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Dependence of diffusion and multifractality at the quantum Hall transition
on the effective dimension of the sample
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The time evolution of wave packets at the transition point in the two-dimensional~2D! Chalker-Coddington
model is investigated numerically. As a function of the shape of the sample, characterized by the aspect ratio,
it is found that for metallic diffusive systems there is a time scale beyond which the return probability is
affected drastically, leading to a rapid change in the exponent of its time decay and reflecting the change from
2D to 1D behavior. While for quantum systems, at the critical point, the change in the aspect ratio is found to
lead toward localization which, on the other hand, leads the critical level-spacing distributionP(s) to approach
the Poissonian one.@S0163-1829~99!09927-0#
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It is well established that spectral statistics of disorde
conductors and insulators are governed by universal distr
tion functions. For energies small compared to the Thou
energy, the correlations between energy levels of metals
described by random-matrix theory, leading to the Wign
Dyson distribution for level spacing.1 In the insulating re-
gime, the energy levels are completely random and their
tistics are governed by the Poissonian statistical laws
uncorrelated variables. In both cases, deviations from th
universal distributions decrease with increasing system
and they vanish in the limit of infinite systems, provided t
system is not exactly at the metal-insulator transition poi2

This difference in the behavior between metals and ins
tors is mainly due to the strong overlap of the extended st
in the metallic case, which is negligible in the insulating ca
where the eigenfunctions are localized. On the other ha
the spectral statistics are intimately related to the time e
lution of wave packets. If a wave packet spreads diffusiv
for long times the system is a metal. In contrast, if a wa
packet does not spread and stays around its origin for l
times the system is an insulator.

During the past few years, much attention has been
cused on the critical properties near the localizatio
delocalization transition~LDT! in disordered systems.3–11In-
tensive studies made by different groups have shown
exactly at the transition point the system exhibits a th
universal behavior intermediate between those correspon
to the metallic and insulating regimes.

However, recently the universality of the critical distrib
tion was questioned by numerical investigations of the thr
and two-dimensional Anderson models at the transit
point.12 Their results lead to the conclusion that the critic
statistics might be strongly affected by the boundary con
tions of the system. The situation is more complicated in
case of the two-dimensional~2D! Chalker-Coddington net
work model~QHE!.13 In QHE systems all states are localize
with a localization length diverging at the critical energ
Ec50. At LDT the eigenstates are multifractal14,15 and the
extended metallic phase is absent. For finite systems,
introduction of Dirichlet boundary conditions affec
strongly the location of the critical region and this effe
PRB 600163-1829/99/60~7!/4466~4!/$15.00
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should be taken into account for the determination of
critical P(s) distribution.16 More recently, it has been sug
gested that the statistical properties at the critical point of
three-dimensional Anderson model depend on the shap
the sample while the critical disorderWc is unchanged.17

In this paper we present the results of numerical inve
gations of both statistical properties of the quasienergy lev
and the time evolution of wave packets near the critical po
of the 2D Chalker-Coddington network model.13 This model
describes the localization-delocalization transition in the
teger quantum Hall effect, which is similar to the thre
dimensional Anderson transition in the absence of tim
reversal symmetry. Using this model, we studied the eff
of the formal invariance18 on both the critical statistical prop
erties and the time evolution of wave packets. The tw
dimensionality of the model considered here allows for
study of large systems. We have concentrated our invest
tions on the level distributionP(s) at small level spacingss
up to the order of the mean level spacingD and long-time
evolution of a wave packet because the short-range en
regime, or equivalently long-time limit, is affected by th
long-range structure of the eigenstates, which, on the o
hand, is expected to be most sensitive to the shape of
sample. The shape of the sample is characterized by the
pect ratioq, defined asq5Lx /Ly , whereLx andLy are the
longitudinal and transversal lengths of the system, resp
tively. For QHE systems with periodic boundary condition
it is found that the scale-independent critical distributi
P(s), as well as the evolution of a wave packet, is stron
affected as a function of the aspect ratio of the sample w
the critical energy remains unchanged,Ec50. In fact, an
increase of the aspect ratio leads to localization of the eig
states with a localization length of the order of the width
the sample.13 This effect is shown to decrease the repulsi
between energy levels described by aP(s) distribution
closer to the Poissonian one~Fig. 1!. This result is shown to
be strongly related to a change in the dynamical propertie
the system from two-dimensional behavior to on
dimensional behavior.

