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Magnetization process of bilinear-biquadratic spin chains at finite temperature

Kouichi Okunishi
Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

~Received 19 February 1999!

We investigate magnetization process (M -H curve! of S51 bilinear-biquadratic~BLBQ! spin chain near
critical fields at finite temperatures. We use the density matrix renormalization group~DMRG! for the two-
dimensional classical lattice model mapped by the Trotter decomposition, with a help of the Baxter’s varia-
tional principle. By comparing the DMRG result ofS51/2 XY chain with the exact solution, we show that the
DMRG is an efficient tool to calculate theM -H curve at finite temperatures. Further, we compute theM -H
curve of the BLBQ chain. We compare the DMRG curve of the magnetization process of the BLBQ chain with
those obtained by analytic approaches: correctly mappedd-function Bose-gas approach and ‘‘Bethe-ansatz
approximation’’ approach. Near the saturation field, we show that thed-function Bose gas and the Bethe-
ansatz approximation describe theM -H curve well in both at zero temperature and finite temperatures. Near
the lower critical field, we find that thed-function Bose gas is a good effective model at the Heisenberg point.
We further find that thed-function Bose gas cannot describe theM -H curve at finite temperatures, near the
special point where theM -H curve changes qualitatively.@S0163-1829~99!02730-7#
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I. INTRODUCTION

The magnetization process (M -H curves, whereM is the
magnetization andH is the applied field! of one-dimensional
~1D! quantum spin chains has drawn much attention from
experimental and theoretical points of view. Magnetizat
measurements in high applied field, which have been de
oped rapidly, give clear evidence of the Haldane gap
NENP.1 Recently theM -H curves for the bond-alternatin
spin chains were also investigated experimentally.2 From
theoretical viewpoint, it is important to investigate theM -H
curve, because theM -H curve, reflecting the finite-H ground
state, contains information about excited states at zero fi
As for theS51 bilinear-biquadratic~BLBQ! spin chain de-
fined by the Hamiltonian

H5(
i

@SiSi 111b~SiSi 11!2#2H(
i

Si
z , ~1!

there have been few studies of theM -H curve away from the
Heisenberg point (b50). This is partially because the ma
interest in the BLBQ chain has been concentrated on
Haldane conjecture, and partially because numerical m
ods, for example, exact diagonalization and quantum Mo
Carlo simulation,3 have difficulty in investigating theM -H
curves in the thermodynamic limit. At zero temperature,
have shown that product wave function renormalizat
group ~PWFRG! method is an efficient tool to calculate th
M -H curves.4,5 The PWFRG method is a variant of the de
sity matrix renormalization group~DMRG! method,6 and is
free from the convergency problem the original DMRG fac
due to the sequence of level crossings in obtaining theM -H
curve.

The DMRG has recently been developed also for a fin
temperature problem, where the system is mapped onto a
classical one via the Trotter-Suzuki transformation.7,8 The
DMRG in 2D classical lattice systems was developed
Nishino, where the symmetric transfer matrix is treated.9 For
PRB 600163-1829/99/60~6!/4043~10!/$15.00
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the present problem, we have to deal with nonsymme
transfer matrices. Then Baxter’s variational principle, whi
was originally introduced by Kramers and Wannier, leads
to a smart extension of the DMRG to the nonsymmet
transfer matrix.10–12

Using this ‘‘finite-temperature DMRG,’’ we study in this
paper the finite-temperatureM -H curves of the BLBQ chain
near the critical fields:Hc5Hs for the saturation field and
Hc5D for the lower critical field (D is the Haldane gap!. In
our previous work,5 we have shown that the zero
temperatureM -H curves near the critical fields can be d
scribed well by thed-function Bose-gas (d-BG! picture. In
this picture, theH-M curve ~not theM -H curve! is written
by

uH2Hcu5sp2DM2S 11
3

c̃
DM D 1O~DM4!, ~2!

wheres is inversely proportional to the boson mass,c̃ is the
effective coupling constant of thed-BG, and DM512M
for Hc5Hs or DM5M for H5D. Near the saturation field
we have seen excellent agreement between the PWFRG
culatedH-M curves and thed-BG curves with the ‘‘correct’’
coupling constantc̃ obtained by theS-matrix approach.5

Near the lower critical field, we have also shown that t
H-M curves obtained by the PWFRG are consistent with
d-BG prediction ~2!, except for a special pointb5bc
('0.41). Since thed-BG is a low-energy effective model o
the system, its validity may not be guaranteed at the fin
temperatures where higher-energy modes of the system
come non-negligible. Hence it is a very interesting proble
to see to what extent thed-BG can be applied to finite-
temperature problems.

