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Vortex dynamics in the nonlinear Schrödinger equation

Michael J. Quist
Department of Physics, Cornell University, Ithaca, New York 14850

~Received 14 July 1998!

The dynamics of a two-dimensional vortex are analyzed within the framework of the nonlinear Schro¨dinger
equation. Both a bare vortex and a vortex with an external mass trapped in a finite-sized core are considered.
The bare vortex motion is found to be damped at all frequencies, while the finite core has a single resonant
frequency. The force exerted by the fluid on the finite core can be expressed as a sum of dissipative and
Magnus forces for sufficiently low frequencies, even when the core is small.@S0163-1829~99!03430-X#
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I. INTRODUCTION

Vortices represent an important class of excitations
many-body systems. They are associated with quantized
culation and dissipative flow in superfluids,1 flux penetration
and the breakdown of superconductivity in type
superconductors,2 and the Kosterlitz-Thouless phase tran
tion in two-dimensional systems.3 The study of vortices in
classical fluids is also well-developed. The aim of this pa
is to address two questions pertaining to vortex dynamic
a two-dimensional boson fluid. First, we would like to dete
mine whether there is an undamped or weakly damped m
with a moving vortex core; here the core velocity is me
sured relative to the fluid at infinity. Second, we want
understand the dynamics of the core when an external m
is trapped in it. A commonly-used phenomenological mo
expresses the force on a moving vortex core as the sum
damping force acting parallel to the core velocity~again,
relative to distant fluid! and a Magnus force acting perpe
dicular to it.4 This type of model can describe classical vo
tex dynamics; it is also experimentally known to be valid
superfluid 4He, at least when the core is a macrosco
object.5 We would like to know whether such a model al
describes the dynamics at shorter length scales, on the o
of the size of a bare vortex core. We work within the no
linear Schro¨dinger approximation, which is applicable in th
limit of a dilute, weakly interacting Bose gas. A recent pu
lication by Demircan, Ao, and Niu addressed similar qu
tions within this framework;6 we found that this work con-
tained several mathematical errors invalidating its m
results.

The outline of our paper is as follows. We first present
basic vortex model and derive equations of motion for
core and the phonon modes to which it couples. We t
show how these equations can be modified to include a m
sive object in the core. Next we discuss the qualitative f
tures of the normal modes of the system and use nume
methods to find them. Finally we present our results a
conclusions.

II. VORTEX MODEL

We start with the following Lagrangian,7 which describes
a two-dimensional system of bosons interacting via a de
function pseudopotential:
PRB 600163-1829/99/60~6!/4240~5!/$15.00
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L5E d2r H i\C* Ċ2
\2

2m
u“Cu21muCu22

l

2
uCu4J .

~1!

Here m is the boson mass,m the chemical potential, andl
the interaction strength. This can be put in dimensionl
form by a rescaling of variables. We letC˜(m/l)1/2C, r
˜(\2/mm)1/2r , andt˜(\/m)t to obtain

L5
\2m

ml E d2r H iC* Ċ2
1

2
u“Cu21uCu22

1

2
uCu4J .

~2!

The prefactor is irrelevant for the present~classical! analysis,
since the classical equations of motion are invariant und
rescaling ofL. However, note that the action*Ldt acquires a
prefactor of\3/ml, which is much larger than\ provided
that l!\2/m; this defines the weakly interacting limit. In
this limit the correspondence principle applies, at least
ively, and quantum fluctuations around the classical beha
are expected to be small. The Euler-Lagrange equation
the complex fieldC(r , t) is

i Ċ52
1

2
¹2C1~ uCu221!C. ~3!

