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Simple analytical model of vortex-lattice melting in two-dimensional superconductors
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The melting of the Abrikosov vortex lattice in a two-dimensional~2D! type-II superconductor at high
magnetic fields is studied analytically within the framework of the phenomenological Ginzburg-Landau theory.
It is shown that local phase fluctuations in the superconducting order parameter, associated with low-energies
sliding motions of Bragg chains along the principal crystallographic axes of the vortex lattice, lead to a weak
first-order ‘‘melting’’ transition at a certain temperatureTm , well below the mean-fieldTc , where the shear
modulus drops abruptly to a nonzero value. The residual shear modulus aboveTm decreases asymptotically to
zero with increasing temperature. Despite the large phase fluctuations, the average positions of Bragg chains at
finite temperature correspond to a regular vortex lattice, slightly distorted with respect to the triangular Abri-
kosov lattice. It is also shown that a genuine long-range phase coherence exists only at zero temperature;
however, below the melting point the vortex state is very close to the triangular Abrikosov lattice. A study of
the size dependence of the structure factor at finite temperature indicates the existence of quasi-long-range

order with S(GW );Ns, and 1/2,s,1, where superconducting crystallites of correlated Bragg chains grow
only around pinning chains. This finding may suggest a very efficient way of generating pinning defects in
quasi-2D superconductors. Our results for the melting temperature and for the entropy jump agree with the
state-of-the-art Monte Carlo simulations.@S0163-1829~99!08129-1#
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I. INTRODUCTION

Many potentially important superconductors, such
some of the high-Tc cuprates or the organic charge-trans
saltsk-(BEDT-TTF)2X,1 are highly anisotropic compound
with nearly two-dimensional electronic structure. The
compounds are extremely type-II superconductors with v
small in-plane coherence length. Consequently, the Ginzb
critical region is relatively large and so one expects dra
deviations from the predictions of the mean-field theory
these materials, due to strong thermal fluctuations in the
perconducting order parameter.

In the mixed state at very low temperatures amplitu
fluctuations are suppressed, but phase fluctuations can le
the melting of the vortex lattice at a certain magnetic fie
Hm(T), Hc1,Hm,Hc2.2,3 A soft shear Goldstone mode
which can be described by long-wavelength pha
fluctuations4 is responsible for this remarkable melting ph
nomenon. Unfortunately, rigorous analytical approaches
this problem have encountered fundamental difficulti
large order high-temperature perturbation expansion w
Borel-Pade approximants to the low-temperature behavio5,6

has no indication of an ordered vortex lattice even at z
temperature. The existing nonperturbative approaches h
not completely clarified the situation: Renormalization-gro
studies,7,8 as well as Monte Carlo simulation,9 have predicted
no crystal vortex state in a pure two-dimensional~2D! super-
conductor~SC! at finite temperature, while the functiona
integral formalism suggested in Refs. 10 and 11, has le
some kind of a vortex liquid freezing transition witho
breaking theU(1) symmetry. Several Monte Carlo simula
PRB 600163-1829/99/60~6!/4277~8!/$15.00
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tions have recently shown12–15that in a 2D SC a true vortex
lattice melting phase transition takes place at finite tempe
ture and that the transition is of the first order.16

In this paper we present a simple model of the vorte
lattice melting in 2D extremely type-II superconductors. O
model is based on the observation that at low temperature
main correction to the mean-field free energy arises fr
‘‘Bragg-chain fluctuations,’’ namely, fluctuations which pre
serve long-range periodic order along a principal crysta
graphic axis in the vortex lattice. This simplification reduc
our 2D problem to a 1D one, which can then be solv
exactly.

