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The time evolution of wave packets at the transition point in the two-dimensi@balChalker-Coddington
model is investigated numerically. As a function of the shape of the sample, characterized by the aspect ratio,
it is found that for metallic diffusive systems there is a time scale beyond which the return probability is
affected drastically, leading to a rapid change in the exponent of its time decay and reflecting the change from
2D to 1D behavior. While for quantum systems, at the critical point, the change in the aspect ratio is found to
lead toward localization which, on the other hand, leads the critical level-spacing distriB8pio approach
the Poissonian on¢S0163-182009)09927-Q

It is well established that spectral statistics of disorderedshould be taken into account for the determination of the
conductors and insulators are governed by universal distribieritical P(s) distribution® More recently, it has been sug-
tion functions. For energies small compared to the Thoulesgested that the statistical properties at the critical point of the
energy, the correlations between energy levels of metals atree-dimensional Anderson model depend on the shape of
described by random-matrix theory, leading to the Wignerthe sample while the critical disord®v, is unchanged’

Dyson distribution for level spacingin the insulating re- In this paper we present the results of numerical investi-
gime, the energy levels are completely random and their stagations of both statistical properties of the quasienergy levels
tistics are governed by the Poissonian statistical laws o&nd the time evolution of wave packets near the critical point
uncorrelated variables. In both cases, deviations from thesef the 2D Chalker-Coddington network mod@iThis model
universal distributions decrease with increasing system sizéescribes the localization-delocalization transition in the in-
and they vanish in the limit of infinite systems, provided theteger quantum Hall effect, which is similar to the three-
system is not exactly at the metal-insulator transition pbint. dimensional Anderson transition in the absence of time-
This difference in the behavior between metals and insulareversal symmetry. Using this model, we studied the effect
tors is mainly due to the strong overlap of the extended statesf the formal invarianc¥ on both the critical statistical prop-

in the metallic case, which is negligible in the insulating caseerties and the time evolution of wave packets. The two-
where the eigenfunctions are localized. On the other handjimensionality of the model considered here allows for the
the spectral statistics are intimately related to the time evostudy of large systems. We have concentrated our investiga-
lution of wave packets. If a wave packet spreads diffusivelytions on the level distributiof(s) at small level spacings

for long times the system is a metal. In contrast, if a waveup to the order of the mean level spacingand long-time
packet does not spread and stays around its origin for longvolution of a wave packet because the short-range energy
times the system is an insulator. regime, or equivalently long-time limit, is affected by the

During the past few years, much attention has been folong-range structure of the eigenstates, which, on the other
cused on the critical properties near the localization-hand, is expected to be most sensitive to the shape of the
delocalization transitiofLDT) in disordered systenis*In- sample. The shape of the sample is characterized by the as-
tensive studies made by different groups have shown thatect ratioq, defined ag=L,/L,, whereL, andL, are the
exactly at the transition point the system exhibits a thirdlongitudinal and transversal lengths of the system, respec-
universal behavior intermediate between those correspondirtgyely. For QHE systems with periodic boundary conditions,
to the metallic and insulating regimes. it is found that the scale-independent critical distribution

However, recently the universality of the critical distribu- P(s), as well as the evolution of a wave packet, is strongly
tion was questioned by numerical investigations of the threeaffected as a function of the aspect ratio of the sample while
and two-dimensional Anderson models at the transitiorthe critical energy remains unchangdg,=0. In fact, an
point!? Their results lead to the conclusion that the criticalincrease of the aspect ratio leads to localization of the eigen-
statistics might be strongly affected by the boundary condistates with a localization length of the order of the width of
tions of the system. The situation is more complicated in thehe samplé? This effect is shown to decrease the repulsion
case of the two-dimension&D) Chalker-Coddington net- between energy levels described byPqs) distribution
work model(QHE).*® In QHE systems all states are localized closer to the Poissonian oifEig. 1). This result is shown to
with a localization length diverging at the critical energy be strongly related to a change in the dynamical properties of
E.=0. At LDT the eigenstates are multifractal® and the the system from two-dimensional behavior to one-
extended metallic phase is absent. For finite systems, thé&imensional behavior.
introduction of Dirichlet boundary conditions affects We start with a short description of the Chalker-
strongly the location of the critical region and this effect Coddington network model. It is based on ideas developed in
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P(s) 10 - - the tunneling energi,= 1. Different disorder configurations
are realized by taking different sets of random phages

