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In this paper, we present a fullgb initio Hartree-Fock approach aimed at calculating the static structure
factor of crystalline insulators at arbitrary values of momentum transfer. In particular, we outline the compu-
tation of the incoherent scattering function, the component of the structure factor that governs the incoherent
x-ray scattering from solids. The presented theory is applied to crystalline LiF to obtain benchmark Hartree-
Fock values for its incoherent scattering function. Benchmark theoretical values such as this, can be combined
with the experimentally measured static structure factor, to understand the influence of electron correlation
effects on cohesive properties of soliiS0163-182099)11231-1

I. INTRODUCTION If we assume that the system under consideration is a crys-
talline system withN unit cells, each of which ha& elec-
In order to obtain arab initio understanding of the elec- trons in it so thatNg=NZ, we can decomposg(Q) as a
tronic structure of solids, it is essential to understand thesum of a “coherent” and an “incoherent” part
nature of electron correlations in thénCorrelation being a

real-space phenomenon, one possible way of visualizing it is _ E 2. @
through the density-density correlation function defined as S(Q) z Sq.6lF(Q)I*+Sne(Q), ®

1 A A where G is a vector of the reciprocal lattice and the form

S(r',n = (@lpr)p(n)| @), (1)  factorF(Q) defined as
0
No
where |®) denotes the many-particle wave function of the F(Q)=2, (D|eri|d), (6)
systemNj is the total number of electrons in the system and =1
~ N . . . .
p(r)=%;2,6(r—r;) is the density operator with being the  ¢an pe easily seen to be the Fourier transform of the charge
coordinates of théth electron. One can easily show density of the system, while
S(r',r)=6(r"—r)+(No—1)g(r',r), )

No
_ _ _ _ Sinc(Q) = Niz 2 (@[T~ [FQ)?] ()
whereg(r’,r) is the electron pair-correlation function de- k=1
fined as is referred to as the incoherent scattering function in the lit-
erature. It is intuitively obvious that being the expectation
q)> value of a two-electron operatds;,.(Q) will be sensitive to

;j S(r'—r)&(r—ry) electron correlations in the crystal, whil(Q), which is a

3) one-electron operator, should be relatively insensitive to
such effects. It is easy to verify th&t,.(Q) satisfies limiting

Above, p(r) denotes the electronic charge density. Pair-conditions

correlation function represents the probability that when one

electron is observed say at poirit another electron will be lim Si;(Q)=0, (8)

1
r'rnN=——— (o
9 p(r)p(r')<

found in a characteristic volume Nf—1) located atr.! Q=0

Clearly, it can be used to quantify the so-called “exchangegnd

correlation hole” associated with an electron in a many-

electron system.If we compute the Fourier transform of the lim S;.(Q)=1. 9
density-density correlator, we obtain the static structure fac- Q-

tor S defined b
Q) y One can perform the measurement of the static structure

1 _ factor of a many-electron system in a variety of experiments

S(Q)= —f drdr’ e Q@ =g’ r) such as electron scattering and x-ray scattering. For isolated
No atoms and molecules both electrdrend x-rays are fre-