Our calculations show that the Abrikosov triangular la
tice is subject to strong phase fluctuations. As a result
these fluctuations the sharp mean-field transition into
Abrikosov lattice state becomes a smooth crossover. S
the strength of the phase dependent terms in the SC
energy is relatively small (;2% of the SC condensatio
energy! the scale of the crossover temperatureTcm is well
below the mean-fieldTc . At temperatures higher thanTcm
the vortex lattice transforms to an ensemble of strongly
correlated vortices, fluctuating independently around equi
rium lattice positions. It is found that because of a disco
tinuous~rotational! symmetry change in the mean positio
of vortices there is a weak first-order transition, superi
posed on the smooth solid-liquid crossover, which is
flected in a small jump of the vortex system entropy a
certain melting temperatureTm'Tcm . Calculation of the
structure factor shows that exact long-range translational
der exists only at zero temperature, in agreement with pr
ous results.8,17,18 However, below the melting temperatur
4277 ©1999 The American Physical Society
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4278 PRB 60V. ZHURAVLEV AND T. MANIV
Tm , the vortex state is very close to the triangular Abrikos
lattice. Our results for various thermodynamic paramet
agree well with numerical calculations in Ref. 12.

II. THE SLIDING BRAGG-CHAINS MODEL

Our starting point is the Ginzburg-Landau~GL! free-
energy functional

FGL5E d2r F2auc~rW !u21
1

2
buc~rW !u4G ~1!

with the order parameterc(rW), defined on the subspace o
the lowest Landau level~LLL !.19 This approximation is valid
at sufficiently low temperatures or high magnetic fields~i.e.,
for kBT!\vc), when thermal excitations to higher Landa
levels in the condensate of Cooper pairs can be neglec
All possible configurations of the order parameter in t
subspace can be taken into account by considering the
energy

F52kBTlnZ ~2!

with the partition functionZ defined by the functional inte
gral

Z5E DcDc!exp@2FGL /kBT#. ~3!

In Eq. ~1! a5a8(Hc22H) and b are phenomenologica
constants. The integral in Eq.~3! is performed over all non-
equivalent states.

An arbitrary wave function~in the symmetric gauge! from
the LLL subspace can be written as a one-dimensional i
gral:

c~x,y!5eixyE dqc~q!fq~x,y!, ~4!

where fq(x,y)5exp@iqx2(y1q/2)2# is a Landau function
with an orbital center located at2q/2 along they axis. Note
that all spatial lengths are measured in the units of the m
netic lengthaH5(c\/eH)1/2. A system ofN vortices, with
sizeLx5axAN along thex direction, whereax is an arbitrary
constant, is described byN coefficients ci[c(qi), qi
5(2p/Lx) i with i 52N/211, . . . ,N/2.

It is well known that the minimal value of the GL free
energy functional is obtained when onlyAN coefficients
from the whole set ofN coefficients are different from zer
~i.e., cnANÞ0, for n52AN/211, . . . ,AN/2). At sufficiently
low temperatures, when amplitude fluctuations are s
pressed~see below!, this minimum corresponds to the min
mum of the Abrikosov parameter:

ba5S 1

VE d2r ucu4D Y S 1

VE d2r ucu2D 2

, ~5!

whereV is the volume of the superconductor. From the de
nition of ba it is seen that the absolute minimumba51 is
obtained for a spatially uniform order parameter. Any dev
tion from ucu5const leads to an increase inba . Under the
constraint of the LLL subspace, however,ucuÞ0 cannot be a
constant~sinceucu50 at the vortex cores!, and the minimum
ba5bA.1.159 is obtained for the triangular Abrikosov la
tice, which is the closest configuration to the homogene
v
rs

d.

ee

e-

g-

-

-

-

s

one. Other periodic lattices yield small positive deviatio
from bA , while any departure ofc from the quasiuniform
distribution of the vortex lattice towards a localized structu
leads to a drastic increase of the free energy.20

Thus we conclude that the main correction to mean-fi
order parameter arises from fluctuations ofcn and ax , and
take

c~q!5 (
n52AN/211

AN/2

cndS q2
2pn

ax
D . ~6!

