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Simple analytical model of vortex-lattice melting in two-dimensional superconductors
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The melting of the Abrikosov vortex lattice in a two-dimensiorfaD) type-Il superconductor at high
magnetic fields is studied analytically within the framework of the phenomenological Ginzburg-Landau theory.
It is shown that local phase fluctuations in the superconducting order parameter, associated with low-energies
sliding motions of Bragg chains along the principal crystallographic axes of the vortex lattice, lead to a weak
first-order “melting” transition at a certain temperatufg,, well below the mean-field@., where the shear
modulus drops abruptly to a nonzero value. The residual shear modulus Bhalezreases asymptotically to
zero with increasing temperature. Despite the large phase fluctuations, the average positions of Bragg chains at
finite temperature correspond to a regular vortex lattice, slightly distorted with respect to the triangular Abri-
kosov lattice. It is also shown that a genuine long-range phase coherence exists only at zero temperature;
however, below the melting point the vortex state is very close to the triangular Abrikosov lattice. A study of
the size dependence of the structure factor at finite temperature indicates the existence of quasi-long-range
order with S(G)~N°, and 1/2Z o<1, where superconducting crystallites of correlated Bragg chains grow
only around pinning chains. This finding may suggest a very efficient way of generating pinning defects in
quasi-2D superconductors. Our results for the melting temperature and for the entropy jump agree with the
state-of-the-art Monte Carlo simulatio§0163-182@09)08129-1

. INTRODUCTION tions have recently showfi °that in a 2D SC a true vortex-
lattice melting phase transition takes place at finite tempera-

Many potentially important superconductors, such agure and that the transition is of the first order.
some of the highF, cuprates or the organic charge-transfer In this paper we present a simple model of the vortex-
saltsk-(BEDT-TTF),X,! are highly anisotropic compounds lattice melting in 2D extremely type-Il superconductors. Our
with nearly two-dimensional electronic structure. Thesemodel is based on the observation that at low temperature the
compounds are extremely type-1l superconductors with verynain correction to the mean-field free energy arises from
small in-plane coherence length. Consequently, the GinzburgBragg-chain fluctuations,” namely, fluctuations which pre-
critical region is relatively large and so one expects drastiserve long-range periodic order along a principal crystallo-
deviations from the predictions of the mean-field theory forgraphic axis in the vortex lattice. This simplification reduces
these materials, due to strong thermal fluctuations in the sweur 2D problem to a 1D one, which can then be solved
perconducting order parameter. exactly.

In the mixed state at very low temperatures amplitude Our calculations show that the Abrikosov triangular lat-
fluctuations are suppressed, but phase fluctuations can leadtice is subject to strong phase fluctuations. As a result of
the melting of the vortex lattice at a certain magnetic fieldthese fluctuations the sharp mean-field transition into the
Hu(T), Ha<Hn,<Hc.2® A soft shear Goldstone mode, Abrikosov lattice state becomes a smooth crossover. Since
which can be described by long-wavelength phasdhe strength of the phase dependent terms in the SC free
fluctuation$ is responsible for this remarkable melting phe- energy is relatively small{2% of the SC condensation
nomenon. Unfortunately, rigorous analytical approaches tenergy the scale of the crossover temperatilig, is well
this problem have encountered fundamental difficultiesbelow the mean-field.. At temperatures higher thah.,,
large order high-temperature perturbation expansion witlthe vortex lattice transforms to an ensemble of strongly un-
Borel-Pade approximants to the low-temperature behaVior, correlated vortices, fluctuating independently around equilib-
has no indication of an ordered vortex lattice even at zergium lattice positions. It is found that because of a discon-
temperature. The existing nonperturbative approaches havmuous (rotationa) symmetry change in the mean positions
not completely clarified the situation: Renormalization-groupof vortices there is a weak first-order transition, superim-
studies’®as well as Monte Carlo simulaticthave predicted posed on the smooth solid-liquid crossover, which is re-
no crystal vortex state in a pure two-dimensio(2D) super-  flected in a small jump of the vortex system entropy at a
conductor (SO at finite temperature, while the functional certain melting temperatur&,~T.,. Calculation of the
integral formalism suggested in Refs. 10 and 11, has led tetructure factor shows that exact long-range translational or-
some kind of a vortex liquid freezing transition without der exists only at zero temperature, in agreement with previ-
breaking theU (1) symmetry. Several Monte Carlo simula- ous result$:}"'8 However, below the melting temperature
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Tm, the vortex state is very close to the triangular Abrikosov !
lattice. Our results for various thermodynamic parameters
agree well with numerical calculations in Ref. 12.

