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Antiferromagnetism in doped anisotropic two-dimensional spin-Peierls systems
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We study the formation of antiferromagnetic correlations induced by impurity doping in anisotropic two-
dimensional spin-Peierls systems. Using a mean-field approximation to deal with the interchain magnetic
coupling, the intrachain correlations are treated exactly by numerical techniques. The magnetic coupling
between impurities is computed for both adiabatic and dynamical lattices and is shown to have an alternating
sign as a function of the impurity-impurity distance, hence suppressing magnetic frustration. An effective
model based on our numerical results supports the coexistence of antiferromagnetism and dimerization in this
system[S0163-182@09)02630-3

General interest for spin-PeierlSP systems was re- the lattice distortion. In the absence of interchain couplings,
cently renewed by the discovery of CuGgbthe first inor-  such an excitation can freely propagate away from the impu-
ganic SP material. The SP transition is characterized by &ty. On the other hand, the interchain elastic couplig
freezing of the spin fluctuations below an energy scale givemvas shown to produce confinement within some distance
by the spin gap\s accompanied by a simultaneous lattice from the impurity®
dimerization? Rich phase diagrams have been obtained ex- For a finite impurity concentration, the coexistence be-
perimentally upon doping this compound with nonmagnetictween SP and AF orders has been previously discussed either
impurities>* In  site-substituted systems such asconsidering randomly distributed domain walls in XX
(Cu_4M,)Ge0;, whereM=2Zn (Ref. 3 or Mg (Ref. 4, chair? or assuming small fluctuations of the magnetic ex-
long-range antiferromagneti@F) order is stabilized at low change constantS. Despite their success to describe some
temperatures while the dimerization still persig3-AF  experimental results, these models are rather limited since
phase. In Mg-doped compounds, for impurity concentra- they do not take into account the microscopic origin of the
tions larger than a critical valuex{=0.02), a first-order soliton formation nor the interchain couplings. In this paper,
transition occurs between tii2AF phase and a uniform AF a realistic microscopic model with interchain magnetic and
(U-AF) phase where the dimerization disappéafsie coex-  elastic couplings is considered to describe the formation of a
istence of the two types of order in thi2AF phase is an region with AF correlations in the vicinity of each impurity
intriguing phenomenon since lattice dimerization favors theand which allows an estimation of the effective interaction
formation of spin singlets on the bonds while low-energybetween impurities in the two-dimension&D) system.
spin fluctuations exist in an AF phase. Thus, we are able to construct and study an effective model

Theoretically, the effect of impurity doping in SP systemsin order to understand the effects of a finite impurity
was considered for fixed-dimerizéd,adiabati®® and concentratiort
quantum-dynamicillattices. A single nonmagnetic impurity In a first step, the spin-phonon coupling is treated in the
releases a soliton in the chain that can be viewed as a kink iadiabatic approximation. The Hamiltonigti=Hya5+ He is
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where a is a chain index and labels the sites along the 0.4 t

chains. Atomic displacements are only considered along the
chain direction§; 5 being here a classical variable related to
the change of the bond length between siteg)( and (

+1,a). The magnetic part includes a magnetoelastic cou- \\T
pling J; (hereafter set to unityand an exchange interaction 00 5 5 ® 3 25
J, connecting nearest-neighb@iN) chains. We eventually ' ’ K ' '

include in our model a next NN exchange interaction along

the chain whose relevance for CuGgChas been FIG. 1. Phase diagram of the pure system as a functio of
emphasized?®® H,, is the elastic energy. The interchain =Kj—2|K.| andJ, . The full lines correspond to the adiabatic
elastic interactionk ) is limited to NN chains. Stability of re_sults obtained by ED for chains with up ko=18 s_ltes,a=0
the lattice implies|<”>2||(L|_ Typical values of the param- (circles, and «=0.36 (squares The dasheddotted line corre-
eters for CuGe@ are J, ~0.1 (Ref. 14 and K, /K;~0.2 sponds to the calculation with quantum phonons ffer8, K,
(Ref. 15 T ' LIRS 202, 0=0, andQ =1 (Q=2).