A network state is given by the set of complex amplitudes
i, on each link,W={y,}. A unitary operatotU(E) acting
on these states, according to the scattering coefficigntss
defined by

08

06
UB)e=t(E)mentt(E)nen, 2

whereg,={5y}; denotes a unit vector at link whose com-
ponents are zero except at litk!* U(E) is unitary due to
the current conservation at each node and can be interpreted
as a discrete time-evolution operator for network states,
Y (t+7)=U(E)¥(1)."® The eigenvectorsh(E), of U(E)
correspond to eigenstates of the real system and the phases or
quasienergies w(E), of their complex eigenvalues
30  exfdiw(E)]to energy levels in the vicinity of the energy?
At the transition point, the eigenvectoggE.) of U(E) ex-

FIG. 1. The critical level-spacing distributioR(s) at energy  hibit a multifractal structure similar to the metal-insulator
E=0 for a system of linear size=30 and aspect ratiq=1 (solid transition#
line) shows significant deviations from tHe(s) distribution forq The model shows a quantum-Hall-effect—type transition
=2 (dashed ling from localized to delocalized states at a singular critical en-

ergy E.. For an infinite sample and for energiedar away

(Ref. 19 for the description of the Anderson transition in from the critical point, [E—E.|>E,, the eigenstates of
terms of scattering theory. It consists 0k2 scattering ma- U(E) are strongly localized, with localization lengtiz of
trices representing saddle points of a smooth random poteRyder of the link length. Whe& approaches the critical en-
tial that are arranged on a square lattice and connected RyqgyE_, £(E) diverges withéx|E—E,| ", wherer~2.3 is
one-dimensional unidirectional channels, called links, correthe critical exponent of the integer quantum Hall transiidn.
sponding to equipotential lines between the saddle points. Note that the localization lengt#(E) varies withE, but not
The scattering matriceS; describe the transitions from elec- jith the quasienergys. Therefore, the level statistics does
tron states of incoming linkg)y ¢ to outgoing link states ot change within one quasispectrusi(E). For this prop-

04

02

Ym, ¥ (see Fig. 2, erty, which allows as to focus on a very narrow energy re-
gime, the network model is especially suitable for the study

m i tnk  tmi of critical spectral statistics. In the strongly localized regime,

(lﬁn :Sj( lM)' j te to) oy |E—E.|/>E;, the levelsw,(E) are independent and obey

Poisson statistics. Approachiikg., level repulsion emerges,
By traversing a linkl an electron acquires an additional reflected by dizsgribution of the quasilevel spacings
phaseg,, randomly distributed if0,277] but constant for = (w41~ ®;)/A;"" close to a Wigner-Dyson type.
each link, which we absorb in the complex, energy- Here, we analyzed the spectra for systems of different
dependent scattering coefficien(€) n,,t(E) . The trans- lengthsL, and widthsL, with periodic boundaries in all
mission probabilitiesT , = |ty |?=|tnd? T_=|tnd?=|t,|? directions. All data were obtained by averaging over at least
are determined by the difference between electron enérgy 5000 disorder configurations. Due to the symmetry of QHE
and saddle-point energy;, T11=l+exp[(uj—E)/Et], T systems with periodic boundary conditions, the critical en-
=1-T, .?° For our calculations we choosg=0 and set €9y is exactly located @&.=0. We have studied the level-

spacing distribution® (s) for different values of the aspect

ratio g. In Fig. 1 we have plotted the results for two values

4‘ ‘ ‘ L of the aspect ratigg=1 andq=2 at energye=0. In agree-

ment with the result obtained in Ref. 17, tRg(s) distribu-
“{' tion gets closer to the Poissonian behavior as the aspect ratio
m S n g increases.
—@ ® ® o— To give a more quantitative explanation of this behavior,
t:;ﬂ ﬁ; we considered the metallic behavior of a wave packet in a
Al 2D system given by
exd —r?/(4Dt)]