In the d-BG treatment we have neglected lattice discre
ness to put ‘‘one-particle’’ energy dispersion as«(k)5sk2.
For the finite-temperature problem, we must take accoun
the nonparabolicity of«(k) beyond thed-BG, due to the
4043 ©1999 The American Physical Society
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4044 PRB 60KOUICHI OKUNISHI
lattice discreteness. In this paper, we also discuss the Be
ansatz approximation~BAA ! which is an extension of the
low-energy effectiveS-matrix approach taken in the previou
paper.13,14

This paper is organized as follows. In Sec. II, we expla
the DMRG method for the 1D quantum system at finite te
peratures. In Sec. III, we first check the reliability of th
DMRG at the finite temperatures by comparing the ex
solution of theXY spin chain. Next, we show theM -H
curves of the BLBQ chain at various temperatures. In S
IV, we present the finite-temperatureM -H curve obtained by
the effectived-BG approach and the BAA approach near t
saturation field, and compare them with the DMRG resu
In Sec. V, we compare thed-BG prediction of theM -H
curves near the lower critical field with the DMRG resul
Finally, we give a summary in Sec. IV.

II. NUMERICAL RENORMALIZATION GROUP METHOD
AT FINITE TEMPERATURE

By using the Trotter-Suzuki transformation, we can m
the BLBQ chain to a 2D classical spin model, which can
treated by the transfer matrix method.15 The transfer matrix,
which is sometimes called quantum transfer matrix~QTM!,
is written as

T(N)5T1
(N)T2

(N) , ~3!

whereN means Trotter number. Each matrix element ofT1
(N)

andT2
(N) is given by

T1
(N)

$s8%
$s% 5w~s0 ,s1us08 ,s18!w~s2 ,s3us28 ,s38!•••

3w~sN22 ,sN21usN228 ,sN218 !, ~4!

T2
(N)

$s8%
$s% 5w~s1 ,s2us18 ,s28!w~s3 ,s4us38 ,s48!•••

3w~sN21 ,sNusN218 ,sN8 !, ~5!

where$s% and $s8% denote spin configurations in a row, an
w(si ,si 11usi8 ,si 118 ) is a local Boltzmann weight. Because
the Trotter decomposition, we impose the periodic bound
condition sN5s0 and sN8 5s08 . For the BLBQ chain the
Boltzmann weight is given by

w~si ,si 11usi8 ,si 118 !

5^si 11 ,si 118 ue2[SiSi 111b(SiSi 11)2]/NTusi ,si8&,

~6!

whereT is temperature, and$usi ,si8&% is thesz diagonal basis
for the sitei and i 8. In the QTM approach, thermodynam
behaviors of the system are calculated from the largest
genvalueLmax

(N) of T(N) and the corresponding eigenvect
uLmax

(N) & in the N˜` limit.
As was shown by Nishino, the DMRG can be applied

the transfer matrix in 2D classical lattice. In applying t
DMRG to the present problem, we should note that our QT
T(N) is nonsymmetric, which needs an extension of the or
nal implementation. For this purpose, it is helpful to rec
the relation between the DMRG and the Baxter’s cor
transfer matrix~CTM! algorithm, which can solve the syste
e-

-

t

c.

.

.

p
e

ry

i-

i-
l
r

with a nonsymmetric transfer matrix. Baxter’s algorithm
based on the variational principle which dates back to
Kramers-Wannier work. This variational principle and th
fact that the density matrix in the DMRG corresponds to
product of four CTMs lead us naturally to the DMRG fo
nonsymmetric transfer matrix, which is described as follow

The method used in this paper is basically the finite-s
algorithm of the DMRG.6 We pick up a siten and decom-
pose the transfer matrices into three parts. We then w
each element as follows:

T 1
(N)

i , j ,$s%
i 8, j 8,$s8%5Pi 8,i

l
~s0 ,sn21us08 ,sn218 !w~sn21 ,snusn218 ,sn8!

3Pj 8, j
r

~sn11 ,s0usn118 ,s08!, ~7!

T 2
(N)

i , j ,$s%
i 8, j 8,$s8%5Qi 8,i

l
~s0 ,sn21us08 ,sn218 !w~sn ,sn11usn8 ,sn118 !

3Qj 8, j
r

~sn11 ,s0usn118 ,s08!, ~8!

for n5odd, and

T 1
(N)

i , j ,$s%
i 8, j 8,$s8%5Pi 8,i

l
~s0 ,sn21us08 ,sn218 !w~sn ,sn11usn8 ,sn118 !

