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We investigate the low-energy properties of Lorentz-invariant theories with a spontaneously broken rotation
symmetry ON)— O(N—1). The leading coefficients of the low-temperature expansion for the partition func-
tion are calculated up to and including three loops. Emphasis is put into the specibl-€&set describes the
antiferromagnet which has been extensively studied. Our results obtained within the framework of the effective
Lagrangian technique are compared with the literature. In particular, we show that, afférfterthe heat
capacity andr® for the order parameter, respectively, logarithmic terms appear in the low-temperature expan-
sion, which have been overlooked so fg80163-18209)02325-5

I. INTRODUCTION 0O(3) antiferromagnet, where the spin waves or magnons rep-

resent the corresponding Goldstone degrees of freedom. This

In the present paper, we investigate the low-temperaturgystem has been widely studied in condensed matter physics
properties of spontaneously brokenN)(symmetric theo- and it is instructive to compare our results with the findings
ries. More precisely, we consider the specific case where théerived within the microscopic Heisenberg model. The lat-
symmetryG=O(N) of the Lagrangian is spontaneously bro- tice structure of a solid singles out preferred directions, such
ken toH = O(N—1)—we then havé\— 1 Goldstone bosons that the effective Lagrangian is not invariant under space

in the broken phaseN=2). If the perturbations, which rotations. In the case of a cubic lattice, the anisotropy, how-
’ ever, only shows up at higher orders of the derivative

break the rotation symmetry explicitly, are small, these exci- iof—the di " v of the lattice thus imoli
tations remain light and dominate the low-energy behavior of Xpansion—ine discrete symmetry of the fatlice thus implies
pace rotation symmetry. Hence, the leading order effective

the system. Moreover, the Goldstone particles interaci . f if : : 8 anti
weakly at low energies and a systematic perturbative expa -agrangian of an antiterromagnet is Lorgnlt z Invariaanti-
r}erromagnetlc spin-wave excitations exhibit relativistic kine-

sion can be advised. In particular, the partition function Calatics. with the velocity of light being replaced by the spin-
be evaluated in this manner, amounting to low-temperaturg, ., o \}elocity.
theorems for quantities of physical interest. In a Lorentz-invariant theory, the following invariance
A very efficient tool to analyze the low-energy structure tneorem holds: up to a Wess-Zumino term, the effective La-
of a system which exhibits spontaneous symmetry bfeakin@rangian may be brought to a form which is manifestly in-
is provided by the effective Lagrangian technique. Theyariant with respect to the internal symmetry of the underly-
method applies to any system where the Goldstone bosormigg theory® The procedure of constructing the corresponding
are the only excitations without energy gap. The essentiaéffective Lagrangian is thus straightforward: one writes
point here is that the properties of these degrees of freedoglown the most general expression consistent with Lorentz
and their mutual interaction are strongly constrained by theymmetry and the internal symmety of the underlying
symmetry inherent in the underlying model—the specific namodel in terms of Goldstone field&J3(x), a=1,...,
ture of the underlying model itself, however, is not impor- dim(G)-dim(H)—the effective Lagrangian then consists of
tant. For a pedagogic outline of the effective Lagrangiana string of terms involving an increasing number of deriva-
method with applications to nonrelativistic systems, thetives or, equivalently, amounts to an expansion in powers of
reader may consult Ref. 1, which is written in a condensedhe momentum. Moreover, the effective method allows us to
matter perspectivé:* systematically take into account interactions which explicitly
Within the framework of effective Lagrangians, the low- preak the symmetn@G of the underlying model, provided
temperature behavior of chiral theories, where the respectivihat they can be treated as perturbatiths.
groups aré5=SU(n), X SU(n)r andH=SU(n)y, has been In the particular case we are considering, the symmetry
analyzed in detaft® In particular, the low-temperature ex- O(N) is broken by an external field: it is convenient to col-
pansion for the quark condensate, which represents the mogict the (N\— 1) Goldstone field&) in a N-dimensional vec-
prominent order parameter in quantum chromodynamicsor U'=(U° U?) of unit length,
(QCD), has been evaluated to three loops. In the present
work, we repeat this analysis for Lorentz-invariant theories

