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Magnetization process of bilinear-biquadratic spin chains at finite temperature
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We investigate magnetization procesd-H curve of S=1 bilinear-biquadratidBLBQ) spin chain near
critical fields at finite temperatures. We use the density matrix renormalization goMRG) for the two-
dimensional classical lattice model mapped by the Trotter decomposition, with a help of the Baxter’s varia-
tional principle. By comparing the DMRG result 8f1/2 XY chain with the exact solution, we show that the
DMRG is an efficient tool to calculate tHd-H curve at finite temperatures. Further, we computehhél
curve of the BLBQ chain. We compare the DMRG curve of the magnetization process of the BLBQ chain with
those obtained by analytic approaches: correctly mappéchction Bose-gas approach and “Bethe-ansatz
approximation” approach. Near the saturation field, we show thatstfienction Bose gas and the Bethe-
ansatz approximation describe theH curve well in both at zero temperature and finite temperatures. Near
the lower critical field, we find that thé-function Bose gas is a good effective model at the Heisenberg point.
We further find that the-function Bose gas cannot describe fiieH curve at finite temperatures, near the
special point where th#-H curve changes qualitativelj/S0163-182@09)02730-7

[. INTRODUCTION the present problem, we have to deal with nonsymmetric
transfer matrices. Then Baxter’s variational principle, which
The magnetization proces8(H curves, whereM is the  was originally introduced by Kramers and Wannier, leads us
magnetization anél is the applied fielflof one-dimensional to a smart extension of the DMRG to the nonsymmetric
(1D) quantum spin chains has drawn much attention from théransfer matrix0-12
experimental and theoretical points of view. Magnetization Using this “finite-temperature DMRG,” we study in this
measurements in high applied field, which have been devepaper the finite-temperatuM-H curves of the BLBQ chain
oped rapidly, give clear evidence of the Haldane gap fomear the critical fieldsH.=Hg for the saturation field and
NENP! Recently theM-H curves for the bond-alternating H.=A for the lower critical field @ is the Haldane gapIn
spin chains were also investigated experimenfalstom  our previous work, we have shown that the zero-
theoretical viewpoint, it is important to investigate thieH temperatureM-H curves near the critical fields can be de-
curve, because thd-H curve, reflecting the finitét ground  scribed well by thes-function Bose-gas §&BG) picture. In
state, contains information about excited states at zero fieldhis picture, theH-M curve (not theM-H curve is written
As for the S=1 bilinear-biquadrati¢BLBQ) spin chain de- by
fined by the Hamiltonian

|H—H/|=0om?AM? +O(AM%Y, (2

3
1+ =AM
H=3 [SS+ASSD-HE &, ) i

there have been few studies of thleH curve away from the Whereo is inversely proportional to the boson masss the
Heisenberg point4=0). This is partially because the main effective coupling constant of thé-BG, andAM=1-M
interest in the BLBQ chain has been concentrated on thér Hc=Hsor AM=M for H=A. Near the saturation field,
Haldane conjecture, and partially because numerical metive have seen excellent agreement between the PWFRG cal-
ods, for example, exact diagonalization and quantum Monté&ulatedH-M curves and thé-BG curves with the “correct”
Carlo simulatior? have difficulty in investigating thév-H coupling constanic obtained by theSmatrix approach.
curves in the thermodynamic limit. At zero temperature, weNear the lower critical field, we have also shown that the
have shown that product wave function renormalizationH-M curves obtained by the PWFRG are consistent with the
group (PWFRQG method is an efficient tool to calculate the §-BG prediction (2), except for a special poinB= .
M-H curves*® The PWFRG method is a variant of the den- (=0.41). Since the-BG is a low-energy effective model of
sity matrix renormalization groufDMRG) method® and is  the system, its validity may not be guaranteed at the finite
free from the convergency problem the original DMRG facestemperatures where higher-energy modes of the system be-
due to the sequence of level crossings in obtainingMhel come non-negligible. Hence it is a very interesting problem
curve. to see to what extent thé-BG can be applied to finite-
The DMRG has recently been developed also for a finitetemperature problems.
temperature problem, where the system is mapped onto a 2D In the 5-BG treatment we have neglected lattice discrete-
classical one via the Trotter-Suzuki transformatidniThe  ness to put “one-particle” energy dispersion a&k) = ok?.
DMRG in 2D classical lattice systems was developed byFor the finite-temperature problem, we must take account of
Nishino, where the symmetric transfer matrix is treat&br  the nonparabolicity of:(k) beyond thes-BG, due to the
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lattice discreteness. In this paper, we also discuss the Betheith a nonsymmetric transfer matrix. Baxter’s algorithm is
ansatz approximatio®BAA) which is an extension of the based on the variational principle which dates back to the
low-energy effectivesmatrix approach taken in the previous Kramers-Wannier work. This variational principle and the
paper-314 fact that the density matrix in the DMRG corresponds to a
This paper is organized as follows. In Sec. I, we explainproduct of four CTMs lead us naturally to the DMRG for
the DMRG method for the 1D quantum system at finite tem-nonsymmetric transfer matrix, which is described as follows.
peratures. In Sec. lll, we first check the reliability of the  The method used in this paper is basically the finite-size
DMRG at the finite temperatures by comparing the exacalgorithm of the DMRG> We pick up a siten and decom-
solution of theXY spin chain. Next, we show th#&l-H pose the transfer matrices into three parts. We then write
curves of the BLBQ chain at various temperatures. In Seceach element as follows:
IV, we present the finite-temperatuk-H curve obtained by Lo
the effectives-BG approach and the BAA approach near the ’Z‘lN)}Yj’f{S’}{S b= P:r,i(So1Sn71|56 ,Sn—1)W(Sp_1,Sn|Sh_1,Sh)
saturation field, and compare them with the DMRG results.

