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Effective analysis of the O„N… antiferromagnet: Low-temperature expansion
of the order parameter
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We investigate the low-energy properties of Lorentz-invariant theories with a spontaneously broken rotation
symmetry O(N)→O(N21). The leading coefficients of the low-temperature expansion for the partition func-
tion are calculated up to and including three loops. Emphasis is put into the special caseN53: it describes the
antiferromagnet which has been extensively studied. Our results obtained within the framework of the effective
Lagrangian technique are compared with the literature. In particular, we show that, at orderT7 for the heat
capacity andT6 for the order parameter, respectively, logarithmic terms appear in the low-temperature expan-
sion, which have been overlooked so far.@S0163-1829~99!02325-5#
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I. INTRODUCTION

In the present paper, we investigate the low-tempera
properties of spontaneously broken O(N) symmetric theo-
ries. More precisely, we consider the specific case where
symmetryG5O(N) of the Lagrangian is spontaneously br
ken toH5O(N21)—we then haveN21 Goldstone bosons
in the broken phase (N>2). If the perturbations, which
break the rotation symmetry explicitly, are small, these ex
tations remain light and dominate the low-energy behavio
the system. Moreover, the Goldstone particles inter
weakly at low energies and a systematic perturbative exp
sion can be advised. In particular, the partition function c
be evaluated in this manner, amounting to low-tempera
theorems for quantities of physical interest.

A very efficient tool to analyze the low-energy structu
of a system which exhibits spontaneous symmetry break
is provided by the effective Lagrangian technique. T
method applies to any system where the Goldstone bo
are the only excitations without energy gap. The essen
point here is that the properties of these degrees of free
and their mutual interaction are strongly constrained by
symmetry inherent in the underlying model—the specific
ture of the underlying model itself, however, is not impo
tant. For a pedagogic outline of the effective Lagrang
method with applications to nonrelativistic systems, t
reader may consult Ref. 1, which is written in a conden
matter perspective.2–4

Within the framework of effective Lagrangians, the low
temperature behavior of chiral theories, where the respec
groups areG5SU(n)L3SU(n)R andH5SU(n)V , has been
analyzed in detail.5,6 In particular, the low-temperature ex
pansion for the quark condensate, which represents the
prominent order parameter in quantum chromodynam
~QCD!, has been evaluated to three loops. In the pres
work, we repeat this analysis for Lorentz-invariant theor
displaying a spontaneously broken rotation symme
O(N)→O(N21)—the system may then be referred to
O(N) antiferromagnet.

Apart from this general analysis, our interest is devoted
the special caseN53: the results obtained then describe t
PRB 600163-1829/99/60~1!/406~8!/$15.00
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O~3! antiferromagnet, where the spin waves or magnons r
resent the corresponding Goldstone degrees of freedom.
system has been widely studied in condensed matter phy
and it is instructive to compare our results with the findin
derived within the microscopic Heisenberg model. The l
tice structure of a solid singles out preferred directions, s
that the effective Lagrangian is not invariant under spa
rotations. In the case of a cubic lattice, the anisotropy, ho
ever, only shows up at higher orders of the derivat
expansion7—the discrete symmetry of the lattice thus impli
space rotation symmetry. Hence, the leading order effec
Lagrangian of an antiferromagnet is Lorentz invariant:8 anti-
ferromagnetic spin-wave excitations exhibit relativistic kin
matics, with the velocity of light being replaced by the spi
wave velocity.

In a Lorentz-invariant theory, the following invarianc
theorem holds: up to a Wess-Zumino term, the effective
grangian may be brought to a form which is manifestly
variant with respect to the internal symmetry of the under
ing theory.9 The procedure of constructing the correspond
effective Lagrangian is thus straightforward: one writ
down the most general expression consistent with Lore
symmetry and the internal symmetryG of the underlying
model in terms of Goldstone fieldsUa(x), a51, . . . ,
dim(G)-dim(H)—the effective Lagrangian then consists
a string of terms involving an increasing number of deriv
tives or, equivalently, amounts to an expansion in powers
the momentum. Moreover, the effective method allows us
systematically take into account interactions which explici
break the symmetryG of the underlying model, provided
that they can be treated as perturbations.10,11

In the particular case we are considering, the symme
O(N) is broken by an external field: it is convenient to co
lect the (N21) Goldstone fieldsUa in a N-dimensional vec-
tor Ui5(U0,Ua) of unit length,

Ui~x!Ui~x!51, ~1.1!

and to take the constant external field along the zeroth a
Hi5(H,0, . . . ,0). TheEuclidean form of the effective La
grangian up to and including orderp4 then reads12
406 ©1999 The American Physical Society
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Leff5
1
2 F2 ]mUi ]mUi2SsH

iUi

2e1~]mUi ]mUi !22e2~]mUi ]nUi !21k1

Ss

F2
~HiUi !

