an infinite cry
tal. Our numerical results for LiF are presented in Sec.
which are compared to the experimental results of Calzu
et al.9 for the same compound. Finally, our conclusions a
presented in Sec. IV.

II. THEORY

Here, we outline the evaluation of the incoherent scat
ing function Sinc(Q) for an infinite crystalline insulator
within an ab initio restricted Hartree-Fock~RHF! approach.
Although, we are not aware of such a prior calculation for
infinite solid, we note thatab initio calculations are per-
formed on a routine basis on isolated atoms16–28 and
molecules,29–34 both at the HF, and the correlated leve
However, for condensed-matter systems, perhaps becau
practical difficulties associated with providing a wav
function-basedab initio description of an infinite system
such calculations are either performed assuming a jell
model for the electrons of the system,4,6 or within the frame-
work of the density-functional theory, which often involve
phenomenological approximations.35

We assume that the compound under consideration
closed-shell crystalline system whose RHF ground state
be described bync doubly occupied Wannier functions pe
unit cell, so thatZ52nc . If we use Greek indicesa, b etc.
to denote the Wannier functions localized in a given u
cell, the RHF wave function of the infinite crystal can b
described as a Slater determinant composed of the infin
many Wannier functions$ua(Rj )&;a51,nc ; j 51,N%, where
ua(Rj )& denotes theath Wannier function of a unit cell lo-
cated at the position given by the vectorRj of the lattice. The
aforementioned Wannier functions are assumed to form
orthonormal set

^a~Ri !ub~Rj !&5dabd i j , ~11!

and Wannier functions localized in different unit cells a
translated copies of each other

ua~Ri1Rj !&5T~Ri !ua~Rj !&, ~12!

where the operatorT(Ri) represents a translation by lattic
vector Ri . The theory and several applications of our a
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proach, which directly obtains the RHF Wannier functions
a crystalline insulator~ionic or covalent!, have been pre-
sented in several papers.10–15

If we use the standard formula for the expectation va
of a two-particle operator with respect to a Sla
determinant,37 one can, after some algebraic manipulatio
show that in the Wannier representation the RHF expres
for the incoherent scattering function@cf. Eq.~7!# is given by

Sinc~Q!512
2

Z (
a,b51

nc

(
i 51

N

u^b~Ri !ueiQ•rua~0!&u2, ~13!

whereua(0)& represents a Wannier function localized in t
reference unit cell. Equation~13! constitutes the key formula
of this work, a detailed derivation of which is presented
the appendix. Since the Wannier functions in our compu
code are represented in terms of Gaussian lobe-type loca
basis functions, it is possible to write down analytic expr
sions for the matrix elements needed to evaluateSinc(Q)
according to the expression above. The lattice sum over
tice vectorsRi involved in Eq.~13! decreases rapidly as on
moves away from the reference cell, and is terminated o
the convergence within a given threshold is achieved.

The restriction of the present approach to insulators st
from our use of Wannier functions as the single-particle
bitals, rather than the conventional Bloch orbitals. It is ea
to see that the same theory can be easily extended to me
systems if one were to express the many-body wave func
of the solid in terms of Bloch orbitals. In that case, of cour
the real-space sum@cf. Eq. ~13!# will have to be replaced by
an integration over the Brillouin zone. We will present th
generalization in a future paper. This will be particular
useful in light of the future experiments which Sacchetti a
coworkers are planning on metallic systems.36

III. RESULTS AND DISCUSSION

In this section, we present the results of our HF calcu
tions of the incoherent scattering function at different valu
of the momentum transfer, and compare our results to
experimental ones. It is intuitively obvious, however, that H
structure factors can only describe the experimental res
qualitatively—in order to obtain a better quantitative descr
tion theoretically, inclusion of electron correlation effects
essential. Nevertheless, in our opinion, the comparison w
experiments is very instructive, because one can, in a ra
pictorial way, see the successes and failures of the HF
proximation in describing the physics of weakly-correlat
systems.