In Sec. V, we compare thé-BG prediction of theM-H X P}, i(Snv1,50/80+1,50), ()

curves near the lower critical field with the DMRG results. N

Finally, we give a summary in Sec. IV. TN = QL ((S0,80-1/8h - )W(Sh Sn41]S] .St 1)
r ! ’

Il. NUMERICAL RENORMALIZATION GROUP METHOD X Qjr j(Sn+1:S0lSn+1,50), ®

AT FINITE TEMPERATURE for n=odd. and

By using the Trotter-Suzuki transformation, we can map

N)i’Lj' {s"Y _ pl It !t
the BLBQ chain to a 2D classical spin model, which can be “1 )z,j,J{s}{S t= Pi’,i(SO’Sn—1|SO +Sn—1)W(Sn,Sn+1/Sp:Sp+1)
treated by the transfer matrix meth8dThe transfer matrix, <P’ s! A )
which is sometimes called quantum transfer mated M), J",J'(S““'SO Sn+150)s
is written as
i’ s’ | ot ’ ’
7'(2N):,j’,]{s’}{s }:Qif'i(slasn—llso 1Sn—1)W(Sn—lisn|Sn—1!Sn)
T =TT, (3)
r I ’
_ XQ;r i(Sn+1,S1lSn+1,50), (10
whereN means Trotter number. Each matrix elemenT§¥
and T is given by for n=even. In Eqs(7) and (8), S,,_1,S,,Sh+1 andsy are
2 bare-spin indices appearing in Edd) and (5), and block-
T(lN){S}, —W(Sg,51]S},S)W(S;,84/S},S5) - - - spin indicesi, i, j, Iandj’ r?present the spin configurations
(s} {S1, ... Sn_2b {S1,.--Sh_2} {Sni2,....Sn_1), and
XW(SN_2,SN_1/SN_2,SN—1)> 4 {Shi2,---,Sy_1}, respectively. Accordingly, each element
of the left and right eigenvectors belonging to the largest
TEN)}z}r}:W(Sl.SﬂSi,Sé)W(53-34|5é154'1)' .. eigenvalue of7;7, can be written as
X W(SN-_1,SnISN_1.SN) (5) Yri(si.sy)  and  gRi(s,.s). (1)

where{s} and{s'} denote spin configurations in a row, and !N the ordinary DMRG app“?aCh/fL '?md_‘ﬁR are %%Iculated
w(s;,Si11lS/ .S/, 1) is a local Boltzmann weight. Because of PY the standard Lanzcos diagonalization BfZ,.”" How-
the Trotter decomposition, we impose the periodic boundar{:V€ Our implementation is slightly different from the origi-
condition sy=5, and s,=s,. For the BLBQ chain the nal ones. We consider the two transfer matridgsand 7,
Boltzmann weight is given by sgparately. Further we put a recursion relation for the
eigenvectors®!’ Then we can improve them gradually by