3~]mUk ]mUk!2k2

Ss
2

F4
~HiUi !22k3

Ss
2

F4
HiHi . ~1.2!

In the power counting scheme, the fieldU(x) counts as a
quantity of order 1. Derivatives correspond to one power
the momentum]m}p, whereas the external fieldH counts as
a term of orderp2. Hence, at leading order (}p2) two cou-
pling constantsF and Ss occur, at next-to-leading orde
(}p4) we have five such constants,e1 ,e2 ,k1 ,k2 ,k3. Note
that these couplings are not fixed by symmetry—they par
etrize the physics of the underlying theory.

The effective Lagrangian method provides us with a
multaneous expansion in powers of the momenta and of
external field. To a given order in the low-energy expans
only a finite number of coupling constants and a finite nu
ber of graphs contribute. Consider, e.g., scattering proce
between Goldstone particles. The leading contributions
the scattering amplitudes stem from the tree graphs. Gra
involving l loops are suppressed byl powers ofp2/F2 and do
therefore not affect the leading terms.

If the scattering amplitudes are thus needed to accu
p4, the effective Lagrangian must be known up to and
cluding L eff

4 . There are two types of contributions at th
order of the low-energy expansion: one-loop graphs ofL eff

2

and tree graphs containing one vertex fromL eff
4 . Similarly,

at order p6, two-loop graphs ofL eff
2 as well as one-loop

graphs involving one vertex fromL eff
4 and tree graphs

with two vertices fromL eff
4 or one vertex fromL eff

6 contri-
bute, etc.

It is convenient to use dimensional regularization of t
loop integrals. In this scheme, the ultraviolet divergences
the one-loop graphs ofL eff

2 are absorbed in a renormalizatio
of the coupling constants which occur inL eff

4 —the constants
F and Ss in L eff

2 are not renormalized. More generally, d
mensional regularization ensures that the ultraviolet div
gences which occur in thesumof all graphs of orderp2n are
removed by a suitable renormalization of the coupli
constants in L eff

2n—the lower order Lagrangian
L eff

2 , . . . ,L eff
2n22 remain untouched.

II. FINITE TEMPERATURE

The effective Lagrangian method can readily be exten
to finite temperature. In the partition function, contributio
of massive particles are suppressed exponentially, such
the Goldstone bosons dominate the properties of the sys
at low temperatures. Hence, the low-energy theorems
scattering amplitudes, e.g., are converted into tempera
theorems for the partition function. In the power counti
rules, the role of the external momenta is taken over by
temperature, which is treated as a small quantity of ordep.
The interaction among the Goldstone degrees of freed
now generates perturbations of orderp2/F2}T2/F2.

In the effective Lagrangian framework, the partition fun
tion is represented as a Euclidean functional integral13–15
f
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Tr@exp~2H/T!#5E @dU#expS 2E
T
d4xLeffD . ~2.1!

The integration is performed over all field configuratio
which are periodic in the Euclidean time directionU(xW ,x4

1b)5U(xW ,x4), with b[1/T. The low-temperature expan
sion of the partition function is obtained by considering t
fluctuations of the fieldU around the ground stateV
5(1,0,. . . ,0), i.e., by expandingU0 in powers ofUa, U0

5A12UaUa. The leading contribution~orderp2) contains a
term quadratic inUa which describes free Goldstone boso
of massM25SsH/F2. The remainder of the effective La
grangian is treated as a perturbation. Evaluating the Gaus
integrals in the standard manner, one arrives at a set of F
man rules which differ from the conventional rules of th
effective Lagrangian method only in one respect: the peri
icity condition imposed on the Goldstone field modifies t
propagator. At finite temperature, the propagator is given

G~x!5 (
n52`

`

D~xW ,x41nb!, ~2.2!

whereD(x) is the Euclidean propagator at zero temperatu
We restrict ourselves to the infinite volume limit and eva
ate the free energy densityz, defined by

z52T lim
L→`

L23 ln@Tr exp~2H/T!#. ~2.3!

