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Extended coupled-cluster treatment of correlations in quantum magnets
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The spin-halfXXZ model on the linear chain and the square lattice are examined with the extended
coupled-cluster method~ECCM! of quantum many-body theory. We are able to describe both the Ising-
Heisenberg phase and theXY-Heisenberg phase, starting from known wave functions in the Ising limit and at
the phase transition point between theXY-Heisenberg and ferromagnetic phases, respectively, and by system-
atically incorporating correlations on top of them. The ECCM yields good numerical results via a diagram-
matic approach, which makes the numerical implementation of higher-order truncation schemes feasible. In
particular, the best nonextrapolated coupled-cluster result for the sublattice magnetization is obtained, which
indicates the employment of an improved wave function. Furthermore, the ECCM finds the expected qualita-
tively different behaviors of the linear-chain and square-lattice cases.@S0163-1829~99!02530-8#
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I. INTRODUCTION

The extended coupled-cluster method1–5 ~ECCM! has not
previously been applied to lattice spin systems, unlike
normal coupled-cluster method3–13 ~NCCM!, which is a re-
stricted version of the ECCM at a given level of approxim
tion, and which has been widely implemented for these s
tems. The primary aim of this paper is to apply the ECCM
the spin-half anisotropic Heisenberg~or XXZ) model, in or-
der to obtain numerical results for the ground-state ene
and the sublattice magnetization, and thereby to investig
the usefulness of the method in the study of quantum ph
transitions. The ECCM and NCCM areab initio techniques
of microscopic quantum many-body theory, generica
known as the coupled-cluster method~CCM!. The ECCM, in
contrast to the NCCM, completely characterizes a system
terms of a set of basic amplitudes, all of which are linke
cluster quantities.

The two-dimensional spin-halfXXZ model is expected to
have a second-order phase transition at the isotropic p
D51, where the system is in a unique critical phase. T
transition is expected to be accompanied by some chang
symmetry of the ground-state wave function. In particul
Laughlin14 speculates that the physics of the isotropic po
can be understood as a gauge theory with massless ex
tions. In general, theoretical study of the isotropic point
quires some prior knowledge of the phases on either sid
the isotropic point. In practice, the ordering and symmetry
the known wave functions in these phases influence the
dicted state at the isotropic point. Therefore, the second
of this paper is to examine how the CCM, in particular,
affected by this universal problem in the study of phase tr
sitions.

The generalXXZ model Hamiltonian has Z(2)̂U(1)xy
symmetry, except at the isotropic point where it has SU~2!
symmetry. For the square-lattice case the ground-state w
function is expected to yield broken U(1)xy symmetry in the
XY-like region, and there is broken Z~2! symmetry in the
Ising limit. Approaching the isotropic point from either sid
with the CCM yields different ground-state wave functio
PRB 600163-1829/99/60~6!/4030~13!/$15.00
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at the isotropic point itself, which is due to the special natu
of the isotropic point.

Any CCM calculation on spin systems involves addi
correlations between spins, on top of those already conta
in a separately chosen model or reference state, in orde
produce the true quantum-mechanical ground-state w
function. Therefore, the important physical characteristics
a system are incorporated into the CCM by the choice of
model state and by the inclusion of particular configuratio
for the correlations. Hence, we can now refine and reform
late our second aim to be an examination of the effect of
choice of model state. In particular, we shall be interested
the interplay between the symmetry of the model state
the symmetry of the Hamiltonian influencing the groun
state wave function. This is exemplified by the CCM tre
ment of the linear-chain case, which yields artificially brok
U(1)xy and SU(2) symmetries. This can only be due to t
choice of model state, since exact results show that the s
metry of theXXZ model Hamiltonian is not broken in th
XY-like region and at the isotropic point.

The primary aim of this paper is motivated by numeric
evidence, from a number of techniques, of long-range or
~LRO! at the isotropic point for the square-lattice case. N
merical results from a wide variety of techniques such
spin-wave theory,15–17 high-accuracy quantum Monte Carl
~QMC! simulations,18 and series expansions,19,20yield a sub-
lattice magnetization at the isotropic point of approximate
61–62% of the classical value arising from perfect Ne´el or-
dering. A priori, the ECCM is expected to perform bette
than the NCCM for systems that undergo global chang
This is put to the test, where we pay special attention to
possible underestimation of quantum fluctuations due to
choice of ordered state from which the calculation start21

by using several different such ordered states.
Rigorous results from the Bethe ansatz22–24 for the spin-

half anisotropic Heisenberg antiferromagnet on the lin
chain provide a measure of the effectiveness of the ECC
However, we know in advance that the nature of the tran
tion in the linear chain is very subtle, and quantum fluctu
tions present in this case are known to destroy Ne´el LRO
4030 ©1999 The American Physical Society
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completely at the isotropic point.25 Therefore,a priori, one
would expect the ECCM to be more effective for the squa
lattice case, where the ground state will be closer to
classical uncorrelated state.

Numerical results for the ground states of models in o
and two dimensions are expected to be qualitativ
different.26 By contrast with the NCCM, which has prev
ously been applied, for example, to the spin-halfXXZ
model27 and the nonlinears model,28 the ECCM is expected
to yield numerical evidence of this difference. As simil
calculations are performed for any lattice dimensionality
the CCM, the qualitatively different behavior of the solutio
that we report in this paper for the two cases using
ECCM is not simply an artifact of the technique.

In a diagrammatic implementation of both CCM tec
niques, the ECCM, at any level of truncation, produces d
grams in greater abundance and of greater complexity
the NCCM, as shown in Sec. IV. Unlike in its NCCM coun
terpart, it is possible within the ECCM formalism to define
spin-spin correlation function which is fully consistent wi
the corresponding definition of the magnetic order para
eter, atall orders of truncation. Such properties of the ECC
make it attractive for describing correlation effects in phy
cal systems, and particularly to study their quantum ph
transitions and quantum order.

The CCM has been used very successfully6–13 to calculate
the zero-temperature properties of a wide variety of exten
many-body systems, including, for example, atoms and m
ecules, nuclear matter and finite nuclei, the electron gas,
lattice gauge field theory, as well as spin-latti
systems.27,29–33. In this paper, we present evidence from n
merical results that demonstrates the particular superiorit
the ECCM over the NCCM, in practice, to study such glob
properties of spin systems as their quantum~zero-
temperature! phase transitions.

