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Quantum magnetoresistance of layered semimetals
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~Received 5 February 1999!

A model is proposed for the linear magnetoresistance recently observed in layered rare-earth diantimonides.
It is based on a graphitelike energy spectrum with a small hopping between the layers and the assumption that
the distance between the lowest-Landau bands exceeds both the temperature and the bandwidth along the main
axis. @S0163-1829~99!13829-3#
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I. INTRODUCTION

Recently a huge linear positive magnetoresistance
discovered in nonstoichiometric silver chalcognides.1 Its
characteristic feature was a surprising stability with magn
field and temperature. The interpretation2 was based on a
rather exotic model of an inhomogeneous material consis
of clusters of metallic atoms imbedded in a medium with
very small electron concentration and a gapless spect
with a linear dependence of energy on momentum. The
earity of the magnetoresistance with magnetic field wa
consequence of the extreme quantum situation in suc
model, when only one Landau band was filled with electro
The author proposed to call it ‘‘quantum magnetoresista
~QMR!.’’ A natural question appeared, whether this pheno
enon could take place in a more general situation, not req
ing such an exotic model.

The answer came again from experiment. In a rec
publication3 Bud’ko et al. discovered a linear magnetoresi
tance in layered rare-earth diantimonides. First of all,
zero-field resistance increases with temperature, and
shows that these substances are metals. The linear ma
toresistance effect is most strongly pronounced at low te
peratures with the magnetic field perpendicular to the lay
and the current parallel to the layers.

It is very simple to understand why this could be a fav
able situation. Indeed the conditions for QMR are that
distance between the bottoms of the Landau bands shou
larger than the temperature and the Fermi energy in the l
est band. The effect was observed at fields higher than 1 T at
temperatures of a few K. The condition\V@T, where
V5eH/mc is the Larmor frequency, does not require a v
small effective mass. On the other hand the small hopp
between the layers mans that the effective mass for the
tion perpendicular to the layers is large, and hence the Fe
energy in the Landau band is reduced. For a quadratic s
trum it is easy to obtain an estimate~here we write\ explic-
ity; in the future we set\51!:

nuS M

m
D 1/2S eH

\c
D 3/2

, ~1!

wheren is the electron density,M is the large hopping mass
and m is the mass in the layers. ForH;1 T and M
;1000 m this givesnu1018cm23, and this is not very smal
for doped semiconductors. However, the substances u
PRB 600163-1829/99/60~6!/4231~4!/$15.00
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consideration are definitely metals, and for them the elect
density is too small. In principle, there exists such a pos
bility in complex compounds, as, e.g., layered supercond
ing cuprates, where some atoms, or layers, play the rol
‘‘charge reservoirs’’ for conducting layers, but this is u
likely to happen in relatively simple compounds. Therefo
one can think about semimetals, where the carriers are
ated by a small intersection of neighboring bands.

II. MODEL

A very attractive candidate is graphite, where the sp
trum, according to Slonczewski and Weiss,4 is obtained as
the result of a slight overlap of the wave functions of ad
cent layers, which originally have a two-dimensional gaple
spectrum with a linear dependence of the energy on mom
tum in both matching branches. Due to an additional dep
dence onpz , graphite becomes a semimetal with alternati
electron and hole ‘‘pockets’’ alongpz . The small density of
carriers is defined by the weak overlap of the wave functio
~or small hopping between the layers!.

We will consider a model of this type, first, because
involves in a natural way a small carrier density, seco
because there definitely exists a substance with a sim
spectrum, and, third, since in real substances the ove
defining the carrier density, can be further reduced by in
calation. In order to avoid complications we assume a s
plified version with the Hamiltonian

H5vFsxS px2
e

c
AxD1syS py2

e

c
AyD G2t cos~pzd!, ~2!

where we supposed that the magnetic field is directed al
the z axis, andAy5Hx, Ax5Az50. The problem in the
plane is similar to the one considered in Ref. 2. The band
the absence of the field are

«~6 !56vp'2t cos~pzd!. ~3!