The basis set used to represent the Wannier function
our calculations was the lobe representation of the basis
proposed by Prencipeet al. in their Bloch-orbital-based HF
study of the structural properties of LiF.38 The basis set con
sisted of contracted Cartesian Gaussian-type basis func
and was of@4s,3p# type for the fluorine atom, and@2s,1p#
for the lithium atom. For further details pertaining to th
exponents and the contraction coefficients we refer to
original work.38 Details dealing with the lobe representatio
of the Cartesian Gaussian basis functions can be found,
in our previous paper.11 We also examined the basis-set d
pendence of our results onSinc(Q) by performing calcula-
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tions with larger basis sets that also includedd-type basis
functions on F atom, however, we did not observe any s
nificant change in the results. Thus, we believe that our
sults onSinc(Q) presented below are fairly accurate.

In the theoretical calculations the observed face-cente
cubic ~fcc! structure was assumed for the compound. T
reference unit cell was taken to be the primitive cell with t
F atom at (0,0,0) position and the Li atom at (0,0,a/2),
wherea is the lattice constant. For the lattice constant,
room temperature value of 4.02 Å was used.

The results of our calculations are summarized in Tab
and Fig. 1, which presentZSinc(Q) as a function of the
momentum transferQ, where Z512 for the case of LiF.
Direction of the momentum transfer for both the theory a
the experiment was along@100# direction. Theoretical HF

TABLE I. Comparison of the Hartree-Fock incoherent scatt
ing function @ZSinc(Q)# computed in this work with those mea
sured in the experiment of Calzuolaet al. ~Ref. 9! at selected values
of momentum transferQ. The momentum transfer was along th
@100# direction in both the experiment and the theory.

Q ZSinc(Q)
~a.u.! This Work Experiment

0.000 0.0000
0.100 0.0337
0.200 0.1352
0.300 0.2993
0.400 0.5188
0.517 0.8346 0.4434
0.569 0.9919 0.6446
0.621 1.1579 0.8832
0.672 1.3279 1.0774
0.724 1.5075 1.3008
1.034 2.6569 2.4282
1.137 3.0499 2.7480
1.291 3.6321 3.2082
1.497 4.3856 3.7112
1.650 4.9182 4.3404
1.804 5.4265 4.7896
1.957 5.9019 5.3122
2.110 6.3461 5.8166
2.263 6.7583 6.3042
2.465 7.2525 6.6888
2.768 7.8896 7.3224
3.169 8.5596 7.9372
3.368 8.8304 8.5186
3.467 8.9521 8.3750
3.763 9.2716 9.2784
3.958 9.4506 9.6102
7.219 10.7878 10.9616
7.301 10.8060 10.9484
7.382 10.8237 10.9196
7.622 10.8747 10.8880
9.000 11.1331
10.000 11.2894
12.000 11.5336
14.000 11.7009
15.000 11.7618
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values ofSinc(Q) were calculated with the magnitude of th
momentum transferQ ranging from 0.0 to 15.0 atomic unit
~a.u.!. For the experimental data,Q ranged from 0.517 to
7.622 a.u. It is quite clear from Fig. 1 that HF theory is
good qualitative agreement with the experimental res
which is a manifestation of the fact that LiF is a weak
correlated system. In order to quantify the correlation effe
we define the quantityE(Q)5 Sinc

HF(Q)2Sinc
exp(Q)/Sinc

exp(Q)
3100, which clearly measures the percentile contribution
electron correlation effects to the experimentally measu
Sinc(Q), using the HF values presented here as the ben
mark reference.E(Q) is plotted in Fig. 2, as a function ofQ.
For the smallest value of the momentum transferred m
suredQ50.517 a.u., the correlation contribution is 88.2%
With the increasing momentum transfer the correlation c
tribution decreases rapidly staying in the range 10.0—20.0%
from Q50.724 to Q52.059 a.u. FromQ53.664 a.u. on-
wards the upper bound for the correlation contribution
approximately three percent, while most of the points are
one to two percent range. We also see some oscillation
the E(Q) as a function of the momentum transfer, whi
may be due to the experimental uncertainties. However,
general trend inE(Q) as a function of the momentum tran
fer Q is clear—the contribution due to the correlation effe
decreases with the increasing momentum transfer. This t
is also observed in the calculations involving free atoms
molecules where the HF calculations for small values of m
mentum transfer always overestimateSinc(Q) as compared
to the correlated ones.16–34 This trend can be understood a
follows. HF theory, because of a lack of correlations in
will always overestimate the pair-correlation functio
g(r 8,r ) and consequentlySinc(Q). Since for small values o
momentum transferQ, one can only probe the valence ele
trons, the main contribution toSinc(Q) will also naturally
come from these electrons. However, it is the valence e