This is the well-known nonlinear Schro¨dinger equation, de-
rived for the imperfect Bose gas by Gross and Pitaevskii.8,9 It
has since been applied to vortex lines in superfluids b
number of authors~see, e.g., Refs. 10–12!. It can be given a
hydrodynamic interpretation by making the Madelung tra
formation C5Areif, wherer and f are the fluid density
and velocity potential (v5“f) respectively. The equation
of motion for these variables are

]r

]t
52“•~rv!, ~4a!

d

dt
~rv!5“•s, ~4b!

whered/dt[]/]t1v•“ is the convective derivative and th
components of the stress tensors are

s i j 52
1

2
~r221!d i j 1

1

4 S ] i] jr2
1

r
~] ir!~] jr! D . ~5!
4240 ©1999 The American Physical Society
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Except for the derivative terms in the stress tensor, these
the equations of motion for an ideal classical fluid with pre
surep5 1

2 (r221).
Equation~3! has time-independent vortex solutions of t

form f (r )einu for any integern. We consider onlyn51, in
which case the solution is

C0~r !5 f ~r !eiu, ~6!

where f (r ) satisfies

f 9~r !1
1

r
f 8~r !1S 222 f ~r !22

1

r 2D f ~r !50. ~7!

The asymptotic behaviors of the solution for large and sm
r can be expressed as power series:

f ~r !;5 A r2
A

4
r 31S A

48
1

A3

12D r 51••• as r˜0,

12
1

4 r 2
2

9

32r 4
2••• as r˜`.

~8!

The value ofA[ f 8(0) is not determined by the asymptotic
and must be found numerically. We used a shooting met
and foundA.0.825, which does not agree with the value
A2 given in Ref. 6, but does agree with the numerical wo
of Kawatra and Pathria.12

In order to investigate vortex motion, we consider pert
bations around a single-vortex solution with a moving co
The new dynamical variables are defined by

C~r ,t !5C0„r2r0~ t !…1dC„r2r0~ t !, t…, ~9!

wherer0(t) is the location of the vortex core. Changing va
ables in Eq.~3! and linearizing indC and ṙ0 gives

idĊ5 i ṙ0•“C02
1

2
¹2dC1~2uC0u221!dC1~C0!2dC* .

~10!

At this point we decomposedC into cylindrical harmonics:
dC(r )5(mdCm(r )eimu. It is also convenient to represen
r0 by a complex numberr 1[r0•( x̂1 i ŷ). In Eq. ~10!, only
them50 andm52 modes couple to the dynamics ofr0. The
other modes can be set to zero, and the evolution of
relevant modes is given by

idĊ052
1

2
dC092

1

2r
dC081~2 f 221!dC01 f 2dC2*

1
1

2
i ṙ 1S f 81

f

r D , ~11a!

2 idĊ2* 52
1

2
~dC2* !92

1

2r
~dC2* !81S 2 f 2211

2

r 2D dC2*

1 f 2dC02
1

2
i ṙ 1S f 82

f

r D , ~11b!

where the primes represent differentiation with respect tr.
We impose the constraintdC(0, t)50, so thatr0 marks the
true location of the vortex core. These equations then de
re
-

ll

d
f
k

-
.

e

r-

mine the motion of both the fluid and the core. In particul
since thedCm and their time derivatives vanish asr˜0, Eq.
~11a! implies that

ṙ 152
idC09~0!

f 8~0!
. ~12!

III. FINITE CORE

We also would like to introduce an additional massM,
coupled to an arbitrary external forceF(t) and confined to
the center of the vortex. The question arises as to how
mass~which might physically represent a foreign partic
trapped in the core! should interact with the fluid. We con
sidered using a point mass constrained to lie at the vo
core, but found this model to be internally inconsistent
the following reason. If the perturbationdC is bounded, as
the validity of our linearized approach requires, the fluid e
erts no force on a point mass.~This is justified in the next
paragraph.! The equation of motion for a point mass is ther
fore M r̈05F. On the other hand, for the mass to remain
the vortex core, Eq.~12! needs to be satisfied as well. Th
two equations forr0 cannot be satisfied simultaneously f
arbitraryF, so the model is ill-defined. Instead, we will tre
the core as a hard disk of finite radiusa. This is a simple
approximation to a more realistic interaction between
fluid and a trapped particle, such as a Lennard-Jones po
tial. The fluid density must vanish inside the core, so
stationary vortex solutions now satisfyf (a)50, and
dC(r , t)50 for r 5a. Figure 1 showsf (r ) for the three
cases we considered: the bare core, a small core (a50.2),
and a large core (a52.0). The time dependence of sma
perturbations in the fluid is still given by Eqs.~11a! and
~11b!.