Note that regardless of the choice ofcn , e2 ixyc(x,y) is a
periodic function ofx with a periodax . Therefore the used
representation ofc(q) allows the order parameter to fluctua
only along they direction. Each coefficient,cn5ucnueiwn,
describes a set ofAN Landau orbital centers, periodicall
arranged within a certain chain along thex axis ~Bragg
chain!. These Bragg chains~Fig. 1! are allowed to slide in-
dependently along their common axis, where the phasewn
determines the relative positionxn52wn /qn of the nth
chain. The ideal lattice states are obtained by selectingcn

(L)

5c0exp(ign2), 0<g<p/2.21 Then for an arbitrary rhombic
lattice the lattice constantax in units of magnetic length and
the angleQ/2 between the principal crystallographic axes a
expressed throughg asax

25p/A12(g/p)2, cosQ5g/p.
The partition function~3! can be therefore approximate

by the multiple functional integral

Z'E )
n

dcndcn* exp~2 f GL!, ~7!

where

f GL[
FGL

kBTAN
52ā(

n
ucnu2

1
b̄

2 (
n,s,t

ls21t2cn
!cn1s1t

! cn1scn1t ~8!

with ā5aax /A2pkBT, b̄5bax /A4pkBT, l5exp(2 p2/
ax

2). The inclusion of the factorAN in the denominator takes
into account the fact that each term in the GL free-ene
functional, Eq.~1! @written in the discrete representation~6!#,
corresponding to a certain Bragg chain in the vortex latti
is degenerateAN times. This degeneracy reflects the freezi

FIG. 1. The two families of Bragg chains in the triangular latti
along the principal axesx andx8. The parametersax andax8 are the
periods of the order parameter modulus along these axes, res
tively, while p/ax andp/ax8 are the respective distances betwe
chains.
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of all AN internal degrees of freedom within a chain. A
discussed above, by relaxing these degrees of freedom
free-energy functional develops very large, highly impro
able fluctuations. Therefore by dividingFGL with AN we are
left with a single nondegenerate term, which represents
dominant degree of freedom for each chain.

Note that the functional Eq.~8! is invariant under an ar
bitrary linear shift of the phaseswn :

wn85wn1an1b. ~9!

This symmetry follows from the symmetry of the GL fre
energy Eq.~1! under the magnetic translation group.22

The functional~8! has a set of local minima with a singl
amplitude for the entire set of lattice configurations:

ucnu25
ā

b̄b̄a

, wn5gn2, f s52
ā2

2b̄b̄a

,

where

b̄a5(
sp

exp@2z~s21p2!#cos~2gsp!

is a reduced Abrikosov parameter, andz5p2/ax
2 . These

minima can be immediately obtained if we use the symme
of the functionalf GL under the translationn˜n11 . The
Abrikosov parameterba , defined by Eq.~5!, is proportional
to b̄a : ba5Apb̄a /ax . The triangular lattice, withba

5bA ,23 corresponds tog5p/2, ax
252p/A3. The mean-

field condensation energy per unit vortex isFGL /N
52pa2/2bbA .

Our main approximation at this point is based on t
small value of the parameterl.e2p, which enables us to
neglect in Eq.~8! all terms of the order higher thanl2, i.e.,
to retain, in addition to the first-order terms inl, only the
leading-order terms in the phase (wn) dependent part of the
free energy. Thus up to this order inl

f GL52ā(
n

ucnu21
b̄

2 (
n

@ ucnu414lucnu2ucn11u2

14l2ucn21uucn11uucnu2 cosxn#. ~10!

The anglesxn are linear combinations of the phaseswn ,

xn522wn1wn211wn11 , ~11!

which are clearly invariant under the transformation~9!.

III. SHEAR MOTIONS: THE MELTING MECHANISM

The model presented in the previous section is based
our observation that the low-lying excitations of the Abrik
sov vortex lattice are associated with the sliding motions
the lattice Bragg chains along the principal crystallograp
axes. These excitations are closely related to the soft s
modes discussed by Moore4 in connection with the vortex
lattice melting.

Let us consider this analogy in a greater detail. Follow
Ref. 4 we first invoke a perturbative approach with respec
the Abrikosov vortex-lattice solutioncn

(L) , by defining the
displacementsbn throughcn5cn

(L)(11bn), and their normal
the
-

e

y

on

f
c
ar

g
o

mode ~phonon! coordinatesuk
65(1/N1/4)(n(bn6bn

!)eikn,
with k5(2p/AN) l , l 52AN/2•••AN/2, and then expand
ing the free-energy functional~10! to second order in thes
coordinates. Omitting the details of calculations our res
can be written as

d f GL5
2ā2

b̄b̄a
(
k>0

@Pkuuk
1u21Qkuuk

2u2#, ~12!