II. EXTENDED COUPLED CLUSTER METHOD
FORMALISM

Since detailed descriptions of the CCM formulation ha
been given elsewhere,1–13only the essential components w
be given here. Hubbard34 was one of the first to emphasiz
the importance of an exponential parametrization of the
act ground-state ket wave functionuc& of an interacting
many-body system,

uc&5eSuf&, S5(
I

8 sICI
† , ~2.1!

in terms of a model stateuf& which is not orthogonal to the
exact ground-state ket wave functionuc&. The correlation
operatorS in Eq. ~2.1! is decomposed solely in terms of
complete set of mutually commuting, linked, multiconfig
rational creation operatorsCI

† defined in terms of a complet
set of many-body configurations$I %. These are, in turn, de
fined by a set indexI, which, for the spin-lattice system
under consideration, describes the set of spins which
flipped with respect to those contained in the suitably c
sen, normalized, model stateuf&. The prime on the sum in
Eq. ~2.1! excludes the null set,I˜0, corresponding to the
-
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identity operator,C0
†[1. We note thatCI uf&50, ;IÞ0,

and hence the stateuc& obeys the intermediate normalizatio
condition ^fuc&51.

Arponen1 has shown how two distinct CCM parametriz
tions of the exact ground bra state^c̃u can be given, which
yield the NCCM and the ECCM, respectively. The NCC
parametrization of the ground bra state is given as

^c̃u5^fuS̃e2S, S̃511(
I

8 s̃ICI , ~2.2!

whereas the corresponding ECCM parametrization is gi
as

^c̃u5^fueS9e2S, S95(
I

8 sI9CI . ~2.3!

Both S̃ andS9 are constructed wholly in terms of multicon
figurational destruction operators, defined with respect to
model stateuf&. These are simply the Hermitian adjointsCI

of the corresponding creation operatorsCI
† in Eq. ~2.1!. Fur-

thermore, both parametrizations satisfy the normalizat
condition ^c̃uc&51. Although ^c̃u5^cu/^cuc& formally,
this relation may not be preserved when truncations
made, as explained below, in either parametrization.

The energy functionalH̄E in the ECCM formulation is
thus given by

H̄E[^fueS9e2SHeSuf&. ~2.4!

The similarity transformed Hamiltoniane2SHeS may be ex-
pressed as the usual nested commutator expansion,

e2SHeS5H1@H,S#1
1

2!
@@H,S#,S#1•••. ~2.5!

SinceS is composed wholly of mutually commuting creatio
operators, the similarity transform in Eq.~2.5! only retains
terms in which all amplitudessI are linked to the Hamil-
tonian. Furthermore, provided that the Hamiltonian is fin
order in the single-body operators, the expansion always
minates at finite order. Therefore, once the correlation op
tor S is approximated, no further truncations are necessa

Formally, the bra-state parametrizations in both t
ECCM and NCCM formulations still preserve Hermiticity
Explicitly, we have the relations

^fuS̃5^fueS95
^fueS†

eS

^fueS†
eSuf&

, ~2.6!

which are a consequence of satisfying the normalization c
dition ^c̃uc&51. Although the manifest Hermiticity is usu
ally sacrificed at any level of truncation, the distinct bra-st
parametrizations produce fully linked expectation values
Eq. ~2.4!, as they incorporate the similarity transform, a
bothS9 andS̃ are composed wholly of destruction operato

The double-exponential structure of the ECCM formalis
implies that Eq.~2.4! can be expressed in terms of the am
plitudes $sI ,sI9% via a double-similarity transform, and tha
both of these sets of ECCM amplitudes are linked-clus
quantities. However, the NCCM formalism only allows
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single-exponential structure in terms of the amplitudes$sI%.
Although the amplitudes$sI% are linked-cluster quantities
the amplitudes$s̃I% are not.

An arbitrary expectation valueĀ can thus be expressed
the ECCM and the NCCM, respectively, as

ĀE[^fueS9e2SAeSuf&5ĀE~$sI%,$sI9%!, ~2.7!

ĀN[^fuS̃e2SAeSuf&5ĀN~$sI%,$s̃I%!. ~2.8!

In practice, either version of the CCM can only be imp
mented by truncating the expansions in Eqs.~2.1!–~2.3! by
retaining only a finite or infinite subset of the complete set
configurations indices$I %. In this paper the SUB2-n approxi-
mation scheme is employed, which retains all configurati
with up to two-body correlations between spins which are
more than a certain distance apart, specified by the inden.
The details of the approximation scheme are given explic
in Sec. IV where the diagrammatic approach is describe

All ground-state properties can be determined in
ECCM and the NCCM, respectively, by the stationary pr
ciple

]H̄E

]sI
505

]H̄E

]sI9
,

]H̄N

]sI
505

]H̄N

] s̃I

, ~2.9!

in the case whereuc& and^c̃u correspond to the ground stat
We remark, however, that due to the lack of manifest H
miticity between^c̃u and uc& at a given level of truncation
the resulting stationary values ofH̄E and H̄N are not neces-
sarily upper bounds to the ground-state energy.

We note that the NCCM equations at a given order c
formally be extracted from the corresponding ECCM eq
tions at the same order by truncating the expansion of
exponentiated correlation operatoreS9 at first order and per-
forming the substitutionsI9˜ s̃I . In practice, the resulting
ECCM equations from a particular truncation scheme
highly nonlinear and, therefore, of greater complexity th
their NCCM counterparts. However, the diagrammatic r
resentation of the formalism which we present here ma
tractable the numerical implementation of high-order a
proximation schemes.

Very importantly, observables in the ECCM, which qua
tify the global behavior of a system in terms of its long-ran
order obey the cluster property. Thus, for example, we h
the very general relation

lim
ur2r8u˜`

ArBr85ĀrB̄r8 , ~2.10!

whereAr andBr8 are single-body operators acting at defin
sites r and r 8, respectively. This condition is preserved b
the ECCM due to the exact multiplicative separability
both the bra-state and ket-state parametrizations in the
responding large-distance limit; however, the index set$I% is
truncated. Consequently, the long-range order of phys
systems can be examined unambiguously via the ECCM
rametrization of their correlation functions. As the NCC
bra-state parametrization is not multiplicatively separab
-
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however, the physical condition in Eq.~2.10! will not in
general hold at arbitrary levels of truncation within th
scheme.

III. TRANSFORMATION OF THE SPIN-HALF XXZ
MODEL HAMILTONIAN FOR THE LINEAR CHAIN

AND SQUARE LATTICE

A. CCM approach to the spin-half XXZ model Hamiltonian

The spin-halfXXZ model Hamiltonian is given by

H51
1

4 (
i ,r

@Ds i
zs i 1r

z 1s i
xs i 1r

x 1s i
ys i 1r

y #, ~3.1!

wheres i
a , a5x,y,z, are the Pauli spin matrices,D is the

anisotropy parameter, and the summation is over all thN
lattice sites denoted byi and over each of the neares
neighbor vectors denoted byr. We note that the linear chain
and the square lattice are both bipartite lattices which can
split into two identical sublattices, which we denote as theA
and B sublattices. Thus, each nearest-neighbor site to a
on theA sublattice is on theB sublattice, and vice versa.