In order to study numerically modél), we treat exactly
the single-chain problem using exact diagonalizatieb) or _ T, ) T ) T
guantum Monte CarlQMC) methods, while the interchain Ton Q% {bj abi a+T'(bj a+bj ) (0j a1 +07 41 1)},
magnetic coupling is treated in a self-consistent mean-field 4
(MF) approximation. This is a standard procedure to include
interchain couplings in the study of quasi-one-dimensiona
systems® Moreover, Inagaki and Fukuyartfahave used a
similar MF approximation to treat the interchain coupling in
the bosonized version of E(l) within a self-consistent har-
monic approximation. Thus, in our procedure, the interchai
magnetic coupling is replaced by its MF form:

herel'=K, /(2K), and the phonon frequenéy is related

0 g by Q=292KH. The adiabatic limit(1) is recovered
whenQ—0 (requiringg—0 alsg. Similar to the interchain
magnetic term, the interchain elastic term of E4).is then
ntreated in mean field by introducing a lattice order parameter
SMF=g(b] .+ b; 4). Then, the tern(4) is replaced by

Honme=Q >, | bl bi,a+ E(b- +bl )M . (B
pn, : i,a¥h i,a i,a/%Y%.,a+1|"
M =31 2 (S ) S+ a(So) (LN g
(2 Note that in this case it is not necessary to solve an equation
similar to (3). To diagonalize the single-chain Hamiltonian

By extending a similar approach previously applied toWith L=<8, a Lanczos algorithm is used. The phononic de-
one-dimensional chaif&® to the case of the 2D lattice, a 9rees of freedom are treated within a variational formalism

sweep is performed in the transverse direction, aesa  Previously introduced™”*® Note that inelastic neutron-
+1. For each chaim, we compute the MF valug&?,) and ~ Scattering experimerfts on CuGeQ reveal a rather large
the classical variable§s, ,} by energy minimization, which Phonon frequency)/Jj=2 suggesting large lattice quantum

is achieved by solving iteratively the equations effects in th.is _material.
As a preliminary study, we apply the MF procedure to the

case of an homogeneous system without impurities. In mod-
Sia= IS aS+1a) TKL(Far 1t G- DMK (3 els(1) and(4), J, is expected to stabilize the AF state while
a smallK; (or large magnetoelastic coupling) tends to
Then, these new values of the AF and SP order parametefavor SP order. For each value of the couplingsand K
enter as input for the chaia+1. This procedure is iterated (where K=K;—2|K,| is the relevant parameter in the SP
until convergence is reached. In this way, we can study nuphasg we obtain the ground state without imposing any re-
merically finite clusters consisting & coupled chains with  striction on the MF parameters. We found only two different
L sites where, typicallyNXL=12x18 in ED andNXL phases, the SP phase whé®)=0 and §; ,#0 and the
=6X40 in QMC, with toroidal boundary conditions. antiferromagnetic(AF) phase with(S,)#0 and &, ,=0.

A similar MF approach can be adapted to study a modeirhen, the phase diagram in theJ, plane, can be obtained
equivalent to Eq(1) but with quantum phonon degrees of in a more efficient way by a direct comparison of the ener-
freedom. In this case, phonon operattxs, andb; , are  gies of the Nel antiferromagnetic phase, and of the uni-
introduced on each bond and the displaceménisbecome  formly dimerized phase. The phase diagram shown in Fig. 1
g(bifa+ bi 2), whereg is the magnetoelastic constant. Then, exhibits a transition line between AF and SP phases. In the
the classical elastic terfi, is replaced by its quantum ver- adiabatic case, this line could be fitted by a law=A/K
sion, +B with A=0.3656 andB=—0.06 (this artificial small
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negative value may be a consequence of small finite-size
effects, see, e.g., Ref. L8A phase boundary with a form
J, =A/K has been predicted by Inagaki and Fukuydma.
However, their bosonized approach does not fix unambigu-
ously the value of. .

In the case of the adiabatic calculation finite-size effectsg
were shown to be small fd€ <2. On the other hand, for the
dynamical lattice, the calculation is reliable only for larger
lattice couplings(i.e., smaller values oK) due to stronger
finite-size effects. As expected, for very sm#| lattice
guantum fluctuations are less effective in dimerizing the §
chain than the adiabatic lattice. Then, the phase boundarg |
obtained with quantum phonons is located below the adia-
batic one. This tendency becomes cleaflas increased, as 00
shown in the figure. On the other hand, it has been suggeste 1
that dynazr;wical phonons induce an effective magnetic
frustration.” This frUStrg.tlon that becomes relatively I.mpor_ FIG. 2. Typical patterns of the local staggered magnetization
tant for largerK destabilizes the AF phase thus moving theM»s‘agalon the chains. The t direstie indicated f