We start with a short description of the Chalke
Coddington network model. It is based on ideas develope
4466 ©1999 The American Physical Society
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~Ref. 19! for the description of the Anderson transition
terms of scattering theory. It consists of 232 scattering ma-
trices representing saddle points of a smooth random po
tial that are arranged on a square lattice and connecte
one-dimensional unidirectional channels, called links, co
sponding to equipotential lines between the saddle poin13

The scattering matricesSj describe the transitions from elec
tron states of incoming linksck ,c l to outgoing link states
cm ,cn ~see Fig. 2!,

S cm

cn
D5Sj S ck

c l
D , Sj5S tmk tml

tnk tnl
D . ~1!

By traversing a linkl an electron acquires an addition
phasef l , randomly distributed in@0,2p# but constant for
each link, which we absorb in the complex, energ
dependent scattering coefficientst(E)mk ,t(E)nk . The trans-
mission probabilitiesT15utmlu25utnku2, T25utmku25utnlu2
are determined by the difference between electron energE
and saddle-point energyuj , T1

21511exp@(uj2E)/Et#, T2

512T1 .20 For our calculations we chooseuj[0 and set

FIG. 1. The critical level-spacing distributionP(s) at energy
E50 for a system of linear sizeL530 and aspect ratioq51 ~solid
line! shows significant deviations from theP(s) distribution forq
52 ~dashed line!.

FIG. 2. The Chalker-Coddington network. At each saddle po
a scattering matrixS describes the transition from incoming to ou
going states. The operatorU maps each incoming link amplitude t
the two outgoing links according to the transmission coefficie
tml ,tnl , . . . .
n-
by
-

.

-

the tunneling energyEt51. Different disorder configurations
are realized by taking different sets of random phasesf l .

A network state is given by the set of complex amplitud
c l on each link,C5$c l%. A unitary operatorU(E) acting
on these states, according to the scattering coefficientstml , is
defined by

U~E!el5t~E!mlem1t~E!nlen , ~2!

whereek5$dkl% l denotes a unit vector at linkl , whose com-
ponents are zero except at linkk.14 U(E) is unitary due to
the current conservation at each node and can be interpr
as a discrete time-evolution operator for network stat
C(t1t)[U(E)C(t).15 The eigenvectorsf(E) l of U(E)
correspond to eigenstates of the real system and the phas
quasienergies v(E) l of their complex eigenvalues
exp@ivl(E)# to energy levels in the vicinity of the energyE.21

At the transition point, the eigenvectorsf(Ec) of U(E) ex-
hibit a multifractal structure similar to the metal-insulat
transition.14

The model shows a quantum-Hall-effect–type transit
from localized to delocalized states at a singular critical
ergy Ec . For an infinite sample and for energiesE far away
from the critical point, uE2Ecu@Et , the eigenstates o
U(E) are strongly localized, with localization lengthjE of
order of the link length. WhenE approaches the critical en
ergyEc , j(E) diverges withj}uE2Ecu2n, wheren'2.3 is
the critical exponent of the integer quantum Hall transition13

Note that the localization lengthj(E) varies withE, but not
with the quasienergyv. Therefore, the level statistics doe
not change within one quasispectrumv l(E). For this prop-
erty, which allows as to focus on a very narrow energy
gime, the network model is especially suitable for the stu
of critical spectral statistics. In the strongly localized regim
uE2Ecu@Et , the levelsv l(E) are independent and obe
Poisson statistics. ApproachingEc , level repulsion emerges
reflected by distribution of the quasilevel spacingssl
5(v l 112v l)/D;20 close to a Wigner-Dyson type.

Here, we analyzed the spectra for systems of differ
lengths Lx and widthsLy with periodic boundaries in al
directions. All data were obtained by averaging over at le
5000 disorder configurations. Due to the symmetry of QH
systems with periodic boundary conditions, the critical e
ergy is exactly located atEc50. We have studied the level
spacing distributionsPc(s) for different values of the aspec
ratio q. In Fig. 1 we have plotted the results for two valu
of the aspect ratioq51 andq52 at energyE50. In agree-
ment with the result obtained in Ref. 17, thePc(s) distribu-
tion gets closer to the Poissonian behavior as the aspect
q increases.