Temperature thus produces remarkably little change
obtain the partition function, one simply restricts the ma
fold on which the fields are living to a torus in Euclidea
space. The effective Lagrangian remains unaffected—
coupling constantsF,Ss ,e1 , . . . , aretemperature indepen
dent.

To evaluate the graphs of the effective theory, it is co
venient to use dimensional regularization, where the ze
temperature propagator reads

D~x!5~2p!2dE ddp eipx~M21p2!21

5E
0

`

dr~4pr!2d/2e2rM22x2/4r. ~2.4!

We perform the calculation up to and including terms
order p8 in the free energy density of the system. To th
order in the momenta, contributions to the effective Lagra
ian involving at most eight derivatives enter and the pert
bative expansion requires the evaluation of graphs contain
at most three loops.

The renormalization procedure is identical with the o
used in connection with chiral effective theories: the sa
graphs have to be evaluated and, up to Clebsch-Gordan
efficients specific to the group O(N), the same ultraviolet
divergent expressions occur in the loop-integrals—for
explicit form of these quantities and the construction of t
respective counterterms, the reader is thus referred to Re
We just mention the fact that the contributions to the effe
tive Lagrangian of orderp6 and of orderp8 merely renor-
malize the mass of the Goldstone bosons and the vac
energy. At the order in the low-temperature expansion we
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408 PRB 60CHRISTOPH P. HOFMANN
considering here, the values of the coupling constants oc
ring in these pieces of the effective Lagrangian are there
irrelevant and the renormalized mass takes the form

Mp
2 5

SsH

F2
1

N23

32p2

~SsH !2

F6
ln

H

HM
1O~H3!. ~2.5!

The logarithmic scaleHM is determined byk1 andk2, i.e., by
two next-to-leading order coupling constants~order p4)—a
brief discussion can be found in the Appendix.

In the limit of a zero external field, the low-temperatu
expansion of the free energy density is a power series of
type

z5 (
m,n50,1, . . .

cmn~T2!m~T2 ln T!n, ~2.6!

and the evaluation of the graphs of the effective theory c
responds to a calculation of the coefficients in this ser
which are pure numbers.

If the external fieldH is different from zero, the low-
temperature expansion is not a simple power series inT and
ln T. The free energy density then involves nontrivial fun
tions of the ratioMp /T. To analyze the behavior of th
system at temperatures of the order ofMp , we treat bothT
and Mp as small quantities compared to the scale of
underlying theory,16 allowing the ratioMp /T to have any
value~simultaneous expansion in powers ofT and ofMp at
fixedratio Mp /T). The infrared singularities involving nega
tive powers ofT are thus removed by reordering, i.e., writin
the series in terms of the two variablesT and Mp /T and
ordering powers ofT. In this generalized sense, the low
temperature expansion of the free energy density is a po
series of the form~2.6! even for nonzero external field; th
symmetry breaking merely affects the coefficientscmn which
now become nontrivial functions of the ratioMp /T.

III. RESULTS

In this section, we are going to discuss the lo
temperature properties of the O(N) antiferromagnet, de-
scribed by the effective Lagrangian~1.2!. Since the system is
homogeneous, the pressure is given by the temperature
pendent part of the free energy density

P5«02z. ~3.1!

To begin with, let us consider the thermodynamic quantit
in the limit of a zero external fieldH→0. For those quanti-
ties we are interested in, we need all contributions to
pressure which are at most linear in the external field.

The energy density of the vacuum then reads

«052SsH1O~H2!. ~3.2!

The term quadratic inH involves a logarithm, which depend
on a scale determined by next-to-leading order coupling c
stants.

The formula for the pressure takes the form

P5 1
2 ~N21!g014pa~g1!21pgFb2

j

p3F4G1O~p10!.

~3.3!
r-
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The dependence of the quantityP on temperature is con
tained in the functionsgr(Mp ,T) and j (Mp ,T), which are
defined in the Appendix.