Il. THE SLIDING BRAGG-CHAINS MODEL

Our starting point is the Ginzburg-Landa@L) free-
energy functional

FGL: f d2r

with the order parametar/(F), defined on the subspace of

the lowest Landau levéLLL ). ™ This approximation is valid periods of the order parameter modulus along these axes, respec-

at sufficiently low temperatures or. hlgh magn(_atlc fields., tively, while m/a, and w/a,, are the respective distances between
for kgT<7iw:), when thermal excitations to higher Landau .ains.

levels in the condensate of Cooper pairs can be neglected.
All possible configurations of the order parameter in thisgne. Other periodic lattices yield small positive deviations
subspace can be taken into account by considering the freg)m B, while any departure ofy from the quasiuniform
energy distribution of the vortex lattice towards a localized structure
F=—KgTInZ (2)  leads to a drastic increase of the free enéfgy. _
) - ) ) ) ) Thus we conclude that the main correction to mean-field
with the partition functionZ defined by the functional inte- .qer parameter arises from fluctuationscqfand a,, and

- 1 -
—aly(n)|*+ 5 Blu(r]* (D

FIG. 1. The two families of Bragg chains in the triangular lattice
along the principal axesandx’. The parameters, anda,, are the

gral take
Z j DyDyexd —Fg /kgT] (3) N2 2
= exd — .
eLe ca)= > cné(q— 3 ) ©®
. n=—N/2+1 X
In Eq. (1) a=a'(H,—H) and B are phenomenological _ , _
constants. The integral in E(B) is performed over all non- Note that regardless of the choiceayf, e "Vi(x,y) is a
equivalent states. periodic function ofx with a perioda,. Therefore the used

An arbitrary wave functiorfin the symmetric gaugdrom representation af(q) allows the order parameter to fluctuate
the LLL subspace can be written as a one-dimensional inteanly along they direction. Each coefficientg,=|c,|e'*n,
gral: describes a set of/N Landau orbital centers, periodically

arranged within a certain chain along thleaxis (Bragg

w(xly):eixyf dqo(q) ¢q(x,Y), (4) chain. These Bragg chaind=ig. 1) are allowed to slide in-

dependently along their common axis, where the phgse
where ¢>q(X,y)=eXF{in—(y+q/2)2] is a Landau function detgrmines_the relgtive positi01<|n=—<p.n/qn of the nth
with an orbital center located atq/2 along they axis. Note ~ chain. The ideal lattice states are obtained by seleatihy
that all spatial lengths are measured in the units of the mag= Coexp@yn?), 0= y=m/22' Then for an arbitrary rhombic
netic lengtha, = (cxi/eH)¥2 A system ofN vortices, with  lattice the lattice constart, in units of magnetic length and
sizeL,=a,+/N along thex direction, wherea, is an arbitrary ~ the angled/2 between the principal crystallographic axes are
constant, is described by coefficients c;=c(q;), q,  expressed througly asa;=m/\1—(y/m)? cos®=1ylm.
=(2m/Ly)i with i=—N/2+1,... N/2. The partition function(3) can be therefore approximated

It is well known that the minimal value of the GL free- by the multiple functional integral
energy functional is obtained when onlyN coefficients
from the whole set oN coefficients are different from zero Z%f H dc,dch exp(—fgy), 7
(ie., c,n#0,forn=—N/2+1,.../N/2). At sufficiently n
low temperatures, when amplitude fluctuations are supwhere
pressedsee beloy, this minimum corresponds to the mini-
mum of the Abrikosov parameter: FoL S [c?