4T T T r Q(r,t)zT, 3

FIG. 2. The Chalker-Coddington network. At each saddle poin@t time t and distancer from the origin, whereD is the
a scattering matri¥ describes the transition from incoming to out- diffusion constant. It is easy to show that for a 2D system
going states. The operator maps each incoming link amplitude to  With L,>L and periodic boundary conditions there exists a
the two outgoing links according to the transmission coefficientstime scaler such that the system will behave like a 2D sys-
(N SR tem whent< 7 and will exhibit 1D behavior whet>> 7. The
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FIG. 3. Metallic behavior of the return probability for a wave FIG. 4. Return probability for a wave packet at the critical en-
packet at the critical poinE=0 for systems with aspect rati@g  ergy E=0 for q=1 (solid line) shows a significant deviation from
=1 (solid line) andg=3 (dashed ling Q(t) obtained at the same energy for a system wjth3 (dashed

line).

time scaler corresponds to the time needed by the wave _ . _
packet to diffuse along the transversal direction of lerigth IS in good agreement with previous calculations. As men-
In fact, for t< 7 the return probabilityQ(r=0) scales like tioned above, theP(s) distribution and the evolution of a
t~1. While due to saturation along the transversal directiorvave packet are strongly correlated. For large valueg of
(y axi9), for t>7, Q(r,t) becomes independent of the trans- corresponding to a quasi-one-dimensional system of width
versal coordinate/, and the evolution of the wave packet Ly, the localization lengthé(E) of the eigenstates at the
reduces to that of a one-dimensional system, where the r&enter of the band is of the order of the width. As a
turn probability scales like 2 Similar arguments were result, the overlap between eigenstates whose centers are
previously used by Imnet al?? to obtain scaling laws relat- separated in space by distances larger thartalong thex
ing the critical indices for different dimensionalities. To axis) decreases exponentially, leading to a decrease of the
check this point we used the classical version of QHE systepulsion between the corresponding eigenvalues as can be
tems by replacing the scattering coefficientgby the trans- ~ seen in Fig. 2. So the question whether there is a shape
mission probabilitie§ =|t,,|? in the definition of the opera- dependence of the critical level-spacing distribution remains
tor U(E). Then, the discrete time evolution of a wave packetoPen. This question could be studied using other shapes,
is obtained by repeatedly acting with the operdtbron a  such as spheres and discs in three and two dimensions, re-

wave packet initially peaked at a single link, taken as theSpectively. These geometries, unlike the torus one, do not
origin ey. The return probability, at timg, is defined by introduce a time scale after which the behavior of the sample

changes fromd-dimensional to — 1)-dimensional behav-
ior. Finally we should mention that this result is not in con-

Q(0)=[(e0|U"[e0)|?, (4)  tradiction with a recent analytical wotkwhere the localiza-
tion effects are negligible.

with integert. From Fig. 3 it is clear that for large values of ~_ The question of the dependence of the level-spacing dis-
q there is a time scaleafter which the value of the exponent tribution and the time evolution of a wave packet at the
of the return probability changes from1 to — %, thus dem-  transition point on the aspect ratio is investigated numeri-
onstrating the reduction of the effective dimensionality of thec@lly, using the 2D Chalker-Coddington model. The main
system from 2 to 1. It is also important to notice that the
crossover between the two regimes is very sharp. In the cas
of QHE systems, the situation is extremely different due to %[
the interference effects. Consequently, the return probabilitye.o1s
saturates almost exactly at times can be seen in Fig. 4 for ¢,
g=3, thus reflecting the one-dimensional behavior of the
system fort> 7. This effect can be understood if we take
into account the fact that for systems with one finite dimen- ©
sionLy, the critical localization lengti§(E) is of the order

of the width of the sample, ,*® so that for large values af

and large times the shape of the wave packet exhibits ar
exponential decay from its origin, as represented in Fig. 5. In
Fig. 4 we have also plotted the return probability dgr 1. In
contrast to the previous case, the wave packet spreads over FIG. 5. Spread of a wave packet along thexis after a long
all the samples with a time decay exponért0.74, which  time at energye=0 for L,=200 andg=10.
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conclusions that can be drawn from our results are the folthere exist a characteristic time scalafter which the dy-
lowing: we give a detailed explanation of the behavior of thenamical properties of the sample changes from two-
P(s) distribution as a function of the aspect ratio The  dimensional behavior to one-dimensional behavior.
observed evolution of thE(s) toward the Poissonian distri-

bution, when we increase the valuecfis mainly due to the | appreciate discussions with Y. Imry, G. Montambaux,
localization effects as can be deduced from the time evoluand A. Nourredine. | gratefully acknowledge the support of
tion of a wave packet. We also demonstrate thatdgorl, Feinberg School, the Israeli Academy of Sciences, and GIF.
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