. : : 2 g the chains. The transverse coordirete indicated for

phase'boundary u'pwards as seen in the flggrg. COI’]SIS'teQ&’:h curveonly a few chains of the 2D cluster are show@losed
with this t_)eha_wor,_lf a next_NN e_xchange_term is included iNGircles correspond to the chains with an impuritg)—(b) QMC
the Ha_m|lton|an, in theadiabatic apprOX|mat|(_)n, the SP  asults for a & 40 cluster withk;=1.9,K, =0.2, andJ, =0.1; (a)
phase is more stable and the phase boundary is located abayRgie impurity caseif=21): (b) two impurities on the same chain
the corresponding curve fer=0. This behavior is shown in ¢ 5 distancei=L/2=20 (i,=1 andi,=21). (c)—(d) ED results
Fig. 1 for the realistic value ok =0.36 obtained for CuGeQO  for two impurities located on next NN chains at a distanceAof
(Ref. 12, where « is the value of the next NN exchange =9 along the chaittas indicated by the arrowsn a 12< 18 cluster
coupling constant in units of;. We have checked that the for Kj=2.4,K, =0.2, andJ, =0.1. Singlet(d) and triplet(c) con-
set of realistic parametel~20 andK,, J, mentioned figurations are shown.
above corresponds to a point in the SP phase.

To start our analysis of impurity doping, we consider z?:tively hop from site to site on the same sublattidee to the

single impurity in order to investigate the appearance of A : Lo . ;
correlations in the SP phase. As mentioned above, the impdj_nderlymg dimerizatiop hence producing AF correlations

rity releases in the chain a topological spin-1/2 solitonicW'th the parity defmgd above: e .
excitatior{® characterized by a change of parity of the dimer- Let us now consider two impurities introduced simulta-
ization order that occurs in a finite region of longitudinal size"€0USly on two sitesi{,a,) and (,.a,) of different chains

£ given by the soliton width. The local magnetization on (a1#ay). When the two polarization clouds associated to

each chaira can be decomposed into uniform and staggereach soliton-impurity “pair” start to overlap, one expects
component$® (S ) =M+ (— 1) +2M 5189 |n fact, the ex- their interaction to depend on the relative orientation of the
’ i,a ia ia- ’ . . . . .
cess uniform compone®,,= + £ and the soliton, character- two solitons. As seen in Figs(® and 2d), quite different
st remain confined in the Patterns correspond to the singlet and triplet arrangements of

ized by a broad maximum d¥1; 2%, . ) , ;
chain with the impurity. However, as seen in Figa)2 the the two spin-1/2 solitons. As confirmed by our calculations,

interchainmagneticcouplingd, generates a large staggered the lowest energy is always obtained for a spin state that
component with the same parity, i.815%keeping the same leads to thesameparity of the staggered magnetization as-

i1,a . . . . . .
sign, in the neighboring chains. Simultaneously, the amp”_somated to each impurity, i.e., which avoids completely

tude of the SP dimerization is significantly suppressed commagnetic frustration. The simple argument developed above
pared to the bulk value, i.e., far away from the impurity. for a single impurity then suggests that a trigfet 1 (singlet
Large AF correlations can be seen up to more than fouP=0) configuration is favored when the two impurities are
chains away from the impurity chain for magnetic couplingslocated on the same sublatti¢epposite sublattices It is
as small ad, =0.1, in particular, in the vicinity of the S then appropriate to define an effective magnetic coupling
AF transition line of Fig. 1. The transverse range of the AFbetween the AF clouds associated with each impurity by
“polarization cloud” around the impurity increases strongly Je=Es—1—Es-. For a wide range of parameters leading
with the transverse couplingd, . to a SP state in the bulk, we have numerically found fhat

A crucial feature of the polarization surrounding the is ferromagnetidF) if the two impurities belong to the same
impurity-soliton area is that the sign ®;'3%is unambigu- ~ sublattice and antiferromagnetic in the opposite case. This
ously fixed by the orientations,= =+ 3) of the soliton and implies that the coupling between the two local moments
by the position {y,a,) of the impurity in such a way that associated to the impurities is either F or AF in such a way
sign{M 59 = sgr{SZ,}(— 1)%* 1oL, This fact can be simply that no frustration occurs. The magnetic coupling, for physi-
understood in the strong dimerization limis{-1) where cal values of the parameters, can be fairly extended in space
the introduction of the impurity on a given site releases aas seen in Fig. @). Its range is directly controlled by the
spin-1/2 on one of its neighboring sites by breaking a singlebverlap of the polarization clouds. It follows roughly a be-
bond. For smaller lattice coupling, the excess spin can effedaavior like

esiss "” 'Q,«o o
Y Xy
u & ln«c:‘i‘:-u““n.u—'" ')CM‘

lllllllllllll||llllllllll|lllllllll

ggered magnetizati
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FIG. 3. Absolute value of the effective magnetic coupling be-  FIG. 4. Square root of the staggered magnetizatitefined in
tween two impurities located on different chains separateday  the texi as a function of the impurity doping for several 2D clus-
(a) vs the separatiodi=i,—i, along the chains for an adiabatic ters. Full circles correspond to, from top to bottom xI1I2, 16
lattice (2=0) and forK =2.4, K, =0.2, andJ, =0.1; (b) vs the X186, ... 4(_)<_40 clusters. The open circles are the extrapolations
frequencyQ for Ky =1, K, =0.2, and], =0.1. The size®IL of the 0 the bulk limit.
clusters used in the calculations are indicated on the plots.