To give a more quantitative explanation of this behavi
we considered the metallic behavior of a wave packet i
2D system given by

Q~r ,t !5
exp@2r 2/~4Dt !#

4pDt
, ~3!

at time t and distancer from the origin, whereD is the
diffusion constant. It is easy to show that for a 2D syste
with Lx.Ly and periodic boundary conditions there exists
time scalet such that the system will behave like a 2D sy
tem whent,t and will exhibit 1D behavior whent.t. The
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4468 PRB 60BRIEF REPORTS
time scalet corresponds to the time needed by the wa
packet to diffuse along the transversal direction of lengthLy .
In fact, for t,t the return probabilityQ(r 50,t) scales like
t21. While due to saturation along the transversal direct
~y axis!, for t.t, Q(r ,t) becomes independent of the tran
versal coordinatey, and the evolution of the wave pack
reduces to that of a one-dimensional system, where the
turn probability scales liket21/2. Similar arguments were
previously used by Imryet al.22 to obtain scaling laws relat
ing the critical indices for different dimensionalities. T
check this point we used the classical version of QHE s
tems by replacing the scattering coefficientstml by the trans-
mission probabilitiesT5utmlu2 in the definition of the opera
tor U(E). Then, the discrete time evolution of a wave pac
is obtained by repeatedly acting with the operatorU on a
wave packet initially peaked at a single link, taken as
origin e0 . The return probability, at timet, is defined by

Q~0,t !5u^e0uUtue0&u2, ~4!

with integert. From Fig. 3 it is clear that for large values o
q there is a time scalet after which the value of the exponen
of the return probability changes from21 to 2 1

2 , thus dem-
onstrating the reduction of the effective dimensionality of t
system from 2 to 1. It is also important to notice that t
crossover between the two regimes is very sharp. In the
of QHE systems, the situation is extremely different due
the interference effects. Consequently, the return probab
saturates almost exactly at timet as can be seen in Fig. 4 fo
q53, thus reflecting the one-dimensional behavior of
system fort.t. This effect can be understood if we tak
into account the fact that for systems with one finite dime
sion Ly , the critical localization lengthj(E) is of the order
of the width of the sampleLy ,13 so that for large values ofq
and large times the shape of the wave packet exhibits
exponential decay from its origin, as represented in Fig. 5
Fig. 4 we have also plotted the return probability forq51. In
contrast to the previous case, the wave packet spreads
all the samples with a time decay exponentd50.74, which

FIG. 3. Metallic behavior of the return probability for a wav
packet at the critical pointE50 for systems with aspect ratiosq
51 ~solid line! andq53 ~dashed line!.
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is in good agreement with previous calculations. As me
tioned above, theP(s) distribution and the evolution of a
wave packet are strongly correlated. For large values oq
corresponding to a quasi-one-dimensional system of w
Ly , the localization lengthj(E) of the eigenstates at th
center of the band is of the order of the widthLy . As a
result, the overlap between eigenstates whose centers
separated in space by distances larger thanLy ~along thex
axis! decreases exponentially, leading to a decrease of
repulsion between the corresponding eigenvalues as ca
seen in Fig. 2. So the question whether there is a sh
dependence of the critical level-spacing distribution rema
open. This question could be studied using other sha
such as spheres and discs in three and two dimensions
spectively. These geometries, unlike the torus one, do
introduce a time scale after which the behavior of the sam
changes fromd-dimensional to (d21)-dimensional behav-
ior. Finally we should mention that this result is not in co
tradiction with a recent analytical work23 where the localiza-
tion effects are negligible.

The question of the dependence of the level-spacing
tribution and the time evolution of a wave packet at t
transition point on the aspect ratio is investigated num
cally, using the 2D Chalker-Coddington model. The ma

FIG. 4. Return probability for a wave packet at the critical e
ergy E50 for q51 ~solid line! shows a significant deviation from
Q(t) obtained at the same energy for a system withq53 ~dashed
line!.

FIG. 5. Spread of a wave packet along thex axis after a long
time at energyE50 for Lx5200 andq510.
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conclusions that can be drawn from our results are the
lowing: we give a detailed explanation of the behavior of t
P(s) distribution as a function of the aspect ratioq. The
observed evolution of theP(s) toward the Poissonian distri
bution, when we increase the value ofq, is mainly due to the
localization effects as can be deduced from the time ev
tion of a wave packet. We also demonstrate that forq.1,
p.

tt.

I.
l-

-

there exist a characteristic time scalet after which the dy-
namical properties of the sample changes from tw
dimensional behavior to one-dimensional behavior.
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