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Vortex dynamics in the nonlinear Schradinger equation
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The dynamics of a two-dimensional vortex are analyzed within the framework of the nonlineadi@glero
equation. Both a bare vortex and a vortex with an external mass trapped in a finite-sized core are considered.
The bare vortex motion is found to be damped at all frequencies, while the finite core has a single resonant
frequency. The force exerted by the fluid on the finite core can be expressed as a sum of dissipative and
Magnus forces for sufficiently low frequencies, even when the core is sf8alL.63-18209)03430-X]
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Vortices represent an important class of excitations in (1)

many-body systems. They are associated with quantized cir-

culation and dissipative flow in superfluilélux penetration ~Heremis the boson masg the chemical potential, and

and the breakdown of superconductivity in type-Il the interaction strength. This can be put in dimensionless
superconductorsand the Kosterlitz-Thouless phase transi-form by a rescaling of variables. We Idt— (u/\)"¥,

tion in two-dimensional systenisThe study of vortices in  — (2/mu)", andt— (%i/u)t to obtain

classical fluids is also well-developed. The aim of this paper 52 1 1

is to ad_dress fwo questions pertaining to vortex dynamics in | _ _'”“f dzr[ WY -2 | VW24 |2 _|q,|4]_

a two-dimensional boson fluid. First, we would like to deter- m\ 2 2

mine whether there is an undamped or weakly damped mode 2

with @ moving vortex core; here the core velocity is mea-the prefactor is irrelevant for the preseéolassical analysis,
sured relative to the fluid at infinity. Second, we want t0gjnce the classical equations of motion are invariant under a

understand the dynamics of the core when an external maggscaling ofL. However, note that the actigiidt acquires a
is trapped in it. A commonly-used phenomenological mOdelprefactor ofA3/m\, which is much larger thai provided

EXpresses the forcg on a moving vortex core as the sum Offat N<<#2/m; this defines the weakly interacting limit. In
damping force acting parallel to the core velociggain, this limit the correspondence principle applies, at least na-

relative to distant fluitand a Magnus force acting perpen- el and quantum fluctuations around the classical behavior

. . 4 . . .
d|cucljar fo it This tyrl)e of model can”delfcnbe claismall_\éo_r- are expected to be small. The Euler-Lagrange equation for
tex dynamics; it is also experimentally known to be valid in yp e comsie fieldw (r. 1) is

superfluid *He, at least when the core is a macroscopic

object® We would like to know whether such a model also . 1

describes the dynamics at shorter length scales, on the order iW=— EVZ‘I’+(|‘I’|2— 1Ww. ()]

of the size of a bare vortex core. We work within the non-

linear Schrdinger approximation, which is applicable in the This is the well-known nonlinear Schiimger equation, de-

limit of a dilute, weakly interacting Bose gas. A recent pub-rived for the imperfect Bose gas by Gross and Pitae¥skii.

lication by Demircan, Ao, and Niu addressed similar ques-has since been applied to vortex lines in superfluids by a

tions within this framewort; we found that this work con- number of authorgsee, e.g., Refs. 10-12t can be given a

tained several mathematical errors invalidating its mairhydrodynamic interpretation by making the Madelung trans-

results. formation ¥ = \/pe'?, wherep and ¢ are the fluid density
The outline of our paper is as follows. We first present theand velocity potential\(=V ¢) respectively. The equations

basic vortex model and derive equations of motion for theof motion for these variables are

core and the phonon modes to which it couples. We then

show how these equations can be modified to include a mas- ap

sive object in the core. Next we discuss the qualitative fea- 7t V() (4a)

tures of the normal modes of the system and use numerical

methods to find them. Finally we present our results and

conclusions. GqPvV=V-o (4b)

|. INTRODUCTION g2 N
L=f dzr[iﬁ\P*‘P—%|V\lf|2+M|‘lf|2——|\P|4].