In the presence of the magnetic field we obtain the eigen
ues

«052t cos~pzd!,

«n
~6 !56vA2eHn/c2t cos~pzd!, n>1, ~4!
4231 ©1999 The American Physical Society
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4232 PRB 60A. A. ABRIKOSOV
i.e., a sequence of Landau bands with the width 2t. The
eigenfunctions arecna

(6)eipzz1 ipyy ~a51,2! with

c015c0~x2cpy /eH!,c0250,

cn1
~1 !5

1

&
cn~x2cpy /eH!,

cn2
~1 !52

i

&
cn21~x2cpy /eH!, ~5!

cn1
~2 !5

1

&
cn~x2cpy /eH!,

cn2
~2 !5

i

&
cn21~x2cpy /eH!;n>1.

Here thecn are the usual normalized Landau eigenfunctio
of a free electron in a magnetic field

cn5~2nn! !21/2~b/p!1/4e2~b/2!@x2~py /b!#2

~6!
3Hn@Ab~x2py /b!#

with b5eH/c, andHn being the Hermite polynomials.
We will consider the case when the following conditio

are observed: the temperature and the width of each Lan
band are much less than the magnetic splitting. In the mo
under consideration withv;108 cm/s in a field of 1 kOe, the
temperature has to be less than 100 K and the bandwidth
than 10 meV. These requirements are not very restrictiv

In the case of a pure metal the densities of electrons
holes must be equal, i.e., the bandn50 is half-filled. Let us
consider a more general case of a slightly doped metal w
an excess of some carriers, say electrons. The chemica
tential is defined by the relation~we assume the spin splittin
to be small!.

2
eH

2pc E2p/d

p/d H 1

e@2t cos~pzd!2m#/T11

2u@2cos~pzd!#J dpz

2p
5n0 , ~7!

n0 being the excess electron density andd being the inter-
layer distance. Transforming the integral and introducing
mensionless variables we obtain

E
0

1/2H 1

e@2cos~px!2m#/u11
2

1

e@2cos~px!1m#/u11J dx5
1

h
, ~8!

whereu5T/t, m5m/t, h5H/H0 , andH05pn0cd/e.
For T50 the solution of Eq.~8! is

m5sinS p

h D . ~9!

The band edges are reached ath562. The functionm(h)
for different values ofu is presented in Fig. 1. In the case
s
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a pure metaln050, and hence, the right-hand side of Eq.~8!
vanishes. This means that the solution ism50 at any tem-
perature.

III. HALL CONSTANT AND RESISTIVITY

To define the Hall constant we act very similarly to Re
2. After some calculations we obtain a natural result

sxy5
ecn0

H
, rxy5

H

ecn0
, R5

1

ecn0
. ~10!

The simplicity of this result at large fields must not be
source of confusion. It is possible to show that at sma
fields, when the band withn51 starts to be filled, the Hal
constant will depend on magnetic field atn05const. The
same is true for a tilted magnetic field. Ifn050, sxy50, and
there is no Hall effect. We will see below that such an a
sumption does not fit the experimental data on magnetore
tance.

The conductivity depends on electron scattering. If t
scatterers are ions, the screening is important. In the u
way we obtain

k252
8pe2

«`

eH

2pc
T(

n
E

2p/d

p/d dpz

2p

1

@ ivn1m1t cos~pzd!#2

5
eH

c

e2

«`d

1

t E0

1/2

$cosh22@„m1cos~px!…/2u# ~11!

1cosh22@„m2cos~px!…/2u#}
dx

u
,

where we used the same dimensionless variables, as in
~8!; «` is the part of the dielectric constant associated w
the ion cores. Atu50 the integral is equal to (2/p)(1
2m2)21/2, and atu@1 it equals 1. The spread of the electro
wave functions in the plane is the magnetic length (c/eH)1/2,
and the value of the ratiok2/(eH/c) is, according to Eq.
~11!, (e2/«`d)/t, or larger, whenm is close to the boundary
of the band. If«` andd are not too large, this ratio is alway
large, sincet is the small hopping energy. This means th

FIG. 1. Dependence of the chemical potential on magnetic fi
at different temperatures. Herem5m/t, u5T/t, 2t is the band-
width; h5H/H0 , H05pn0cd/e, n0 is the excess carrier density,d
is the interlayer distance. The curves correspond tou50,1,2.
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even if the scatterers are ions, the Coulomb interaction
screened at distances smaller than the spread of the w
function, and hence, it can be regarded, as a point inte
tion. This is also true for neutral scatterers. Therefore,
take it asUd(r ).