e r o using multiplications of the transfer matricgswer methog
W(SI 1S|+1|Si ’Si+1) ; i i ati
instead of the Lanczos diagonalization.
:<Si+l,si’+1|e*[Ssi+1+ﬁ(sisi+1)2]/NT|si s, Here, we should note that the Boltzmann weight of the

system of our concern has reflection symmetry in the real
(6)  space direction:

whereT is temperature, anfls; ,s{ )} is thes” diagonal basis

for the sitei andi’. In the QTM approach, thermodynamic

behaviors of the system are calculated from the largest eifhus we can see easily thight andleft eigenvector of7,7;

genvalue AN, of T and the corresponding eigenvector are /- and y®, respectively.

AN Y in the N—co limit. Starting from the initial eigenvectorg" and R, we can
As was shown by Nishino, the DMRG can be applied toimprove them by the power method,

the transfer matrix in 2D classical lattice. In applying the L el

DMRG to the present problem, we should note that our QTM ¥-(Sn:S0) [ 1L T2]"4" (S0 S0), (13

TN is nonsymmetric, which needs an extension of the origi- R a R

nal implementation. For this purpose, it is helpful to recall ¥ (Sn:80) LTI Y (S0 1 %0), (14

the relation between the DMRG and the Baxter's cornemwhere« is an integer representing the number of the multi-

transfer matrixCTM) algorithm, which can solve the system plication of the transfer matrix. We adopty<20 in the

W(S;i,Si 11/ .S/ 1) =W(S] ,S/;1|Si,Si11). (12
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present paper. A larget is requested as the system ap-

proaches a critical point. Using the improved eigenvectors, Pirr,i(sn,so|5r’1-56): 2

we construct the “nonsymmetric density matrix' and p"

as follows>®

p!,,-(sn>=k2 U 1(S0.Sn) U (Sn 1 S0), (15)

S0

PLi(S0)= 2 (S0, S0) ¥ (Sn o), (16)
S0

where the density matrices are block diagonal with respect to
s,. We diagonalize the non-symmetric density matrices to

have

pLi(S) =2 Ui (S0 @V j(sn), (17

pl(s0)=2 Vi (s wiU(sy),

(18)
X

whereU', U", V', andV" are transformation matrices and

and o' are eigenvalues op' and p’. We then retain the

ViT(sn)

Snt1:Spq Kl
X Py 1(Sn+1,S0lSh+1.80) V] i(Sh),

(23

Q) j(sn.Solsn.sp)= >

’
Sn+1,Sp+1 Kl

Uil (s0)

><W(Sn asn+1|sr,1 !Srlw+l)

X Qyi(Sn+1,S0lSn+1,80) V] j(Sp),

(24
| ’ ’
Pi/ i(So,SnlSo,S1) = > VT (sn)
Sn—1:Sp_1 kil
><W(Sn—l vsnlsr,w—l !Sr,1)
X PL,|(50 +Sn—1/S0 ,Sﬁ—l)vl,i(sfw)!
(25

larger mth eigenvalues and the corresponding left and right

eigenvectors. The renormalization process of the “partial
transfer matrices'P', P, Q', andQ" is written as follows:

r
Piryi(sn ,50|5r’1 156)

>

;
Vir,k(sn) Prk,l(sn+l +So|Sp+1 ’Sé)vlr,i(sr;)v
Snt1:Speq oKl

(19
Q;;J—(Sn 1SO|sr,1 ’S(,))

-3

rt
UJ /‘k(sn)W(sn aSn+l|SrI1 !Sr,H—l)
!
Sn+1:Spr 1Kl

X Qi 1(Sn+1,S0lSn+1:80) VI j(Sn), (20)

|
Pir,i(5015n|5(l)*sr,1)

= 2

’
Sn—1+Sn_1.K/!

|
\ 1Li’,k(sn)W(Snfl ,Sn|Sr,1,1 1er1)

X P}1(S0,Sn-1/S5.Sh- 1)V i(sp), (1)

|
er'j(501sn|st,)-sr,1): E

r
Sn—1,Sy_ 1Kl

U™ (sn)

X QL,|(50'Sn—1|36 'Sr/m—l)U:,j(Sr/m)y
(22

for n=o0dd, and

|
Q. (so.Snlst s= 2

!
Sn—1:Sy_ 1Kl

U k(sn)

XQLJ(SOaSn—ﬂSé :Srlw—l)U:,j(srlw)’
(26)

for n=even. Clearly the renormalized partial transfer matri-

ces are symmetric.