FIG. 1. ZSinc(Q) plotted as a function of the momentum tran
fer Q in the direction@100#. Solid line represents the HF theoretic
results of this work, while the dashed line represents the experim
tal results of Calzuolaet al. ~Ref. 9!. The experimental data wa
confined to the values ofQ ranging from 0.517 a.u. to 7.622 a.u.
t,

s,

f
d
h-

a-
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s
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in

e

nd
d
-

,

c-

trons for which the correlation effects are quantitatively t
most important, and their neglect in the HF approach lead
relatively large deviations, as compared to the experime
values, for smaller values of momentum transfer.

In our calculations we did not observe any significant a
isotropy in Sinc(Q) with respect to the direction ofQ. We
performed the same set of calculations forSinc(Q) for mo-
mentum transfer directions@110# and@111# as well, however,
the difference in the results compared to@100# direction was
always less than 1.031025. This result can also be unde
stood on intuitive grounds as the charge density in LiF
fairly isotropic, therefore, one would not expect the incoh
ent scattering function to show any anisotropy. Finally, it
clear from both Table I and Fig. 1 that our HF results
Sinc(Q) approach the correct limiting values in both the low
momentum-transfer region@cf. Eq. ~8!# and the high-
momentum-transfer region@cf. Eq. ~9!#.

IV. CONCLUSIONS

In conclusion, a wave-function-based fullyab initio ap-
proach has been presented, using which, one can com
the static structure factor of a crystalline compound at a
trary values of the momentum transfer, at the HF level. T
formalism was applied to the case of crystalline LiF, a
benchmark values were obtained for its incoherent scatte
function. These values were used in the analysis of a rece
performed incoherent x-ray scattering experiment on LiF
quantify the electron correlation effects, in general, and
predict the correlation contribution to its cohesive energy
particular.9 In case such experimental measurements are
formed on other insulating compounds, one can use the
malism presented here to perform similar benchmark ca
lations on those systems as well. The present version of
theory is restricted to insulating systems because of
Wannier-function-based formulation, however, in light of t
planned future experiments on metallic systems,36 we do in-

n-

FIG. 2. Relative correlation contributionE(Q) to the measured
Sinc(Q), plotted as a function of the momentum transferQ. The
momentum transfer direction was@100#. See text for details.
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tend to develop anab initio HF formalism meant for com-
puting Sinc(Q) for gapless systems, as well.

Although the aim of the present HF formalism was not
explain the experimental data, but rather to facilitate
analysis, it is still of interest to include electron correlati
effects theoretically. Indeed, recently, we have generali
our Wannier-function-based approach to include elect
correlation effects by systematically enlarging the ma
particle ground-state wave function by considering virtu
excitations from the space of the occupied Wannier functi
to that of the virtual ones.39 The approach was demonstrat
by computing the correlation contributions to the total e
ergy per unit cell of bulk LiH.39 However, the generalization
of the approach to compute the correlated expectation v
of an operator other than the Hamiltonian is far from trivi
and will be the subject of a future investigation.

ACKNOWLEDGMENTS

It is my pleasure to thank Professor F. Sacchetti for bri
ing his experiments to my attention, and for encouraging
to do these calculations. I would also like to thank Profes
P. Ziesche for his thorough reading of the manuscript,
for providing an exhaustive list of references on the subje
Thanks are also due to Sumit Mazumdar for his critical co
ments. Finally, I would like to express my gratitude to Pr
fessor P. Fulde for supporting my research throughout
stay in the Max-Planck-Institut fu¨r Physik komplexer Sys-
teme, Dresden.