. VORTEX MODEL whered/dt=d/dt+v-V is the convective derivative and the
components of the stress tenserare
We start with the following Lagrangiahwhich describes 1 . .
a two-dimensional system of bosons interacting via a delta- 2
. : == —(p%=1)8:+—| 8.0.0——(0: . )
function pseudopotential: i 2(p )9 4 9idip p(ﬁ'p)(&'p) ®
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Except for the derivative terms in the stress tensor, these are 1.0 . . . ==
the equations of motion for an ideal classical fluid with pres- ] P
surep=3(p’~1). 0.8 r .
Equation(3) has time-independent vortex solutions of the . / .
form f(r)e'"? for any integem. We consider onlyn=1, in 0.6 / 4
which case the solution is = Y i
| T 04 / ]
Wo(r)=f(r)e', (6) =1 {
wheref(r) satisfies 0.2 r/f ."‘ 1
. I 1 I’l 1 1 1 1
1 2 3 4 5 6 7

2—2f(r)2—ri2)f(r)=0. (7)

1
f'(r)+ Ff’(r)+
FIG. 1. Square root of the fluid density for the bare celid

The asymptotic behaviors of the solution for large and small
curve, small core(dashed curve and large corédotted curve

r can be expressed as power series:

A A A
Ar——r3+|—+—=|r%+... asr—0,
4 48 12 mine the motion of both the fluid and the core. In particular,
f(r)~ 1 9 ®  since thesW ,, and their time derivatives vanish as»0, Eq.
-——————-.- asr—om, 119 implies that
4r2 32r4 (113 imp
The value ofA=f'(0) is not determined by the asymptotics i 5W(0)
: 0

ry=————. (12

f'(0)

and must be found numerically. We used a shooting method
and foundA=0.825, which does not agree with the value of
J2 given in Ref. 6, but does agree with the numerical work

Ill. FINITE CORE

of Kawatra and Pathri&
In order to investigate vortex motion, we consider pertur-
We also would like to introduce an additional mads

bations around a single-vortex solution with a moving core.

The new dynamical variables are defined by coupled to an arbitrary external foré&€t) and confined to
_ . . the center of the vortex. The question arises as to how this

W (rH=Wo(r=ro())+ ¥ (r=ro(t), 1), © mass (which might physically represent a foreign particle

wherer y(t) is the location of the vortex core. Changing vari- trapped in the copeshould interact with the fluid. We con-
ables in Eq(3) and linearizing ind¥ andr, gives sidered using a point mass constrained to lie at the vortex
core, but found this model to be internally inconsistent for

oo 1_, ) S the following reason. If the perturbatiof¥ is bounded, as
[OW=irg- VWo—5VESW+(2[Wo|*~1)6W+(Wo)*0W™.  the validity of our linearized approach requires, the fluid ex-

(10) erts no force on a point mas§lhis is justified in the next
) _ ) o _ paragraph.The equation of motion for a point mass is there-
At this point we decomposéV into cylindrical harmonics: fore M y=F. On the other hand, for the mass to remain at
the vortex core, Eq(12) needs to be satisfied as well. The

SV (r)=2,,6V,(r)e™’ It is also convenient to represent
two equations for, cannot be satisfied simultaneously for

ro by a complex number, =ry- (X+iy). In Eq. (10), only
arbitraryF, so the model is ill-defined. Instead, we will treat

them=0 andm=2 modes couple to the dynamicsrgf The

other modes can be set to zero, and the evolution of theye core as a hard disk of finite radias This is a simple
approximation to a more realistic interaction between the

fluid and a trapped particle, such as a Lennard-Jones poten-

relevant modes is given by
ié»(po:_Ewg_ig\péﬂzfz_l)g\poﬂz&p; tial. The fluid density must vanish inside the core, so the
2 2r stationary vortex solutions now satisfy(a)=0, and
1 f oW (r,t)=0 for r=a. Figure 1 showsf(r) for the three
+—ir, | f'+ _), (119 cases we considered: the bare core, a small care0(2),
2 r and a large corea=2.0). The time dependence of small
perturbations in the fluid is still given by Eg$lla and

(11b.