Due to the variational principle aspects of the DMRG, we

should only obtain the “fixed point” matrice®', P", Q',
and Q', and the “fixed point” vectorsy- and ¢R, which
satisfy the variational equation. To calculaté and ¢~ as

the fixed point of the DMRG iterations, we do not need

“exact” ' andy®R ateachDMRG iteration. Accordingly it
is permitted for us to adopt smallin Egs.(13) and(14). As
a compensation of the sloppy evaluationydf and ¢, we

must introduce recursion relations for the eigenvectors. For

this purpose, we notice the fact that the matritksind V
have a physical meaning as “translation operatofs'**°
which leads us to

whew,,(so,sml):;kl V(s ,S0)

X bk 1 (S0, SV T(Sni1.50), (27)

L
wnew',j(SOaSnfl)

= sEk | V!,k(sn—l :So)l/flc]ldk,l(so 'Sn)V{,j(Sn +So),
0K,

(28)
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R r
¥newi j(S0+Sn+1) 1 s=1/2 XY model
:SEK | Uir,k(sn+l VSO) lzb(?lko(SO 1Sn)U:'j(Sn 150)1 o4t
(29) 03|
=

R
lpnew’,j(SOvSnfl) 02

=SEkI U} (Sn S0) ¥hiak. 1 (S0, Sn) UL (Sn—1,50). o1}

(30 0

H

For the infinite-size method, wher& and V are
uniform,*® a similar recursion relation was successfully uti-  FiG. 1. Comparison of the DMRG result and the exact solution
lized to formulate the PWFRG metho®iThe recursion re-  of the S=1/2 XY model for T=0.1, 0.2, and 0.5. We can see
lations (27), (28), (29), and (30) are essentially identical to excellent agreement.
the ones used in the acceleration algorithm of the finite-size
DMRG for 1D quantum systems. As we have announced in the previous paptre M-H

In the following sections, we apply the above method tocurve for3=0.6 atT=0 has a cusp atl=1.0. We can see
calculations of thévl-H curves of 1D quantum spin chains at that the cusp is rounded by the finite-temperature effect.
finite T.

IV. NEAR THE SATURATION FIELD

IIl. NUMERICAL RESULTS A. é-function Bose-gas model

A. XY model Let us consider the system near the saturation field (

We apply the DMRG described in the previous section to=4), where the low-energy properties are well described by
the S=1/2 XY spin chain in magnetic fields, to check the the effectives-BG picture>**** Above the saturation field,
validity of the method for the calculation of thd-H curve.  the ground state is the fully polarizétall up” state) spin,

We should note that the magnetized state is generally gapleg§d each “0” spin is regarded as an elementary excitation.

at zero temperature. Hence the efficiency of the DMRG isAs the applied fieldH decreases below, the number of

not trivial at low temperatures. The Hamiltonian of tk&y ~ the “0” spins increases, and the interaction between them

chain is given by becomes to be non-negligibisee Fig. 3. Taking the inter-
action effect into account, we may describe the system near

the saturation field by the effectivé-BG model, whose
H=2 (S 1+9.)-HX S (3D Hamiltonian is given by
I I

This model is soluble via Jordan-Wigner transformation; the 7{,,= f dX[ 9y (X) dyp(X) +Ch(X) T (x) T (X) p(X)],
M-H curve at finite temperatur€ is known to b&%?!

(33
1 (= cosk+H where ¢(x) is the boson-field operator amds the coupling
M=o, el ——|dk (32)  constant. The external field corresponds to the chemical

potential, and the magnetization per siieis expressed as
M=1-Jdx(¢"(x) $(x)).

The BLBQ chain on the lattice can be related with the
6-BG model in terms of th& matrix of two down spins. The
key idea is that, in the low-energy limit, the two-bo®
matrix reduces to that of th6-BG model® We denote the
S?-diagonal bases of the spin chain @&,05, . ..,0n)},
whereo; (=0,%1) is the eigenvalue of th&” operator at
sitei.