displaying a spontaneously broken rotation symmetry, U'()U'(x)=1, Ly

O(N)—O(N—1)—the system may then be referred to as

O(N) antiferromagnet. and to take the constant external field along the zeroth axis,
Apart from this general analysis, our interest is devoted tdH'=(H,0, . ..,0). TheEuclidean form of the effective La-

the special cashl=3: the results obtained then describe thegrangian up to and including ordef then read¥
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12 i i_ i
Leg=32F"0,U'9,U' =% H'U Tr[exr(—H/T)]:J [dU]exr(—J d4xz:eﬁ). (2.0
T

. _ . _ s
—e1(9,U'3,U")?—ey(3,U’ avU')erklE(H'U') The integration is performed over all field configurations
which are periodic in the Euclidean time directibr(i,x‘l
+,8):U(>Z,x4), with B=1/T. The low-temperature expan-
sion of the partition function is obtained by considering the
fluctuations of the fieldU around the ground stat®/

In the power counting scheme, the fielt(x) counts as a =(1,0,...,0),i.e., by expandindJ? in powers ofU?, U°
quantity of order 1. Derivatives correspond to one power of=\/1—U2U2, The leading contributioforderp?) contains a

the momentun# > p, whereas the external field counts as  term quadratic ifJ® which describes free Goldstone bosons

a term of ordep?. Hence, at leading order«(p?) two cou-  of massM?=3H/F2. The remainder of the effective La-
pling constantsF and X4 occur, at next-to-leading order grangian is treated as a perturbation. Evaluating the Gaussian
(«p* we have five such constants; ,e,,k;,k,,ks. Note integrals in the standard manner, one arrives at a set of Feyn-
that these couplings are not fixed by symmetry—they paramman rules which differ from the conventional rules of the
etrize the physics of the underlying theory. effective Lagrangian method only in one respect: the period-

The effective Lagrangian method provides us with a si-icity condition imposed on the Goldstone field modifies the
multaneous expansion in powers of the momenta and of thpropagator. At finite temperature, the propagator is given by
external field. To a given order in the low-energy expansion
only a finite number of coupling constants and a finite num- -
ber of graphs contribute. Consider, e.g., scattering processes G(X):n;x A(X,Xg+npB),
between Goldstone particles. The leading contributions to
the scattering amplitudes stem from the tree graphs. GraphghereA(x) is the Euclidean propagator at zero temperature.
involving | loops are suppressed bpowers ()fpz/F2 anddo We restrict ourselves to the infinite volume limit and evalu-
therefore not affect the leading terms. ate the free energy density defined by

If the scattering amplitudes are thus needed to accuracy ) 3
p*, the effective Lagrangian must be known up to and in- z= _TLI'm L™"In[Trexp(—H/T)]. 23
cluding c;}ﬁ. There are two types of contributions at this o
order of the low-energy expansion: one-loop graphst g§ Temperature thus produces remarkably little change: to
and tree graphs containing one vertex fraify;. Similarly,  obtain the partition function, one simply restricts the mani-
at orderp®, two-loop graphs ofﬁgff as well as one-loop fold on which the fields are living to a torus in Euclidean
graphs involving one vertex fronCs; and tree graphs space. The effective Lagrangian remains unaffected—the
with two vertices fromc %; or one vertex fromc & contri- ~ coupling constant§,>.e,, ..., aretemperature indepen-
bute, etc. dent.

It is convenient to use dimensional regularization of the T evaluate the graphs of the effective theory, it is con-
loop integrals. In this scheme, the ultraviolet divergences o¥enient to use dimensional regularization, where the zero-
the one-loop graphs af 2, are absorbed in a renormalization €Mperature propagator reads
of the coupling constants which occurﬂﬁﬁ—the constants
F and3 in £2; are not renormalized. More generally, di- A(x)z(Zw)*dJ d9p €PX(M?+p?) L
mensional regularization ensures that the ultraviolet diver-

k k Eg ip1i\2 2§ iygi
X(3,U*a,U )—kZE(H U’ —k3§H H. (1.2

©

2.2

gences which occur in theumof all graphs of ordep®" are oc Ao o224

removed by a suitable renormalization of the coupling :fo dp(4mp) e ” . (2.9
constants in Lg?f—the lower order Lagrangians