where in the long-wavelength limitk˜0, Pk˜2, andQk
˜2l2k4 cos 2g. Thus it can be readily shown that the rel
tive variance of the order parameter diverges, i.e., (^c2&
2^c&2)/^c&2;*(dk/k4). Therefore we can conclude tha
although the lattice states withp/4,g,p/2 are thermody-
namically stable (d f GL.0), the soft modesQk , k˜0, are
responsible for infinite fluctuations of the order paramet
This result is similar to that obtained by Moore4 for a 2D
system of fluctuations. The divergence, which arises beca
of the perturbative nature of the above calculation, is str
ger in our 1D model. However, within the nonperturbati
method developed below this divergence is removed.

It should be noted that the soft mode described abov
associated with the long wavelength component of the ph
fluctuations in Eq.~10!; this can be seen by neglecting am
plitude fluctuations, defining fluctuating phases:

w f~n![wn2wn
(L)5wn2

1

2
pn2

and taking the continuous limit@see Eq.~11!#, i.e., xn˜p
1]2w f /]y2, so that the relevant part in the free-energy fun
tional ~10! can be written as

d f ph5KAE cos~p1]2w f /]y2!dy

'
1

2
KAE ~]2w f /]y2!2dy, ~13!

whereKA'l2(ā2/2b̄). It is instructive to compare this ex
pression with that derived in Ref. 4 for the effective Ham
tonian associated with a smoothly varying phaseu(x,y),
namely, Hph5 1

2 c66*d2r (¹2u)2, where c66 is an isotropic
shear modulus of the vortex lattice, which is given appro
mately by 1

2 (ā2/b̄).
The agreement between the two approaches is, howe

incomplete, not only because of the one-dimensional na
of our model~in contrast to the 2D analysis of Ref. 4!, but
also because of the significant difference in the ‘‘stiffnes
parametersKA and c66, namely, KA /c66'l2;1022. The
reason for the disagreement can be understood within
approach by considering shear motions along families
Bragg chains with Miller indices higher than of the princip
ones. For these families the values ofax are relatively large,
and the corresponding values ofl2 are not small compared
to unity. In the limit of very large Miller indices,ax˜` and
l2

˜1, so that the corresponding stiffness parameter
proachesc66, and becomes independent of the chain orie
tation, as in Moore’s theory.

Thus in contrast to the isotropic shear model used in R
4, the appearance of the small parameterl2 in front of the
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4280 PRB 60V. ZHURAVLEV AND T. MANIV
leading phase dependent terms of the free-energy functi
~10! implies that the shear motions along the two princip
crystallographic axes cost a small fraction of the conden
tion energy, and so lead to significant distortions of the v
tex lattice along these particular directions at very low te
peratures~i.e., with respect to the mean-fieldTc).

Considering this low-temperatures regime, the calculat
of the partition functionZ can be simplified considerabl
since amplitude fluctuations can be neglected. The functio
integrals in Eq.~3! over the order parameter$c,c!% should
be replaced by integrals over the new variables$cn ,cn

!%
[$ucnu,wn%.

For an arbitrarily large system due to the invariance
free energy under the magnetic translation group, the tra
formation Eq.~11! is degenerate, and the inverse transform
tion, wn5wn($xm%), is not unique. It is determined up to
linear function ofn. To determine the phaseswn uniquely,
we have to impose additional conditions, determining
arbitrary constanta and b in Eq. ~9!. These conditions are
equivalent to boundary conditions of Eq.~11!. Linear bound-
ary conditions lead to linear dependence ofa andb on xm .
Since the determinant of any such transformation does
depend on the variables, the partition functions for varioua
andb differ by a constant factor. Therefore instead of$wn%
one can integrate over$xn% with the same free-energy func
tional. The GL free energy has different values when
phases$xn% lie within the interval@0,p#. To satisfy this con-
dition and to exclude double counting of fluctuation we
tegrate over intervalxnP@0,p# and allow the phaseswn in
Eq. ~11! to have arbitrary values.

Omitting unimportant constant factor we obtain after
tegration over angle variables that the partition function c
be written as

Z5Zv
AN}E

0

`

)
n

ucnuducnue2 f s, ~14!

where

f s5(
n

H 2āucnu21
b̄

2
~ ucnu414lucnu2ucn11u2!