To solve the scattering problem of two down spins,

In Fig. 1, we compare the numerical results to the exac
curve (32). We can see excellent agreement. The DMRG
calculation is done with onlyjn=16. As for the Trotter num-
ber dependence dfl, we have obtained a converged result
within N=28 even at the lowest temperatufe=0.1. We
have thus confirmed the efficiency of the DMRG for the
M-H curve of theS=1/2 XY spin chains.

B. BLBQ chain

In Fig. 2, we show theM-H curves of the BLBQ chain
for B=0 (Heisenberg point 1/3 (AKLT point??), and 0.6 at we put
T=0.1, 0.2, and 0.5. The maximum Trotter number and the
retained bases used in the present calculations are as follows: W)= ¢(x,y)|...,1,01,...,1,01,...)
N=36 andm=30 for T=0.1, andN=20 andm=27 for T y>X X y
=0.2, and 0.5. We have confirmed that, with thdsandM, +2 f(2)|....1-1.1,...). (35)
the magnetization is converged within the order of 10 Z z

H|W)=E@|W¥), (34)
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FIG. 2. TheM-H curve of the BLBQ chain foi3=0,1/3,0.6
and T=0.1,0.2,0.5:(a) B=0 (S=1 Heisenberg modgl (b) B
=1/3 (AKLT model), and(c) 8=0.6.

The solution of the two-body problem is given as
Prejo (6Y) ~ €M Y4 Span (kK ) "ey,  (36)

E@(k,k")=E(K) +E(K'), (37)
where E(k)=—2+2 cosk is the one-particle energy and
Sgaa(k, k") is the exact two-bodys matrix:

Seaa(k,k’)

3B+1—(B—L)kx'+i(k—k")[2B—(B—1)kk']
38+ 1—(,8—1)KK’—i(K—K’)[2,8—(,8—1)KK'],
(38)
with k= cot(/2) andx’=cot(k'/2).1*?Since the one down-
spin energy takes its minimum &t 7, the low-energy scat-

tering behavior is described by the “effectiv@ matrix”
given by makingk,k’— 7 in Eq. (38). Explicitly, we have

) Kk . k=k'+ic
Sgan(k,k") — Sgglk,k')=—"— (39
k—k'—ic
where Sz is the S matrix of the §-BG with the coupling
constant

(3p+1)
c 5 (40

In the same limit, the one-particle energy dispersion curve
becomes a parabola, which implies that the low-energy prop-
erty of the BLBQ chain neaHg should be described by
6-BG with couplingc=—(38+1)/8. Although this effec-
tive coupling constant is negative f@>0 or < —1/3, the
resulting 5-BG without bound states properly describes the
system near the saturation field. In fact, at zero temperature,
using the solution of thes-BG obtained by Lieb and
Liniger,2® we can express thel-H curve neaH=H =H
by Eq.(2) with =1 andc=c, which agrees very well with
the PWFRG calculation.

At finite temperatures, the thermal Bethe-ansatz method
developed by Yang and Yang gives a set of integral
equations’

Tc 1
K)=—u—k?>— —J' d In(1+e~2MPVT),
el=—p ) P ™ )

(41
A A A A A A A pec(k)(1+e M) =_—— —f 0 (ko — > Pea(P),
— 1 O 1T T U1 c“+(k—p)
(42)
X
Y to determine the functions(k) and pgg(p) which describe
A A A A A A various properties of the system. To obtain ¥ieH curve,
T ¢ T 1 we set the chemical potential in E¢-1) to beu=4—-H, and
calculate the per-site magnetizatithas
Z
FIG. 3. Schematic diagram of two-body problem near the satu- M=1- J pec(P)dp, (43

ration field. One “0” spin is regarded as an elementary excitation
in the fully polarized(ferromagnetit state. We solve the two “0”

spin problem exactly and obtain the effectiSenatrix.

where pgs (Bose-gas density distributipms the solution of
Egs.(41) and(42).