L%, ....L2% 2 remain untouched. We perform the calculation up to and including terms of

order p® in the free energy density of the system. To this
order in the momenta, contributions to the effective Lagrang-
ian involving at most eight derivatives enter and the pertur-

The effective Lagrangian method can readily be extendedative expansion requires the evaluation of graphs containing
to finite temperature. In the partition function, contributionsat most three loops.
of massive particles are suppressed exponentially, such that The renormalization procedure is identical with the one
the Goldstone bosons dominate the properties of the systensed in connection with chiral effective theories: the same
at low temperatures. Hence, the low-energy theorems fographs have to be evaluated and, up to Clebsch-Gordan co-
scattering amplitudes, e.g., are converted into temperaturefficients specific to the group @, the same ultraviolet
theorems for the partition function. In the power countingdivergent expressions occur in the loop-integrals—for the
rules, the role of the external momenta is taken over by thexplicit form of these quantities and the construction of the
temperature, which is treated as a small quantity of opder respective counterterms, the reader is thus referred to Ref. 6.
The interaction among the Goldstone degrees of freedorVe just mention the fact that the contributions to the effec-
now generates perturbations of orge/ F2« T?/F2. tive Lagrangian of ordep® and of orderp® merely renor-

In the effective Lagrangian framework, the partition func- malize the mass of the Goldstone bosons and the vacuum
tion is represented as a Euclidean functional intégrat energy. At the order in the low-temperature expansion we are

II. FINITE TEMPERATURE
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considering here, the values of the coupling constants occuithe dependence of the quantiB on temperature is con-
ring in these pieces of the effective Lagrangian are therefor&ined in the functiong,(M . ,T) andj(M ,,T), which are
irrelevant and the renormalized mass takes the form defined in the Appendix.

In the limit H—0 (&T>M ) we are interested in, the

SH N-3 (3 H)? functionsgg, g;, andg are given b§

M2=——+ Ini+O(H3) (2.5
" F? 327 F® Hu -

15 M2 M_\3
The logarithmic scalél, is determined bk, andk,, i.e., by Jo=amT1-— —2+(’)<7> ,
two next-to-leading order coupling constaritsder p*)—a 4m= T
brief discussion can be found in the Appendix.
In the limit of a zero external field, the low-temperature T M, Mf, M,
expansion of the free energy density is a power series of the 9= 17 1-— T o _zlnT '
type
15 M2 M, \3
1 w
z=_ n:;l ) Crn(TH™T2INT)", (2.6 g=srsm T® 1—m ?Jro(?) : (3.9
and the evaluation of the graphs of the effective theory COyhile | j diverges logarithmically,
responds to a calculation of the coefficients in this series,
which are pure numbers. T M2 M_\3
If the external fieldH is different from zero, the low- J—vln—+11+12—+(9 _) ,
temperature expansion is not a simple power seriésand T
InT. The free energy density then involves nontrivial func-
tions of the ratioM ./T. To analyze the behavior of the 5(N-1)(N—-2)
system at temperatures of the orderf., we treat bothr V=" 3.9

and M, as small quantities compared to the scale of the

underlying theory'® allowing the ratioM /T to have any The quantitieg; andj, are real numbers, determined by the

value (simultaneous expansion in powersoand ofM . at  group ON).

fixedratioM ./T). The infrared singularities involving nega- ~ The constana is linear in the external field, where&s

tive powers ofT are thus removed by reordering, i.e., writing depends logarithmically ol and involves a scalkiy,,

the series in terms of the two variabl&sand M /T and

ordering powers ofT. In this generalized sense, the low- (N=1)(N-3) 3 H

temperature expansion of the free energy density is a power a=- 3207 =

series of the forn(2.6) even for nonzero external field; the

symmetry breaking merely affects the coefficienits, which

now become nontrivial functions of the rati . /T. pe _ 2INZDN=2) H 3.6
96m3F* Hp’ '