For momentum to be locally conserved, the force on
core due to the fluid must equal the momentum crossing
boundary liner 5a per unit time. This condition can be ex
pressed in terms of the stress tensor:

dFfluid

ds
5s•n̂, ~13!

FIG. 1. Square root of the fluid density for the bare core~solid
curve!, small core~dashed curve!, and large core~dotted curve!.
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wheren̂ is the boundary’s outward unit normal andds is the
line element along the boundary. Integrating this express
around the circumference of the core and using the form
the stress tensor given in Eq.~5!, the force exerted on the
mass by the fluid is found to be

F1
fluid[Ffluid

•~ x̂1 i ŷ!5pa f8~a!„dC08~a!1~dC2* !8~a!….
~14!

Note that asa˜0, this force vanishes unlessdC01dC2*
diverges at least logarithmically, as asserted above. Here
mention that Ref. 6 draws its conclusions from the poi
mass model, which we have argued to be inconsistent. T
presentation of this model differs from ours in that they
troduce a mass term directly into the Lagrangian. This hi
the inconsistency but does not remove it: it leads to a se
ingly nontrivial equation of motion forr0 which is actually
equivalent toM r̈050. A subsequent error~in joining inner
and outer asymptotic solutions! disguises this equivalence
enabling the derivation of quantitative results that are ess
tially unsupported.

The equation of motion for the core mass is now

Mr̈ 15F1
fluid1F1 , ~15!

where the external force has been written as a complex n
ber F1[F•( x̂1 i ŷ). Since the equations of motion@Eqs.
~11a! and ~11b! and ~15!# are linear inF1 , r 1 , dC0, and
dC2* , we will seek solutions in which all of these variable
are proportional toeivt. The general solution can be the
expressed as a sum over normal modes in the usual wa

IV. NORMAL MODES

For a finite core, the mode equations for frequencyv are

2Mv2r 12pa f8~a!„dC08~a!1~dC2* !8~a!…5F1 ,
~16a!

dC091
1

r
dC081~224 f 222v!dC022 f 2dC2*

52vr 1S f 81
f

r D , ~16b!

~dC2* !91
1

r
~dC2* !81S 224 f 22

4

r 2
12v D dC2* 22 f 2dC0

5vr 1S f 82
f

r D ; ~16c!

the bare core will be considered as a special case wita
5M5F150. Equations~16b! and ~16c! are coupled inho-
mogeneous linear ODEs fordC0(r ) and dC2* (r ) which
must be solved subject to homogeneous boundary co
tions: thedCm must remain finite asr˜`, and must vanish
as r˜a. The most general solution will have the form of
particular solution to the inhomogeneous equations plu
linear combination of solutions to the corresponding hom
geneous equations~obtained by settingr 150).

We now consider the solutions to the homogeneous eq
tions. Given the order of the equations, there must be f
n
f

e
-
ir

-
s
-

n-

-

i-

a
-

a-
r

such solutions. Asr˜0 their asymptotic behaviors are a
follows: ~a! dC0;r 6 anddC2* ;const3r 2; ~b! dC0;1 and
dC2* ;const3r 4; ~c! dC0; ln r and dC2* ;const3r 4ln r;
and ~d! dC0;r 2 and dC2* ;const31/r 2. In the opposite
limit, as r˜`, two solutions are oscillatory, representin
incoming and outgoing waves, one solution decays expon
tially, and one solution grows exponentially.~The asymptotic
solutions were found by Fetter.10! All other points (rÞ0 or
`) are regular points of Eqs.~16b! and ~16c!, so thedCm

and their derivatives can be specified freely.
In the case of the bare core, only inner solution~a! con-

forms to the boundary condition at the origin. If this functio
is followed to infinity, it will decompose into a linear com
bination of the four outer solutions, and in general~for arbi-
trary v) the coefficient of the exponentially growing solutio
will not vanish. In other words, if the inner boundary cond
tion is satisfied then the outer one will not be. Therefo
with a bare core there is no nonzero solution to the homo
neous equations, and the solution to the inhomogene
equations will be unique and proportional tor 1 .

