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The inhomogeneity of a superconducting system gives rise to an interesting situation e &t (Tg >
is characterized by a relatively sharp resistive transitmme can observe an anomalously large diamagnetic
moment. Here we focus on the case when the sample can be described as containing a nonuniform distribution
of magnetic impurities and, as a consequence, by an inhomogeneous distribution of critical temperatures. The
analysis is in good agreement with experimental data on overdoped cup&0&63-18299)01030-9

I. INTRODUCTION

method of integrated Green’s functiohhe system is de-

scribed in detail by the equations introduced by Larkin and
The present paper is concerned with magnetic propertiesne of the author8:

of inhomogeneous superconducting systems. Higlxides
represent an important example of such systems, and this is
particularly true for samples with nonstoichometric compo-
sitions such as overdoped cuprates.

Inhomogeneity leads to the situation wh&p becomes
spatially dependent. This case was studied, for example, by
A. Larkin and one of the authofsin this paper we have
explored the case when the sample contains small regions
(p<<§, is the penetration depthwith a localT, higher than

the average valu&,. In other words, af>T., the super-

D 2 2
alA—Bw+ E(ao”,ﬂ—ﬁ&ra)zaﬁr, (1a)
a?+|BJ?=1, (1b)
A=27T|\| EO B. (10

conducting grains are embedded in a normal matrix. A typiHere « and 8 are the usual and pairing Green’s functions
cal example of such a situation occurs when the sample corveraged over energy, is the order parameteF,=_* is
tains magnetic impurities which are distributed in athe spin-flip relaxation time. Because of the inhomogeneity,

nonuniform way. As is well know#? magnetic impurities
act as pair breakers and their presence deprégse#\s a

all of these quantities are spatially dependent. In addition,
d+=4d,*=2ieA, A is the vector potentialg,=(d/dr). We

result, the inhomogeneous scenario we just described can Bgnsider the “dirty” case, so thaD is the diffusion coeffi-

perfectly realistic.

cient.

The present paper is directly related to a recent experi- Assume that the sample contains a sufficient amount of

mental study of overdoped Tl-based cuprdtégcording to

magnetic impurities so thatsT.<1; as a resulfT.<Tg,

Ref. 4, aboveT =15K one measures a noticeable diamag-yhereT_ is the average value of the critical temperature, and

netic response. Such response was also observed in the pr
ence of a strong magnetic field; th€g=T.(H). The experi-
mental dathwill be discussed belowSec. Ill) in detail; one
can show that the theory developed here allows us to fully
describe the phenomenon observed in Ref. 4.

The structure of the paper is as follows. Section Il con-
tains a theoretical analysis of the inhomogeneous system and
an evaluation of the magnetic moment. The application to
the overdoped cuprates and a comparison with experimental
data are discussed in Sec. Ill.

Il. THEORY

A. Main equations

Consider an inhomogeneous superconductor which con-
tains magnetic impurities. Our approach is based on the
0163-1829/99/6()/43295)/$15.00
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Gf’sc'corresponds to the transition temperature with no mag-
netic impurities. In this case, with the use of E¢s), we
obtain

B=Bo—B1; a=1—|Bo|%2, (2a)
D -1
Bo= F+w—§a2) A, (2b)
D -1 2
B1= r+w—5(92_) ('Bgl (A—TpBy)
D
+ Z(|,30|23230_,305r2|,80|2)] . (20
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Based on Eg9.1c) and(2), we obtain the following equation B. Magnetic moment

for the order parameter: Based on Eqs4)—(6) and(9) one can evaluate the mag-

netic moment of the inhomogeneous system described

-1
A=277T|)\|E (F+w—932> above. Indeed, the current density is described by the
a0 2 expressiof
w 2.0, a2
X1 A= 5 Bol Bol*+ 5 Bodi | Bol* - &) j=—ievDaTY, (B*3_B—Bd.B*). (11)

Let us focus on the temperature regibr Tc(H). Thenthe  Herey is the density of states. With the use of E(®. and
order parameter is localized near some clusters. In such @g), we obtain

region (=r) the operatofI' +w—(D/2)#*] has discrete

eigenvalues. _ ievDC? (1 Ta+ng) .