In the limit H→0 (⇔T@Mp) we are interested in, the
functionsg0 , g1, andg are given by6

g05 1
45 p2T4F12

15

4p2

Mp
2

T2
1OS Mp

T D 3G ,

g15 1
12 T2F12

3

p

Mp

T
1OS Mp

2

T2
ln

Mp

T D G ,

g5 1
675p4T8F12

15

4p2

Mp
2

T2
1OS Mp

T D 3G , ~3.4!

while j diverges logarithmically,

j 5n ln
T

Mp
1 j 11 j 2

Mp
2

T2
1OS Mp

T D 3

,

n[
5~N21!~N22!

48
. ~3.5!

The quantitiesj 1 and j 2 are real numbers, determined by th
group O(N).

The constanta is linear in the external field, whereasb
depends logarithmically onH and involves a scaleHb ,

a52
~N21!~N23!

32p

SsH

F4
,

b52
5~N21!~N22!

96p3F4
ln

H

Hb
. ~3.6!

The scaleHb is related to the coupling constantse1 ande2 of
orderp4 ~see the Appendix!.

Equipped with the above formulas, the low-temperatu
expansion of the pressure amounts to

P5 1
90 p2~N21!T4F11

N22

72

T4

F4
ln

Tp

T
1O~T6!G .

~3.7!

The first contribution represents the free Bose gas te
which originates from a one-loop graph, whereas the eff
tive interaction among the Goldstone bosons, remarka
only manifests itself through a term of orderT8. This contri-
bution contains a logarithm, characteristic of the effect
Lagrangian method, which involves a scaleTp related toHb
~see the Appendix!.

It is instructive to compare this formula for the pressu
with the analogous relation occurring in theories with
spontaneously broken chiral symmetry, i.e., forG
5SU(n)R3SU(n)L→H5SU(n)V :17

P5 1
90 p2~n221!T4F11

n2

144

T4

Fx
4

ln
Tp

x

T
1O~T6!G .
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An immediate consistency check of these two results is p
vided by the particular caseN54⇔n52: since the two
groups O~4! and O~3! are locally isomorphic to
SU(2)3SU(2) and SU~2!, respectively, the above three
loop representations for the pressure have to coincide—
formula referring to the O~4! antiferromagnet in zero exter
nal field has to be identical with the one for QCD with tw
flavors (n52) in the chiral limit ~zero quark mass!. Indeed,
this is the case.

The corresponding expressions for the energy densitu,
for the entropy densitys and for the heat capacitycV are
readily worked out from the thermodynamic relations

s5
]P

]T
, u5Ts2P, cV5

]u

]T
5T

]s

]T
, ~3.8!

with the result

u5 1
30 p2~N21!T4F11

N22

216

T4

F4 S 7 ln
Tp

T
21D1O~T6!G ,

s5 2
45 p2~N21!T3F11

N22

288

T4

F4 S 8 ln
Tp

T
21D1O~T6!G ,

cV5 2
15 p2~N21!T3F11

N22

864

T4

F4 S 56 ln
Tp

T
215D1O~T6!G .

~3.9!

The order parameter is given by the logarithmic derivat
of the partition function with respect to the external field

Ss~T!52
]«0

]H
1

]P

]H
. ~3.10!

This leads to

Ss~T!5SsH 12
N21

24

T2

F2
2

~N21!~N23!

1152

T4

F4

2
~N21!~N22!

1728

T6

F6
ln

TS

T
1O~T8!J . ~3.11!

The terms of orderT0, T2, T4, andT6 arise from tree, one-
loop, two-loop, and three-loop graphs, respectively. Up
and includingT4, the coefficients are determined by the co
stantF which thus sets the scale of the expansion. The lo
rithm only shows up at orderT6: the scaleTS involves next-
to-leading order coupling constants~see the Appendix!.

As expected, the order parameter gradually melts as
temperature rises. The effective method, however, has
limitations: the low-temperature expansion can only
trusted at low temperatures—the curly bracket in Eq.~3.11!
represents a correction. In particular, the critical tempera
cannot be accurately determined by setting Eq.~3.11! equal
to zero.