1 A quently used for such measurements, however, for crystalline

= N_o <<I> % e'Q = CI>>. 4 systems, x-ray scattering appears to be the method of
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choice*~8n such measurements, the quan@tyn equations Measured values of the static structure factor, to the bench-
above is identified with the momentum transferred by themark HF values presented here, have estimated the correla-
incident particle(electron or photoh to the many-electron tion contribution to the cohesive energy of LiF. Therefore,
system under investigation. Keeping in mind the relationshighe aim of these calculations m®tto explain the experimen-
between the static structure factor and the pair-correlatiofgl data, but rather to provide a theoretical reference, with
function[cf. Egs.(2) and(4)], it is thus possible to obtain the respect to which the correlation effects can be quantified in
pair-correlation function from these measurements. Howthe experimentally measured quantities. The formalism for
ever, in what follows, we will devote exclusively on the computing the static structure factor presented here is based
x-ray scattering-based experiments. The coherent x-ray sca®n a Wannier-function-baseab initio HF approach devel-
tering (Bragg scatteriny i.e., when the momentum transfer oped recently by u8>**The approach has since been applied
Q is equal to one of the vectof3 of the reciprocal lattice, is t0 compute the ground state properties of a number of
governed predominantly by the form facte(Q). However, ionic'*** and covalent compountfs", including the form
by concentrating on the measurements corresponding f&ctor[F(Q)] of LiF.**
those values of momentum transfer that are not equal to any The remainder of the paper is organized as follows. In
reciproca| lattice vector, one Can_according to Eﬁ])_ Sec. Il, we describe our formalism for tlad initio evalua-
directly measure the incoherent scattering function. The extion of the incoherent scattering function within an HF ap-
periments that concentrate on this regior@torrespond to  Proach. An explicit formula is presented which represents
incoherent x-ray scattering. For the case of incoherent scafinc(Q) in terms of the Wannier functions of an infinite crys-
tering of x-rays from a crystalline solid at finite tempera- tal. Our numerical results for LiF are presented in Sec. Il
tures, assuming that the energy of the incoming x-rays igvhich are compared to the experimental results of Calzuola
much higher compared to the binding energies of the conét al® for the same compound. Finally, our conclusions are
stituent electrons, but still low compared to the rest energy opresented in Sec. IV.
the electronrmyc? (so that the relativistic effects can be ne-
glected, the scattering cross section, for a solid composed of Il. THEORY
light elements, can be approximated ds
Here, we outline the evaluation of the incoherent scatter-

k\2. - ) ing function S;,;(Q) for an infinite crystalline insulator
k_o> (€0 ®) Sinc(Q)+Srps(Q)|. (10 within an ab initio restricted Hartree-FockRHF) approach.

Although, we are not aware of such a prior calculation for an
wherer, is the classical electron radiuky andk are the infinite solid, we note thagb initio calculations are per-

wave vectors of incoming and outgoing photogg,ande ~ formed on a routine basis on isolated atdfné’ and
are the corresponding polarization vecta@ss=k— K, is the molecules;>~** both at the HF, and the correlated level.
momentum transfer whilg;p(Q) is the structure factor due However, for condensed-matter systems, perhaps because of
to the thermal diffuse scattering caused both by the thermapractical difficulties associated with providing a wave-
and the zero-point vibrations of the lattice. Th@ Q) function-basedab initio description of an infinite system,
quantifies the contribution of phonons to the x-ray scatteringSUch calculations are either performed assuming a jellium
and can be computed by taking one-phonon, and higher ofmodel for the electrons of the systérior within the frame-
der terms into accoufit’ Therefore, by measuring the inco- work of the density-functional theory, which often involves
herent x-ray scattering cross section for different values oPhenomenological approximatiors. _ o
the momentum transfe®, combined with the knowledge of We assume that_ the compound under consideration is a
Srp(Q), one can, using Eq(10), extract the incoherent closed-shell crystalline system whose RHF ground state can
scattering functionS,,.(Q) of the system under consider- be. described by doubly occupied Wanmer_ functions per
ation. unit cell, so thaZ=2n.. If we use Greek indiceg, S etc.
Sacchetti and coworket& have been the proponents of to denote the Wannier functions localized in a given unit
using the incoherent x-ray scattering to measure the staticell, the RHF wave function of the infinite crystal can be
structure factor of crystalline compounds, for its subsequerfi€Scribed as a Slater determlna.nt compgsed of the infinitely
use in the analysis of electron correlation effects. They hav@'any Wannier function| «(R;));a=1nc;j=1N}, where
performed a series of accurate measurements of the statig(R;)) denotes thexth Wannier function of a unit cell lo-
structure factor of the metallic system BRef. 6 and the ~cated atthe position given by the vecRyof the lattice. The
covalent system diamoAdo obtain their pair-correlation aforementioned Wannier functions are assumed to form an
functions, and analyzed various contributions to the groundorthonormal set
state energies of these compounds. In their latest experiment
performed on crystalline LiF, they have, for the first time, (a(R)|B(R)))= 8,46 » (11
subjected an ionic system to a similar analysiowever, in . _ . o _
order to quantify the contribution of electron correlation ef-and Wannier funcuons localized in different unit cells are
fects to the experimentally measured static structure factor iffanslated copies of each other
such experiments, benchmark Hartree-F@dk) results for
the quantity are needed: It is the purpose of this paper to |a(Ri+R]-)>=7(Ri)|a(Rj)), (12
present a formalism using which one can perform such
benchmark HF calculations within aab initio framework.  where the operato?(R;) represents a translation by lattice
Indeed, Calzuolat al.® by comparing their experimentally vector R;. The theory and several applications of our ap-