Our goal is to evaluate the order paramefat T =57 2T 5.7 |(Aod-Bo—A0d+Ag).
>Tc(H)] for the inhomogeneous structure and then the cor- (17)
responding magnetic moment. The order parameter can be
found in the form As was mentioned above, the inhomogeneous structure

contains small regions with a local value of the critical tem-
A=CA,, ) peratureT.. higher than the average valille. In this case,
whereC is a constanits value will be calculated belovand ~ the order parameted,, which corresponds to the lowest
Ay is the solution of the equation eigenvalue can be taken as real. Then, we can obtain the
following expression for the magnetic moment of an isolated
[T = (D/2)5% 1Ao= (T +A1)Ao. (5 clusterM =L jdplpj].:
HereT., is the value ofl" outside of the grain, anil, is a o ) (L1 Tty
minimum eigenvalue. One can see from E2p) that M;=—(e%DCHL/=T)y 2 * 27T K. (2
Bo=CAg(w+T.+xp) (6) HereK = [dpp?AZ2, and the vector potential has been chosen

asA=1[Hr]; L is the effective thickness of the supercon-
Inserting this expression into E(B), we arrive, after the ducting layer. Note also that because the cluster size is

summation, at the following equation: smaller than the penetration depth, one can neglect the spa-
cial variation of the magnetic field.
o L Tt . c2 (A321Ac2)) 'Bas?dhon Eqg5) gnd(lZ), one can pezrfc.)rm a fifnal evalu-
N(TdT)=u¢| 5+ T | (3)+ 122 m. ation of the magnetic momensee Eq.(12)]; as a first step,

R one should calculate the order parametgrand the eigen-
value\ ; [see Eq(4)]. One can study several different cases.
Here ¢ is the Euler function, and the notatidfg) corre- The simplest one corresponds to a small variatiod™ 060

sponds to scalar product of the functions. The transition temthat one can use perturbation thedsee Appendix Con-
peratureTc=T&"is determined by Eq(8) which can be sider the most interesting case when the variation of the am-

obtained from Eq(7) if we insertC=\,=0: plitude 8T'(r)=T..—T has the form
ol'(p); <
IN(TUT) =[5+ (T 27T)]— (%) ®) 5F(r)=[ | (p); P<po 3
O, p>p0

which is a well-known equation obtained in Ref. 2. Equation ) )
(7) is the generalization of Eq8) for the inhomogeneous Then Eq.(5 can be written in the form
case studied here. For the regibn>T>T.(H) we obtain

the following expression for the consta@t Dilafl 4
Wing expressl {5F(p)— 51> - P | —€H2 1 Ag(p) =N1Ag(p).
pap\" dp
C?=2n?a[1- 7*+B], (9) (14
where A similar equation has been studied by Bezryadin, Pennetier,

and one of the authors in Ref. 7. The solution is
a=T2(AY AV (AX%AZ) Y 7=T/T¢; ,
1 [M()\fmﬂ“)/ZeHD;O(eHP )i p<po

- _ 2 Ao(p)= —
B= 6)\1rw/(7TTC) . (10) olp /er2 Clw)\l/ZEHD;O(eHPZ); p>po.
1
Equations(4), (6), and(9) determine the temperature de- @9
pendence of the order parameter and the pairing GreenidereW, ,(z) andM, ,(z) are the Whittaker functions. It is
function B,. Let us turn now to the evaluation of the mag- convenient to use the following presentations of the Whit-
netic moment. taker functions:
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Ao(p)=exp(—eHp?/2)
$(1/2—X=3T';0;a); pP<po
cl[r(1/2—X)]*1J:th(t,p); P> po.
(16)
¢

Here N=\,2eHD, &I =6I/2eHD, a=eHp?

=¢(B,v,X) is the confluent hypergeometric function, and

F(t,p)=e 't 05 N1+1)"%5" The eigenvaluer; can
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the value of|\;| which determines the upper limit of[see

Eq. (9)], is defined by the equation|\,|=4T
—0.5D(2zy/po)? [see Eq(18)]. The value of\,| depends on

an interplay of two terms. The first term reflects the impact
of the magnetic scattering, and the second negative term de-
scribes the proximity effect. For example, a decrease in the
size of the inhomogeneity, leads to an increase of the

second term and, accordingly, to decrease in valu® [sfee

Eq. (9)]; thus decreasing the temperature regier:B) in
which one can observe a diamagnetic response. This is natu-
ral, since the influence of the proximity effect to depress the

be determined from the condition for the logarithmic deriva-superconductivity grows with a decrease in the gigef the

tive to be continuous,
fdtt'l:(t,p))(jdtl:(t,p))
(17

It is important to emphasize that E@l7) reflects the

-1

—($'19)p,=

|Po

superconducting grain.
In order to observe the linear dependef2®), it is better
to be in the regioM>Tc(H) + &, whered is the broadening
of the transition determined, e.g., by resistive measurement.
Equation(19) can be generalized for the case when the
magnetic scattering amplitudE depends on temperature.
Such a scenario was considered by the authors in Refs. 8 and

strong impact of the proximity effect. Indeed, the supercon9. As we know, the magnetic impurities act as pair breakers,

ducting cluster with itsTC’,_>T'C(H) is embedded in a nor-

and this leads to a depressionTip as well as other param-

mal matrix, and therefore it is necessary to take into accourgters H.,, Josephson critical current, etcdn Refs. 2 and 3

the proximity effect. Thus Eq(17) is a boundary condition
for the order parameter.