For nonzero external field, as we have seen before,
low-temperature representations of the thermodynamic qu
tities and the order parameter retain their form, except
the coefficients now become functions ofMp /T. In the re-
gion T@Mp one recovers the results of the theory for ze
-
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external field, whereas in the opposite limit,T!Mp , even
the Goldstone bosons freeze. The properties of the sys
are therefore very sensitive to the value of the ratioMp /T.
Take, e.g., the pressure: in the limitH→0, a contribution of
orderp6, as we have seen, does not occur. This is no lon
the case for an approximate symmetry (HÞ0): remarkably,
the corresponding term of orderp6 (}HT4) turns out to be
negative (NÞ2), signaling an attractive interaction betwee
the Goldstone degrees of freedom. Note that, with respec
the limit H→0, the sign of the effective interaction ha
changed: there, the first nonleading term~order p8,
}T8ln@Tp /T#) is positive and the interaction thus repulsive

IV. O „3… ANTIFERROMAGNET

Lorentz invariance is a crucial ingredient of our analys
in Lorentz-noninvariant theories, the effective Lagrangi
picks up additional terms. It is therefore not legitimatea
priori to transfer the above results to nonrelativistic syste
displaying a spontaneously broken rotation symmetry.

In particular, forN53, the above low-temperature theo
rems do not in general hold for systems exhibiting collect
magnetic behavior, where the spin waves or magnons are
relevant Goldstone excitations: in the leading order effect
Lagrangian, a term of topological nature appears, which
O~3! invariant only up to a total derivative and violates Lo
entz symmetry.8,18 However, this contribution is proportiona
to the spontaneous magnetization, such that, for the O~3!
antiferromagnet, it does not occur—the leading term of t
effective Lagrangian for this system thus coincides with
leading contribution in the relativistic expression~1.2!. Note
that, in this analogy, the velocity of light has been replac
by the spin-wave velocity.

At nonleading order, however, additional terms occur
the effective Lagrangian, which spoil the formal relativist
invariance. As we have seen in the preceding section, ef
tive coupling constants of orderp4 only show up in logarith-
mic scales—the coefficients in front of the logarithms exc
sively involve leading order coupling constants. Hence,
what follows, we neglect the complication arising from no
invariant terms of orderp4, and discuss the O~3! antiferro-
magnet in the framework of the Lagrangian~1.2!.

Let us first consider the low-temperature expansion of
order parameter—for the O~3! antiferromagnet, this quantity
is referred to as staggered magnetization. Remarkably,
N53, theT4 term in formula~3.11! drops out, and we end
up with

Ss~T!5SsH 12
1

12

~kBT!2

\vF2
2

1

864

~kBT!6

\3v3F6
ln

TS

T
1O~T8!J .

~4.1!

Note that, for later convenience, we have restored the dim
sions: kB is Boltzmann’s constant andv is the spin-wave
velocity. The low-energy constantF already appears in the
leadingT coefficient. By comparing the above result for th
staggered magnetization with the expression derived in c
densed matter physics, we are thus able to identify the ef
tive coupling constantF in terms of microscopic quantities
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So let us briefly recall how the O~3! antiferromagnet is
described within the microscopic theory. In the Heisenb
model, the exchange HamiltonianH0,

H0522J(
n.n.

SW m•SW n , J5const, ~4.2!

formulates the dynamics in terms of spin operatorsSW m , at-
tached to lattice sitesm. Note that the summation only ex
tends over nearest neighbor pairs and, moreover, the is
pic interaction is assumed to be the same for any
adjacent lattice sites. If the sign of the exchange integralJ is
negative, antiparallel spin alignment is favored, such that
end up with antiferromagnetic behavior. Clearly, the Ham
tonian is invariant under rotations of the spin directions, g
erated by

QW 5(
n

SW n . ~4.3!

The ground state of the antiferromagnet, however, does
exhibit this O~3! symmetry, and its microscopic descriptio
is highly nontrivial: in our analysis, we take it for grante
that it spontaneously breaks the symmetry down to the gr
O~2!.

Moreover, the antiferromagnet is commonly discuss
within the following idealized picture: the system is cons
ered as composed of two sublatticesa andb, wherea andb
spins are of equal magnitude and the arrangement is
that all nearest neighbors of ana spin areb spins and vice
versa. Furthermore, let us assume that the structure of
lattice is simple cubic. Although the ground state of the a
tiferromagnet does not exhibit spontaneous magnetizat
the sublattice magnetization itself is not zero. And it is th
latter quantity which is extensively discussed in the lite
ture: indeed, at leading order in the temperature expansio
T2 decrease of the sublattice magnetization has been
dicted by many authors19–23

Ma~0!2Ma~T!

gmB
5

1

2

V

a3

1

2p2A2z
S kBT

2uJuSD 2

z~2!. ~4.4!