do 2
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proach, which directly obtains the RHF Wannier functions of =~ TABLE I. Comparison of the Hartree-Fock incoherent scatter-
a crystalline insulatorionic or covalent, have been pre- ing function[ZS,.(Q)] computed in this work with those mea-
sented in several papel&—_lf’ sured in the experiment of Calzuada al. (Ref. 9 at selected values

If we use the standard formula for the expectation valueof momentum transfe@. The momentum transfer was along the
of a two-particle operator with respect to a Slater[100] direction in both the experiment and the theory.
determinant’ one can, after some algebraic manipulations;

show that in the Wannier representation the RHF expressioﬂ ] Z5ne(Q) )

for the incoherent scattering functigef. Eq. (7)] is given by (@) This Work Experiment

0.000 0.0000

2 & O 0.100 0.0337

=1— — ) iQ-r 2 . .

Snc(Q=1-7 2 2 [BR)IE a0 13 55 01352

0.300 0.2993

where|«(0)) represents a Wannier function localized in the 9.400 0.5188
reference unit cell. Equatiof13) constitutes the key formula 517 0.8346 0.4434
of this work, a detailed derivation of which is presented ing 5g9 0.9919 0.6446
the appendix. Since the Wannier functions in our computef g1 1.1579 0.8832
code are represented in terms of Gaussian lobe-type localizefg, 1.3279 1.0774
basis functions, it is possible to write down analytic expres 704 1.5075 1.3008
sions for the matrix elements needed to evalugig(Q) 034 2 6569 2 4282

according to the expression above. The lattice sum over Iatl-'137 3.0499 27480
tice vectorsR; involved in Eq.(13) decreases rapidly as one - ' ’

. . 1.291 3.6321 3.2082
moves away from the reference cell, and is terminated oncg - 4.3856 3.7112
the convergence within a given threshold is achieved. ' ' '

The restriction of the present approach to insulators stemy 80 4.9182 4.3404
from our use of Wannier functions as the single-particle or1-804 54265 4.7896
bitals, rather than the conventional Bloch orbitals. It is easyl'957 >.9019 2.3122
to see that the same theory can be easily extended to metalfict10 6.3461 5.8166
systems if one were to express the many-body wave functiof-263 6.7583 6.3042
of the solid in terms of Bloch orbitals. In that case, of course 2-46> 7.2525 6.6888
the real-space sufief. Eq. (13)] will have to be replaced by 2.768 7.8896 7.3224
an integration over the Brillouin zone. We will present this 3.169 8.5596 7.9372
generalization in a future paper. This will be particularly 3.368 8.8304 8.5186
useful in light of the future experiments which Sacchetti and3.467 8.9521 8.3750
coworkers are planning on metallic systetfis. 3.763 9.2716 9.2784

3.958 9.4506 9.6102
ll. RESULTS AND DISCUSSION 7219 10.7878 10.9616
7.301 10.8060 10.9484

In this section, we present the results of our HF calcula 382 10.8237 10.9196
tions of the incoherent scattering function at different values; g22 10.8747 10.8880
of the momentum transfer, and compare our results to thg ggg 11.1331
experimental ones. It is intuitively obvious, however, that HF 14 909 11.2894
structure factors can only describe the experimental results, o4 11.5336
qualitatively—in order to obtain a better quantitative descrip-; 4.000 11.7009
tion theoretically, inclusion of electron correlation effects is 15.000 11.7618

essential. Nevertheless, in our opinion, the comparison with

experiments is very instructive, because one can, in a rather

pictorial way, see the successes and failures of the HF aptions with larger basis sets that also includitype basis

proximation in describing the physics of weakly-correlatedfunctions on F atom, however, we did not observe any sig-

systems. nificant change in the results. Thus, we believe that our re-
The basis set used to represent the Wannier functions isults onS;,,.(Q) presented below are fairly accurate.