In the case of a finite core, two linearly independent s
lutions satisfy the boundary condition atr 5a, sincedC08(a)
and (dC2* )8(a) are independent free parameters. Both ha
some coefficient of overlap with the growing solution, so
linear combination can be formed for which the overlap
zero and both boundary conditions are satisfied. The gen
solution to the inhomogeneous equations is in this case
sum of a term proportional tor 1 and a term proportional to
another free parameter. Physically we expect to find a uni
solution where the mass is driven solely by the external fo
and the fluid contains only outgoing waves. This soluti
should be proportional tor 1 . The free parameter associate
with the homogeneous solution can be taken to be the
plitude of incoming waves. Once the solutions are found,
force exerted on the moving mass by the fluid is given by E
~14!. At this point we resort to numerical techniques to d
termine the solutions for the two cases.

V. NUMERICAL METHODS AND RESULTS

No single numerical technique proved capable of solv
Eqs.~16b! and~16c! over the entire rangea,r ,`. Instead,
a different method was used for each of three regionsa
,r ,a14, a14,r &2p/v, and 2p/v&r ,`. In each re-
gion we found a single solution to the inhomogeneous eq
tions and all four linearly independent solutions to the hom
geneous equations. We then chose the appropr
coefficients for the homogeneous terms so thatdC0 and
dC2* satisfied the boundary conditions and joined smoot
at the boundaries between regions.

For the innermost region we used direct numerical in
gration, starting atr 5a, to determine the homogeneous s
lutions. Because of the exponentially growing solution, t
integration is unstable and loses precision with increasinr.
We cut off the integration atr 5a14; the exact placemen
was somewhat arbitrary, but it cannot be much further fr
the core. For the outermost region we used an asympt
analysis. All the outer solutions to the homogeneous eq
tions have asymptotic expansions of the form
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dC0;
ekr

Ar
(
n50

`

an~k!r 2n, dC2* ;
ekr

Ar
(
n50

`

bn~k!r 2n,

~17!

wherek takes on one of the four values6A262A11v2.
Using the full outer asymptotic series forf (r ), the first few
terms of which are shown in Eq.~8!, the coefficientsan(k)
andbn(k) can be found for arbitrarily largen. However, we
found a1 /a0 and b1 /b0 to be of order 1/v for small v,
indicating that then50 terms in the series dominate forr
@1/v. We therefore kept only then50 terms and cut off the
outermost region atr .2p/v. For the middle region we pu
Eqs.~16b! and~16c! on a grid, discretizing the derivatives i
the most straightforward way. For small values ofv this
middle region becomes quite large, so the average grid s
ing needs to be reasonably large as well, to limit the num
of grid points. On the other hand, the solutions still va
rapidly near the boundary atr 5a14, so the spacing must b
much smaller there. A nonuniform grid was used to addr
both these problems.

Finally, note that an exact solution to the inhomogene
equations, for all three regions, is

dC05
1

2
r 1S f 81

f

r D , dC2* 5
1

2
r 1S f 82

f

r D . ~18!

This solution has a straightforward physical interpretation
describes a stationary vortex centered at the origin. To
this, we can refer back to Eq.~9!, the defining equation for
dC. A stationary vortex is described byC(r , t)5C0(r ), so

dC„r2r0~ t !, t…5C0~r !2C0„r2r0~ t !…5r0~ t !•“C0~r !

~19!

to first order inr0, and the angular components of this fun
tion are indeed given by Eq.~18!.

We found that our procedure gave good results for a w
range of frequencies. The results were extremely insens
to adjustment of the region boundaries, increased preci
in the numerical integration, and the inclusion of more ter
in the asymptotic expansions. Changing the number
spacing of grid points in the middle region, however, d
cause small variations in the final results. In particular,
1023&uvu&5 we estimate our errors to be on the order o
few percent.