The expression involves the following quantities: the e
change integral (J), the highest eigenvalue of the spin oper
tor Sn

3(S), the number of nearest neighbors of a given latt
site (z), the entire volume of the system (V), the length of
the unit cell (a), the Lande´ factor (g), the Bohr magneton
(mB), and the Riemann zeta function.

The sublattice magnetization at zero temperature

Ma~0!5
1

2

V

a3
gmB~S2s! ~4.5!

involves the quantitys, a small number which depends o
the structure of the lattice: in the case of a simple cu
lattice it takes the values50.078.24 This relation reflects the
well-known fact that the ground state of the antiferromag
is highly nontrivial: in particular, the naive picture where th
spin vectors of the two sublattices point in mutually oppos
directions~‘‘Néel state’’!, i.e., s50, only represents an ap
proximation.
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In order to compare the expression~4.4! referring to the
sublattice magnetization with our result~4.1! for the stag-
gered magnetization, we observe that the two quantities
related via

Ss~T!5
2Ma~T!

V

5
gmB

a3 H ~S2s!2
1

2p2A2z
S kBT

2uJuSD 2

z~2!1•••J .

~4.6!

The above microscopic expression agrees with the effec
expansion~4.1! up to orderT2, provided that the two cou-
pling constantsF andSs are identified as

F25
S2s

A2z

\v

a2
52S~S2s!

uJu
a

, Ss5
gmB~S2s!

a3
.

~4.7!

Note that the spin-wave velocityv is given by the following
combination of microscopic quantities:

v52uJuSA2za/\. ~4.8!

The scale of the low-temperature expansion is set
FA\v—let us briefly estimate its value. Written in terms
the exchange integralJ, we obtain

FA\v52uJuSA~S2s!A2z. ~4.9!

Now, for a simple cubic lattice (z56,s50.078) and forS
51/2, the double square root on the right hand side is
proximately equal to 1, such that we end up withFA\v
'uJu. Typically, the exchange integral for antiferromagne
is arounduJu'1023 eV,25,26and the scaleFA\v thus of the
same order of magnitude. This is to be contrasted with
situation in QCD, where the relevant quantity,FxA\c, takes
the value 92 MeV—the respective scales in the two theo
thus differ in about eleven orders of magnitude.

As far as subleading terms in the expansion of the st
gered magnetization are concerned, it is well known tha
T4 contribution is absent:20,21,23,27the spin-wave interaction
only manifests itself at higher orders. Although these auth
predict a term proportional to six powers of the temperatu
in agreement with our result~4.1!, they do not find the loga-
rithmic dependence on the temperature. We conclude th
is extremely difficult to calculate the corrections of orderT6

in the framework of a microscopic theory.
As a second comparison, let us now discuss the heat

pacity. SettingN53 in the effective expansion~3.9!, we end
up with

cV5 4
15 p2

kB
4T3

\3v3 F11
1

864

~kBT!4

\2v2F4 S 56 ln
Tp

T
215D1O~T6!G .

~4.10!

Replacingv according to Eq.~4.8!, the leading contribution
amounts to



ob
o

o
oe

n
,
n-

an

,

ith

(

th

e
be

e
er

a
e
s

nt
a
ou
t

rd

et
lu
ing

re

t
fla-
gs
ticle
ions
oc-

t to

de-

and
the
p
l-

The
ef-
lso
on

ure
of

e
re-
pin
ed

-
ne-
the

pic

-
he
D.
en-
z-

w-

u-
t of
les

on

PRB 60 411EFFECTIVE ANALYSIS OF THE O(N) . . .
cV5
4p2kB

15a3 S kBT

2uJuSA2z
D 3

. ~4.11!

This expression perfectly agrees with the leading term
tained from a microscopic or phenomenological analysis
the antiferromagnet.19,20,28–30

As far as corrections to the free Bose gas term are c
cerned, it is also known that the spin-wave interaction d
not manifest itself through aT5 term in the expansion for the
heat capacity.20,31 However, there is again a disagreeme
with respect to the structure of this correction: in Ref. 20
simple T7 contribution is predicted—a logarithmic depe
dence on the temperature is not found.