our calculations was the lobe representation of the basis set In the theoretical calculations the observed face-centered

proposed by Prencipet al. in their Bloch-orbital-based HF cubic (fcc) structure was assumed for the compound. The

study of the structural properties of L® The basis set con- reference unit cell was taken to be the primitive cell with the

sisted of contracted Cartesian Gaussian-type basis functioms atom at (0,0,0) position and the Li atom at (8/@),

and was of 4s,3p] type for the fluorine atom, and?s,1p] wherea is the lattice constant. For the lattice constant, the

for the lithium atom. For further details pertaining to the room temperature value of 4.02 A was used.

exponents and the contraction coefficients we refer to the The results of our calculations are summarized in Table |

original work3® Details dealing with the lobe representation and Fig. 1, which presenfS,.(Q) as a function of the

of the Cartesian Gaussian basis functions can be found, e.homentum transfe, whereZ=12 for the case of LiF.

in our previous paper: We also examined the basis-set de-Direction of the momentum transfer for both the theory and

pendence of our results df,,.(Q) by performing calcula- the experiment was alonglO0] direction. Theoretical HF
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FIG. 1. Z§,(Q) plotted as a function of the momentum trans-  F|G. 2. Relative correlation contributidB(Q) to the measured
fer Qin the direction100]. Solid line represents the HF theoretical 5 (Q), plotted as a function of the momentum trans€@r The
results of this work, while the dashed line represents the experimennomentum transfer direction wi$00]. See text for details.
tal results of Calzuolat al. (Ref. 9. The experimental data was
confined to the values @ ranging from 0.517 a.u. to 7.622 a.u. trons for which the correlation effects are quantitatively the
most important, and their neglect in the HF approach leads to

values ofS;,.(Q) were calculated with the magnitude of the relatively large deviations, as compared to the experimental
momentum transfe@ ranging from 0.0 to 15.0 atomic units values, for smaller values of momentum transfer.

(a.u). For the experimental dat& ranged from 0.517 to In our calculations we did not observe any significant an-
7.622 a.u. It is quite clear from Fig. 1 that HF theory is in isotropy in S;,.(Q) with respect to the direction d@. We

good qualitative agreement with the experimental resultperformed the same set of calculations &y.(Q) for mo-
which is a manifestation of the fact that LiF is a weakly mentum transfer directioj410] and[111] as well, however,
correlated system. In order to quantify the correlation effectsthe difference in the results compared 100 direction was

we define the quantitf(Q)= Sm’é(Q)—S,enxcp(Q)/anxcp(Q) always less than 110 °. This result can also be under-

X 100, which clearly measures the percentile contribution oStood on intuitive grounds as the charge density in LiF is
electron correlation effects to the experimentally measuredgirly isotropic, therefore, one would not expect the incoher-
Sinc(Q), using the HF values presented here as the benctent scattering function to show any anisotropy. Finally, it is
mark referenceE(Q) is plotted in Fig. 2, as a function @. clear from both Table | and Fig. 1 that our HF results on
For the smallest value of the momentum transferred meaSinc(Q) approach the correct limiting values in both the low-
suredQ=0.517 a.u., the correlation contribution is 88.2%. momentum-transfer regioricf. Eq. (8)] and the high-
With the increasing momentum transfer the correlation conmomentum-transfer regiofef. Eqg. (9)].