In the Ising limit D˜`, the D-dependent term in the
Hamiltonian of Eq.~3.1! becomes dominant and the classic
z-aligned Néel state is the eigenstate that yields the low
energy. Thez-aligned Néel state has nearest-neighbor spi
ordered antiparallel to one another in thez direction, as il-
lustrated below:

uf&5 ^
kPA

u↑&k^
l PB

u↓& l , ~3.2!

in a notation in which thez axis points vertically upwards
However, for all finite values ofD the terms in thex andy
directions in the Hamiltonian in Eq.~3.1! come into play,
and thez-aligned Néel state is no longer an eigenstate of t
Hamiltonian. The ground state for evenN now consists of a
particular linear combination of all possible configuratio
with N/2 up-pointing spins andN/2 down-pointing spins. All
the configurations apart from the classical state which
present in the exact state are considered to be quantum
tuations upon that state. At the isotropic point the Ham
tonian in Eq.~3.1! becomes rotationally invariant, such th
the expectation value of an arbitrary spin is the same for
direction.

For 21,D,1 the true classical ground state can be a
one of an infinite number of degenerate Ne´el states with
nearest-neighbor spins restricted to align antiparallel to
another in any direction in theXY plane. Schematically, we
write

uf&5 ^
kPA

u—&k^
l PB

u˜& l , ~3.3!

choosing, say, thex direction to be the alignment axis, and
a notation in which the positivex axis points horizontally to
the right. We note that there exists a trivial transformation
the Hamiltonian in Eq.~3.1! at the phase transition pointD
521 between theXY-Heisenberg and ferromagnetic phas
~henceforth referred to as the ferromagnetic point!, with the
x-aligned Néel state as eigenstate, to the ferromagne
Heisenberg Hamiltonian, with thex-aligned ferromagnetic
state as eigenstate. Therefore, atD521 thex-aligned Néel
state is the true ground state and this point is chosen to be
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initial point of the CCM calculation in the entire regime
21,D,1. One imagines that thex-aligned Néel model
state is close to the true ground state in the neighborhoo
this point.

B. Transformation of the Hamiltonian in terms of a canted
model state

In order to produce a ground-state solution that can
scribe both theXY-like (21,D,1) and Ising-like (D
.1) regions of theXXZ model, a canted model state
introduced. The canted model stateufc&[uf(jA ,jB)& con-
sists of spins on theA sublattice pointing in one particula
direction and spins on theB sublattice also pointing in an
other particular direction, defined by the spin-half spin ve
tors jA andjB , respectively.

In order to calculate the expectation values of arbitr
observables in the ECCM, an arbitrary rotation of the lo
spin axes is performed about they axis on each sublattice
resulting in a notional rotation of the spins in the cant
model state to the down position in the direction of the ne
tive z axis,

Uuf~jA ,jB!&5 ^
i 51

N

u↓& i[uF&, ~3.4!

whereU is a product of unitary matrices, which causes t
spins in the canted modelufc& to undergo a passive rotatio
such that they all point downwards in the rotated lo
frames. Hence, the ECCM expectation value for an obs
able A in Eq. ~2.7! can be expressed with respect to t
unrotated canted model state in the form

Ā5^fcuU†eS9e2S~UAU†!eSUufc&. ~3.5!

The rotation matrices for the canted model state on thA
sublattice andB sublattice are given by

UJ[expS 2 iuJ

sy

2 D5cosS uJ

2 D 12 i sinS uJ

2 Dsy, J5A,B,

~3.6!

where each rotation is chosen to be performed about thy
axis in theXZ plane. This involves no loss of generalit
since all directions in theXY plane are equivalent, due to th
U(1)xy symmetry of the Hamiltonian in Eq.~3.1!.

Now, the transformed Hamiltonian arising from Eq.~3.1!
can be written as

HT[UHU†51
1

2 (
^k,l &

@D~UAsk
zUA

† !~UBs l
zUB

† !

1~UAsk
xUA

† !~UBs l
xUB

† !1~UAsk
yUA

† !~UBs l
yUB

† !#,

kPA, l PB, ~3.7!

wherek and l are nearest-neighbor vectors.
There are two degrees of freedom,uA anduB , present in

the transformed HamiltonianHT, which are conveniently ex
pressed via an equivalent set of relative and total orienta
parameters

a[~uB2uA!, b[2~uA1uB!. ~3.8!
of

-

-

y
l

-

e

l
v-

n

Particular values ofa and b lead to specific canted mode
states, as shown in Fig. 1. The single-spin creation and
struction operators are defined ass6[ 1

2 (sx6 isy) for all
sites on the lattice, once the spins have all been rotated
the down position, as given in Eq.~3.4!. Thus, HT in Eq.
~3.7! can be expressed in the form

HT51
1

8 (
i ,r

(
p,q

Tpqs i
ps i 1r

q , ~3.9!

wherep,qP$z,1,2% andTpq are functions ofa, b, andD.
Due to the Hermiticity of the Hamiltonian, the factorsTpq in
Eq. ~3.9! satisfy the relationT1z5T2z* . Moreover, the spa-
tial symmetry with respect to which lattice sites the sp
operators act upon yields the relations:

Tz15T1z , Tz25T2z , T125T21 . ~3.10!

Finally, the transformed Hamiltonian with a canted mod
state can be expressed as

HT51
1

8 (
i ,r

H 1

2
@~11D!cosa1~12D!cosb22#~s i

1s i 1r
1

1s i
2s i 1r

2 !1
1

2
@~11D!cosa1~D21!cosb#s i

zs i 1r
z

1@~11D!cosa1~12D!cosb12#s i
1s i 1r

2

1~12D!sinb~s i
zs i 1r

1 1s i
zs i 1r

2 !J . ~3.11!

C. Mean-field calculation

A mean-field calculation provides a guideline for th
model-state analysis in the correlated CCM calculati
which will be performed in Sec. VI. We restrict our mea
field calculation here to finding an optimal state of the fo
of the canted model stateuf(jA ,jB)&, in which no other
correlations are present apart from those between the

FIG. 1. Various model states canted in theXZ plane, defined by
the anglesa and b, are shown in the original global coordinat
frame, in a notation in which the positivex axis points to the right
and the positivez axis points upwards. Note that the states witha
5p are all Néel states and those witha50 are all ferromagnetic
states.
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sublattices implied by the anglesa andb. Consequently, the
mean-field energyE, which is given by

E5^fcuHufc&5^FuHTuF&, ~3.12!

yields the following expression:

E

N
5

z

16
@~D11!cosa1~D21!cosb#, ~3.13!

whereN is the number of lattice sites andz is the coordina-
tion number of the lattice. The factorTzz in the Hamiltonian
in Eq. ~3.9! yields the only nonzero, diagonal contributio
from Eq. ~3.12!. The stationary values ofTzz with respect to
the anglesa and b yield the solutions for the energyE,
which are shown in Fig. 2. Figure 2 also shows that
model states which make up the ground state in the me
field case are thez-aligned Néel state forD>1, thex-aligned
~or y-aligned! Néel state for21<D<1, and thez-aligned
ferromagnetic state forD,21.