2
1

p
lnI 0~2b̄l2pucn21uucn11uucnu2!J ~15!

and I k(x) is the modified Bessel function of the orderk.
Neglecting amplitude fluctuations, the integrals in E

~14! can be performed by the stationary phase approxi
tion. Since the last term in Eq.~15! is of the orderl2 or
smaller, the approximate solution to the stationary po
equations,] f s /]ucnu50, can be simply obtained by usin
the translational symmetry of the free-energy functionalf s .
It is similar to the mean-field solutionucnu25ā/b̄b̄ f l with
the generalized Abrikosov parameter

b̄ f l.114l24l2
I 1~t!

I 0~t!
, ~16!

where
al
l
a-
-
-

n

al

f
s-
-

e

ot

e

n

.
a-

t

t5
4l2

~114l!2

pā2

2b̄
[

Tcm

T
.

The temperatureTcm(ax) determines a smooth crossov
from the mean-field lattice state withg5p/2, b̄ f l5b̄ l[1
14l24l2, to a new state corresponding tob̄ f l5b̄m[1
14l, where the phase dependent terms in the free ene
are completely destroyed by fluctuations. Note that the
ergy difference between these states is of the order of
small parameterl2.

In the zero temperature limitT!Tcm(ax) the parameter
b f l.(Ap/ax)(114l24l2) has minimal values atax

2

52p/A3 , andax8
2

52A3p ~Fig. 2!, depending on the choice
of the Bragg chains family24 ~i.e., along thex or x8 axis in
Fig. 1!. Both of the minima describe a triangular Abrikoso
lattice with b f l5bA.1.1596. Both directions can be se
lected in three equivalent ways in the Abrikosov lattic
All equivalent configurations can be obtained from t
invariance of the mean-field Abrikosov paramet
ba5Az/p(spexp@2z(s21p2)#cos(2gsp), where z5p2/ax

2 ,
under the transformationsz85p2z/(z21g2), g85p2g/
(z21g2), andz85z, g852g, or g85g1pn with an arbi-
trary integern.

The doubly degenerate equilibrium state atT50, just de-
scribed, is stabilized by the competition between two typ
of interactions among parallel chains: the repulsive inter
tion between any two neighboring chains, which is linear
the coupling parameterl, and the attractive three-body pha
dependent interaction~i.e., involving any three neighboring
chains!, which is quadratic inl @see Eq.~10!#. At finite, low
temperatures, i.e., whenT;Tcm , the shear fluctuations de
stroy the phase coherence among parallel Bragg chains,
diminishing the small attractive interaction, and raising t
total free energy. The relatively large, repulsive interaction
affected only at higher temperatures.

The interchain coupling parameterl, depends on the lat

tice parameterax , throughl5e2p2/ax
2

. Sinceax8.ax ~Fig.
1!, the chains alongx8 are closer to each other than tho

FIG. 2. Dependence of the Abrikosov parameterba on z
5(p/ax)

2. The two minima atz15p/2A3 andz25A3p/2 corre-
spond to the triangular Abrikosov lattice,ba5bA , with different
choice of the Bragg chains direction. The maximum atz5p/2 cor-
responds to the square lattice.
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PRB 60 4281SIMPLE ANALYTICAL MODEL OF VORTEX-LATTICE . . .
along x, and sol(ax8).l(ax). Consequently, at low tem
peratures,T&Tcm(ax), when the attractive three-body inte
action diminishes with increasing temperature, the first s
(ax8) is more stable than the second one (ax), since its free
energy increases more slowly with increasing tempera
than that of the second one~Fig. 3!. At higher temperatures
T*Tcm(ax8), when the repulsive interchain couplings dete
mine the temperature dependence, the tendency is reve
and the free energy of the first state (ax8) increases faste
with increasing temperature than that of the second one (ax).
Thus there is an intersection pointTcm(ax)&Tm&Tcm(ax8),
at which the free energies of the these states are equal
the corresponding entropies are a little different. Theref
we conclude that atT5Tm , there is a weak first-order tran
sition characterized by a small jump of the lattice entro
Defining the parametert[2aA2p/bkBT,12 the position of
the crossing point corresponds tot5tm.216.5, and the
jump in the entropy @S[2T(]F/]T)# is DS.7.5
31023FMF /T . The values oftm and DS agree fairly well
with the Monte Carlo simulations.12

The physical nature of this transition can be illuminat
by considering the shear modulusm. The vanishing of the
shear modulus in atomic crystals is usually regarded a
definition of the crystal melting point. In our casem can be
calculated by transformingcn85eihn2

cn ~Ref. 15! and taking
the limit

m5S ]2FGL

]h2 D
h˜0

.