n
n

fr = =
1 1 2 " keTUN
= g2rlul® | q2r1.12
Ba (Vfdrlwl /(derla,bl ) SN
whereV is the volume of the superconductor. From the defi-

2,2

+ gt NTTECRCh 4 Cnt Cnst 8
nition of B, it is seen that the absolute minimu@y=1 is _ _
obtained for a spatially uniform order parameter. Any devia-Wwith a=ea,/\27ksT, B=Ba./\AmksT, \=exp(- =/
tion from || =const leads to an increase . Under the  &). The inclusion of the factog/N in the denominator takes
constraint of the LLL subspace, howevpp]#0 cannot be a into account the fact that each term in the GL free-energy
constanisince| | =0 at the vortex corgsand the minimum  functional, Eq.(1) [written in the discrete representatit@)],
Ba=Ba=1.159 is obtained for the triangular Abrikosov lat- corresponding to a certain Bragg chain in the vortex lattice,
tice, which is the closest configuration to the homogeneouss degenerate/N times. This degeneracy reflects the freezing
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of all YN internal degrees of freedom within a chain. As mode (phonon coordinatesuy = (1/N*4 3 (b,+b})e'",
discussed above, by relaxing these degrees of freedom theith k= (27/\N)I, |=—N/2---\/N/2, and then expand-
free-energy functional develops very large, highly improb-ing the free-energy functiondll0) to second order in these
able fluctuations. Therefore by dividiis, with N we are  coordinates. Omitting the details of calculations our result
left with a single nondegenerate term, which represents thean be written as
dominant degree of freedom for each chain.

Note that the functional E(8) is invariant under an ar- 247

o
bitrary linear shift of the phases,: 5fe|_:ﬁ kzo [Pulug [>+Qyluy 121, (12
a k=
¢n=¢ntantb. ©  Wwhere in the long-wavelength limk—0, P,—2, andQ,
This symmetry follows from the symmetry of the GL free- ——\?k*cos 2y. Thus it can be readily shown that the rela-
energy Eq(1) under the magnetic translation grotfp. tive variance of the order parameter diverges, i.¢y/°
The functional(8) has a set of local minima with a single —{#)?)/{#)?~ [(dk/k*). Therefore we can conclude that
amplitude for the entire set of lattice configurations: although the lattice states with/4<y<<mw/2 are thermody-
o o namically stable §f; >0), the soft mode®,, k—0, are
, « ) a? responsible for infinite fluctuations of the order parameter.
Cnl*==, @n=yn" fs=~— T This result is similar to that obtained by Mo8réor a 2D
Pa BPBa system of fluctuations. The divergence, which arises because
where of the perturbative nature of the above calculation, is stron-
ger in our 1D model. However, within the nonperturbative
7 (24 2 method developed below this divergence is removed.
ﬁa‘;p exil —2(s"+ pT) Jeod2ysp) It should be noted that the soft mode described above is

associated with the long wavelength component of the phase

i H 2142
is a reduced Abrikosov parameter, amet7°/a,. These  ,cyations in Eq(10); this can be seen by neglecting am-
minima can be immediately obtained if we use the symmet%”tude fluctuations, defining fluctuating phases:

of the functionalfg, under the translatiom—n+1 . The

Abr&osov parameteB,, defined by Eq(5), is proportional L 1,
to B.: Ba=+mBa.la,. The triangular lattice, withg, er(N=@n=¢n == 57N

=Ba, % corresponds toy=/2, a;=2m/+/3. The mean- . . _ _

field condensation energy per unit vortex Bg /N  and taking the continuous limisee Eq.(11)], i.e., xp—

= — wa?2BB,. + 9%+ 19y?, so that the relevant part in the free-energy func-
Our main approximation at this point is based on thetional (10) can be written as

small value of the parametar=e™ ", which enables us to

neglec.t in.Eq.(8)_a.1II terms of Fhe order higher.thanz, ie., 8f on= KAf cod 7+ Pg; [ay?)dy

to retain, in addition to the first-order terms i\ only the

leading-order terms in the phase,) dependent part of the

1
free energy. Thus up to this order in ~ EKAJ (6% 13y?)?dy, (13
foL=—a> |ci2+ g S [leal4+ 4N col?cns 4|2 whereK ,~\2(a?/2B). It is instructive to compare this ex-
n n

pression with that derived in Ref. 4 for the effective Hamil-
tonian associated with a smoothly varying phaie,y),