First we analyzed elastic scattering. When incom
waves of unit power are scattered by a free core (F150),
the core responds with circular motion of a particular amp
tude. Figure 2 shows the amplitude of response as a func
of frequency for the bare, small, and large cores. Note
for a finite core the response depends on the mass; we s
the results forM50 only, but usingM.0 causes no quali
tative changes. A divergent response is seen only asv˜0.
The response functions for the small and large cores e
have a single zero. These correspond to resonances in w
the driven motion~discussed below! is undamped and the
core motion is decoupled from the phonon field. The
sponse function for the bare core, in contrast, is everywh
nonzero; we conclude that there is no undamped or we
damped finite-frequency mode.
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For the small and large cores, we also analyzed dri
motion. When a finite core is driven by the external for
with unit speed, power is radiated as outgoing waves. T
power is equal to that put into the system by the compon
of F parallel to the velocity: forr 151/uvu, corresponding to
circular motion with unit speed, it is given byP5F• ṙ05
6 Im F1 , where the sign is1/2 for positive/negative fre-
quencies. This quantity is shown in Fig. 3 as a function
frequency. It is independent ofM, and so provides a bette
measure of damping than the elastic scattering response
the small core, the radiated power vanishes atv.1.5. At this
frequency there are neither incoming nor outgoing wav
the perturbation is localized and dies off exponentially w
increasingr. There is a similar resonance for the large core
v.0.13. For both cores, the motion is undamped asv˜0.
Results for other core sizes~not shown! suggest that these
features are general: there is always a single posit
frequency resonance, the frequency of which varies invers
with a, and the damping always approaches zero for l
frequencies.

Figure 4 shows the component of the force exerted by
fluid on the mass in the2 ṙ03 ẑ direction. If the only con-
tributor were the Magnus force,

FIG. 2. Amplitude of circular motion in response to incomin
waves of unit power and frequencyv. Results are for the bare cor
~solid curve!, small core~dashed curve!, and large core~dotted
curve!. lnur 1u is shown.

FIG. 3. Power dissipated by the small core~solid curve! and
large core~dotted curve! in driven circular motion with unit speed
and frequencyv. ln P is shown.
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FMagnus522p ṙ03 ẑ, ~20!

this component would be identically 2p, which is marked on
the vertical axis. Because we are driving the core with u
speed, the dependence onv should vanish. Instead we se
that the Magnus effect dominates only in the limit asv˜0;
for uvu*1/10, it can no longer account for the perpendicu
component of the force.

VI. CONCLUSIONS

From our data we can answer both of our original qu
tions. First, there is no undamped mode associated with
motion of a bare vortex. Second, the Magnus effect plays
important role in the dynamics of a finite core for the fr
quency rangeuvu&1/10, even when the core is small. Th
Magnus force has been shown to be a general consequ

FIG. 4. Force in the2 ṙ03 ẑ direction exerted by the fluid on th
small core~solid curve! and large core~dotted curve! in driven
circular motion with unit speed and frequencyv. The mark on the
vertical axis corresponds toF'52p.
it

r

-
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n

nce

of vortex motion in the adiabatic phase approximation.13 We
point out that this approximation is not valid when applied
the nonlinear Schro¨dinger equation, at least for an infinit
system. To see why it must fail, again consider the soluti
to Eqs.~16b! and ~16c! in the limit asr˜`. The particular
solution given by Eq.~18!, as already stated, corresponds
a stationaryvortex. The phase field of distant fluid does n
follow the instantaneous location of the vortex, as it do
within the adiabatic phase approximation, but rather ma
tains a fixed center. The most general solution to the m
equations has the same property, as the solutions to the
responding homogeneous equations are either oscillator
exponentially decaying, as discussed in Sec. IV, and can
cancel this power-law behavior. The failure of the adiaba
phase approximation is also expected on physical grou
since the low-frequency phonons travel with finite speed~the
speed of soundc51 in our units!, the fluid cannot respond to
low-frequency disturbances at a distanced in a time shorter
than 1/d. For this response time to be shorter than the ti
scale associated with the disturbance, we must havd
!1/v; at larger distances the phase of the fluid can no lon
follow the core. Nevertheless we recover the Magnus eff
for low frequencies, in agreement with results dependent
the adiabatic phase approximation, suggesting that the
crepancy at large distances is not crucial. For high frequ
cies, the Magnus force ceases to play a role. Note that
transition occurs while the phonon wavelength is still ve
large compared to the size of the core: forv51/10, the
phonon wavelength is around 60. For superfluid4He, the
transition frequency is 20–30 GHz, corresponding to a p
non wavelength of 100 Å.
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