Nevertheless, it is instructive to compare the two exp
sions for the heat capacity at theT7 level. Inserting the mi-
croscopic expression~4.7! for F into the effective expansion
we obtain

cV5 4
15 p2

kB
4T3

\3v3 F11
1

864

2za4

~S2s!2

~kBT!4

\4v4

3S 56 ln
Tp

T
215D1O~T6!G .

Now, in order for the nonleading term to be consistent w
the corresponding microscopic result of orderT7,20

28p4

225A3

1

S
kB

a4

~\v !7
~kBT!7, ~4.12!

the logarithm must have the following numerical valueS
51/2, simple cubic lattice!: ln(Tp /T)'1.5. Hence, for that
specific value of the temperature,T050.23Tp , the two re-
sults coincide.

Let us consider the analogous situation in QCD: there,
value ofTp

x can be extracted from experiment (pp scatter-
ing, for details see, e.g., Ref. 6!, yielding Tp

x'275 MeV.
Accordingly, with the above value of the logarithm, we g
T0

x'60 MeV. The critical temperature is estimated to
around 170 MeV—so we see that the values forT0

x , Tc
x , and

Tp
x are of the same order of magnitude. Note that the resp

tive scales for the antiferromagnet differ in about ten ord
of magnitude: with a critical temperature~Néel temperature!
of TN'O(0.01 eV), we end up withTp'O(0.01 eV).

V. SUMMARY AND OUTLOOK

The presence of states with small excitation energies
fects the behavior of the system in a very specific mann
controlled by the symmetries of the underlying theory. The
symmetries unambiguously fix the values of the coefficie
in the low-temperature expansion of the order parameter
the thermodynamic quantities up to two leading order c
pling constantsF and Ss . Symmetry, however, does no
determine the logarithmic scalesTp andTS , which occur in
the temperature expansion and involve next-to-leading o
coupling constants.

The low-temperature theorems for the order param
and the thermodynamic quantities are exact up to and inc
ing three loops: independently of the specific underly
-
f

n-
s

t
a

-

e

t

c-
s

f-
r,
e
s
nd
-

er

er
d-

model, they are valid for any Lorentz-invariant theory whe
an O(N) symmetry is spontaneously broken to O(N21).
For N54, the expansion~3.11! for the order parameter no
only describes the quark condensate of QCD with two
vors in the chiral limit, but also, e.g., describes the Hig
condensate in the standard model of elementary par
physics. The only difference between the two representat
concerns the numerical values of the coupling constants
curring therein—the low-temperature description turns ou
be universal.

Another interesting case, which we have discussed in
tail, is given byN53: the O~3! antiferromagnet. The low-
temperature theorems for the staggered magnetization
the heat capacity both agree with the results given in
literature up to and including two loops. At the three-loo
level, however, the results no longer coincide: to my know
edge, the logarithmic temperature dependence at orderT7 in
the expansion for the heat capacity and orderT6 for the
staggered magnetization, has been overlooked so far.
effective Lagrangian method not only proves to be more
ficient than the complicated microscopic analysis, but a
addresses the problem from a unified point of view based
symmetry—at large wavelengths, the microscopic struct
of the system only manifests itself in the numerical values
a few coupling constants.

Although Lorentz invariance is a crucial ingredient of th
present analysis, the effective Lagrangian method is not
stricted to this domain: ferromagnets, e.g., where the s
waves follow a quadratic dispersion law, may be analyz
within the framework of nonrelativistic effective
Lagrangians.1,8,11 In particular, the low-temperature expan
sion for the order parameter of a ferromagnet, its sponta
ous magnetization, has been calculated to three loops—
results, which go beyond Dyson’s pioneering microsco
analysis,32 will be presented in a forthcoming paper.33
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APPENDIX

In this appendix, we discuss the various quantities sho
ing up in the formula for the pressure

P5 1
2 ~N21!g014pa~g1!21pbg2

1

F4
I 1O~p10!.

~A1!

Unlike in Sec. III, we do not restrict ourselves to contrib
tions at most linear in the external field. In the second par
the appendix, we briefly comment on the logarithmic sca
Tp andTS .

Let us first consider the renormalized Goldstone-bos
mass. The calculation yields
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Mp
2 5

SsH

F2
1@2~k22k1!1~N23!l#

~SsH !2

F6
1c

~SsH !3

F10

1O~H4!, ~A2!

where the constantc involves the relevant coupling constan
of orderp6. The quantityl contains a pole atd54,

l5 1
2 ~4p!2d/2G~12 1

2 d!Md24

5
Md24

16p2 F 1

d24
2 1

2 $ ln 4p1G8~1!11%1O~d24!G .
~A3!