IV. DIAGRAMMATIC APPROACH

A. Diagrammatic technique

The terms arising from a CCM calculation have been r
resented diagrammatically in previous work.29,35 For ex-
ample, Roger and Hetherington29 represent the terms arisin
from the NCCM energy functional diagrammatically simp
for convenience. Unlike our representation, shown in Fig
their diagrams do not include the destruction operators fr
the bra-state parametrization. Hence, diagrams are reta
in Ref. 29, which do not contribute to the energy function

FIG. 2. The stationary energy eigenvaluesE/N as a function of
the anisotropyD for the mean-field case. The ground-state energ
denoted by a thick line.

FIG. 3. The diagrammatic representation of the ECCM form
ism. The dashed lines denote the interaction terms from the Ha
tonian. The circle and the cross denote, respectively, a crea
operator and a destruction operator. The straight solid lines
known as the ket lines and the wiggly solid lines are known as
bra lines.
e
n-

-

,
m
ed
,

as shown by the NCCM diagrams in Fig. 4. On the oth
hand, Harris35 uses a representation where the algebra
performing the CCM with respect to spin states is reform
lated in terms of particle-hole states. This particular rep
sentation was employed for the purpose of identifying c
celing terms and to aid the simplification and systematizat
of the algebra.

By contrast with these earlier diagrammatic approach
the originality of the diagrammatic approach28 used in the
present work appears at the level of the numerical calc
tions. Since the diagrammatic representation requires
computer memory and CPU time than the algebraic rep
sentation, higher-order truncation schemes can be im
mented. There are several other advantages of using this
ticular approach: applying the formalism is straightforwa
the terms which contribute the most in any calculation c
readily be pinpointed, and the correlation function and s
lattice magnetization can be expressed as sets of the
grams which appear in the CCM energy functional aris
from HT.

Our diagrammatic technique involves casting the com
nations of creation and destruction operators which appea
the CCM in a diagrammatic form, as shown in Fig. 3. T
CCM SUBn approximation scheme retains all configuratio
up to and includingn-body correlations. Therefore, th

s

-
il-
on
re
e

FIG. 4. The diagrams arising from the ECCM energy function
~2.4! using the HamiltonianHT, which yields the ground-state en
ergy. The factors denoted by the letters are composed of funct
of the anglesa andb and the anisotropyD. The factorz denotes
the coordination number of the lattice. The diagrams that appea
to the solid line are those from the NCCM formulation.
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SUB2 scheme retains all the one-body correlation terms,
noted byS1 in Fig. 3, that are allowed to arise from the term
in the HamiltonianHT in Eq. ~3.11! which contain a single-
body creation or destruction operator, as well as all the tw
body correlations, denoted byS2 in Fig. 3. The SUB1
scheme retains only the one-body correlations. In the pre
work, the correlation operatorsSandS9 defined in Eqs.~2.1!
and ~2.3! are truncated via the SUB2 scheme as shown
Fig. 3.

As the equations that arise from the SUB2 scheme are
analytically soluble, a further restriction is placed on t
maximum range of the two-body correlations from the SU
scheme. Therefore, the partial SUB2 approximation kno
as the SUB2-n scheme is implemented. In the current d
grammatic formulation the SUB2-n scheme retains only
those two-body correlation coefficientsbr , wherer runs over
the n distinct vectors within a reference box of given siz
The vectors are defined to be distinct after allowing for
lattice symmetries. For example, the linear-chain case has
property that all correlation coefficients arising from vecto
of the same length are identical. However, for the squa
lattice case, vectors of the same length which are not ot
wise identical under the lattice symmetries yield distinct c
relation coefficients. For example the vectors (5,0) and (3
have the same length but are distinct.

The one-body terms inS1 from the SUB1 scheme simpl
transform a particular model statef to an improved mode
stateuf8&, whereuf& is in the neighborhood ofuf8&, via the
transformationuf8&5eS1uf&. The one-body terms from th
SUB1 scheme are rigorously zero when the chosen m
state is the same as the ground-state mean-field states, a
SUB1 scheme corresponds to a mean-field calculation. T
the particular cases of thez-aligned andx-aligned Néel
model states forD>1 and 21<D<1, respectively, as
shown in Fig. 2, from the HamiltonianHT in the local ro-
tated axes in Eq.~3.11!, yield rigorously zero one-body co
efficients. More general canted model states yield very sm
one-body contributions. Therefore, in order to keep the nu
ber of diagrams under control, we restrict the one-body te
to give, at most, a linear contribution, which corresponds
the NCCM SUB1 scheme. Hence, the restricted SUB2 b
state parametrization can now be expressed as

^c̃u5^fu~11S19!exp@S29# ~4.1!

5^fuS 11(
i

k9s i
2DexpF(

i ,r
br9s i

2s i 1r
2 G . ~4.2!

Once the energy functional~2.4! arising fromH̄T is cal-
culated, the ground-state properties can be derived by ap
ing the stationary principle of Eq.~2.9!. An example of how
the diagrammatic calculation is performed can be shown
taking the expectation value of the terms i

zs i 1r
z , which is a

constituent ofHT. The nested commutator in Eq.~2.5! yields
the following expression:

e2Ss i
zs i 1r

z eS5s i
zs i 1r

z 1@s i
zs i 1r

z ,S#1
1

2
@@s i

zs i 1r
z ,S#,S#.

~4.3!
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The correlation operator,S2 in Fig. 3, which is described
as a ket line, flips two spins in the model stateuF& to the up
position. The nested commutator in Eq.~4.3! only allows
nonzero contributions, if the ket line is connected to the te
s i

zs i 1r
z , in the Hamiltonian. Therefore, at least one of t

spins is flipped on either of the lattice sitesi and i 1r. Con-
sequently, a spin is flipped on one other site of the lattic

The bra lines arising fromeS9 only yield nonzero contri-
butions with the state described above if the final state is
of all down-pointing spins. As the bra lines flip up-pointin
spins to down-pointing spins, the ends of the bra lines m
be connected to ket lines or to a term inHT that contains
creation operators. Otherwise, the destruction operator
either end of the bra line annihilate the state. The combi
torics of both the bra lines and the ket lines in devising
diagrams is taken care of by the CCM formalism. The k
lines arising from the nested commutator and the bra li
arising fromeS9 have counting factors that remove the po
sibility of obtaining diagrams which are equivalent und
lattice symmetries.

B. Diagrams arising from the ECCM formulation for
macroscopic quantities

1. Diagrams arising from the energy functional

The diagrammatic technique applied to the ECCM ene
functional arising from the transformed HamiltonianHT

yields the diagrams shown in Fig. 4.