4048 KOUICHI OKUNISHI PRB 60

B. Bethe-ansatz approximation In performing the finite-temperature BAA“thermal
In the previous subsection, we have explained the effecBAA” ), we simplify the analysis by neglecting the bound

tive 5-BG model that describes the spin chain correctly insStates, aIthough they actually exist. Since the bound states for
the low-energy and low-densiy=high-field region. In this 8> ~1/3 are high-energy modé$we can expect that the
“continuous” Bose-gas mapping, we have put the One_lqw-tgmpgrature behavior is not affected significantly by this
particle energy dispersion to its low-energy limit, namely, aSimplification. _
parabola, which is equivalent to neglecting the lattice dis- Following the standard BA method, we obtain
creteness. As a next stage of the ap%goléimation, we can em-
ploy the “Bethe-ansatz approximation™ " to take account _ : /
of the lattice effect which may become relevant at finite tem- kiN=2l; =i ,Z:. I Sean(kiskj), “4
peratures. In the BAA, we apply the Bethe-ansatz method to
a nonintegrable system, Wgrcing many-body scattering to wherel; is the quantum numbefinteger or half integer
be factorized into the two-body scattering. Clearly, the BAATaking the thermodynamic limitN—), Eq. (44) is con-
automatically yields the exact result for the integrable caseserted to an integral equation. Making a variable chakge
B=+12%2°Further, even for nonintegrable cases, the BAA_k— cot(v2) and rewritingk to k for notational simplicity,
is exact within the two-body problem with full lattice dis- \ye have an equation
creteness; the lattice effect is properly taken into account.
We can therefore expect the BAA to be good in the low 1 5
particle density where many-body scattering is not dominant. f(k)= _ J K(p,k)f(p)dp (45)
In fact, for the BLBQ chain with8<0, quite good agree- 1+k? B ’
ment between the zero-temperature BAA and the exact di-
agonalization has been shown in Ref. 14. What we present iwhere f (k) is a density distribution an®& is related toM.
this subsection is a finite-temperature extension of the BAAThe explicit form of the kerneK(k,p) is given by

(B—1)%k?p?+(B2—1)p?—2(3B+1)(B—1)kp+2B(38+1)

K(k,p)= (46)
[38+1—(B—1)kpl*+(k—p)’[28—(B—1)kp]?
|
Then theM-H curve at zero temperature is calculated from The magnetization is then given by
B
v=-1-[" oy, @7 M=1- [ podk (52
-B
B —4 C. Results and discussion
e(M)= f—Bl-l— pzf(P)d p, (48 In the our previous papér,we compared the zero-

temperatureM-H curve of thes-BG model to the PWFRG
calculation. The agreement is good in an unexpectedly wide
H—-4= deM) 49

B BAA PWFRG

In a similar fashion to the standard thermal BA withinthe ~ *°[ ?/3
“one string” (no bound stafe we perform the thermal BAA, 06
which gives a set of integral equations 08| :

=

0.7 I

e(k)=H— —If dpthK(p,k)In(1+e *PT)
1+ k2 7T , ’ 0.6 i A.A‘A'&*
(50) P e
1.5 )
e(K)/T 1 1 FIG. 4. The BAA result for=0, 1/3, and 0.6 at the zero
peaa(K)(1+e ) =—————=—— [ dp K(k,p)ppaa(p)- - p=0, 153, : )
m(1+k?) temperature. We are able to see the good agreement with the PW-

(52 FRG results up to the middle region of the cunid $0.6).
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FIG. 5. Thes-BG and the BAA results near the saturation field at the finite temperat@eg8=0, (b) 3=1/3, and(c) 8=0.6.

region near the saturation fieldi>0.8). In Fig. 4, we show §-BG approach and the BAA approach. In the middle field,
a comparison of the present zero-temperature BAA resultthe 5-BG curve begins to deviate significantly from the
with the PWFRG results, where we see better agreememMRG curve beforévl =0.8 (at zero temperature, the devia-
among them in a wider region of thd-H curve (M >0.6).  tion is not so significant around this regionThe DMRG
We also find that agd approaches the integrable poiAt results indicate that the shape of thleH curves varies sen-
=1, the agreement becomes better and better. We thus hasgively with temperature, while thé-BG cannot reproduce
verified the validity of the BAA at the zero temperature.  such behaviors. On the other hand, the BAA curves agree
In Fig. 5 we show the finite-temperature results. In thewith the DMRG curves even in the intermediate range of the
low-density regior(i.e., high-field region wittM >0.95), the  field. The BAA approach, even without the bound state, suc-
DMRG results are reproduced very well by both the effectivecessfully explains a considerable portion of tfleH curves
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at finite temperatures. Further, we find that the BAA be- TABLE I. Effective coupling constant and the inverse mass of
comes better and better #sapproaches the integrable point the boson fieldr estimated from the zero-temperatiteM curves.
B=1.
Hence, we can conclude that the BAA is reliable not only3 0 173 0.6
at zero temperature but also at finite temperatures, in the

wide region of the field near the saturation field. ¢ 0.37 0.83 ~68
o 7.6 0.49 0.70