In our previous work5 it was mentioned that in stron
magnetic fields the Born approximation can fail. Therefo
we sum up the diagrams in Fig. 2. The result is a geome
progression containing powers of

U
eH

2pc E2p/d

p/d

@v1 id1m1t cos~pzd!#21~dpz/2p!

52 iU
eH

2pcd

u~ t2um1wu!
@ t22~m1w!2#1/2.

Summing up the whole series we obtain

1

2t
52Im NiUF11 iU

eH

2pcd

u~ t2um1vu!
@ t22~m1v!2#1/2G21

,

whereNi is the concentration of scattering centers.
The evaluation of the second term in the bracket depe

on the assumption aboutU. If we use a strongly screene
Coulomb interaction, then

U'4pe2/~«`k2!'4pdt/~eH/c!,

and hence the second term will have an absolute value o
order of unity~actually, it is 2!. Therefore, we can leave onl
the second term in the bracket~in the imaginary part the
mistake is 1/4! and get

1

2t
5Ni

2pcd

eH
@ t22~m1v!2#1/2u~ t2um1vu!. ~12!

The conductivity can be calculated similarly to Ref.
and so we arrive at the formula

sxx5
e2v2

T

eH

2pc E2`

` dv

2p
cosh22

v

2T E
2p/d

p/d dpz

2p

~13!
3Im G01

R ~v,pz!Im G12
R ~v,pz!,

where we have already integrated out the eigenfunctions
tering the Green functions@the normalization in Eq.~5! con-
tributes a factor 1/2#, and we are left only with the energ
denominators. The2Im G12

R (v,pz) in Eq. ~13!, is under our
assumptions

1/2t

@v1m2v~2eH/c!1/21t cos~pzd!#21~1/2t!2

'
1

2t

c

2eHv2 .

FIG. 2. Diagrams corresponding to impurity scattering in t
non-Born approximation.
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Integrating overpz , we get

sxx5
e2v2

T

eH

2pc

1

4t2

c

2eHv2 E
2`

` dv

2p
cosh22

v

2T

1

pd E0

p

3
dy

~v1m1t cosy!21~1/2t!2

5
e2

8p

1

T E
2`

` dv

cosh2~v/2T!

1

2t~v!

u~ t2uv1mu!
@ t22~v1m!2#1/2.

Substituting 1/2t according to Eq.~12! and integrating over
v we obtain the final result

sxx5
ecNi

pH

sinh~1/u!

cosh~m/u!1cosh~m/u!
, ~14!

where we used dimensionless variables introduced befor
Two situations are possible: eitherNi!n0 , or Ni@n0 . In

the first casesxx!sxy andrxx5sxx /sxy
2 . In the second case

sxx@sxy andrxx51/sxx . Both assumptions lead to a resi
tivity linear in H. However, the dependence on temperat
is different. In the model considered in Ref. 2 the doping w
external, and the first case was definitely more adequate
the present situation this is not so clear. Sincesxx decreases
with temperature, and so does the magnetoresistivity in R
3, our model can fit the experiment only in the case t
sxx!sxy , i.e., if the excess density of carriers exceeds
concentration of impurities. Whether this is true can be
cided only from the Hall measurements which were not p
formed on rare-earth antimonides. Particularly, in the cas
an exactly half-filled bandn050, and there is no linear in
field Hall effect. This would mean that our model is wron

If the model is applicable, we get

rxx5
HNi

pecn0
2

sinh~1/u!

cosh~m/u!1cosh~m/u!
. ~15!