Equation(17) allows us to evaluate the eigenvalig.
One can showsee the Appendix that this quantity is equal
to

)\1:

— 6T +0.5D(zq/po)>. (18

Here zy~2.4 is the lowest zero of the Bessel function,

that isJy(zy) =0. In addition,

Ao(p)=Jo(pzo/pe) for p<po. (19

With the use of Egs(9), (12), (18), and(19), we can obtain
the following expression for the magnetic moment:

M,=—A(B—)H. (20)
Here
A=(8m2€?WDT2IT..)pd20 "N(X3.%1.2/%1.4); B=B+1.
(21)

B and\,; are determined by Eq§9) and(18), nis the cluster
concentration, and,; =/ {2dx-x"Jp(x). If ST <I,=aTY,
the value of the local critical temperatuiig,. greatly ex-
ceeds its average value.

One can see directly from E@R0), that it is possible to

observe a noticeable diamagnetic moment. Indeed, if we as,

sume realistic valuesp=10"°cmsec? 1=40A (1 is a
mean free pathD=vgl/3), Tc=10K, I',=10K, 6T
=50K, po=80A, andn=0.1, we obtain with the use of Eq.
(10), (18), and(21) the following values of the parameters:
A=10"° B=3, |\|=5K. Then, for example, atT
=11K, one can observgp=—M,/H=3X10°, which is

a value that greatly exceeds the usual value of the parama

netic response of a normal metgb=10"5.
The diamagnetic response can be observed in the reg

7<B [see Eq(20)]. It is important to note that the limitation

on the value oB is caused by the proximity effect. Indeed,

impurities were considered as independent and the amplitude
I was proportional tang, whereng is the concentration of
the impurities. However, it is important to realize that a de-
crease in temperature leads to a correlation between the lo-
calized magnetic moment. Spin-flip scattering is frustrated,
and, as result decreases aB—0, that isI'=I'(T). In this

case a generalized E() has the form

C?=27m2af(T,T.), 9)

where
r.m\? ,
f(TlTC)_|:<FOC(TC)) -T
6I2(T) [ T.(T) I.(T)
T ”(rmm)) Py @
where  By=—6\I/(7T¢)? [cf. Eq. (9],
I'=T",(0). Correspondingly, the magnetic moment is
equal to

M,=—Af(T,To)H/T(T). (22

Ill. OVERDOPED CUPRATES: COMPARISON WITH
EXPERIMENT

The theory described above can be applied to any inho-
ogeneous superconducting system, conventional, as well as
the highT . oxides. In this section we focus on the overdoped
cuprates because of a recent observation by Bergemann
et al* The authorddescribe torque measurements performed
on a ThBa,CuQ; overdoped samplel=15K). A diamag-
netic moment, proportional to the external magnetic field,
has been observed &t>T.. Note that the value ofT,

% 15K has been determined by resistive measurements. One

. can show that the theory described in Sec. Il is directly re-
98ted to the data obtained in Ref. 4.

As we know, the overdoping is provided by an additional
oxidization and is accompanied by a drastic decreask;in
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-oM, aboveT.=15K, and this observation makes the problem go

oH beyond the nature of thid.,(T) dependence.

0.6 We think that the phenomenon observed in Ref. 4 is due
to the inhomogeneous nature of their sample. The curve

0.5 Heo(T) as well as the valug=15K separates supercon-
ducting and “normal” regions, and the “normal” region

o4 displays normal transport properties. As for the magnetic re-
sponse, it is determined by the presence of small supercon-

03 o Experimental data (Ref 4) ducting regions withT_C;L>thra"S, and this leads to the phe-

— Theory , nomenon observed in Ref.(4ee Fig. 1
0.2 | T

| i IV. CONCLUSION
50 100 150 200 T?(K?)