2 2
AN Cn-allCnallenl” cOsxn]. (10 namely, H,n=3Cqqaf d?r (V26)?, where cgq is an isotropic
The anglesy,, are linear combinations of the phasgs, shear modulus of the vortex lattice, which is given approxi-
mately by3(a?/B).
Xn="2¢nt @1t @ni1, (11 The agreement between the two approaches is, however,
which are clearly invariant under the transformati®n incomplete, not only because of the one-dimensional nature
of our model(in contrast to the 2D analysis of Ref),but
IIl. SHEAR MOTIONS: THE MELTING MECHANISM also because of the significant difference in the “stiffness”

parametersK,, and cgg, namely, K,/Ceg~A?~10"2. The

The model presented in the previous section is based oreason for the disagreement can be understood within our
our observation that the low-lying excitations of the Abriko- approach by considering shear motions along families of
sov vortex lattice are associated with the sliding motions oBragg chains with Miller indices higher than of the principal
the lattice Bragg chains along the principal crystallographicones. For these families the valuesagfare relatively large,
axes. These excitations are closely related to the soft sheand the corresponding values %f are not small compared
modes discussed by Modrin connection with the vortex to unity. In the limit of very large Miller indicesa,— and
lattice melting. A2—1, so that the corresponding stiffness parameter ap-

Let us consider this analogy in a greater detail. Followingproachescs, and becomes independent of the chain orien-
Ref. 4 we first invoke a perturbative approach with respect taation, as in Moore’s theory.
the Abrikosov vortex-lattice solutioe!), by defining the Thus in contrast to the isotropic shear model used in Ref.

displacement®,, throughcnzcﬂ')(1+ b,), and their normal 4, the appearance of the small paramat®rin front of the
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leading phase dependent terms of the free-energy functional 1.22
(10) implies that the shear motions along the two principal &
crystallographic axes cost a small fraction of the condensa- . 1+2[
tion energy, and so lead to significant distortions of the vor- § 120k
tex lattice along these particular directions at very low tem- % '
peratureqi.e., with respect to the mean-field.). 41 90}
Considering this low-temperatures regime, the calculation %
of the partition functionZ can be simplified considerably § 1.18}
since amplitude fluctuations can be neglected. The functional £
integrals in Eq.3) over the order parametér), y*} should % 1.17}
be replaced by integrals over the new variables,c;}
E‘{|Cn|i(Pn}- |
For an arbitrarily large system due to the invariance of ) , ) , )
free energy under the magnetic translation group, the trans- 1 2 3

formation Eq.(11) is degenerate, and the inverse transforma-

tion, ¢n=¢n({xm}), is Not unique. It is determined up to a  FIG. 2. Dependence of the Abrikosov paramefgr on z
linear function ofn. To determine the phases, uniquely,  =(7/&,)% The two minima at,=m/2\/3 andz,= 3m/2 corre-
we have to impose additional conditions, determining theSPond to the triangular Abrikosov latticg,= B4, with different
arbitrary constant and b in Eq. (9). These conditions are choice of the Bragg chains _dlrectlon. The maximunzatm/2 cor-
equivalent to boundary conditions of Ed.). Linear bound- ~ "€SPonds to the square lattice.

ary conditions lead to linear dependenceaaindb on .