V. NEAR THE LOWER CRITICAL FIELD

A. é-function Bose gas model In order to calculate the zero-temperatuveH curve
from Eq. (53), we may omits=0,—1 sectors(due to the

Let us discuss th&1-H curve near the lower critical field ha . .
(H.=A). In this region, a microscopic derivation of an ef- Z_eeman teri™ Then theH-M curve is obtained as E@)

fective model is difficult, since the exact elementary excitaWith the amplitudec and the effective coupling constaat
tion cannot be obtained analytically, unlike the case near th& C1,1/0.” Comparison with the PWFRG calculations gives
saturation field. We may then regard phenomenologically th&!S the values of the parameters summarized in Table I.
triplet states above the singlet ground state as elementary At theoflmte temeeratures, we should consider the other
excitations with thes-function-type interactions. This picture mode§¢( ) and ¢("1). Although there may be nonzero in-
was first given by Affleck and may be reasonable in terms oferactions between the d!fferent mode§, we assume that they
the Fermi-Luttinger liquid theors? are small to set the oﬁ—d|agonal coupling constanyts (s

Let us write the Hamiltonian of the effecti@BG as #s') to be zero. As for the diagonal couplings, we pg
=C_3-1=Cy 1 by symmetry. Replacing the parameters
—clo, u—H, andk?—ok? in Egs.(41) and (42), we ob-

HBG:I dx Uzs aXd’(S)T(X)aXd)(S)(X) tain theM-H curve as

+ Cou @130 (x) I (x) 6O (%) |, M:f pf;él)(k)dk_f psP(k)dk, (57)

53) where pGet(k) and p§ct(k) are momentum-distribution
functions(or the root-density functions in BA terminology
where s is an index of theS* of the triplet excitation and for the s= + modes.
takes{—1,0,1}. Although we do not have a direct mapping  We should make a comment on the negative coupling
between the BLBQ Hamiltonian and EG3), we can deter-  constant which appears j> 3. (see Table), because the
mine the parameters and c indirectly through the zero- naive attractive interaction makes the system unstaBle-
temperatureM-H curve; we make a fitting of the PWFRG call that a physical picture of the excitations from the singlet
calculation to the zero-temperatuve-H curve deduced from ground statéHaldane stateis explained well in terms of the
Eqg. (53). Then, calculating the finite-temperatuveH curve  moving domain wall which separates two states with orien-
by using the resulting Hamiltoniaf63), and comparing it tational orde?~3*Since the number of domain walls which
with a finite-temperature DMRG result, we can check thecan occupy the same site cannot exceed the maximum local
validity of the Bose-gas mapping. wall height (=S), the “bound-state-forming instability”
Further, we know that the low-energy excitations near thecaused by the negative couplidgBG may be avoided in the
singlet ground state are given by the relativistic free fermiorspin chain. However, the actual situation is more subtle,
picture®* which was originally presented at the Heisenbergsince the domain wall cannot be defined microscopically; the
point. The one-particle dispersion curve near the bottom ofvall position itself is not so well defined because of the

the band k= 7) can be expressed as zero-spin defects destroying the positional order. We expect
that the finite-temperature calculation gives us further infor-
w(k)=VAZ+vZ(k— )2, (54 mation on nature of the excitations in the regigp< S<1.
wherev is called spin-wave velocity. Taking the low-energy . .
limit k— 7, Eq. (54) becomes B. Results and discussion
2 In Fig. 6, we compare the-BG calculation with the
w(k)=A+ ;’_A(k_ 2. (55  DMRG results of the finite-temperatul-H curve.