2. Sublattice magnetization

The sublattice magnetization or the order parameter in
Ising-Heisenberg andXY-Heisenberg phases, respectively,
defined by

Mz5
2

N (
kPA

u^Uzsk
zUz†&u52

2

N (
kPA

^sk
z&, D>1,

Mx5
2

N (
kPA

u^Uxsk
xUx†&u52

2

N (
kPA

^sk
z&, 21<D<1.

~4.4!

The inclusion of the minus sign ensures thatMz andMx are
positive in our rotated Ne´el basis, whereUz andUx are the
unitary operators, which rotate the local spin axes of
z-aligned andx-aligned Néel model states, respectively, t
give the stateuF&. The sublattice magnetization forD>1 is
solely that of thez-aligned spinsMz, and for21<D<1 the
sublattice magnetization is that of thex-aligned spinsMx in
the present model state formulation. The formal reason
this behavior of the sublattice magnetization is given in S
V.

As the forms of the sublattice magnetizationsMz andMx

for the respective regions shown in Eq.~4.4! are equivalent,
they arise from the same diagrams, which are shown in
5. Local quantities in the CCM formulation yield size
extensive results. The diagrams for the ECCM sublatt
magnetization are the same as those for the NCCM. E
though they are local quantities, the order parameters a
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from summing correlations over the whole lattice, and in t
way they are able to describe the ordering of individual sp
throughout the system.

3. Correlation function

In order to study critical phenomena it is important
study a particular correlation function which is consiste
with the definition of the order parameter. The spin-spin c
relation functiong0

a,b is defined by

g0
a,b~r ![^sk

ask1r
b &, a,b5x,y,z, ~4.5!

in terms of which we define the correlation functionga,b(r )
as follows:

ga,b~r ![g0
a,b~r !2^sk

a&^sk1r
b &, ~4.6!

wherer is restricted such thatk andk1r are both on theA
sublattice. The translational invariance of the lattice impli
if a5b on a particular sublattice,^s i

a&[^s i 1r
b &. Hence, the

correlation function satisfies the fundamental property

lim
r˜`

g0
a,a~r !5S 2

N (
kPA

^sk
a& D 2

[~Ma!2, ~4.7!

whereMa is the order parameter andi is summed over the
sublattice ofN/2 lattice sites. The expression forg0(r ) in
terms of the rotated canted model state is given by

g0~r ![^Usk
xsk1r

x U†&1^Usk
ysk1r

y U†&1^Usk
zsk1r

z U†&,
~4.8!

whereU is the unitary operator in Eq.~3.6!. Clearly the form
of the expression in Eq.~4.8! is similar to the form of the
corresponding energy functional. The same diagrams a
for g0(r ) as for the energy functional, which is shown in Fi
4. However, the links can now be of arbitrary lengthr. The
property in Eq.~4.7! implies that in the limitr˜`, surviving
diagrams fromg0(r ) can be interpreted as being topolog
cally disconnected. Conversely, Eq.~4.6! implies that the
correlation functiong(r ) consists of the topologically con
nected diagrams arising fromg0(r ). Examining the topology
of diagrams arising from the functional provides a straig
forward way to deduce the terms that yield the sublatt
magnetization and the correlation function in an ECCM c
culation.

The relevant correlation functions for the regions whi
encompass the Ising-Heisenberg andXY-Heisenberg phases
respectively, are given by

gzz~r !5^Uzsk
zsk1r

z Uz†&

2^Uzsk
zUz†&^Uzsk1r

z Uz†&, D>1,

FIG. 5. The diagrams constituting the sublattice magnetizati
Mz andMx.
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gxx~r !5^Uxsk
xsk1r

x Ux†&

2^Uxsk
xUx†&^Uxsk1r

x Ux†&, 21<D<1.

~4.9!

In the limit r˜`, the correlations between spins die off
shown in Eq.~4.7!. The spin-spin correlation function for th
region 21<D<` has the form 6^s i

zs i 1r
z & as

^Uzs i
zs i 1r

z Uz†&5^Uxs i
xs i 1r

x Ux†&56^s i
zs i 1r

z &, where the
sign is positive if both lattice sites are on the same sublat
and negative otherwise. Therefore, the correlation funct
consists of diagrams similar to the connected diagrams a
ing from the term̂ s i

zs i 1r
z & in the energy functionalH̄T. The

diagrams arising from the correlation function in Eq.~4.9!
are shown in Fig. 6.

The connected diagrams which appear in the NCCM c
relation function are equivalent to those in Fig. 6 with t
exception of those indicated in the box. However, there
also disconnected diagrams in the NCCM formulation of
correlation function. This occurs because one of the d
grams that arises from the square of the sublattice magn
zation in Fig. 6 is disconnected and corresponds to a hig
order term that cannot appear in the spin-spin correla
function, due to the NCCM bra-state parametrization. C
sequently, the cancellation of the disconnected diagram c
not occur when the correlation function is calculated in E
~4.9!. However, the ECCM bra-state parametrization yie
higher-order terms than the NCCM, which allows this ca
cellation to take place. Hence, the correlation function
solely composed of connected diagrams, which possesse
fundamental property of Eq.~4.7!. In this way the impor-
tance of the cluster property, which is intrinsic in the ECC
formalism in Eq.~2.10!, can be seen for the correlation fun
tion.

V. SYMMETRIES OF THE MEAN-FIELD MODEL STATE

The criteria for a good choice of model state in terms
the maximum overlap between the model state and the
state have been derived by Ku¨mmel.36 One of these criteria
specifies that there should be no contribution from the o
body terms~or the SUB1 scheme! in the CCM calculation.
The model states arising from the ground-state mean-fi
calculation satisfy this criteria. From the canted model sta
the mean-field calculation yields the ground state for
z-aligned Néel model state in the regionD>1 and the
x-aligned Néel model state in the region21<D<1, as
shown in Fig. 2. However, it can be shown, by applying
theorem first enunciated by Xian37 to these mean-field mode
states, that the ket stateuc& cannot exhibit symmetry break
ing at D51.

Xian’s theorem37 states that the CCM equations provid

s

FIG. 6. The diagrams for the correlation functions,gzz andgxx.
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at least one solution which guarantees the symmetry of
model state, if this symmetry is one of those belonging to
Hamiltonian. The theorem is proved by employing a symm
try operatorL, which has the properties that the Hamiltoni
in Eq. ~3.1! commutes withL and that the model state is a
eigenstate ofL.

In the case of thez-aligned Néel model state, the symme
try operatorLz is given by the rotation operator

Lz5 ^
i 51

N FcosS x

2D 11 i sinS x

2Ds i
zG , ~5.1!

wherei runs over all lattice sites. The order parameter for
arbitrary direction in theXY plane is defined byMxy

[Mx cosa1My sina. The action of the rotation operatorLz

on the operators whose expectation values on the subla
yield Mxy is given by

Lz†~sx cosa1sy sina!Lz5sx cos~a1x!1sy sin~a1x!.
~5.2!