3Pj 8, j
r

~sn11 ,s0usn118 ,s08!, ~9!

T 2
(N)

i , j ,$s%
i 8, j 8,$s8%5Qi 8,i

l
~s1 ,sn21us08 ,sn218 !w~sn21 ,snusn218 ,sn8!

3Qj 8, j
r

~sn11 ,s1usn118 ,s08!, ~10!

for n5even. In Eqs.~7! and ~8!, sn21 ,sn ,sn11 and s0 are
bare-spin indices appearing in Eqs.~4! and ~5!, and block-
spin indicesi, i 8, j, and j 8 represent the spin configuration
$s1 , . . . ,sn22%, $s18 , . . . ,sn228 %, $sn12 , . . . ,sN21%, and
$sn128 , . . . ,sN218 %, respectively. Accordingly, each eleme
of the left and right eigenvectors belonging to the larg
eigenvalue ofT1T2 can be written as

c i , j
L ~s1 ,sn! and c j ,i

R ~sn ,s1!. ~11!

In the ordinary DMRG approach,cL andcR are calculated
by the standard Lanzcos diagonalization ofT1T2.6,9 How-
ever, our implementation is slightly different from the orig
nal ones. We consider the two transfer matricesT1 and T2
separately. Further we put a recursion relation for
eigenvectors.16,17 Then we can improve them gradually b
using multiplications of the transfer matrices~power method!
instead of the Lanczos diagonalization.

Here, we should note that the Boltzmann weight of t
system of our concern has reflection symmetry in the r
space direction:

w~si ,si 11usi8 ,si 118 !5w~si8 ,si 118 usi ,si 11!. ~12!

Thus we can see easily theright andleft eigenvector ofT2T1
arecL andcR, respectively.

Starting from the initial eigenvectorscL andcR, we can
improve them by the power method,

cL~sn ,s0!—@T1T2#acL~sn ,s0!, ~13!

cR~sn ,s0!—@T2T1#acR~sn ,s0!, ~14!

wherea is an integer representing the number of the mu
plication of the transfer matrix. We adopt 2<a<20 in the
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present paper. A largera is requested as the system a
proaches a critical point. Using the improved eigenvecto
we construct the ‘‘nonsymmetric density matrix’’r l andr r

as follows:12,18

r i , j
l ~sn!5(

k,s0

c i ,k
L ~s0 ,sn!ck, j

R ~sn ,s0!, ~15!

r i , j
r ~sn!5(

k,s0

c i ,k
R ~s0 ,sn!ck, j

L ~sn ,s0!, ~16!

where the density matrices are block diagonal with respec
sn . We diagonalize the non-symmetric density matrices
have

r i , j
l ~sn!5(

k
Ui ,k

l ~sn!vk
l Vk, j

l† ~sn!, ~17!

r i , j
r ~sn!5(

k
Vi ,k

r ~sn!vk
r Uk, j

r† ~sn!, ~18!

whereUl , Ur , Vl , andVr are transformation matrices andv l

and v r are eigenvalues ofr l and r r . We then retain the
larger mth eigenvalues and the corresponding left and ri
eigenvectors. The renormalization process of the ‘‘par
transfer matrices’’Pl , Pr , Ql , andQr is written as follows:

Pi 8,i
r

~sn ,s0usn8 ,s08!

5 (
sn11 ,sn118 ,k,l

Vi ,k
r† ~sn!Pk,l

r ~sn11 ,s0usn118 ,s08!Vl ,i
r ~sn8!,

~19!

Qj 8, j
r

~sn ,s0usn8 ,s08!

5 (
sn11 ,sn118 ,k,l

U j 8,k
r†

~sn!w~sn ,sn11usn8 ,sn118 !

3Qk,l
r ~sn11 ,s0usn118 ,s08!Vl , j

r ~sn8!, ~20!

Pi 8,i
l

~s0 ,snus08 ,sn8!

5 (
sn21 ,sn218 ,k,l

Vl†
i 8,k~sn!w~sn21 ,snusn218 ,sn8!

3Pk,l
l ~s0 ,sn21us08 ,sn218 !Vl ,i

l ~sn8!, ~21!

Qj 8, j
l

~s0 ,snus08 ,sn8!5 (
sn21 ,sn218 ,k,l

Ul†
j 8,k~sn!

3Qk,l
l ~s0 ,sn21us08 ,sn218 !Ul , j

l ~sn8!,

~22!

for n5odd, and
s,

to
o

t
l

Pi 8,i
r

~sn ,s0usn8 ,s08!5 (
sn11 ,sn118 ,k,l

Vi ,k
r† ~sn!