Inhomogeneous superconducting systems, such as over-
FIG. 1. Diamagnetic susceptibility for the overdoped doped cuprates, are characterized by the coexistence of an
TI,Ba,CuO;. 5 (Tc=15K). @: experimental datdRef. 4; solid  anomalous diamagnetic moment along with normal resistive
line: theory. dissipation. Such an unusual state occurd atT{° and is
caused by the presence of small superconducting regions
(T9=90K—T,=15K). We suggestsee, e.g., Refs. 8 and Po<£o (o is the coherence lengtiwith a value of local
9) that this decrease is caused by the pair breaking effect Kol >Teo
magnetic scatterers. Note that the presence of pair breakers The magnetic moment for such a system is described by
has been observed experimentalsee, e.g., Refs. 10 and Egs.(21) and(22). The proximity effect is playing an impor-
11). Since the oxygen distribution is nonuniform, the sampletant role and was explicitly taken into account.
becomes inhomogeneous with a nonuniform distribution of Note that typical normal metals are characterized by a
magnetic impurities. As a result, one can expeei above ~ Small value of magnetic susceptibility=(10~ °) whereas the
the appearance of a diamagnetic momenf afT®=15K. magnetic response _of a superconductor is larger by almost
Let us use the approach developed in Sec. Il, and, mora—06 orders of magnitude. As a_result, even the presence of'a
specifically, Eq.(22) to analyze the data in Ref. 4. The _small number of super(_:onductlng clusters leads to a drastic
authoré use a Tl-based cuprate sample which was studied'crease in the magnetic moment.
before in Ref. 12 and displays an unconventional behavior of The experimental data presented in Ref. 4 can be ex-
H.,(T) (positive curvature, sharp upturn ne=1K, a plained by our approach described herein based on an inho-
large value ofH,(0) relative toHS™) 131 This behavior ~M0geneous structure of the system.
has been explained by &by magnetic impurity scattering
and an ordering trend of those impuritiesTas>0. The tem- ACKNOWLEDGMENT
perature dependence of the amplitdd€r) for the sample
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Based on Eqgs(9"), (22), and (23) one can evaluate the APPENDIX
magnetic moment. One can see directly from Fig. 1 that the o
data obtained in Ref. 4 follows a quadratic dependgsee I. For the case of small deviatia#i'=I".,—I" one can use

Egs.(21) and(9")]. In addition, Eq(22) contains two adjust- the perturbation theory. Based on Ef), we obtain
able parameters and they ahe=2.5x10 6, B,=0.7. One
can see that the total set of data obtained in Ref. 4 is in very N~ eHD— JdpaT'|Aqf?
good agreement with the theory using Eg2) and these 1=¢€ [dp|Al?
values ofA andB.

Let us note also that Ref. 4 was aimed at the investigation The term 6T'=6T'(p) is localized near some point,.
of the problem of whether thid .,(T) curve obtained in Ref. The eigenfunctionA, can be written in the formA,
12 (for Bi-based overdoped cuprate a similar effect was ob—=exp(—eHp%2). Inserting this expression in Eq&) and
served in Ref. 1prepresents the critical fieldhen this curve  (12), we obtain the value of the magnetic moment for the
separates superconducting and normal regiengthe irre-  single clusterspob:
versibility line (in this case the line separates vortex lattice
and vortex liquid regions Torque magnetometry is an ideal M,=—a[T2—T2—b]/T.., (A2)
tool for such a study. The measuremérdemonstrated the ¢
absence of vortices above the curve, but, nevertheless, a pugherea= (87°vDL/H); b=[eHD— (eH/)[dpsT]6I ../
zling diamagnetic response was observed in the reglon 2. This expression is valid if (D) [dpd['<1 and corre-
>H.,. Moreover, a similar response has been observedponds to the region

(A1)
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T>T(H)=[T%—(6/m?)eHDI.,]*2 —6T:1;a(po)]1=0. In reality, a(py)<1. As a result, we ar-

[I. Boundary condition(17) allows us to evaluate the eigen- rive at the equation

value\,. If |\;|//eHD>1 (this is valid in the realistic case

6T p3/D>1; eHp2<1), one can simplify Eq(17). Since Jo[ (2p3(N 1+ 6T)/D)H2=0, (A3)
fth(t,p)|pOsf5°dx x Lexg —(a/x)—\x], the ratio on the

right-hand side of Eq(17) greatly exceeds 1, then the lowest where J, is the Bessel function. The expressiti8) deter-
eigenvalue\, is the solution of the equatiomb[0.5—\ mining the eigenvalua ; directly follows from Eq.(A3).
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