Since the determinant of any such transformation does not AN2 ma? Te
depend on the variables, the partition functions for varaus T T
andb differ by a constant factor. Therefore instead{gf,} (1+4N)° 28

one can integrate ovély,} with the same free-energy func-

tional. The GL free energy has different values when the The temperaturd(a,) determines a smooth crossover
phasegq xn} lie within the interval 0,7]. To satisfy this con-  from the mean-field lattice state with= /2, By= =1
dition and to exclude double counting of fluctuation we in- +4N—4)2, to a new state corresponding EHZEmEl

tegrate over intervay, <[0,7] and allow the phaseg, in | 4) where the phase dependent terms in the free energy
Eq. (11) to have arbitrary values. , _are completely destroyed by fluctuations. Note that the en-

Omitting unimportant constant factor we obtain after in- ooy gifference between these states is of the order of the
tegrat_ion over angle variables that the partition function cary, 5 parametex 2.
be written as In the zero temperature limE<T,(a,) the parameter

Bn=(Vmlay)(1+4x—4\?) has minimal values ataZ
z=2Nx wa e |dlc,lefs, (14 =2ml\3 ,andaj, =237 (Fig. 2, depending on the choice
0 n of the Bragg chains famify (i.e., along thex or x’ axis in
Fig. 1). Both of the minima describe a triangular Abrikosov
where lattice with B7;=B,=1.1596. Both directions can be se-
lected in three equivalent ways in the Abrikosov lattice.
o B All equivalent configurations can be obtained from the
fo=> {—a|cn|2+ §(|cn|4+4)\|cn|2|cn+1|2) invariance of the mean-field Abrikosov parameter
n Ba= 2 75 s jexd —«S+p?)]cos(2sp, where z=m?/aZ,
1 B under the transformationg’ = w2z/(z°+ v?), v'=m?yl
— —Inlo(2BN\27|cn_1]lCnrallcnl?) (15  (Z2+9?), andz' =z, y'=—1, or y' = y+ 7n with an arbi-

™ trary integemn.

The doubly degenerate equilibrium statelTat 0, just de-
scribed, is stabilized by the competition between two types
of interactions among parallel chains: the repulsive interac-
%ion between any two neighboring chains, which is linear in
the coupling parametex, and the attractive three-body phase
tdependent interactiofi.e., involving any three neighboring

andl(x) is the modified Bessel function of the order
Neglecting amplitude fluctuations, the integrals in Eq.
(14) can be performed by the stationary phase approxim
tion. Since the last term in E|15) is of the order? or
smaller, the approximate solution to the stationary poin

equations,a_fslﬁlcn|=0, can be simply obtained bY using chaing, which is quadratic i\ [see Eq(10)]. At finite, low
the translational symmetry of the free-energy functiohal temperatures, i.e., whefi~T,,,, the shear fluctuations de-

It is similar to the mean-field solutiofc,|*=a/BBy with  stroy the phase coherence among parallel Bragg chains, thus

the generalized Abrikosov parameter diminishing the small attractive interaction, and raising the
total free energy. The relatively large, repulsive interaction is
— ,11(7) affected only at higher temperatures.
Bri=1+4N—4\ ()" (16) The interchain coupling parameter depends on the lat-

. a2 e .
tice parametea,, throughA =€ e Sincea,’'>a, (Fig.
where 1), the chains along’ are closer to each other than those
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FIG. 3. Free energy of fluctuating Bragg chainsrmalized by FIG. 4. Dependence of the shear modujuson the reduced

the mean-field free energy— B/By, as a function of the param- e mperature. The jump ofu att=t,, reflects the melting transition.
etert (see text Solid and dashed lines correspond to Bragg chains
along thex andx’ diregtions, respectively. The intersection point at The dependence of the shear modulus on the pararmeter
t=tw~—16.5 determines the phase transition. is plotted in Fig. 4. At the transition point=t,, the value of