Note that the considered transformation shifts the pha
xn by 22h. Therefore the shear modulus is proportional
the phase factor in the free energy, i.e.,m}^cosxn&. Normal-
ized by the mean-field valuemMF , where cosxn521, it is
reduced to

m

mMF
5

I 1~t!

I 0~t!
. ~17!

FIG. 3. Free energy of fluctuating Bragg chains~normalized by
the mean-field free energy!, 2bA /b f l , as a function of the param
eter t ~see text!. Solid and dashed lines correspond to Bragg cha
along thex andx8 directions, respectively. The intersection point
t5tm'216.5 determines the phase transition.
te

re

-
sed

but
e

.

a

es

The dependence of the shear modulus on the paramet
is plotted in Fig. 4. At the transition pointt5tm the value of
the parameterax, corresponding to the minimum free energ
changes abruptly and the shear modulus jumps fromm1 to
m2. It should be stressed thatm2Þ0. The residual shear en
ergy on the high-temperature side of the transition point
flects an incomplete melting att5tm . The ‘‘liquid’’ state on
this side of the transition point retains some degree of ph
coherence between different chains, which continues to
crease gradually to zero with increasing temperature, rea
ing the complete liquid state only asymptotically. This b
havior seems to be due to the persistence of long-ra
periodic order along the chains axis in our model at a
temperature.

Interesting structural information on the ‘‘quasiliquid
states described above can be obtained from the calcula
of the average values

^xn
k&5

1

pI 0~t!
E

0

p

dxnxn
k exp~2t cosxn!

with k51,2. In the low- and high-temperature limits,

^xn&5p2A 2

pt
, ^xn

2&5p22S 8p

t D 1/2

1
1

t
for t@1

~18!

^xn&5p/212t/p, ^xn
2&5p2/312t for t!1.

The square root of the relative variances
5A^xn

2&2^xn&
2/^xn&, is found to bes.(p22)/pt!1 in

the low-temperatures regime ands.1/A3 in the high-
temperatures one. These results show that with the temp
ture increase the fluctuations destroy the phase correla
between chains so that the SC state transforms from a fro
Abrikosov lattice at zero temperature to a new, ‘‘liquid
state with strong vortex fluctuations. However, in contrast
the usual liquid state, here we find that the average vo
positions form a regular lattice withg5p/4 and p2/ax

2

.2.97, whereax corresponds to the minimum free energ
For this lattice the angleQ/2 between the principal crystal
lographic axes corresponds toQ.75°.

The first-order ‘‘melting’’ point att5tm thus corresponds
to a discontinuous~rotational! symmetry breaking in this lat-

s

FIG. 4. Dependence of the shear modulusm on the reduced
temperaturet. The jump ofm at t5tm reflects the melting transition
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4282 PRB 60V. ZHURAVLEV AND T. MANIV
tice of average vortex positions, fromQ.60° ~Abrikosov
lattice! on the low-temperature side, toQ.75° on the high-
temperature one.

IV. BRAGG-CHAINS PINNING AND THE ABSENCE
OF LONG-RANGE ORDER

An intriguing issue in the theory of the vortex-lattic
melting concerns the existence or the absence of long-ra
phase coherence in the SC mixed state. In this section
address the problem of long-range order~LRO! and the re-
lated topic of vortex lines pinning, as they appear in o
model.