The only solution that guarantees the required invarianc
Mxy under rotation isMx[0 and M y[0, such that the
U(1)xy symmetry of thez-aligned Néel model state is pre
served. Consequently, the theorem37 shows thatuc& cannot
exhibit broken U(1)xy symmetry.

Similarly, the discrete symmetry operator for the partic
lar case of thex-aligned Néel model state is given by

Lx5 ^
i 51

N

s i
x . ~5.3!

The transformation of the order parameterMz to 2Mz with
Lx implies that Mz[0. Thus, the Z(2) symmetry of th
x-aligned Néel model state is preserved and conseque
uc& cannot exhibit broken Z(2) symmetry. Hence, it follow
that thez-aligned Néel model state only describes the regi
D>1, where the ground state does not have broken U(1xy
symmetry. Similarly, thex-aligned Néel model state only
describes the region21<D<1, where the ground state doe
not have broken Z(2) symmetry.

VI. NUMERICAL RESULTS

The diagrams in the ECCM energy functional correspo
ing to the HamiltonianHT, which arise from the SUB2-n
approximation scheme in Fig. 4, are used to obtain the
merical results for both the linear-chain and square-lat
cases. The qualitative behavior of the numerical results
fers for the two cases. This difference can only arise from
different multiplicities of the diagrams, which themselves a
due to the symmetries of the lines in the diagrams differ
in these cases.

From the implementation of the NCCM SUB1 scheme
can be seen that the coefficientsk andk9 provide a negligible
contribution to the overall calculation, where they are n
rigorously zero for thex-aligned andz-aligned Néel model
states. Therefore, with the benefit of hindsight, implement
the ECCM SUB1, which only introduces additional highe
order terms, would not be much different to the NCC
SUB1.
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A. Spin-half XXZ model on the linear chain

There are both exact results for the case of the lin
chain and more appropriate numerical techniques than
CCM, such as the density matrix renormalization group a
spin-wave theory, for examining more general on
dimensional spin chains. However, the presence of exac
sults makes the linear chain an important case to gain ins
into the behavior of the numerical results from the appro
mated ECCM formalism.

The mean-field calculation shows that both thez-aligned
and x-aligned Néel model states introduce comple
z-aligned andx-aligned Néel ordering respectively, at the
isotropic point. Figures 7 and 8 show that the ECCM SUB
n scheme fails to pick up all the quantum fluctuations in t

FIG. 7. The sublattice magnetization in thez direction,Mz, as a
function of the anisotropyD for the linear-chain case, from th
ECCM SUB2-n schemes using thez-aligned Néel model state, a
mean-field calculation, and the exact results.

FIG. 8. The sublattice magnetization in thex direction,Mx, as a
function of the anisotropyD for the linear-chain case, from th
ECCM SUB2-n schemes and a mean-field calculation with t
x-aligned Néel model state. For truncation schemes higher than
SUB2-2, solutions turn back, and so only the physical solution
shown with a solid circle indicating the turning back point, al
known as the terminating point. It is known that there is no LR
over the whole region,21,D,1.
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physical system that result in the LRO being completely
stroyed at the isotropic point. However, the exact order
rameter from the linear-chain case exhibits subtle behav
which, in principle, would require the implementation of e
tremely high-order ECCM approximation schemes.

The ECCM numerical solutions, for the quantitiesMx and
Eg , from truncation schemes of orders higher than SUB
with the x-aligned Néel model state, at the initial pointD5
21, do not exist forD.21, as shown in Figs. 8 and 9. Th
occurs for any scheme higher than SUB2-2 because there
degeneracy in the numerical solutions atD521, which
makes it a poor choice of starting point. An alternati
choice of initial point for the CCM calculation is the isotro
pic point, since the rotated Hamiltonians obtained from b
the x-aligned andz-aligned Néel model states are equivale
at this point. These solutions turn back and become unph
cal. The points at which the solutions become unphysical
known as the terminating points, and are shown in Figs
and 9.

The terminating points from the SUB2-n scheme based
on thex-aligned Néel model state, at the orders that have
far been obtained, converge weakly to 1.02560.005 asn
˜`, which can be interpreted as the SUB2 terminat
point. This result was obtained from the best possible m
square fit of 1/n0.563. It indicates that thex-aligned Néel
model state from the SUB2 approximation scheme would
yield a solution in theXY-like region, where it is considere
to be a better model state than thez-aligned Néel model-
state. This is surprising since higher orders include more
the long-range correlations in the system, and conseque
should reveal more of the physical behavior of the syste
The exact ground state of the linear chain in theXY-like
region possesses U(1)xy symmetry, which indicates that th
x-aligned Néel model state, as the sole input in the techniq
breaks this symmetry causing solutions to terminate in
region D,1. However, the numerical results from th
ECCM for the ground-state energy and sublattice magnet
tion Mx are good at low orders.

Figure 10 shows that the low-order ECCM SUB2-n solu-
tions have the same qualitative behavior as the exact gro
state energy solution, where a maximum deviation in

FIG. 9. The ground-state energy per spin,Eg /N, as a function of
the anisotropyD for the linear-chain case from high-order ECC
SUB2-n schemes using thex-aligned Néel model state, compare
with the exact results.
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energy occurs at the isotropic point. Numerical results fr
the NCCM LSUBn scheme32 yields a numerically accurate
ground-state energy at the isotropic point from an extrapo
tion, as shown in Table I. The LSUBn scheme retains only
those configurations in the correlation operatorSwhich con-
tain any number of spin flips with respect to the model st
over a localized region ofn contiguous sites, and which ar
compatible with the restrictionST

z[ 1
2 ( i 51

N s i
z50. We note

that this restriction follows from the facts thatST
z commutes

with H and that the ground state is expected to be in
ST

z50 sector.

B. Spin-half XXZ model on the square lattice

There are no exact results for the square-lattice ca
which therefore presents a significant challenge for num
cal techniques, particularly for the study of the nature of
expected transition at the isotropic point. Unlike the line
chain case, the square-lattice case is believed to possess
at the isotropic point. Evidence for this comes from a num
of techniques as shown in Table II. The quantum fluctuatio
in the square-lattice case should be smaller than those in
linear-chain case, due to the higher coordination numbe
the lattice. For this reason one expects that the CCM sho
be better at deducing the physical behavior of the squ
lattice case.

The numerical solutions forMz andEg , from truncation
schemes at orders higher than SUB2-12 with thez-aligned
Néel model state terminate before the isotropic point,
shown in Figs. 11 and 12, respectively. The SUB2 termin
ing point of the CCM calculations based on thez-aligned
Néel model state can be accurately determined by an

FIG. 10. The ground-state energy per spin,Eg /N, as a function
of the anisotropyD for the linear-chain case, from the low-orde
ECCM SUB2-2 scheme using thez-aligned andx-aligned Néel
model states in the regionsD>1 and21<D<1, respectively, and
the exact results.