For momentum to be locally conserved, the force on the
core due to the fluid must equal the momentum crossing the
5 1. . f boundary liner =a per unit time. This condition can be ex-

oW, oI+ = r)’ (11b) pressed in terms of the stress tensor:
where the primes represent differentiation with respeat to

We impose the constrai@¥ (0, t) =0, so thatry marks the
true location of the vortex core. These equations then deter-

2f2—1+ 2 ov3
r2) 2

. 1 1
—ioW == S(aW5) o (%) +

deIuid
(13

ds

=0o-Nn,
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such solutions. A —0 their asymptotic behaviors are as

line element along the boundary. Integrating this expressiofollows: () §¥,~r° and ¥} ~const<r?; (b) §¥,~1 and
around the circumference of the core and using the form oW ~constx r* (c) 6¥y~Inr and SW¥3 ~consix rénr;
the stress tensor given in E¢p), the force exerted on the and (d) 6W,~r? and §¥3 ~consi 1/r2. In the opposite

mass by the fluid is found to be

Fluid— pfid, (% +i9) = maf’ (a)(sTy(a)+ (5T%) (a)).
(14

Note that asa—0, this force vanishes unless¥,+ s¥%

limit, as r—«, two solutions are oscillatory, representing
incoming and outgoing waves, one solution decays exponen-
tially, and one solution grows exponential{ithe asymptotic
solutions were found by Fetté?) All other points ¢ #0 or

©) are regular points of Eq$16b) and (16¢), so thesV¥,

diverges at least logarithmically, as asserted above. Here wand their derivatives can be specified freely.

mention that Ref. 6 draws its conclusions from the point-

In the case of the bare core, only inner soluti@h con-

mass model, which we have argued to be inconsistent. Theforms to the boundary condition at the origin. If this function
presentation of this model differs from ours in that they in-is followed to |nf|n|ty, it will decompose into a linear com-
troduce a mass term directly into the Lagrangian. This hidegination of the four outer solutions, and in genefat arbi-

the inconsistency but does not remove it: it leads to a SeeMyrary w) the coefficient of the exponentially growing solution

ingly nontrivial equation of motion fory which is actually
equivalent toMr,=0. A subsequent errain joining inner

will not vanish. In other words, if the inner boundary condi-
tion is satisfied then the outer one will not be. Therefore,

and outer asymptotic solutionslisguises this equivalence, with a bare core there is no nonzero solution to the homoge-
enabling the derivation of quantitative results that are essetheous equations, and the solution to the inhomogeneous

tially unsupported.
The equation of motion for the core mass is now

(19

Mr, =FM9+F

equations will be unique and proportionalrto .

In the case of a finite core, two linearly independent so-
lutions satisfy the boundary conditionrat a, sincesWV (a)
and (6¥%)’(a) are independent free parameters. Both have

where the external force has been written as a complex nunsome coefficient of overlap with the growing solution, so a

ber F,=F-(x+iy). Since the equations of motiofEgs.
(119 and (11b) and (15)] are linear inF, , r,, 6¥,, and

linear combination can be formed for which the overlap is
zero and both boundary conditions are satisfied. The general

%, we will seek solutions in which all of these variables solution to the inhomogeneous equations is in this case the

are proportional toe'!. The general solution can be then SUm of & term proportional to, and a term proportional to
expressed as a sum over normal modes in the usual way. another free parameter. Physically we expect to find a unique

IV. NORMAL MODES

For a finite core, the mode equations for frequencgre

—Mow?r  —maf'(a)(sV(a)+(6¥3) ' (a)=F,,
(16a

1
ot T oWt (2-412=2w) 6W o226

f

f’+F , (16b)

=—or,

1
(8W3)"+=(8W3)" +

f
:wr+(f'—F);

4
2—4f2— r—2+2w) SW3 —2f25W,

(160

the bare core will be considered as a special case aith

=M=F,=0. Equationg16b) and(16¢ are coupled inho-
mogeneous linear ODEs fofWy(r) and s¥35(r) which

solution where the mass is driven solely by the external force
and the fluid contains only outgoing waves. This solution
should be proportional to, . The free parameter associated
with the homogeneous solution can be taken to be the am-
plitude of incoming waves. Once the solutions are found, the
force exerted on the moving mass by the fluid is given by Eq.
(14). At this point we resort to numerical techniques to de-
termine the solutions for the two cases.