3Pk,l
r ~sn11 ,s0usn118 ,s08!Vl ,i

r ~sn8!,

~23!

Qj 8, j
r

~sn ,s0usn8 ,s08!5 (
sn11 ,sn118 ,k,l

U j 8,k
r†

~sn!

3w~sn ,sn11usn8 ,sn118 !

3Qk,l
r ~sn11 ,s0usn118 ,s08!Vl , j

r ~sn8!,

~24!

Pi 8,i
l

~s0 ,snus08 ,sn8!5 (
sn21 ,sn218 ,k,l

Vl†
i 8,k~sn!

3w~sn21 ,snusn218 ,sn8!

3Pk,l
l ~s0 ,sn21us08 ,sn218 !Vl ,i

l ~sn8!,

~25!

Qj 8, j
l

~s0 ,snus08 ,sn8!5 (
sn21 ,sn218 ,k,l

Ul†
j 8,k~sn!

3Qk,l
l ~s0 ,sn21us08 ,sn218 !Ul , j

l ~sn8!,

~26!

for n5even. Clearly the renormalized partial transfer ma
ces are symmetric.

Due to the variational principle aspects of the DMRG, w
should only obtain the ‘‘fixed point’’ matricesPl , Pr , Ql ,
and Qr , and the ‘‘fixed point’’ vectorscL and cR, which
satisfy the variational equation. To calculatecL and cR as
the fixed point of the DMRG iterations, we do not nee
‘‘exact’’ cL andcR at eachDMRG iteration. Accordingly it
is permitted for us to adopt smalla in Eqs.~13! and~14!. As
a compensation of the sloppy evaluation ofcL and cR, we
must introduce recursion relations for the eigenvectors.
this purpose, we notice the fact that the matricesU and V
have a physical meaning as ‘‘translation operators,’’16,17,19

which leads us to

cnew
L

i , j~s0 ,sn11!5 (
sn ,k,l

Vi ,k
l† ~sn ,s0!

3cold
L

k,l~s0 ,sn!Vl , j
r†~sn11 ,s0!, ~27!

cnew
L

i , j~s0 ,sn21!

5 (
sn ,k,l

Vi ,k
l ~sn21 ,s0!cold

L
k,l~s0 ,sn!Vl , j

r ~sn ,s0!,

~28!
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cnew
R

i , j~s0 ,sn11!

5 (
sn ,k,l

Ui ,k
r ~sn11 ,s0!cold

R
k,l~s0 ,sn!Ul , j

l ~sn ,s0!,

~29!

cnew
R

i , j~s0 ,sn21!

5 (
sn ,k,l

Ui ,k
r† ~sn ,s0!cold

R
k,l~s0 ,sn!Ul , j

l† ~sn21 ,s0!.

~30!

For the infinite-size method, whereU and V are
uniform,19 a similar recursion relation was successfully u
lized to formulate the PWFRG method.16 The recursion re-
lations ~27!, ~28!, ~29!, and ~30! are essentially identical to
the ones used in the acceleration algorithm of the finite-s
DMRG for 1D quantum systems.17

In the following sections, we apply the above method
calculations of theM -H curves of 1D quantum spin chains
finite T.

III. NUMERICAL RESULTS

A. XY model

We apply the DMRG described in the previous section
the S51/2 XY spin chain in magnetic fields, to check th
validity of the method for the calculation of theM -H curve.
We should note that the magnetized state is generally gap
at zero temperature. Hence the efficiency of the DMRG
not trivial at low temperatures. The Hamiltonian of theXY
chain is given by

H5(
i

~Si
xSi 11

x 1Si
ySi 11

y !2H(
i

Si
z . ~31!

This model is soluble via Jordan-Wigner transformation;
M -H curve at finite temperatureT is known to be20,21

M5
1

2pE2p

p

tanhS cosk1H

2T Ddk. ~32!

In Fig. 1, we compare the numerical results to the ex
curve ~32!. We can see excellent agreement. The DMR
calculation is done with onlym516. As for the Trotter num-
ber dependence ofM, we have obtained a converged res
within N528 even at the lowest temperatureT50.1. We
have thus confirmed the efficiency of the DMRG for t
M -H curve of theS51/2 XY spin chains.

B. BLBQ chain

In Fig. 2, we show theM -H curves of the BLBQ chain
for b50 ~Heisenberg point!, 1/3 ~AKLT point22!, and 0.6 at
T50.1, 0.2, and 0.5. The maximum Trotter number and
retained bases used in the present calculations are as fol
N536 andm530 for T50.1, andN520 andm527 for T
50.2, and 0.5. We have confirmed that, with theseN andM,
the magnetization is converged within the order of 1024.
e

o

ss
s

e

t

t

e
s:

As we have announced in the previous paper,5 the M -H
curve forb50.6 atT50 has a cusp atH.1.0. We can see
that the cusp is rounded by the finite-temperature effect.