. RESULTS
The scaleH, is related to the coupling constamtsande, of
In this section, we are going to discuss the low-orderp* (see the Appendix
temperature properties of the K) antiferromagnet, de-  Equipped with the above formulas, the low-temperature
scribed by the effective Lagrangi@h.2). Since the system is expansion of the pressure amounts to
homogeneous, the pressure is given by the temperature de-

pendent part of the free energy density N—2T? Tp
P=gm*(N-1)T* 1+——|n—+0(T6)
P=g,—2. (3.1 72

3.
To begin with, let us consider the thermodynamic quantities S
in the limit of a zero external fielti —0. For those quanti- The first contribution represents the free Bose gas term
ties we are interested in, we need all contributions to thevhich originates from a one-loop graph, whereas the effec-

pressure which are at most linear in the external field. tive interaction among the Goldstone bosons, remarkably,
The energy density of the vacuum then reads only manifests itself through a term of ordg%. This contri-
bution contains a logarithm, characteristic of the effective
go=—3H+O(H?). (3.2 Lagrangian method, which involves a scalgrelated toH,,

(see the Appendijx
It is instructive to compare this formula for the pressure
with the analogous relation occurring in theories with a
spontaneously broken chiral symmetry, i.e., fdb
=SU(n)gX SU(n),—H=SU(n)y:*’

The term quadratic il involves a logarithm, which depends
on a scale determined by next-to-leading order coupling con-
stants.

The formula for the pressure takes the form

P=3(N—1)go+4ma(g,)*+ g

10)_ 2 T4 TX

n
1,2 2_ 4 6
P=g5m°(n"—1)T 1+144 4In P+O(TY)|.

(3.3
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An immediate consistency check of these two results is proexternal field, whereas in the opposite limit<M ., even
vided by the particular casbl=4<n=2: since the two the Goldstone bosons freeze. The properties of the system
groups @4) and Q3) are locally isomorphic to are therefore very sensitive to the value of the rafig/T.
SU(2)xSU(2) and SW2), respectively, the above three- Take, e.g., the pressure: in the lirhlt—0, a contribution of
loop representations for the pressure have to coincide—therderp®, as we have seen, does not occur. This is no longer
formula referring to the @) antiferromagnet in zero exter- the case for an approximate symmetty# 0): remarkably,
nal field has to be identical with the one for QCD with two the corresponding term of ordpf (<HT#) turns out to be
flavors (1=2) in the chiral limit(zero quark magsindeed, negative N#2), signaling an attractive interaction between
this is the case. the Goldstone degrees of freedom. Note that, with respect to
The corresponding expressions for the energy density the limit H—0, the sign of the effective interaction has
for the entropy densitys and for the heat capacity, are  changed: there, the first nonleading terforder p?,

readily worked out from the thermodynamic relations «T8In[T,/T]) is positive and the interaction thus repulsive.
0P B _du_Js
S=grr USTs™P ov=5p=Tom (38 IV. O(3) ANTIFERROMAGNET

with the result Lorentz invariance is a crucial ingredient of our analysis:
in Lorentz-noninvariant theories, the effective Lagrangian

s . N—2 T4 Tp 6 picks up additional terms. It is therefore not legitimate
u=sm(N-DT" 1+—7= = 7= =11+0(T°) |, priori to transfer the above results to nonrelativistic systems
- displaying a spontaneously broken rotation symmetry.
4 In particular, forN= 3, the above low-temperature theo-
s= 2 72(N—1)T® 1+N__2 T_( 8 InE ~ 1]+ 019 rems do not in general hold for systems exhibiting collective
4° 288 f4 T ' magnetic behavior, where the spin waves or magnons are the
) relevant Goldstone excitations: in the leading order effective
N—2 T4 T Lagrangian, a term of topological nature appears, which is
cv=2m(N-D)T3 1+—— —< 56 In== — 15) +O(T8|. O3 invariant only up to a total derivative and violates Lor-
864 p4 T entz symmetr{:*® However, this contribution is proportional