TABLE I. The ground-state energy per spin for the on
dimensional chain at the isotropic point,D51, under various CCM
schemes, compared with the exact results.

NCCM SUB2 ECCM SUB2 NCCM LSUB̀ Exact

20.419 20.433 20.443149 20.443147
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TABLE II. The sublattice magnetizationMz for the two-dimensional square lattice at the isotropic po
D51 as a fraction of the saturation value, from various CCM approximation schemes, a series expan
Monte Carlo simulation, and spin-wave theory~SWT!.

ECCM SUB2-12 NCCM LSUB8a NCCM LSUB̀ a Series expansionb Monte Carloc SWT d

0.689 0.705 0.622 0.61460.002 0.614060.0006 0.606

aReference 32.
bReference 20.
cReference 18.
dReference 15.
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trapolation, where the best mean-square fit of 1/n2 gives a
SUB2 terminating point atD'1.039 0360.000 77. Since the
z-aligned Néel model state only breaks the discrete Z(
symmetry of the ground state, the SUB2-n terminating
points exhibit this good convergence.

Similarly, solutions starting atD521 from the SUB2-20
scheme with thex-aligned Néel model state forEg and Mx

terminate in theXY-like region, as shown in Figs. 12 and 1
respectively. The SUB2-20 approximation scheme is
highest we have so far investigated, as well as being the
scheme to yield a terminating solution in theXY-like region.
By contrast, at lower orders terminating points occur forD
.1. Therefore, although the SUB2 terminating point can
be accurately determined, it is expected to be closer toD5
21 than the SUB2-20 terminating point at 0.78. Con
quently, it is not possible to obtain a solution from hig
order SUB2-n schemes that can describe the neighborh
of the isotropic point on theD,1 side.

Unlike in the linear-chain case the existence of a solut
from high-order schemes with thex-aligned Néel model state
in the square-lattice case indicates that the continu
U(1)xy symmetry of the ground state is broken. Howev
the bad convergence of the terminating points from
x-aligned Néel model state in the square-lattice case m
indicate that the ground state is almost symmetric a
hence, a model state with U(1)xy symmetry would be a more
appropriate starting point for a CCM calculation.

FIG. 11. The sublattice magnetization in thez direction,Mz, as
a function of the anisotropyD for the square-lattice case, from th
high-order ECCM SUB2-n schemes using thez-aligned Néel model
state. The results converge at high orders of the SUB2-n truncation
scheme, thus giving the full SUB2 result, which corresponds tn
˜`.
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The SUB2-12 scheme is the highest-order SUB2n
scheme that yields the sublattice magnetizationMz at the
isotropic point, because at higher orders the solutions ter
nate before the isotropic point. The SUB2-12 scheme yie
a value of Mz'0.689 of the saturation value. This is a
improvement upon the NCCM SUB2 value ofMz'0.81, and
the best NCCM result from the LSUB8 scheme,32 which
yields a value ofMz'0.705, when compared to other nu
merical techniques, as shown in Table II. The extrapola
numerical value of the magnetization from LSUB`, Mz

'0.622, is the result of a quadratic fit in 1/n with a restricted
set of three data points. The best linear fit in 1/n with the
same data points yieldsMz'0.64660.002.

Although, as can been seen from Fig. 11, the LRO at
isotropic point decreases with increasing order, the four
lutions that do not terminate before the isotropic point do
by themselves allow for a trustworthy extrapolation. Such
extrapolation should be independent of a particular sche
as there is no known theoretical reason on how the res
should converge. However, note that the nonextrapola
value ofMz'0.689 of the saturation value is the best dire
result available even including the best Monte Carlo cal
lations on a 16316 lattice,38 a clear indication that, alread
at low orders, the ECCM describes the system well.

Quantitatively, the CCM yields accurate values for t
ground-state energyEg compared to other numerical tech

FIG. 12. The ground-state energy per spin,Eg /N, as a function
of the anisotropyD, from thez-aligned andx-aligned Néel model
states in the regionsD>1 and 21<D<1, respectively, for the
square-lattice case. The terminating points of the solutions from
ECCM full SUB2 and SUB2-20 approximation schemes, in t
regionsD>1 and21<D<1, respectively, are indicated by soli
circles.
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niques as shown in Table III. The NCCM SUB2 scheme27 at
the isotropic point yields a ground-state energy ofEg'
20.651, which the ECCM SUB2 scheme improves upon,
an extrapolation with values that converge well, with a n
merical result of Eg'20.667. The calculation of the
ground-state energy from the NCCM LSUBn schemes32 is
extremely accurate when compared to the best Monte C
result18 where the limitn˜` is equivalent to including the
complete set of many-body configurations.

C. Canted model state in the correlated ECCM SUB2-n
calculation

The effect of the canted model state, which has two
grees of freedom, in a CCM calculation is examined here
practice, the spins in the canted model state are restricte
point in one direction on a particular sublattice. Neverth
less, for the spin-halfXXZ model, the CCM with the canted
model state provides a good analysis of the effect of
model state in these calculations. In terms of the numer
calculations, performing the CCM with the canted mod
state is a new approach, since the earlier CCM calculat
for spin systems have chosen predetermined model s
with no free parameters, and with the choice based on ei
prior knowledge or classical behavior. The use of the can
model state allows the extra freedom to partially tailor t
model state to the specific value of the anisotropy parame
This is achieved by the application of the stationary equa
~2.9! and the variation with respect to the anglesa and b,
which define the model state, where the minimum energ

FIG. 13. The sublattice magnetization in thex direction,Mx, as
a function of the anisotropyD for the square-lattice case, from
mean-field calculation and high-order ECCM SUB2-n schemes us-
ing thex-aligned Néel model state.

TABLE III. The ground-state energy per spin for the tw
dimensional square lattice at the isotropic pointD51 from various
CCM schemes, compared with the results of a Monte Carlo si
lation.

ECCM SUB2 NCCM LSUB̀ a Monte Carlob

20.667660.0005 20.6696860.00004 20.66943760.000005

aReference 32.
bReference 18.
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automatically chosen fora and b at each value of the an
isotropyD. Therefore, we employ this particular form for th
numerical CCM calculation, in the hope that it will choos
model states which lie closest to the true ground state.

1. Behavior of the canted model state with varying angles

For the calculations with varying anisotropy, the anglesa
andb are free to vary. The model states that arise from
ECCM SUB2-n calculation in this case are the same as th
from the mean-field calculation, as shown in Fig. 2, f
21<D<`. This is also illustrated by Fig. 14 in the neigh
borhood of the isotropic point. As discussed in Sec. V, th
mean-field model states yield the CCM ground state t
preserves either the U(1)xy or Z(2) symmetry of the Hamil-
tonian.