be of the order ofA5. In summary, one can assume that the
Ai effective interaction between impurities on the same chain
ex;{ -Cj §—> has the same form of E¢6) with Aa=0 andJ, being now
I ~Ag. This form is similar to the one adopted in Ref. 9 for
impurities in a single chain except that these authors do not
whereJ,~J, , C, are of order unity and,~J,/As. consider the sublattice sign alternation. Nevertheless, it

To get an |ns|ght on how finite-size effects m|ght affect should be noticed that this AF interaction should also decay
our results we have increased our cluster sizex(18) in  for very largeAi.
both directions. The change of the transversal dimension has When lattice quantum fluctuations are introduced (
very little effect because the polarization clouds are almos#0), the qualitative properties of the effective interaction
independent when the impurities are separated by more thahy are preserved. Consistent with the relatively larger sta-
four chains[see the very small values 6 for Aa=4 in  bility of the AF phase in the smaK region shown in Fig. 1
Fig. 3@]. On the other hand, by increasing the length ofwith respect to the adiabatic case, we have found that lattice
each chain, some changes occur but only when the impuritidynamics lead to an increase of the size of the AF cloud
are located at the largest distances. However, the exponenti@gsociated to each soliton. Therefore, the magnitude of the
decay of the effective interactions with distar(see beloyy ~ magnetic couplingle; increases with the phonon frequency
is not qualitatively changed as it can be seen in Fig).3 () as shown in Fig. ®).

Therefore, we expect that the numerical values offittiag The final part of our study is the analysis of a simple
parametersvould not be much affected by finite-size effects effective two-dimensional spin-1/2 Heisenberg model be-
leaving the overall behavior essentially unchanged. In partween impurities with a long-range interaction given by Eq.
ticular, we believe that the presence of long-range AF ordef6). The “bare” parameters are the same as in Fig. 3 and the
in the effective modelsee discussion belowis a robust parameters of the expressiéh) have been obtained by fit-
feature not affected by finite-size effects. ting the curves shown in that figure and similar data for the

When two impurities are introduced on the same chaircase ofAa=0. In the direction perpendicular to the chains
(a;=a,) two cases have to be distinguished. If the impuri-we have neglected the effective interactions beyond a dis-
ties are located on theamesublattice a similar behavior is tanceAa=5. We have also assumed that even segments are
observed as described abojmpare Fig. &) and Fig. associated with a soliton-antisoliton péfr.

2(d)], i.e., the effective interaction ierromagnetic. How- A given number of spin-1/2 impurities <4N;,,<16 is
ever, the magnitude dflq4| is ~0.4 (very slowly decaying thrown at random on systems of coupled chains of sizes up
asAi increasesfor the parameters of Fig.(8, i.e., much to 40x40. Then, the staggered magnetizatiovls,g
larger than the values corresponding to impurities in differ-=(1/N§)[Zi,a(—1)'+aS|Z,a]2, where Ng=NL, is computed
ent chains. If the impurities belong wifferent sublattices and averaged over, typically, 12 000—16 000 random realiza-
then a chain with even number of sites is cut into two segiions. The square root of this quantity is shown in Fig. 4. By
ments with even number of sites each. In the lowest energgxtrapolating to the bulk limit for a fixed impurity doping
configuration §=0) no soliton-antisoliton pair was ob- using a polynomial in (3YNg) we found thatM 54 is finite,
served for separationsi up to 20 in agreement with previ- implying long-range AF order, and slowly decreasingxas
ous worl and the triplet excitation energy remains large goes to zero. This behavior is consistent with experimental
(~Ag). Then, one can expect that for larger chains, wherresultd suggesting tha ;g decays exponentially to zero as
the formation of soliton becomes favorable, the effective in-x— 0.

teraction between them will be AF and their magnitude will  In conclusion, spin-1/2 solitons released in 2D anisotropic

. Aa
Jeﬁ%‘]O( _ 1)Aa+AI+1 EX[{ _ CJ_ g_
i
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SP systems by the introduction of impurities were shown tanent of long range AF order and to compute the AF order
experience spatially extend&dor AF exchange interactions parameter as a function of the impurity doping.

depending on their relative positions. These exchange inter- This work was supported in part by the ECOS-SECyT
actions coexisting with the SP order are calculated from reag7eQs program. We thank IDRI$Orsay, France and
alistic microscopic models and used to construct a simple=jorida State University for using their supercomputer facili-
effective model that in turn enables us to show the establishtes.
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