IV. NEAR THE SATURATION FIELD

A. d-function Bose-gas model

Let us consider the system near the saturation fieldHs
54), where the low-energy properties are well described
the effectived-BG picture.5,23,24 Above the saturation field
the ground state is the fully polarized~‘‘all up’’ state! spin,
and each ‘‘0’’ spin is regarded as an elementary excitati
As the applied fieldH decreases belowHs , the number of
the ‘‘0’’ spins increases, and the interaction between th
becomes to be non-negligible~see Fig. 3!. Taking the inter-
action effect into account, we may describe the system n
the saturation field by the effectived-BG model, whose
Hamiltonian is given by

HBG5E dx@]xf
†~x!]xf~x!1cf~x!f†~x!f†~x!f~x!#,

~33!

wheref(x) is the boson-field operator andc is the coupling
constant. The external fieldH corresponds to the chemica
potential, and the magnetization per siteM is expressed as
M512*dx^f†(x)f(x)&.

The BLBQ chain on the lattice can be related with t
d-BG model in terms of theSmatrix of two down spins. The
key idea is that, in the low-energy limit, the two-bodyS
matrix reduces to that of thed-BG model.5 We denote the
Sz-diagonal bases of the spin chain as$us1 ,s2 , . . . ,sN&%,
wheres i (50,61) is the eigenvalue of theSz operator at
site i.

To solve the scattering problem of two down spins,

HuC&5E(2)uC&, ~34!

we put

uC&5(
y.x

c~x,y!u . . . ,1,0
x
,1, . . .,1,0

y
,1, . . .&

1(
z

f ~z!u . . . ,1,21
z

,1, . . .&. ~35!

FIG. 1. Comparison of the DMRG result and the exact solut
of the S51/2 XY model for T50.1, 0.2, and 0.5. We can se
excellent agreement.
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FIG. 2. TheM -H curve of the BLBQ chain forb50,1/3,0.6
and T50.1,0.2,0.5:~a! b50 (S51 Heisenberg model!, ~b! b
51/3 ~AKLT model!, and~c! b50.6.

FIG. 3. Schematic diagram of two-body problem near the sa
ration field. One ‘‘0’’ spin is regarded as an elementary excitat
in the fully polarized~ferromagnetic! state. We solve the two ‘‘0’’
spin problem exactly and obtain the effectiveS matrix.
The solution of the two-body problem is given as

ck,k8~x,y!;eikxeik8y1SBAA~k,k8!eik8xeiky, ~36!

E(2)~k,k8!5E~k!1E~k8!, ~37!

where E(k)[2212 cosk is the one-particle energy an
SBAA(k,k8) is the exact two-bodyS matrix:

SBAA~k,k8!

52
3b112~b21!kk81 i ~k2k8!@2b2~b21!kk8#

3b112~b21!kk82 i ~k2k8!@2b2~b21!kk8#
,

(38)

with k5cot(k/2) andk85cot(k8/2).14,25Since the one down-
spin energy takes its minimum atk5p, the low-energy scat-
tering behavior is described by the ‘‘effectiveS matrix’’
given by makingk,k8˜p in Eq. ~38!. Explicitly, we have

SBAA~k,k8! ˜

k,k8˜p

SBG~k,k8![
k2k81 ic

k2k82 ic
, ~39!

where SBG is the S matrix of the d-BG with the coupling
constant

c52
~3b11!

b
. ~40!

In the same limit, the one-particle energy dispersion cu
becomes a parabola, which implies that the low-energy pr
erty of the BLBQ chain nearHs should be described by
d-BG with couplingc52(3b11)/b. Although this effec-
tive coupling constant is negative forb.0 or b,21/3, the
resultingd-BG without bound states properly describes t
system near the saturation field. In fact, at zero temperat
using the solution of thed-BG obtained by Lieb and
Liniger,26 we can express theM -H curve nearH5Hc5Hs

by Eq.~2! with s51 andc̃5c, which agrees very well with
the PWFRG calculation.5

At finite temperatures, the thermal Bethe-ansatz met
developed by Yang and Yang gives a set of integ
equations,27

«~k!52m2k22
Tc

p E dp
1

c21~k2p!2
ln~11e2«(p)/T!,

~41!

rBG~k!~11e«(k)/T!5
1

2p
1

c

pE dp
1

c21~k2p!2
rBG~p!,

~42!

to determine the functions«(k) andrBG(p) which describe
various properties of the system. To obtain theM -H curve,
we set the chemical potential in Eq.~41! to bem542H, and
calculate the per-site magnetizationM as

M512E rBG~p!dp, ~43!

whererBG ~Bose-gas density distribution! is the solution of
Eqs.~41! and ~42!.