the parametea,, corresponding to the minimum free energy,
alongx, and soA(ay)>A\(ay). Consequently, at low tem- cpanges abruptly and the shear modulus jumps fronto
peraturesT=<T.n(ay), when the attractive three-body inter- ,, |t should be stressed that,#0. The residual shear en-
action diminishes with increasing temperature, the first stat@rgy on the high-temperature side of the transition point re-
(ax) is more stable than the second omg)( since its free  flects an incomplete melting &tt,,. The “liquid” state on
energy increases more slowly with increasing temperaturenis side of the transition point retains some degree of phase
than that of the second ori€ig. 3). At higher temperatures coherence between different chains, which continues to de-
T=Tcm(ax), when the repulsive interchain couplings deter-crease gradually to zero with increasing temperature, reach-
mine the temperature dependence, the tendency is revers% the complete liquid state only asymptotically. This be-
and the free energy of the first state,() increases faster havior seems to be due to the persistence of long-range
with increasing temperature than that of the second agke ( periodic order along the chains axis in our model at any
Thus there is an intersection poififn(aY) <Tm=Tcm(ax’),  temperature.
at which the free energies of the these states are equal, but |nteresting structural information on the “quasiliquid”
the corresponding entropies are a little different. Thereforetates described above can be obtained from the calculation
we conclude that af=T,, there is a weak first-order tran- of the average values
sition characterized by a small jump of the lattice entropy.

Defining the parameter= — «\/27/ BkgT,*? the position of w1 " v K el —
the crossing point corresponds te-t,,~—16.5, and the {xn)= wlo(7) )o “XXn exp(— 7 COSxy)

jump in the entropy [S=—-T(JF/dT)] is AS=7.5 ) ) o
X 10 3F e /T . The values ot,, andAS agree fairly well ~ With k=1,2. In the low- and high-temperature limits,
with the Monte Carlo simulations. o 5 g\ 12

The physical nature of this transition can be illuminated (Xn)=T— /_, <X§>:Wz_(_ +Z for 7>1
by considering the shear modulus The vanishing of the T T T
shear modulus in atomic crystals is usually regarded as a (18)
definition of the crystal melting point. In our cagecan be
calculated by transforming/ =¢' ””ch (Ref. 15 and taking
the limit The square root of the relative varianceo

=3 = (xn){xn), is found to beo=(m—2)/wr<1 in
32FGL) the low-temperatures regime ang=1/\/3 in the high-

(xn)=7l2+ 27l m, (x2)y=m?I3+27 for r<1.

temperatures one. These results show that with the tempera-
ture increase the fluctuations destroy the phase correlation
between chains so that the SC state transforms from a frozen
e%brikosov lattice at zero temperature to a new, “liquid”
State with strong vortex fluctuations. However, in contrast to
the usual liquid state, here we find that the average vortex
positions form a regular lattice withy==/4 and ’772/8.)2(
=2.97, wherea, corresponds to the minimum free energy.
For this lattice the angl®/2 between the principal crystal-
lographic axes corresponds ©=75°.

The first-order “melting” point att =t,, thus corresponds
to a discontinuougrotationa) symmetry breaking in this lat-

w=

I’ 70

Note that the considered transformation shifts the phas
Xxn by —27%. Therefore the shear modulus is proportional to
the phase factor in the free energy, i2%(cosy,). Normal-
ized by the mean-field valugy g, where cog,,=—1, it is
reduced to

Mo 11(7)

MMF_ |0(T)'

17
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tice of average vortex positions, fro®=60° (Abrikosov _ _ . n
lattice) on the low-temperature side, @=75° on the high- (e'(en = en)y~ gl m(n" ~N)2gxy — 2—(An)2
temperature one. T

. (22

whereAn=n’—n and n=n’/3+2n/3— 1/2. Equation(22)

IV. BRAGG-CHAINS PINNING AND THE ABSENCE is identical to a second-order cumulant expansion with
OF LONG-RANGE ORDER <‘Pn>: %<Xn>n2% %77!’]2.

An intriguing issue in the theory of the vortex-lattice 1 NS result shows that a genuine long-range phase corre-

melting concerns the existence or the absence of long-rand@tion exists only at zero temperature; it also shows that a

phase coherence in the SC mixed state. In this section waUSter of highly correlated chains can grow only around a
address the problem of long-range ordeRO) and the re- pinned chain, since the phase fluctuations diverge with the

lated topic of vortex lines pinning, as they appear in ourdistance from the pinning chasee Eq(19)]. Note that the
model. position of such a chain is arbitrary since there is no energy
As discussed in Sec. Ill, the fluctuating phagescannot ~ COSt 10 pinning in the GL theory used. In real samples the
be uniquely determined from,; they depend on the choice translational symmetry is broken by impurities, crystal de-
of the boundary conditions for Eq11). Since the general fects, and the termination of the lattice at the sample surface,
solution of the homogeneous equatk.)p £0) is a linear which can pin chains of orbital centers to fixed positions. A
function ofn [Eq. (9], two constants g annd b) are required single pinning center Iocatgd near a given Ch"?‘in. may pin.the
to uniquely determinep,. A possible choice is to taka entire chain due to the chain rigidity. To maximize the pin-