APPENDIX

Our aim in the present section is to present a derivation
Eq. ~13! of the text which is an RHF level expression f
Sinc(Q) in terms of corresponding Wannier functions. Equ
tion ~7! which definesSinc(Q) involves the expectation valu
of the operator

X~r1 ,r2 , . . . ,rN0
;Q!5 (

j ,k51

N0

eiQ•(r j 2rk). ~A1!

Although operatorX(r1 ,r2 , . . . ,rN0
;Q) is a sum of two-

electron terms, however, unlike other similar operators s
as the Coulomb interaction operator, the sum in Eq.~A1!
does contain the term wherej 5k. Therefore, in order to
utilize the well-established formulas for matrix elements
two-electron operators between Slater determinant,37 we re-
write Eq. ~A1! as

X~r1 ,r2 , . . . ,rN0
;Q!5N01Y~r1 ,r2 , . . . ,rN0

;Q!

1Y* ~r1 ,r2 , . . . ,rN0
;Q!, ~A2!

where the first term on the right-hand side correspondsj
5k terms of the sum in Eq.~A1! and the operatorY is
defined as

Y~r1 ,r2 , . . . ,rN0
;Q!5(

j ,k
eiQ•(r j 2rk). ~A3!

Y* , which represents the complex conjugate of operatoY,
can be easily deduced from Eq.~A3!. It is clear thatY ~and
s

d
n
-
l
s

-

ue
,

-
e
r
d
t.
-

-
y

f

-

h

f

hence,Y* ) as defined above are traditional two-electron o
erators. Utilizing the well-known formula for the expectatio
value of a general two-electron operatorG5( j ,kg(r j ,r k)
with respect to a single Slater determinant stateuC& ~Ref.
37!

^CuGuC&5
1

2 (
a,b

^abug~r1 ,r2!uab&

2
1

2 (
a,b

^baug~r1 ,r2!uab&, ~A4!

whereua&, ub& are the orbitals constituting the Slater dete
minant, one can easily get

^FuYuF&5 (
a,b51

nc

(
Ri ,Rj 51

N

$2^a~Ri !ueiQ•rua~Ri !&

3^b~Rj !ue2 iQ•rub~Rj !&2^b~Rj !ueiQ•rua~Ri !&

3^a~Ri !ue2 iQ•rub~Rj !&%, ~A5!

where uF& represents the single-Slater-determinant R
ground state of the crystalline insulator under considerat
As discussed in Sec. II, it is expressed in terms of Wann
functions $ua(Rj )&;a51,nc ; j 51,N%, where 2nc is the
number of electrons per unit cell andN is the total number
unit cells considered. In order to arrive at the right-hand s
of Eq. ~A5! spin summations have been performed, and
first term represents the so-called ‘‘direct’’ contributio
while the second term represents the ‘‘exchange’’ contri
tion. It is clear that both the direct, as well as the exchan
terms are expressed as products of two one-electron m
elements, which are complex conjugates of each ot
Moreover, using the defining Eq.~6!, one can easily see tha
for the RHF state considered here, the direct term of
~A5! is nothing but the product of the form factorF(Q) and
its complex conjugate, leading to

^FuYuF&5
1

2
F~Q!u2

2 (
a,b51

nc

(
Ri ,Rj 51

N

u^b~Rj !ueiQ•rua~Ri !&u2.

~A6!

Finally, using the translational invariance property of t
one-electron matrix elementŝb(Rj )ueiQ•rua(Ri)&5^b(Rj
2Ri)ueiQ•rua(0)&, and by rearranging the sum over lattic
vectorsRi andRj in Eq. ~A6!, one gets in the infinite solid
limit ( N˜`)

^FuYuF&5
1

2
uF~Q!u22N (

a,b51

nc

(
Ri51

N

u^b~Ri !ueiQ•rua~0!&u2.

~A7!

If we combine the results of Eqs.~A1!, ~A2!, ~A7!, and sub-
stitute them in Eq.~7!, we immediately obtain Eq.~13!, valid
for a single-Slater determinant RHF wave functionuF&.
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