-



fe
in

e
, a
is
e

m
d

A
se
A
-

un
w
n

-
d

nt
A

d
s for

his

e

4048 PRB 60KOUICHI OKUNISHI
B. Bethe-ansatz approximation

In the previous subsection, we have explained the ef
tive d-BG model that describes the spin chain correctly
the low-energy and low-density~5high-field! region. In this
‘‘continuous’’ Bose-gas mapping, we have put the on
particle energy dispersion to its low-energy limit, namely
parabola, which is equivalent to neglecting the lattice d
creteness. As a next stage of the approximation, we can
ploy the ‘‘Bethe-ansatz approximation’’13,14 to take account
of the lattice effect which may become relevant at finite te
peratures. In the BAA, we apply the Bethe-ansatz metho
a nonintegrable system, byforcing many-body scattering to
be factorized into the two-body scattering. Clearly, the BA
automatically yields the exact result for the integrable ca
b561.28,29 Further, even for nonintegrable cases, the BA
is exact within the two-body problem with full lattice dis
creteness; the lattice effect is properly taken into acco
We can therefore expect the BAA to be good in the lo
particle density where many-body scattering is not domina
In fact, for the BLBQ chain withb<0, quite good agree
ment between the zero-temperature BAA and the exact
agonalization has been shown in Ref. 14. What we prese
this subsection is a finite-temperature extension of the BA
m

he
c-

-

-
m-

-
to

s

t.

t.

i-
in
.

In performing the finite-temperature BAA~‘‘thermal
BAA’’ !, we simplify the analysis by neglecting the boun
states, although they actually exist. Since the bound state
b.21/3 are high-energy modes,14 we can expect that the
low-temperature behavior is not affected significantly by t
simplification.

Following the standard BA method, we obtain

kiN52pI i2 i(
j Þ i

ln SBAA~ki ,kj8!, ~44!

where I i is the quantum number~integer or half integer!.
Taking the thermodynamic limit (N˜`), Eq. ~44! is con-
verted to an integral equation. Making a variable changk

˜ k̃5cot(k/2) and rewritingk̃ to k for notational simplicity,
we have an equation

f ~k!5
1

11k2
2E

2B

B

K~p,k! f ~p!dp, ~45!

where f (k) is a density distribution andB is related toM.
The explicit form of the kernelK(k,p) is given by
K~k,p!5
~b21!2k2p21~b221!p222~3b11!~b21!kp12b~3b11!

@3b112~b21!kp#21~k2p!2@2b2~b21!kp#2
. ~46!
-

ide

PW-
Then theM -H curve at zero temperature is calculated fro

M512E
2B

B

f ~p!dp, ~47!

e~M !5E
2B

B 24

11p2
f ~p!dp, ~48!

H2452
]e~M !

]M
. ~49!

In a similar fashion to the standard thermal BA within t
‘‘one string’’ ~no bound state!, we perform the thermal BAA,
which gives a set of integral equations

«~k!5H2
4

11k2
2

T

pE dpthK~p,k!ln~11e2«(p)/T!,

~50!

rBAA~k!~11e«(k)/T!5
1

p~11k2!
2

1

pE dp K~k,p!rBAA~p!.

~51!
The magnetization is then given by

M512E r~k!dk. ~52!

C. Results and discussion

In the our previous paper,5 we compared the zero
temperatureM -H curve of thed-BG model to the PWFRG
calculation. The agreement is good in an unexpectedly w

FIG. 4. The BAA result forb50, 1/3, and 0.6 at the zero
temperature. We are able to see the good agreement with the
FRG results up to the middle region of the curve (M.0.6).
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FIG. 5. Thed-BG and the BAA results near the saturation field at the finite temperatures:~a! b50, ~b! b51/3, and~c! b50.6.
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region near the saturation field (M.0.8). In Fig. 4, we show
a comparison of the present zero-temperature BAA res
with the PWFRG results, where we see better agreem
among them in a wider region of theM -H curve (M.0.6).
We also find that asb approaches the integrable pointb
51, the agreement becomes better and better. We thus
verified the validity of the BAA at the zero temperature.