V. NUMERICAL METHODS AND RESULTS

No single numerical technique proved capable of solving
Egs.(16b) and(16¢) over the entire ranga<r <. Instead,
a different method was used for each of three regians:
<r<a+t4,at+4<r=2mulw, and 2r/w=<r<«. In each re-
gion we found a single solution to the inhomogeneous equa-
tions and all four linearly independent solutions to the homo-
geneous equations. We then chose the appropriate
coefficients for the homogeneous terms so thdt, and
5V3 satisfied the boundary conditions and joined smoothly
at the boundaries between regions.

For the innermost region we used direct numerical inte-

must be solved subject to homogeneous boundary condgration, starting at =a, to determine the homogeneous so-

tions: thes¥ ,, must remain finite as— o, and must vanish

lutions. Because of the exponentially growing solution, the

asr—a. The most general solution will have the form of a integration is unstable and loses precision with increasing
particular solution to the inhomogeneous equations plus &Ve cut off the integration at=a+4; the exact placement
linear combination of solutions to the corresponding homowas somewhat arbitrary, but it cannot be much further from

geneous equation®btained by setting, =0).

the core. For the outermost region we used an asymptotic

We now consider the solutions to the homogeneous equanalysis. All the outer solutions to the homogeneous equa-
tions. Given the order of the equations, there must be foutions have asymptotic expansions of the form
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kr kr i T
SWo~— > ay(kr ", sWi~— > by(k)r ",

\/F n=0 \/F n=0
(17)
wherek takes on one of the four valuesV2=2+1+ w?.

Using the full outer asymptotic series fofr), the first few
terms of which are shown in E@8), the coefficients,(k) \
andb,(k) can be found for arbitrarily large. However, we / ]
found a;/ay; and b,/by to be of order 1 for small w, -4 \ ]
indicating that then=0 terms in the series dominate for . l
>1/w. We therefore kept only the=0 terms and cut off the -2 0 2

outermost region at=2/w. For the middle region we put ®

Eqgs.(16b) and(160) on a grid, discretizing the derivatives in

the most straightforward way. For small values wfthis FIG. 2. Amplitude of circular motion in response to incoming
middle region becomes quite large, so the average grid spawaves of unit power and frequenay. Results are for the bare core
ing needs to be reasonably large as well, to limit the numbetsolid curve, small core(dashed curve and large corg(dotted

of grid points. On the other hand, the solutions still varycurve. Inr.| is shown.

rapidly near the boundary at=a+4, so the spacing must be

much smaller there. A nonuniform grid was used to address For the small and large cores, we also analyzed driven

~.
~———
———

Inlr, |

both these problems. motion. When a finite core is driven by the external force
Finally, note that an exact solution to the inhomogeneoudvith unit speed, power is radiated as outgoing waves. The
equations, for all three regions, is power is equal to that put into the system by the component