(3.9  to the spontaneous magnetization, such that, for tk@& O

The ord ter is g by the | ithmic derivati antiferromagnet, it does not occur—the leading term of the
€ order parameter s given by the logantnmic dervativeygra e Lagrangian for this system thus coincides with the
of the partition function with respect to the external field

leading contribution in the relativistic expressi@n2). Note
that, in this analogy, the velocity of light has been replaced

&80 P . .
S(M=——+—. (3.10 by the spin-wave velocity.
JH oH At nonleading order, however, additional terms occur in
This leads to the effective Lagrangian, which spoil the formal relativistic
invariance. As we have seen in the preceding section, effec-
N—1T2 (N-1)(N-3) T* tiv_e coupling constants _of orc_iqa;t4 only show up in_ logarith-
S4(T)=3¢ 1— 24 g2 1152 g4 mic scales—the coefficients in front of the logarithms exclu-

sively involve leading order coupling constants. Hence, in
N—1)(N—2)T6 T what follows, we neglect the complication arising from non-
_ ( ) ) —In—2+(’)(T8) . (3.1)) invariant terms of ordep®, and discuss the @) antiferro-
1728 g6 T magnet in the framework of the Lagrangiéh?2).
0 ~2 4 6 Let us first consider the low-temperature expansion of the
The terms of ordell ", T, T%, andT> arise from {ree, one- ger parameter—for the (@) antiferromagnet, this quantity
loop, two-loop, and three-loop graphs, respectively. Up g referred to as staggered magnetization. Remarkably, for

and includingT*, the coefficients are determined by the CON-N=3, the T* term in formula(3.1) drops out, and we end
stantF which thus sets the scale of the expansion. The IogaL-Jp Wi'th '

rithm only shows up at ordeF®: the scal€Ty involves next-
to-leading order coupling constar(ee the Appendjx

As expected, the order parameter gradually melts as the 1 (kgT)? 1 (kgT)® Ty
temperature rises. The effective method, however, has it T)=3¢ 1—1—2—2———|n—+O(T8) .
limitations: the low-temperature expansion can only be hvF 864n%°Fe T

p p y

trusted at low temperatures—the curly bracket in 8411 (4.2)
represents a correction. In particular, the critical temperature
cannot be accurately determined by setting 8gl1 equal  Note that, for later convenience, we have restored the dimen-
to zero. sions: kg is Boltzmann’s constant and is the spin-wave

For nonzero external field, as we have seen before, theelocity. The low-energy constafft already appears in the
low-temperature representations of the thermodynamic quareadingT coefficient. By comparing the above result for the
tities and the order parameter retain their form, except thagtaggered magnetization with the expression derived in con-
the coefficients now become functions Mif_/T. In the re-  densed matter physics, we are thus able to identify the effec-
gion T>M . one recovers the results of the theory for zerotive coupling constank in terms of microscopic quantities.
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So let us briefly recall how the @) antiferromagnet is In order to compare the expressi¢h4) referring to the
described within the microscopic theory. In the Heisenbergsublattice magnetization with our resy#.1) for the stag-
model, the exchange Hamiltoni&i,, gered magnetization, we observe that the two quantities are

related via
Ho=—23>, S,-S,, J=const, 4.2
n.n. 2My(T)
. ES(T) = Vi

formulates the dynamics in terms of spin operatgfs at-
tached to lattice sitem. Note that the summation only ex- Oug gT \?
tends over nearest neighbor pairs and, moreover, the isotro- === 1(S~0)— 2—\/—(2|T|S) {2)+--- .
pic interaction is assumed to be the same for any two a 2mN2z
adjacent lattice sites. If the sign of the exchange integjial (4.6

negative, antiparallel spin alignment is favored, such that we _ _ _ ) _
end up with antiferromagnetic behavior. Clearly, the Hamil- The above microscopic expression agrees with the effective
tonian is invariant under rotations of the spin directions, gen€Xxpansion(4.1) up to orderT<, provided that the two cou-

erated by pling constant$= and 2, are identified as
3 & S—o hv J S-o
Q=2 S, 4.3 F2=——2=25(s—a>u, z;ws).
" V2z a a a
The ground state of the antiferromagnet, however, does not (4.7