Kümmel’s work36 provides a guideline to examine th
effect of the mean-field model states in the CCM calculati
if translational invariance of the rotated model stateuF& is
assumed. It can be shown that the overlap condition for
mean-field model states is maximized if the sum, over
whole lattice, of the two-body correlations, which is defin
in Fig. 3 asS2, obeys( rbr,1/2. This result is extended to
show that( rbr˜1/2 indicates a phase transition point. A
D˜1 this condition holds for thez-aligned Néel model state
in the linear-chain case and only approximately holds for
square-lattice case. For the square-lattice case, this ma
dicate the numerical instability of the solution asD˜1 and
consequently the need for a model state with greater ove
in this region.

The solution for the energy at the isotropic point has
continuous degeneracy in terms of the angleb, for a fixed
value ofa5p which yields the set of all model states wit
Néel symmetry. However, away from the isotropic poi
there is a unique minimum in the solution. Therefore,
practice, by choosing a fixed angleb, we break the SU(2)
symmetry at the isotropic point. In doing so, LRO is intr

-

FIG. 14. The ground-state energy per spin,Eg /N, as a function
of the orientation of nearest-neighbor spins,b, in a model state,
which is restricted to the canted model state space, for the lin
chain case, when the relative anglea is p ~Néel state!. The exami-
nation of the model-state space is performed in both theXY-like
and Ising-like regions in the neighborhood of the isotropic poi
using the converged ECCM full SUB2 values.
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duced in the direction specified by the angleb, which is
diminished by the correlations from a CCM calculation.

2. Behavior of the canted model state with fixed angles

The effect of particular model states that require the
clusion of one-body terms in the CCM calculation is exa
ined here. In the Ising-like region, for the angleb set top,
the anglea is fixed to various values which define mod
states in the neighborhood of thez-aligned Néel state, i.e.,
a;p. As a is decreased, each numerical solution for t
energy in the square-lattice case, from the highest-o
ECCM SUB2-n scheme, is successively higher and term
nates earlier than the previous solution. Furthermore,
model states defined bya<p/2, a solution cannot be recov
ered.

These non-mean-field model states, in the neighborh
of the z-aligned Néel model state, require one-body terms
the CCM calculation. Hence, the ground state can exh
broken U(1)xy symmetry.37 However, these model states a
bad choices in comparison to the symmetry-preserv
mean-field model states, due to the poor qualitative
quantitative behavior of the numerical solutions for the e
ergy. Moreover, due to the termination of these numer
solutions well beforeD51, broken U(1)xy symmetry does
not physically occur in this region. Thus, the symmet
breaking nature of these poor choices of model state ca
be utilized. It seems that non-mean-field model states w
one-body correlations try to approach the mean-field mo
states and, in doing so, do a worse job at describing
system.

3. Nontrivial behavior of the canted model state
in the Ising limit

We now examine the effect of the canted model state
the Ising limit. As shown in Fig. 14, for the Ising-like regio
of the linear-chain case the lowest energy, and therefore
optimum model state to yield the ground-state energy, is
z-aligned Néel state. Initially, in the Ising-like region the
periodicity of the solution for the ground-state energy
terms of the angleb is 2p, whena is fixed top, as shown
in Fig. 15 for the linear-chain case and with minima
p mod(2p). In the Ising limit the solution asymptotically
develops a periodicity ofp in the angleb. The states atb
50 mod(2p), which define thex-aligned Néel state, be-
come degenerate with those atb5p mod(2p), which de-
fine thez-aligned Néel state. Interestingly, this analysis r
veals that in the Ising limit, thez-aligned Néel ground state is
obtained from the thex-aligned Néel model state with large
one-body coefficientsk.

VII. DISCUSSION AND CONCLUSIONS

The diagrammatic technique has made possible the im
mentation of high-order SUB2-n schemes in the ECCM for
mulation, since it requires less computer memory and C
time than performing the CCM with algebraic methods. T
is because the multiplicities of the diagrams are only de
mined once and can thereafter be used throughout the c
lation. For the case of the square lattice, accurate nume
results in comparison to other numerical techniques h
been obtained for the region21,D,`. In particular, at the
-
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isotropic point the most accurate value for the order para
eter ofMz'0.689 for any nonextrapolated CCM calculatio
has been obtained. This suggests that the ECCM SUBn
scheme describes the wave function better than prev
NCCM formulations at similar levels of truncation.

The qualitative behavior of the numerical results indica
that the present CCM treatment requires further impro
ment for the study of phase transitions. In the case of
linear chain the ECCM fails to describe the system foruDu
<1. For the square-lattice case there is a failure to desc
the region near to the isotropic point. Alternatively, the ma
ner in which the numerical solutions become unphysical p
vides further knowledge of the system and the ECCM.

It is intuitively clear that a good choice of model state
a CCM calculation should be as close as possible to the e
ground state or, alternatively, share the same underly
symmetries as the exact ground state, depending on the
tem under consideration. The high-order SUB2-n ECCM nu-
merical results show that the important facet of a go
choice of model state is dependent on the extent to which
system is ordered at the isotropic point and in theXY-like
region. The linear-chain case with both thez- andx-aligned
Néel model states and the square-lattice case with
x-aligned Néel model state indicate that when either LR
does not exist or the value of the order parameter may
quite small, it is important to chose a model state which d
not artificially break the symmetry of the Hamiltonian.

Alternatively, the square-lattice case with thez-aligned
Néel model state suggests that if the system has broken s
metry, the large quantum fluctuations that result from
massless excitations could also cause solutions to termin
In this case, it is more important to chose a model st
which is as close as possible to the exact ground state.
problem of correlations becoming too large seems to oc
generally in quantum many-body techniques. Advan
geously, introducing broken symmetry into such a syst
yields the benefit of not having to perform high-order calc
lations to approximate the true ground state well.

As shown above, our analysis, as it stands, requires p
knowledge of the system. Although we know from oth

FIG. 15. The ground-state energy per spin,Eg /N, as a function
of the overall orientation of nearest-neighbor spinsb, when a is
fixed atp, for the linear-chain case. The examination of the mod
state space is performed in the Ising-like region for increasing
ues of the anisotropy, using the converged ECCM full SUB2 v
ues.
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numerical techniques15–20 that the square-lattice Heisenber
model possesses LRO, the value of the order param
might be too small for the ECCM to describe the isotrop
point. Therefore, the best CCM approach for this system is
define a model state with a flexible parametrization, so tha
does not artificially break the symmetry of the Hamiltonia
and in so doing can give indications of possible symme
breaking by examining the effect of correlations on the ord
parameter. In order to achieve this end the model-state
rametrization should yield a mean-field solution in which th
order parameter smoothly and continuously tends to zero
u

.

d
e

ter

to
it
,
y
r
a-

at

the isotropic point. In this way the ECCM formulation can
extended over the whole regime to include the long-ra
correlations at the critical point.
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