of F parallel to the velocity: for , = 1/|w|, corresponding to
circular motion with unit speed, it is given b57=F-ﬁ0=
* ImF, , where the sign ist/— for positive/negative fre-
quencies. This quantity is shown in Fig. 3 as a function of
This solution has a straightforward physical interpretation: itfrequency. It is independent &fl, and so provides a better
describes a stationary vortex centered at the origin. To semeasure of damping than the elastic scattering response. For
this, we can refer back to E¢9), the defining equation for the small core, the radiated power vanishesatl.5. At this
oV. A stationary vortex is described by (r,t)=W(r), so  frequency there are neither incoming nor outgoing waves;
the perturbation is localized and dies off exponentially with
SP(r—ro(t), )=Wo(r)—Wo(r—ro(t))=ro(t)- V¥(r) increasing . There is a similar resonance for the large core at
(19) 0=0.13. For both cores, the motion is undampedvasO.
Results for other core sizésot shown suggest that these
to first order inr, and the angular components of this func- features are general: there is always a single positive-
tion are indeed given by Eq18). frequency resonance, the frequency of which varies inversely
We found that our procedure gave good results for a wid&vith a, and the damping always approaches zero for low
range of frequencies. The results were extremely insensitivRequencies.
to adjustment of the region boundaries, increased precision Figure 4 shows the component of the force exerted by the
in the numerical integration, and the |nc_lu3|0n of more termsyid on the mass in th&fOXE direction. If the only con-
in the asymptotic expansions. Changing the number angiptor were the Magnus force,
spacing of grid points in the middle region, however, did
cause small variations in the final results. In particular, for
10 3<|w|=<5 we estimate our errors to be on the order of a
few percent.
First we analyzed elastic scattering. When incoming
waves of unit power are scattered by a free cdfe €0),
the core responds with circular motion of a particular ampli- o
tude. Figure 2 shows the amplitude of response as a functiong
of frequency for the bare, small, and large cores. Note that™
for a finite core the response depends on the mass; we shov
the results foiM =0 only, but usingM >0 causes no quali-
tative changes. A divergent response is seen only-as). -8 -
The response functions for the small and large cores eacl —
have a single zero. These correspond to resonances in whicl -2 0
the driven motion(discussed belowis undamped and the ®
core motion is decoupled from the phonon field. The re-
sponse function for the bare core, in contrast, is everywhere FIG. 3. Power dissipated by the small caswlid curve and
nonzero; we conclude that there is no undamped or weaklrge core(dotted curvg in driven circular motion with unit speed
damped finite-frequency mode. and frequencyw. In P is shown.

T P R
AR I L

1
N0:§r+ (18

4— .

_4:_
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— — T ] of vortex motion in the adiabatic phase approximatioive

] point out that this approximation is not valid when applied to
the nonlinear Schitinger equation, at least for an infinite
system. To see why it must fail, again consider the solutions
to Egs.(16b) and (160 in the limit asr—oc. The particular
solution given by Eq(18), as already stated, corresponds to
a stationaryvortex. The phase field of distant fluid does not
follow the instantaneous location of the vortex, as it does
within the adiabatic phase approximation, but rather main-
tains a fixed center. The most general solution to the mode
equations has the same property, as the solutions to the cor-
responding homogeneous equations are either oscillatory or
exponentially decaying, as discussed in Sec. IV, and cannot
® cancel this power-law behavior. The failure of the adiabatic
phase approximation is also expected on physical grounds:
since the low-frequency phonons travel with finite spébd
speed of sound=1 in our unitg, the fluid cannot respond to
low-frequency disturbances at a distarte a time shorter
than 14. For this response time to be shorter than the time
Maonus._. R scale associated with the disturbance, we must hdve

FMadus= — 2 7rr X 2, (20 ) . -
<1/w; at larger distances the phase of the fluid can no longer

this component would be identically2 which is marked on  follow the core. Nevertheless we recover the Magnus effect
the vertical axis. Because we are driving the core with unitfor low frequencies, in agreement with results dependent on
speed, the dependence anshould vanish. Instead we see the adiabatic phase approximation, suggesting that the dis-
that the Magnus effect dominates only in the limitas+0; crepancy at large distances is not crucial. For high frequen-
for |w|=1/10, it can no longer account for the perpendicularcies, the Magnus force ceases to play a role. Note that this

10 |

FIG. 4. Force in the-r,X z direction exerted by the fluid on the
small core(solid curve and large corgdotted curvg in driven
circular motion with unit speed and frequeney The mark on the
vertical axis corresponds 1, =2.

component of the force. transition occurs while the phonon wavelength is still very
large compared to the size of the core: for=1/10, the
VI. CONCLUSIONS phonon wavelength is around 60. For superfldide, the

transition frequency is 20—30 GHz, corresponding to a pho-
From our data we can answer both of our original quesnon wavelength of 100 A.
tions. First, there is no undamped mode associated with the
motion of a bar_e vortex. Secpnd, the ngnus effect plays an ACKNOWLEDGMENT
important role in the dynamics of a finite core for the fre-
quency rangdw|=1/10, even when the core is small. The  This work was performed with the kind support of Cor-
Magnus force has been shown to be a general consequencell University.
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