As discussed in Sec. III, the fluctuating phaseswn cannot
be uniquely determined fromxn ; they depend on the choic
of the boundary conditions for Eq.~11!. Since the genera
solution of the homogeneous equation (xn50) is a linear
function of n @Eq. ~9#, two constants (a andb) are required
to uniquely determinewn . A possible choice is to takea
5b50, which corresponds to the selectionw050, and
w215w1. The physical meaning of the first condition is th
the chain, labeledn50 ~i.e., located vertically aty50), is
pinned to a fixed ‘‘horizontal’’~i.e., along thex axis! posi-
tion. The second condition has a clear physical meanin
the long-wavelength limit, namely that the horizontal d
placementux5(]u/]y) of the vortex lines vanishes at th
pinning sitey50.

The solution of Eq.~11! which satisfies this particula
pinning condition is~for n.0)

w6n5(
l 50

n

~n2 l !x6 l1
n

2
x0 . ~19!

This transformation enables us to calculate any corr
tion function of phase factors; in particular, the pair corre
tion function

^ei (wn82wn)&5PnE
0

p

dxne2t cosxnei (wn82wn)/Pn

3E
0

p

dxne2t cosxn

can be readily evaluated by using Eq.~19! to yield

^ei (wn82wn)&5
Pn

nI y~2t!

I 0~2t!n11
, ~20!

where the functiony[y(n;n,n8)5y(n;n8,n) is defined~for
n.n8) by 1

2 un2n8u at n50, un2n8u for 0,n<n8, un
2nu for n8,n<n, and 0 forn.n.

In the high-temperature limitt!1, far above the melting
point, the small argument expansion of the modified Bes
function I y(2t) yields

^ei (wn82wn)&}t ln22n821/2
˜dn,n8 ~21!

meaning no phase correlation at all.
In the low-temperature limitt@1, the asymptotic expan

sion of I y (2t) leads~for any n8*n@1) to the expression
ge
e

r

in
-

-
-

el

^ei (wn82wn)&'eip(n82n2)/2expF2
n̄

2t
~Dn!2G , ~22!

where Dn5n82n and n̄5n8/312n/321/2. Equation~22!
is identical to a second-order cumulant expansion w
^wn&5 1

2 ^xn&n
2' 1

2 pn2.
This result shows that a genuine long-range phase co

lation exists only at zero temperature; it also shows tha
cluster of highly correlated chains can grow only around
pinned chain, since the phase fluctuations diverge with
distance from the pinning chain@see Eq.~19!#. Note that the
position of such a chain is arbitrary since there is no ene
cost to pinning in the GL theory used. In real samples
translational symmetry is broken by impurities, crystal d
fects, and the termination of the lattice at the sample surfa
which can pin chains of orbital centers to fixed positions.
single pinning center located near a given chain may pin
entire chain due to the chain rigidity. To maximize the pi
ning strength, however, additional pinning centers should
distributed uniaxially along the same chain, rather than r
domly.

Let us now study the range of SC order existing in t
vortex state at finite temperature. This can be done by c
sidering the size dependence of the structure factor:12

S~GW !5
1

N
^uI ~GW !u2&,

where

I ~GW !5E d2r uc~rW !u2ei (GW •rW)

andGW is a reciprocal-lattice vector of the Abrikosov lattic
with Gx52pn/ax , Gy5(2pm/by)22nbx ; by5p/ax , bx
5^xn&ax/2p, and n, m integers. At zero temperature th
long-range order is reflected by the Bragg peaks withS(GW )
}N. At finite temperature,

S~qW !5
pax

2

2
e2q2/4 (

n,n8,n

dqx,2pn/ax

3C4~n81n,n,n8,n1n!e2 i (p/ax)(n2n8)qy, ~23!

where att@1

C4~n1 ,n2 ,n3 ,n4![^ei [w f (n1)1w f (n2)2w f (n3)2w f (n4)]&

5expF2
s2~p2s/311/3!

2t

1 i ^xn&n~n2n8!G n>0 ~24!

with s5min(n,un82nu), p5max(n,un82nu), n15n81n, n2
5n, n35n8, n45n1n. Note thatC4 is the four-chain phase
correlation function appearing in the quartic term of the G
free energy.

Now, since^xn&[x̄ is independent ofn, the sum overn
yields a factorAN, and Eq.~23! can be rewritten as
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S~GW !5AN
pax

2

2
e2G2/43H (

u l u<n
expF i l ~nx̄2byGy!