—b=0, which corresponds to the selectian,=0, and ning strength, however, additional pinning centers should be
9071:4;1- The physical meaning of the first conditic;n is that distributed uniaxially along the same chain, rather than ran-

! . . . domly.
the chain, labelech=0 (i.e., located vertically ay=0), is e
pinned to a fixed “horizontal’(i.e., along thex axis) posi- Let us now study the range of SC order existing in the

tion. The second condition has a clear physical meaning ifO'ex State at finite temperature. This can be ggnel by con-
the long-wavelength limit, namely that the horizontal dis-Slderlng the size dependence of the structure factor:
placementu,= (d26/3dy) of the vortex lines vanishes at the 1
pinning sitey=0. S(é)=—(|l(é)|2),

The solution of Eq.(11) which satisfies this particular N

inning condition is(for n>0
P g 8 ) where

n

n
@in:;)(n_l))(il—i_zxo- (19) |(é):fd2r|w(F)|zel(éF)

~ This transformation enables us to calculate any correlagng G is a reciprocal-lattice vector of the Abrikosov lattice
tion function of phase factors; in particular, the pair correla-iin G, =2mvla,, G,=(2mm/b,)—2vb,; b,=mla,, b,

tion function =(xn)a,/2m, and v, m integers. At zero temperature the
- long-range order is reflected by the Bragg peaks \Bﬁé)
<ei(4’n’7‘9n)>:HVf dy, e "cosxvel(en =en)/T] | «N. At finite temperature,
0
7T8.2 2
T > X
xf dy,e 7o S(q)=—-e" "> 0q, 2mvla,
0 nn’,v
. . . ’ ' —i(mlay)(n—n’
can be readily evaluated by using E9) to yield XCy(n"+w,n,n’ ,n+p)e” (MMM, (23)
where atr>1
. Mo~ 7) i
<e'(‘Pn’7‘Pn)>: EE—— (20) ) B B
IO(_T)FH'l C4(n1,nz'ns,n4)5<e|[q’f(nl)+¢f(n2) ‘Pf(n3) ‘Pf(n4)]>
where the function=v(v;n,n’)=v(v;n’,n) is defined(for —exnl — s?(p—s/3+1/3)
n>n’) by 3|n—n’| at »=0, |[n—n’| for 0<w<n’, |n 27

—v| for n’<v=<n, and 0 forv>n.

In the high-temperature limit<1, far above the melting +ilxnyr(n—n’)
point, the small argument expansion of the modified Bessel "
function | (— 7) yields

v=0 (24

with s=min(v,Jn’—n|), p=max@,|n’—n[), ny=n"+», n,

(el(on = en)y o An2-n212_ o (21) =n, ng=n’, n,=n+ ». Note thatC, is the four-chain phase
mn correlation function appearing in the quartic term of the GL
meaning no phase correlation at all. free energy. .
In the low-temperature limir>1, the asymptotic expan- Now, since{x,)=x is independent ofh, the sum oven

sion of 1, (— 7) leads(for anyn’=n>1) to the expression vyields a factoryN, and Eq.(23) can be rewritten as
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_ Waf( ) _ Thus the fluctuations destroy the order within the more
S(G)= IN Te‘G ’4><| ; exr{il (vx—by,Gy) loosely packed family of chains at lower temperature. Con-
l=<v sequently the configuration based on the more closely