This singularity is absorbed in a renormalization of the co
binationk22k1 of coupling constants of orderp4. One ends
up with a logarithm depending onH and a term independen
thereof. The latter can be absorbed in a new scaleHM , such
that the expression for the renormalized mass takes the
displayed in Eq.~2.5!,

Mp
2 5

SsH

F2
1

N23

32p2

~SsH !2

F6
ln

H

HM
1O~H3!. ~A4!

Now, the functionsg0 , g1 , g, andI occurring in the for-
mula ~A1! for the pressure, depend in a nontrivial manner
Mp and T. The quantitiesgr are associated with th
d-dimensional noninteracting Bose gas

gr~Mp ,T!52E
0

` dr

~4pr!d/2
r r 21 exp~2rMp

2 !

3 (
n51

`

exp~2n2/4rT2!. ~A5!

The functiong is the following combination thereof:

g53g0~g01Mp
2 g1!. ~A6!

The expression for the three-loop integralI is more compli-
cated:

I 5 1
48 ~N21!~N23!Mp

4 J̄12 1
4 ~N21!~N22!J̄2

2 1
16 ~N21!~N23!2Mp

4 ~g1!2g2

1 1
48 ~N21!~N23!~3N27!Mp

2 ~g1!3. ~A7!

The quantitiesJ̄1 and J̄2,

J̄15J12c12c2g116~d22!l~g1!2,

J̄25J22c32c4g11 1
3 ~d16!~d22!l~Ḡmn!2

1 2
3 ~d22!lMp

4 ~g1!2,

Ḡmn52 1
2 dmng01dm

4 dn
4~ 1

2 dg01Mp
2 g1!, ~A8!
-

rm

n

remove the singularities of the loop integralsJ1 andJ2, re-
spectively:

J15E
T
ddx@G~x!#4,

J25E
T
ddx@]mG~x!]mG~x!#2. ~A9!

For the explicit structure of the temperature independ
countertermsc1•••c4, the reader is referred to Ref. 6.

The connection between the formula~3.3! for the pressure
given in Sec. III,

P5 1
2 ~N21!g014pa~g1!21pgFb2

j

p3F4G1O~p10!,

and Eq.~A1! is established by splitting off a factorg from
the expressionI,

I 5
1

p2
g j . ~A10!

This relation defines the functionj.
The constantsa and b in Eq. ~A1! contain the various

coupling constants which occur in the effective Lagrangia34

a52
~N21!~N23!

32p

SsH

F4
1

N21

4p

~SsH !2

F8

3H @~N11!~e11e2!1k22k1#

2
~N21!2

2
l2

3N2132N267

768p2 J ,

b5
N21

pF4 H @2e11Ne2#2
5~N22!

3
l2

N22

16p2J .

~A11!

Repeating the steps which led from Eq.~A2! to Eq.~A4!, the
constantsa andb may be conveniently written as

a52
~N21!~N23!

32p

SsH

F4
2

~N21!3

256p3

~SsH !2

F8
ln

H

Ha
,

b52
5~N21!~N22!

96p3F4
ln

H

Hb
. ~A12!

Finally, let us consider the logarithmic scalesTp andTS ,
showing up in the low-temperature expansion of the therm
dynamic quantities and the order parameter. They are b
related to the scaleLb ,

Tp5Lb exp~2 j 1 /n!, TS5Lb expS 2 j 1 /n1
4p2

15n
j 2D ,

~A13!
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where

Lb5
ASsHb

F
, n[

5~N21!~N22!

48
. ~A14!

Note thatTp andTS depend on the constantsj 1 and j 2 oc-
curring in the expansion of the functionj ~in the limit T
@Mp),
n

s

.

s
n

n

a

m

ry

ll

n

j 5n ln
T

Mp
1 j 11 j 2

Mp
2

T2
1OS Mp

T D 3

. ~A15!

The formulas given in this appendix can readily be check
by settingN54: usingM25SsH/F2 and identifying the re-
spective coupling constants ase15 l 1 , e25 l 2, and k22k1
5 l 3, the results for two-flavor QCD are reproduced.6,12
th
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