The dependence onH is essentially linear, except for th
variation ofm. Introducing the dimensionless variableh in-
stead ofH we obtain

rxx5r0

h sinh~1/u!

cosh~m/u!1cosh~m/u!
; r05

Ni

n

d

e2 . ~16!

The plot ofrxx /r0 for u50.05 andu52 is presented in Fig.
3 @m is defined from Eq.~8!#. At low temperatures the curve
bends down aroundh52, i.e., close to the band edge.

IV. DISCUSSION

The results obtained here fit qualitatively the experimen
curves in Ref. 3, although, due to the presence of rare-e
atoms various magnetic phase transitions can take place
induce deviations from pure linearity~see, e.g., Ref. 3, Fig
23!. It should be mentioned that in our model thetotal resis-
tance is linear in field at low temperatures, and this me
that it is large compared to the value atH50. This agrees
with experimental data.

According to our theory, at high fields only one Landa
band participates in the conductivity, and this contradicts
observation of the Shubnikov–de Haas oscillations. In
range between 150 and 160 kG the period of these osc



o
u

ur
tro
m
n

e

o
he
a
o

Th
n
m

all
r a
he
the
or
lds
nd

ac-
are
u-

ort,
neu-
bjec-

ts
n.
hase
pe
ere
-
ob-
in
ri-
ped
era-

d by

re-
uld
rmi

-
rgy

4234 PRB 60A. A. ABRIKOSOV
tions is 2 kG. The connection with the spectrum is~see, e.g.,
in Ref. 6!

DH52p
eh̄H2

cSm
, ~17!

whereSm means the extremal area of the Fermi surface cr
section by a plane perpendicular to the magnetic field. S
stituting the data we get for the Fermi momentump0'2
310220g cm s21, and this corresponds to a large Fermi s
face and an electron concentration of the order of 1 elec
per atom. Hence, either our assumption about the spectru
completely incorrect, or the oscillations have a differe
origin.

The possibilities are~a! the oscillations are due not to th
material under investigation but to metallic leads, and~b!
they are associated with the magnetic breakdown in a str
field. The objection to the first possibility could be that t
leads are not single crystals, and so the oscillations
smeared out, except for the case where the leads are
noble metal, whose Fermi surface is almost spherical.
objection to magnetic breakdown is that such a phenome
can hardly be imagined for a graphitelike spectrum. So

FIG. 3. Dependence ofr/r0 with r05(Ni /n0)(d/e2), Ni is the
density of scatterers on a magnetic field at low~u50.05! and high
~u52! temperatures.
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light on the nature of the spectrum could come from H
measurements. Although it is generally believed that fo
metal with an even number of electrons per unit cell t
amounts of carriers with opposite charges are equal, and
Hall effect is absent, this is true either at very high fields,
for an idealized model. Measurements at moderate fie
would give an estimate of the electron concentration a
establish the relevance of the present model.

The alternative to this model is the freeze-out model,
cording to which in strong magnetic fields the electrons
bound to the impurity ions, and the latter transform into ne
tral centers~see Ref. 1 and references therein!. However, as
we have shown, the screening length in strong fields is sh
and therefore no large difference between charged and
tral scatterers can be expected. There are also other o
tions to this model discussed in Ref. 3.

The picture would be much clearer if the experimen
were performed on graphite, preferably with intercalatio
There are no magnetic atoms, and hence no magnetic p
transitions. The energy spectrum is definitely of the ty
considered here. Unfortunately the only experiments w
performed over 20 years ago.7 The samples were either poly
crystalline, or badly characterized, and hence, the results
tained there~linear magnetoresistance with saturation
strong fields! cannot be considered reliable. In future expe
ments it would be possible, probably, to use clean and do
samples, and see both possible cases with different temp
ture dependences, mentioned in the previous section.

Note added in proof. Recently in the work of K. Matsa-
bara et al. @J. Phys. Condens. Matter11, 3149 ~1999!# the
magnetoresistance was measured in graphite intercalate
MoCl5. In the most relevant case~Fig. 4, stage 2! the mag-
netoresistance varied linearly with field, although it rep
sented only a small part of the total resistance, which co
be due to the presence of other, large parts of the Fe
surface.
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