packed family is the more stable one at low temperatures

_|||2(,,_3||| 27|+ ; ex;{il(v;—byGy) (i.e., below T,). However, at higher temperaturdse.,
3 1> aboveT,,) when the order in the closely packed family is
1 also destroyed, the configuration based on the loosely packed
_ Vz( |- =vl|/2r } (25) family of chains becomes the more stable one, since the re-
3 maining interaction between chains at these temperatures is

i i . repulsive and weaker for the loosely packed family.
_ This expression reflects the extreme anisotropy character- The first-order transition &, is therefore a discontinu-
izing our Bragg chains model: Along the reciprocal-lattice o5 transformation between two different average configura-
axis G,=0 [i.e., for v=0 in Eq. (29] one finds perfect jons of chains. The low-temperature configuration is an
LRO, sinceS(Gx=0,Gy)~N. For anyG,+#0, however, the jqeal Abrikosov triangular lattice with small fluctuations
corresponding Bragg peaks reflect only tlr)f 1D LRO withinghoyt the mean positions of vortices. In the high-temperature
the real lattice chains, i.e5(G,#0,G,)~N"% This feature  configuration the phase fluctuations are significantly larger
is due to the finite range of the off-diagonal phase correlationhan in the low-temperature one, whereas the mean positions
function (i.e., to the absence of off-diagonal LR@t finite  f the vortices are still forming an exactly regular lattice, but
temperature. now with ®@=~75°,

It should be stressed here that in the triangular Abrikosov a correlated cluster of chains nucleates only around a
lattice there are thre_e equivale_nt ways to select the princip%inned chain. Since according to our model, the pinning
axes. Since the reciprocal-lattice points wisi=0 depend  force of a whole chain can be strengthened dramatically by
on our concrete choice of the coordinate system one Mayistributing pinning centers uniaxially along this chain, it
expect that by averaging over all three equivalent orientamay suggest a very efficient way of generating pinning de-
tions, the size dependence of the structure factor will be iSofacts in quasi-2D SC. This pinning mechanism may be tested
tropic, satisfyingS~N” with 1/2<o<1. experimentally by producing columnar defétslong the

This result is consistent with the quasi-LRO obtained byconducting planes in quasi-2D SC.

Kato and Nagaosg which is reminiscent of the  The neighboring-chains appoximation used in the deriva-
Kosterlitz-Thouless-Halperin-Nelson-Youfigheory of 2D tion of our Eq.(10) is similar to that employed by Balents

melting, according to whict$~N? with o=<5/6. and Radzihovsky’ in studying freezing transition in a 3D
Ginzburg-Landau model of layered superconductors. In that
V. CONCLUSION work the authors considered vortices confined by an external

In this paper we have studied the melting of the SC vortex1D periodic potential, which partially removes the LLL de-

lattice in 2D at high magnetic fields and low temperatures?cr o o: & procedure which enabled them to show how the
; . 9 gnet ; PE neighboring SC layers continuously freeze into a triangular
(i.e., in the LLL approximation by using an approximate

analytical approach, Our results basically agree with th vortex lattice. We stress, however, that in our work, we study

state-of-the-art Monte Carlo simulations. The simple analyti- D SC, where the two principal crystallographic axes of the

cal approach used enables us to draw a clear picture of thvortex lattice determine the propagation directions of the soft

. : L . r%odes, without any need for a confining external potential.
m.e'“T‘g process: The sl_<e|eton O.f this p|(;ture conS|st_s of thq’he existence of two inequivalent principal directions for
principal crystallographic axes in the triangular Abrikosov

lattice, along which families of almost rigid Bragg chains sliding chains in our approach, in contrast to the single di-
S 9 9 99 rection dictated by the 1D external potential in Ref. 27 ap-
slide nearly freely at low temperatures due to thermal fluc- . . : . X
- o . . ) proach, is responsible for the discontinuous, first-order tran-
tuations. Similar motions along crystal axes with higher’. . L S .

S S sition appearing in our work, which is absent in Ref. 27.
Miller indices cost significantly more energy and are there-
fore quenched at low temperatures. We would like to thank I. D. Vagner and P. Wyder for
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fluctuations overcome the weak attractive interaction bements. This research was supported by The Israel Science
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