_exul_blrt“thls qtg) _syf.m_metry, an(? Its mlcrotsiopl_;: fdescnpt;og Note that the spin-wave velocity is given by the following
is highly nontrivial: in our analysis, we take it for granted o ination of microscopic quantities:

that it spontaneously breaks the symmetry down to the group

0(2). .
Moreover, the antiferromagnet is commonly discussed v—2|J|S\/Ea/ﬁ. 4.8

within the following idealized picture: the system is consid- tha scale of the low-temperature expansion is set by

ere_:d as composed of two_sublattlcaaand b, wherea and_b FVhv—Ilet us briefly estimate its value. Written in terms of
spins are of equal magnitude and the arrangement is Su(EHe exchange integral, we obtain

that all nearest neighbors of @nspin areb spins and vice

versa. Furthermore, let us assume that the structure of the

lattice is simple cubic. Although the ground state of the an- F\/%=Z|J|S\/(S— o) V2z. (4.9

tiferromagnet does not exhibit spontaneous magnetization, ) . ]

the sublattice magnetization itself is not zero. And it is thisNow, for a simple cubic latticez=6,0=0.078) and forS

latter quantity which is extensively discussed in the litera-=1/2, the double square root on the right hand side is ap-

ture: indeed, at leading order in the temperature expansion, Rioximately equal to 1, such that we end up wiR/%v

T2 decrease of the sublattice magnetization has been prez|J|. Typically, the exchange integral for antiferromagnets

dicted by many authot® 23 is around J|~10"3 eV,?>?%and the scal& \7v thus of the

same order of magnitude. This is to be contrasted with the

M,(0)—Mu(T) 1V 1 kgT |2 situation in QCD, where the relevant quantify,\7c, takes

T oms 238 2772\/2(2|T|S {(2). (44  the value 92 MeV—the respective scales in the two theories
thus differ in about eleven orders of magnitude.

The expression involves the following quantities: the ex- As far as subleading terms in the expansion of the stag-
change integrald), the highest eigenvalue of the spin opera-gfred magnetization are concerned, it is well known that a
tor S3(S), the number of nearest neighbors of a given latticeT * contribution is absert***"the spin-wave interaction
site (z), the entire volume of the systenV), the length of ~©nly manifests itself at higher orders. Although these authors
the unit cell @), the Landefactor (g), the Bohr magneton predlct aterm p_roportlonal to six powers of the temperature,
(ug), and the Riemann zeta function. in agreement with our resul#t.1), they do not find the loga- _
The sublattice magnetization at zero temperature rithmic dependence on the temperature. We conclude that it
is extremely difficult to calculate the corrections of ordér
1V in the framework of a microscopic theory.
M4(0)= > —9ue(S—0) (4.5 As a second comparison, let us now discuss the heat ca-
a pacity. SettingN=3 in the effective expansiof8.9), we end
up with

involves the quantityr, a small number which depends on
the structure of the lattice: in the case of a simple cubic

4
lattice it takes the value=0.078% This relation reflects the . _ 4 KeTP 1 (kgT)* 6InE—15 L O(TS)
well-known fact that the ground state of the antiferromagnet™V~ 8™ %303 864 72,24 T '
is highly nontrivial: in particular, the naive picture where the (4.10

spin vectors of the two sublattices point in mutually opposite
directions(“Neel state”), i.e., =0, only represents an ap- Replacingv according to Eq(4.8), the leading contribution
proximation. amounts to
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4k keT 3 model, they are valid for any Lorentz-invariant theory where
Cy= 3 . (4.11 an ON) symmetry is spontaneously broken toND{1).
15a° | 2|J[S\2z For N=4, the expansiori3.11) for the order parameter not