2u l u2S n2
1

3
u l u D /2tG1 (

u l u.n
expF i l ~nx̄2byGy!

2n2S u l u2
1

3
n D /2tG J . ~25!

This expression reflects the extreme anisotropy charac
izing our Bragg chains model: Along the reciprocal-latti
axis Gx50 @i.e., for n50 in Eq. ~25!# one finds perfect
LRO, sinceS(Gx50,Gy);N. For anyGxÞ0, however, the
corresponding Bragg peaks reflect only the 1D LRO with
the real lattice chains, i.e.,S(GxÞ0,Gy);N1/2. This feature
is due to the finite range of the off-diagonal phase correla
function ~i.e., to the absence of off-diagonal LRO! at finite
temperature.

It should be stressed here that in the triangular Abriko
lattice there are three equivalent ways to select the princ
axes. Since the reciprocal-lattice points withGx50 depend
on our concrete choice of the coordinate system one m
expect that by averaging over all three equivalent orien
tions, the size dependence of the structure factor will be
tropic, satisfyingS;Ns with 1/2,s,1.

This result is consistent with the quasi-LRO obtained
Kato and Nagaosa,12 which is reminiscent of the
Kosterlitz-Thouless-Halperin-Nelson-Young25 theory of 2D
melting, according to whichS;Ns with s&5/6.

V. CONCLUSION

In this paper we have studied the melting of the SC vor
lattice in 2D at high magnetic fields and low temperatu
~i.e., in the LLL approximation! by using an approximate
analytical approach. Our results basically agree with
state-of-the-art Monte Carlo simulations. The simple anal
cal approach used enables us to draw a clear picture o
melting process: The skeleton of this picture consists of
principal crystallographic axes in the triangular Abrikos
lattice, along which families of almost rigid Bragg chain
slide nearly freely at low temperatures due to thermal fl
tuations. Similar motions along crystal axes with high
Miller indices cost significantly more energy and are the
fore quenched at low temperatures.

The melting of the lattice occurs essentially when the
fluctuations overcome the weak attractive interaction
tween chains. This interaction is not the same for the t
principal axes; it is stronger for the more closely pack
family of chains.
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Thus the fluctuations destroy the order within the mo
loosely packed family of chains at lower temperature. Co
sequently the configuration based on the more clos
packed family is the more stable one at low temperatu
~i.e., below Tm). However, at higher temperatures~i.e.,
aboveTm) when the order in the closely packed family
also destroyed, the configuration based on the loosely pac
family of chains becomes the more stable one, since the
maining interaction between chains at these temperature
repulsive and weaker for the loosely packed family.

The first-order transition atTm is therefore a discontinu
ous transformation between two different average configu
tions of chains. The low-temperature configuration is
ideal Abrikosov triangular lattice with small fluctuation
about the mean positions of vortices. In the high-tempera
configuration the phase fluctuations are significantly lar
than in the low-temperature one, whereas the mean posit
of the vortices are still forming an exactly regular lattice, b
now with Q'75°.

A correlated cluster of chains nucleates only around
pinned chain. Since according to our model, the pinn
force of a whole chain can be strengthened dramatically
distributing pinning centers uniaxially along this chain,
may suggest a very efficient way of generating pinning
fects in quasi-2D SC. This pinning mechanism may be tes
experimentally by producing columnar defects26 along the
conducting planes in quasi-2D SC.

The neighboring-chains appoximation used in the deri
tion of our Eq.~10! is similar to that employed by Balent
and Radzihovsky,27 in studying freezing transition in a 3D
Ginzburg-Landau model of layered superconductors. In t
work the authors considered vortices confined by an exte
1D periodic potential, which partially removes the LLL de
generacy, a procedure which enabled them to show how
neighboring SC layers continuously freeze into a triangu
vortex lattice. We stress, however, that in our work, we stu
2D SC, where the two principal crystallographic axes of t
vortex lattice determine the propagation directions of the s
modes, without any need for a confining external potent
The existence of two inequivalent principal directions f
sliding chains in our approach, in contrast to the single
rection dictated by the 1D external potential in Ref. 27 a
proach, is responsible for the discontinuous, first-order tr
sition appearing in our work, which is absent in Ref. 27.
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