tribution decreases rapidly staying in the range 4£620.0%

from Q=0.724 t0Q=2.059 a.u. FronQ=_3.664 a.u. on- V. CONCLUSIONS

wards the upper bound for the correlation contribution is

approximately three percent, while most of the points are in In conclusion, a wave-function-based fullio initio ap-

one to two percent range. We also see some oscillations iproach has been presented, using which, one can compute
the E(Q) as a function of the momentum transfer, which the static structure factor of a crystalline compound at arbi-
may be due to the experimental uncertainties. However, th&ary values of the momentum transfer, at the HF level. The
general trend irfE(Q) as a function of the momentum trans- formalism was applied to the case of crystalline LiF, and
fer Q is clear—the contribution due to the correlation effectsbenchmark values were obtained for its incoherent scattering
decreases with the increasing momentum transfer. This trenfdnction. These values were used in the analysis of a recently
is also observed in the calculations involving free atoms angberformed incoherent x-ray scattering experiment on LiF to
molecules where the HF calculations for small values of moquantify the electron correlation effects, in general, and to
mentum transfer always overestima&g.(Q) as compared predict the correlation contribution to its cohesive energy, in
to the correlated oné$-3* This trend can be understood as particular® In case such experimental measurements are per-
follows. HF theory, because of a lack of correlations in it,formed on other insulating compounds, one can use the for-
will always overestimate the pair-correlation function malism presented here to perform similar benchmark calcu-
g(r’,r) and consequentl®;,.(Q). Since for small values of lations on those systems as well. The present version of the
momentum transfe®, one can only probe the valence elec- theory is restricted to insulating systems because of its
trons, the main contribution t8,.(Q) will also naturally = Wannier-function-based formulation, however, in light of the
come from these electrons. However, it is the valence eleglanned future experiments on metallic systéfnse do in-
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tend to develop amb initio HF formalism meant for com- hence,Y*) as defined above are traditional two-electron op-

puting S;,.(Q) for gapless systems, as well. erators. Utilizing the well-known formula for the expectation
Although the aim of the present HF formalism was not tovalue of a general two-electron operar==;_,g(r;,r)

explain the experimental data, but rather to facilitate itswith respect to a single Slater determinant stake (Ref.

analysis, it is still of interest to include electron correlation 37)

effects theoretically. Indeed, recently, we have generalized

our Wannier-function-based approach to include electron 1

correlation effects by systematically enlarging the many- <\I’|G|\I’>=§ ;) (ablg(ry,rz)|ab)

particle ground-state wave function by considering virtual '

excitations from the space of the occupied Wannier functions

to that of the virtual one® '_I'he apprc_)ach was demonstrated _ } E (balg(ry.r)|ab), (Ad)

by computing the correlation contributions to the total en- 2 30

ergy per unit cell of bulk LiH** However, the generalization _ o

of the approach to compute the correlated expectation valughere|a), |b) are the orbitals constituting the Slater deter-

of an operator other than the Hamiltonian is far from trivial, Minant, one can easily get

and will be the subject of a future investigation.

ne N
(@Y|Py= > X {2a(R)|eQa(R))
a,B=1 R Rj=1
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Although operatorX(rq,r,, . .. ,rNO;Q) is a sum of two- DIVID)— 1F 5
electron terms, however, unlike other similar operators such (@[Y[®)= 2 (Q
as the Coulomb interaction operator, the sum in Egl) n N
does contain the term where=k. Therefore, in order to _ S i0-r 2
utilize the well-established formulas for matrix elements of aﬁzl R, %:1 KB(Rp[e™ (R
two-electron operators between Slater determifante re-
write EqQ.(Al) as (A6)
. ) Finally, using the translational invariance property of the
X2, oo g Q) =Not Y(rinra, ... Iy Q) one-electron matrix elements3(R;)[e'?"|a(R;))=(B(R,

) —R;)|€' Q" «(0)), and by rearranging the sum over lattice
+Y*(rq,r r A2 i
(fa.r2, g1 Q) (A2) vectorsR; andR; in Eq. (A6), one gets in the infinite solid
where the first term on the right-hand side corresponds to limit (N—)
=k terms of the sum in Eq(Al) and the operatol is

defined 1 e N '
e (@IY0)=HFQP-N 3 3 (BRI a0
Y(ry,ro, ... ,rNO;Q)zg,k elQ(j=rg, (A3) (A7)

If we combine the results of Eq6Al), (A2), (A7), and sub-
Y*, which represents the complex conjugate of operator stitute them in Eq(7), we immediately obtain Eq13), valid
can be easily deduced from E@3). It is clear thatY (and  for a single-Slater determinant RHF wave functidn).
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