In Fig. 5 we show the finite-temperature results. In t
low-density region~i.e., high-field region withM.0.95), the
DMRG results are reproduced very well by both the effect
ts
nt

ve

e

d-BG approach and the BAA approach. In the middle fie
the d-BG curve begins to deviate significantly from th
DMRG curve beforeM50.8 ~at zero temperature, the devia
tion is not so significant around this region.5! The DMRG
results indicate that the shape of theM -H curves varies sen
sitively with temperature, while thed-BG cannot reproduce
such behaviors. On the other hand, the BAA curves ag
with the DMRG curves even in the intermediate range of
field. The BAA approach, even without the bound state, s
cessfully explains a considerable portion of theM -H curves
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at finite temperatures. Further, we find that the BAA b
comes better and better asb approaches the integrable poi
b51.

Hence, we can conclude that the BAA is reliable not on
at zero temperature but also at finite temperatures, in
wide region of the field near the saturation field.

V. NEAR THE LOWER CRITICAL FIELD

A. d-function Bose gas model

Let us discuss theM -H curve near the lower critical field
(Hc5D). In this region, a microscopic derivation of an e
fective model is difficult, since the exact elementary exci
tion cannot be obtained analytically, unlike the case near
saturation field. We may then regard phenomenologically
triplet states above the singlet ground state as elemen
excitations with thed-function-type interactions. This pictur
was first given by Affleck and may be reasonable in terms
the Fermi-Luttinger liquid theory.30

Let us write the Hamiltonian of the effectived-BG as

HBG5E dxFs(
s

]xf
(s)†~x!]xf

(s)~x!

1(
s,s8

cs,s8f
(s)†~x!f (s8)†~x!f (s8)~x!f (s)~x!G ,

~53!

where s is an index of theSz of the triplet excitation and
takes$21,0,1%. Although we do not have a direct mappin
between the BLBQ Hamiltonian and Eq.~53!, we can deter-
mine the parameterss and c indirectly through the zero-
temperatureM -H curve; we make a fitting of the PWFRG
calculation to the zero-temperatureM -H curve deduced from
Eq. ~53!. Then, calculating the finite-temperatureM -H curve
by using the resulting Hamiltonian~53!, and comparing it
with a finite-temperature DMRG result, we can check t
validity of the Bose-gas mapping.

Further, we know that the low-energy excitations near
singlet ground state are given by the relativistic free ferm
picture,31 which was originally presented at the Heisenbe
point. The one-particle dispersion curve near the bottom
the band (k5p) can be expressed as

v~k!5AD21v2~k2p!2, ~54!

wherev is called spin-wave velocity. Taking the low-energ
limit k˜p, Eq. ~54! becomes

v~k!5D1
v2

2D
~k2p!2. ~55!

Then, we get an equation

s5
v2

2D
, ~56!

which relates the amplitudes in the M -H curve withD and
v in the low-energy dispersion curve. Hence it is also p
sible to check the consistency of theM -H curves with the
values ofv and D evaluated by other numerical comput
tions.
-

e

-
e
e
ry

f

e

e
n

f

-

In order to calculate the zero-temperatureM -H curve
from Eq. ~53!, we may omits50,21 sectors~due to the
Zeeman term!.24 Then theH-M curve is obtained as Eq.~2!

with the amplitudes and the effective coupling constantc̃
5c1,1/s.5 Comparison with the PWFRG calculations giv
us the values of the parameters summarized in Table I.

At the finite temperatures, we should consider the ot
modesf (0) and f (21). Although there may be nonzero in
teractions between the different modes, we assume that
are small to set the off-diagonal coupling constantscs,s8 (s
Þs8) to be zero. As for the diagonal couplings, we putc0,0
5c21,215c1,1 by symmetry. Replacing the parametersc
˜c/s, m˜H, andk2

˜sk2 in Eqs. ~41! and ~42!, we ob-
tain theM -H curve as

M5E rBG
(11)~k!dk2E rBG

(21)~k!dk, ~57!

where rBG
(11)(k) and rBG

(21)(k) are momentum-distribution
functions~or the root-density functions in BA terminology!
for the s56 modes.

We should make a comment on the negative coupl
constant which appears inb.bc ~see Table I!, because the
naive attractive interaction makes the system unstable.5 Re-
call that a physical picture of the excitations from the sing
ground state~Haldane state! is explained well in terms of the
moving domain wall which separates two states with orie
tational order.32–34Since the number of domain walls whic
can occupy the same site cannot exceed the maximum l
wall height (5S), the ‘‘bound-state-forming instability’’
caused by the negative couplingd-BG may be avoided in the
spin chain. However, the actual situation is more sub
since the domain wall cannot be defined microscopically;
wall position itself is not so well defined because of t
zero-spin defects destroying the positional order. We exp
that the finite-temperature calculation gives us further inf
mation on nature of the excitations in the regionbc,b,1.