For B=0, we can see quantitative agreement in the low
fields (M <0.1). On raising the field, thé-BG curves still
keep qualitative agreement for all temperatures.

v2 For B=1/3 (AKLT chain), the §-BG curve of T=0.2
T (56) agrees with the DMRG result in very low fields. However,
the curves ofT=0.1 and T=0.5 do not agree with the
which relates the amplitude in the M-H curve withA and  DMRG results. The sensitive temperature dependence of the
v in the low-energy dispersion curve. Hence it is also posM-H curve obtained by the DMRG is not reproduced in the
sible to check the consistency of tiv-H curves with the  §-BG curve. Use of the other value of, for example,o
values ofv and A evaluated by other numerical computa- =0.524 ..., which is the one in the dressed soliton
tions. approximatior?* leads us to similar results. Let us recall that,

Then, we get an equation
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04 even worse. This may be partly ascribed again to the shape
of the one-particle dispersion curve, just as in the casg of

T |6—BG DMRG =1/3. Further, as was briefly mentioned in the previous
paper; the zero-temperatureM-H curve for B>p,
(~0.41) shows a cusp singularity in the middle-field region
which can never be explained in terms of a simpi8G
picture. At finite temperatures, a remnant of the cusp singu-
larity makes theM-H curve deviate significantly from the
6-BG curve. We should say that a naigeBG picture may

not hold for 8> 8..

As has been pointed out in Refs. 36—39, the ground state
and excitations fo3> 3. are quite different from those for
B<pB:, which seems to be closely related to the inapplica-
bility of the simple 5-BG treatment in this region.

VI. SUMMARY

We have investigated th&1-H curve of the bilinear-
biquadratic chain at finite temperatures by employing the
density-matrix renormalization group to the quantum transfer
matrices associated with Suzuki-Trotter-transformed 2D
classical systems.

We have shown that the DMRG is an efficient tool to
calculate theM-H curve, by verifying that it reproduces the
exact curve of th&s=1/2 XY model.

Based on the calculated curves, we have tested the
o-function Bose-gas picture for the BLBQ chain near the
' ‘ critical fields, varying the coefficienB of the biquadratic
(b) H term.

Near the saturation fieldupper critical field, we have
mapped the BLBQ chain to th& BG through the exact two-
body Smatrices. The thermal Bethe-ansatz results of the cor-
rectly mappeds-BG are consistent with the DMRG results.
Further, we have extended the Bethe-ansatz approximation
to finite-temperature, and have shown that the BAA gives
betterM-H curves than the&S-BG.

Near the lower critical fieldassociated with the Haldane

04

B=0.6

03

s 02

T |5BG DMRG gap, we have determined the parameters indF@G Hamil-
o1k 01l — o tonian from the zero-temperatuké-H curve, and have made
02| ---- o thermal Bethe-ansatz calculation. /=0 we have con-
0.5 - A firmed that the5-BG gives consistent results with the DMRG
0 , , , calculations. On raising, however, thes-BG calculations
0 02 0.4 06 08 1 12 14 deviate from the DMRG curves. One mechanism as for this

(© H discrepancy may be the nonparabolicity the excitation energy

FIG. 6. The 5-BG results near the lower critical fielda) 5 dispersion, which seems to explain the caseders. (B
=0, (b) B=1/3, and(c) B=0.6. ~0.41). There seems to be another mechanism responsible
for rather large deviation observed fBr> 3. (negative ef-
at zero temperature, thé-H curve of the AKLT model rises ~ fective coupling regiop The ground-state structure and
more rapidly than that g8= 0, implying that the region dfi property _of low-lying excitations in th|s_ region r;eza% E)Oe quali-
where the 5-BG picture is valid is narrow in the AKLT tatively different from those in the regigh<g..™*""The
model® We suppose that this qualitative difference betwee,{mlte—temperature remnant of the middle-field cusp.sn_’ngular-
the zero-temperature and nonzero-temperabirel curves Ity at zero temperature also enhances thg deV|a}t|o_n. To
is due to the considerable difference in the dispersion curve@arify the formation mechanism of the cusp singularity itself
of the low-lying excitations(“one-particle” energy disper- IS an interesting problem, which may also Iea}d to a better
sion in the Bose-gas pictur3® In the AKLT model, the ~understanding of the nature of the BLBQ chaingw 3.
one-particle dispersion curve(k) is flatter than that of the Details will be published elsewhefe.
B=0 case, andK— m)* and higher-order terms in(k) be-
come significant. Accordingly, thé-BG treatment will be
valid only at very low temperature and at very low field. The author would like to thank Y. Akutsu, Y. Hieida, T.
For B=0.6 where the effective coupling is negative, Nishino, H. Kiwata, and M. Kikuchi for fruitful discussions.
agreement between th&BG curves and DMRG curves is The author is supported by JSPS.
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