This expression perfectly agrees with the leading term ob9nIy Qescrlbes. the_qgark condensate of QC.D with two fla-
tained from a microscopic or phenomenological analysis ot/0'S in the chiral limit, but also, e.g., describes the Higgs
the antiferromagneg:20-28-30 cond_ensate in the_ standard model of elementary parpcle
As far as corrections to the free Bose gas term are Conr_)hysms. The only dlf_ference between the twp representations
cerned, it is also known that the spin-wave interaction doe§ONCErms the_ nhumerical values of the coup_lm_g constants oc-
not manifest itself through &° term in the expansion for the CurMng therein—the low-temperature description turns out to
heat capacity®3! However, there is again a disagreementP® universal. . . . .
with respect to the structure of this correction: in Ref. 20, a _AT‘OthF‘f Interesting case, wh|ch_we have discussed in de-
simple T7 contribution is predicted—a logarithmic depen- @il: iS given byN=3: the O3) antiferromagnet. The low-
dence on the temperature is not found. temperature thgorems for the sf[aggered magnetization and
Nevertheless, it is instructive to compare the two expan:[.he heat capacity b(.)th agree with the results given in the
sions for the heat capacity at tA@ level. Inserting the mj- llterature up to and including two loops. At the three-loop

croscopic expressiofd.7) for F into the effective expansion, level, however,_the .results no longer coincide: to my Knowl-
we obtain edge, the logarithmic temperature dependence at drtler

the expansion for the heat capacity and ord@érfor the
1 2za (kgT)* stagggred magne_tization, has been overlooked so far. The
effective Lagrangian method not only proves to be more ef-
ficient than the complicated microscopic analysis, but also
addresses the problem from a unified point of view based on
symmetry—at large wavelengths, the microscopic structure
of the system only manifests itself in the numerical values of
a few coupling constants.
Now, in order for the nonleading term to be consistent with  Although Lorentz invariance is a crucial ingredient of the

LKET?

7303

— 4
Cv=1s7

864 (5—0)2 A%

TP
X |56 In? —15|+0O(T®)

the corresponding microscopic result of orde* present analysis, the effective Lagrangian method is not re-
A . stricted to this domain: ferromagnets, e.g., where the spin
287" 1 a waves follow a quadratic dispersion law, may be analyzed

7
(ksT)", (4.12 within the framework of nonrelativistic effective

Lagrangians:®! In particular, the low-temperature expan-
the logarithm must have the following numerical valu® ( sion for the order parameter of a ferromagnet, its spontane-
=1/2, simple cubic lattice In(T,/T)~1.5. Hence, for that ous magnetization, has been calculated to three loops—the
specific value of the temperatur€y=0.23T,, the two re- results, which go beyond Dyson's pioneering microscopic
sults coincide. analysis®? will be presented in a forthcoming paper.

Let us consider the analogous situation in QCD: there, the
value of T§ can be extracted from experiment{ scatter-
ing, for details see, e.g., Ref),6yielding Ty~275 MeV.
Accordingly, with the above value of the logarithm, we get | would like to thank H. Leutwyler for his patient assis-
T§~60 MeV. The critical temperature is estimated to betance throughout this work and for his critical reading of the
around 170 MeV—so we see that the valuesTir T, and manuscript. Thgnks also to G. Colangelo, S. Mallik, and D.
TX are of the same order of magnitude. Note that the respec-oublan for their help. | am greatly indebted to the Janggen-
tive scales for the antiferromagnet differ in about ten orderd>dn-Stiftung for support. Likewise, support by Schweiz-
of magnitude: with a critical temperatut®léel temperature ~ €rischer Nationalfonds is gratefully acknowledged.
of Ty=0(0.01 eV), we end up witil,~0O(0.01 eV).
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APPENDIX

V. SUMMARY AND OUTLOOK . . . . i,
In this appendix, we discuss the various quantities show-

The presence of states with small excitation energies afing up in the formula for the pressure
fects the behavior of the system in a very specific manner,
controlled by the symmetries of the underlying theory. These 1
symmetries unambiguously fix the values of the coefficients  p—1(N—1)g,+4ma(g,)2+ wbg— — I+ O(p*9).
in the low-temperature expansion of the order parameter and F
the thermodynamic quantities up to two leading order cou- (A1)
pling constantsk and . Symmetry, however, does not
determine the logarithmic scal@g and Ty, which occur in  Unlike in Sec. I, we do not restrict ourselves to contribu-
the temperature expansion and involve next-to-leading ordeions at most linear in the external field. In the second part of
coupling constants. the appendix, we briefly comment on the logarithmic scales
The low-temperature theorems for the order parametef, and Ty .
and the thermodynamic quantities are exact up to and includ- Let us first consider the renormalized Goldstone-boson
ing three loops: independently of the specific underlyingmass. The calculation yields
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Mz_z H 200k )+(N—3))\1(ESH)2 +C(25H)3 remove the singularities of the loop integrdlsand J,, re-
T F2 2 1 J

spectively:

FG FlO

L OHY), (A2) 3= dedx[Gm]“,

where the constamtinvolves the relevant coupling constants
of orderp®. The quantityA contains a pole al=4, § )

Jff d[d,G(x)d,G(x)]*. (A9)
A=3(4m) 9T (1—-1dyma-* T
For the explicit structure of the temperature independent

MA4[ 1 counterterms; - - - 4, the reader is referred to Ref. 6
_ _1 ' _ 1 4y - 0.
1672 |d—4 2In4m+ T (1) +1}+0(d=4) . The connection between the formy3) for the pressure
(A3) given in Sec. lll,

This singularity is absorbed in a renormalization of the com-

binationk,—k; of coupling constants of ordgr*. One ends

up with a logarithm depending df and a term independent

thereof. The latter can be absorbed in a new skigle such

that the expression for the renormalized mass takes the form _ . o

displayed in Eq(2.5), and Eq.(Al) is established by splitting off a facta from
the expressiom,

P=2(N—1)go+4ma(g;)*+mg| b—

+0(p*),

m3F*

SH N-3(H)?2 H 1
2_<=s s 3 l=—0gj. (A10)
M2 = +32772 o InHM+O(H ). (Ad) -2

. . This relation defines the functign
Now, the functionsgo, g1, g, and! occurring in the for- The constants and b in Eq. (A1) contain the various

mula (A1) for the pressure, depend in a nontrivial manner oncqpling constants which occur in the effective Lagranifian
M, and T. The quantitiesg, are associated with the

d-dimensional noninteracting Bose gas (N—1)(N—3) 3H +N—1 (SH)?2
a 327 F4 4w  pS8
e o (4mp)d2 w X4 [(N+1)(e;+e5) +Ko— ki ]
X >, exp(—nZ4pT?). (A5) _(N- 1)2x— 3N2+32N—-67
" 2 7682 |’
The functiong is the following combination thereof: N—1 5(N-2) N—2
b= [281+N€‘2]— A— .
2 '7T|:4 3 16772
9=39o(got+M791). (AB)

(Al11)
The expression for the three-loop integkat more compli- Repeating the steps which led from E42) to Eq.(A4), the

cated: constantsa andb may be conveniently written as
1= (N=1)(N=3)M4J;— 5(N-1)(N-2)J; (N=1)(N=3) SH (N=1)° (3H)? H
a: — —_ —

3 8 !
~#s(N=1)(N=3)’M(g1)°g; 82m  F*  256n° F® Ha
+a(N-D(N=3)BN-7)M2(g1)>. (A7) 5(N-1)(N-2) H

- b=— —————In . (A12)
The quantities); andJ,, 967°F b

Finally, let us consider the logarithmic scalEsand Ty ,
showing up in the low-temperature expansion of the thermo-
_ _ dynamic quantities and the order parameter. They are both
J2=J3—C3—C491+ 5(d+6)(d—2)N\(G,,)? related to the scald,,,

+3(d—2)AM%(g,)?,

31=J1—Cl—0291+ 6(d_2))\(91)2:

. . 4
To=Apexp(—ji/v), Ts=Apex —Jllv+1—5VJz ,
G, =—36,,00% 5,55(3ddo+M2g;),  (A8) (A13)
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where T M2 3
i=vin—+ji+jo—+0O —") . (A15)
VS H, 5(N—1)(N—2) : M, e T
Np=—5—, v=—pe——  (AL4)

The formulas given in this appendix can readily be checked
Note thatT, and Ty depend on the constanig andj, oc- by settingN=4: usingM?=3 H/F? and identifying the re-
curring in the expansion of the functign(in the limit T spective coupling constants as=1,, e,=1,, and k,—k;y
>M,), =15, the results for two-flavor QCD are reproduced.
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