B. Results and discussion

In Fig. 6, we compare thed-BG calculation with the
DMRG results of the finite-temperatureM -H curve.

For b50, we can see quantitative agreement in the l
fields (M,0.1). On raising the field, thed-BG curves still
keep qualitative agreement for all temperatures.

For b51/3 ~AKLT chain!, the d-BG curve of T50.2
agrees with the DMRG result in very low fields. Howeve
the curves ofT50.1 and T50.5 do not agree with the
DMRG results. The sensitive temperature dependence o
M -H curve obtained by the DMRG is not reproduced in t
d-BG curve. Use of the other value ofs, for example,s
50.5246 . . . , which is the one in the dressed solito
approximation,34 leads us to similar results. Let us recall tha

TABLE I. Effective coupling constantc̃ and the inverse mass o
the boson fields estimated from the zero-temperatureH-M curves.

b 0 1/3 0.6

c̃ 0.37 0.83 26.8

s 7.6 0.49 0.70
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at zero temperature, theM -H curve of the AKLT model rises
more rapidly than that ofb50, implying that the region ofH
where thed-BG picture is valid is narrow in the AKLT
model.5 We suppose that this qualitative difference betwe
the zero-temperature and nonzero-temperatureM -H curves
is due to the considerable difference in the dispersion cu
of the low-lying excitations~‘‘one-particle’’ energy disper-
sion in the Bose-gas picture!.35,36 In the AKLT model, the
one-particle dispersion curvev(k) is flatter than that of the
b50 case, and (k2p)4 and higher-order terms inv(k) be-
come significant. Accordingly, thed-BG treatment will be
valid only at very low temperature and at very low field.

For b50.6 where the effective couplingc̃ is negative,
agreement between thed-BG curves and DMRG curves i

FIG. 6. Thed-BG results near the lower critical field:~a! b
50, ~b! b51/3, and~c! b50.6.
n

es

even worse. This may be partly ascribed again to the sh
of the one-particle dispersion curve, just as in the case ob
51/3. Further, as was briefly mentioned in the previo
paper,5 the zero-temperatureM -H curve for b.bc
(;0.41) shows a cusp singularity in the middle-field regi
which can never be explained in terms of a simpled-BG
picture. At finite temperatures, a remnant of the cusp sin
larity makes theM -H curve deviate significantly from the
d-BG curve. We should say that a naived-BG picture may
not hold forb.bc .

As has been pointed out in Refs. 36–39, the ground s
and excitations forb.bc are quite different from those fo
b,bc , which seems to be closely related to the inapplic
bility of the simpled-BG treatment in this region.

VI. SUMMARY

We have investigated theM -H curve of the bilinear-
biquadratic chain at finite temperatures by employing
density-matrix renormalization group to the quantum trans
matrices associated with Suzuki-Trotter-transformed
classical systems.

We have shown that the DMRG is an efficient tool
calculate theM -H curve, by verifying that it reproduces th
exact curve of theS51/2 XY model.

Based on the calculated curves, we have tested
d-function Bose-gas picture for the BLBQ chain near t
critical fields, varying the coefficientb of the biquadratic
term.

Near the saturation field~upper critical field!, we have
mapped the BLBQ chain to thed-BG through the exact two-
bodySmatrices. The thermal Bethe-ansatz results of the c
rectly mappedd-BG are consistent with the DMRG result
Further, we have extended the Bethe-ansatz approxima
to finite-temperature, and have shown that the BAA giv
betterM -H curves than thed-BG.

Near the lower critical field~associated with the Haldan
gap!, we have determined the parameters in thed-BG Hamil-
tonian from the zero-temperatureM -H curve, and have made
thermal Bethe-ansatz calculation. Atb50 we have con-
firmed that thed-BG gives consistent results with the DMR
calculations. On raisingb, however, thed-BG calculations
deviate from the DMRG curves. One mechanism as for t
discrepancy may be the nonparabolicity the excitation ene
dispersion, which seems to explain the case forb,bc (bc
;0.41). There seems to be another mechanism respon
for rather large deviation observed forb.bc ~negative ef-
fective coupling region!. The ground-state structure an
property of low-lying excitations in this region may be qua
tatively different from those in the regionb,bc .36,39,40The
finite-temperature remnant of the middle-field cusp singu
ity at zero temperature also enhances the deviation.
clarify the formation mechanism of the cusp singularity its
is an interesting problem, which may also lead to a be
understanding of the nature of the BLBQ chain inb.bc .
Details will be published elsewhere.41
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