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Extended coupled-cluster treatment of correlations in quantum magnets
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The spin-halfXXZ model on the linear chain and the square lattice are examined with the extended
coupled-cluster methoECCM) of quantum many-body theory. We are able to describe both the Ising-
Heisenberg phase and tier-Heisenberg phase, starting from known wave functions in the Ising limit and at
the phase transition point between K¥-Heisenberg and ferromagnetic phases, respectively, and by system-
atically incorporating correlations on top of them. The ECCM yields good numerical results via a diagram-
matic approach, which makes the numerical implementation of higher-order truncation schemes feasible. In
particular, the best nonextrapolated coupled-cluster result for the sublattice magnetization is obtained, which
indicates the employment of an improved wave function. Furthermore, the ECCM finds the expected qualita-
tively different behaviors of the linear-chain and square-lattice c4S€4.63-182@9)02530-§

[. INTRODUCTION at the isotropic point itself, which is due to the special nature
of the isotropic point.
The extended coupled-cluster metho ECCM) has not Any CCM calculation on spin systems involves adding

previously been applied to lattice spin systems, unlike theorrelations between spins, on top of those already contained
normal coupled-cluster methdd® (NCCM), which is a re-  in a separately chosen model or reference state, in order to
stricted version of the ECCM at a given level of approxima-produce the true quantum-mechanical ground-state wave
tion, and which has been widely implemented for these sysfunction. Therefore, the important physical characteristics of
tems. The primary aim of this paper is to apply the ECCM toa system are incorporated into the CCM by the choice of the
the spin-half anisotropic Heisenbef@r XX2) model, in or-  model state and by the inclusion of particular configurations
der to obtain numerical results for the ground-state energyor the correlations. Hence, we can now refine and reformu-
and the sublattice magnetization, and thereby to investigatiate our second aim to be an examination of the effect of the
the usefulness of the method in the study of quantum phasehoice of model state. In particular, we shall be interested in
transitions. The ECCM and NCCM ash initio techniques  the interplay between the symmetry of the model state and
of microscopic quantum many-body theory, genericallythe symmetry of the Hamiltonian influencing the ground-
known as the coupled-cluster meth@ICM). The ECCM, in  state wave function. This is exemplified by the CCM treat-
contrast to the NCCM, completely characterizes a system iment of the linear-chain case, which yields artificially broken
terms of a set of basic amplitudes, all of which are linked-U(1),, and SU(2) symmetries. This can only be due to the
cluster quantities. choice of model state, since exact results show that the sym-
The two-dimensional spin-haXZ model is expected to metry of theXXZ model Hamiltonian is not broken in the
have a second-order phase transition at the isotropic poirXY-like region and at the isotropic point.
A=1, where the system is in a unique critical phase. The The primary aim of this paper is motivated by numerical
transition is expected to be accompanied by some change e¥idence, from a number of techniques, of long-range order
symmetry of the ground-state wave function. In particular,(LRO) at the isotropic point for the square-lattice case. Nu-
Laughlin** speculates that the physics of the isotropic pointmerical results from a wide variety of techniques such as
can be understood as a gauge theory with massless excitspin-wave theory® 1" high-accuracy quantum Monte Carlo
tions. In general, theoretical study of the isotropic point re-(QMC) simulations:® and series expansioh$?’yield a sub-
quires some prior knowledge of the phases on either side déttice magnetization at the isotropic point of approximately
the isotropic point. In practice, the ordering and symmetry of61-62% of the classical value arising from perfec¢eNer-
the known wave functions in these phases influence the pratering. A priori, the ECCM is expected to perform better
dicted state at the isotropic point. Therefore, the second airthan the NCCM for systems that undergo global changes.
of this paper is to examine how the CCM, in particular, isThis is put to the test, where we pay special attention to the
affected by this universal problem in the study of phase tranpossible underestimation of quantum fluctuations due to the

sitions. choice of ordered state from which the calculation strts,
The generaXXZ model Hamiltonian has Z(2)U(1),, by using several different such ordered states.
symmetry, except at the isotropic point where it hasZU Rigorous results from the Bethe angatZ*for the spin-

symmetry. For the square-lattice case the ground-state wavelf anisotropic Heisenberg antiferromagnet on the linear
function is expected to yield broken U(Jd)symmetry in the chain provide a measure of the effectiveness of the ECCM.
XY-like region, and there is broken(Z) symmetry in the However, we know in advance that the nature of the transi-
Ising limit. Approaching the isotropic point from either side tion in the linear chain is very subtle, and quantum fluctua-
with the CCM yields different ground-state wave functionstions present in this case are known to destroyelNeRO
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completely at the isotropic poiﬁiThereforg,a priori, one  dentity operator,Cy=1. We note thatC,|¢)=0, VI#0,
would expect the ECCM to be more effective for the squareand hence the statet) obeys the intermediate normalization
lattice case, where the ground state will be closer to th%ondition(¢|</x):1.

classical uncorrelated state. Arponert has shown how two distinct CCM parametriza-

Numerical results for the ground states of models in ON&i s of the exact ground bra staf@| can be given, which

and two dimensions are expected to be qualitatively :
: 26 . ) .~ yield the NCCM and the ECCM, respectively. The NCCM
different®® By contrast with the NCCM, which has previ- parametrization of the ground bra state is given as

ously been applied, for example, to the spin-halKz
modef” and the nonlineasr model?® the ECCM is expected B B B B
to yield numerical evidence of this difference. As similar (z//|=<¢|5e’5, S:1+2' sC, (2.2
calculations are performed for any lattice dimensionality in !
the CCM, the qualitatively different behavior of the solutions whereas the corresponding ECCM parametrization is given
that we report in this paper for the two cases using theys
ECCM is not simply an artifact of the technique.

In a diagrammatic implementation of both CCM tech- ~ S s e O
niques, the ECCM, at any level of truncation, produces dia- (h|=(¢le>e™> S _2' $Ci 23
grams in greater abundance and of greater complexity than
the NCCM, as shown in Sec. IV. Unlike in its NCCM coun- Both'S andS" are constructed wholly in terms of multicon-
terpart, it is possible within the ECCM formalism to define afigurational destruction operators, defined with respect to the
spin-spin correlation function which is fully consistent with model statd ¢). These are simply the Hermitian adjoir@s
the corresponding definition of the magnetic order paramof the corresponding creation operatﬁ.‘r&in Eq. (2.2). Fur-
eter, atall orders of truncation. Such properties of the ECCMthermore, both parametrizations satisfy the normalization
make it attractive for d_escrlblng correlanon_ effects in phys"condition (ILI #)=1. Although <<~ﬂ|:<l/f|/<'/’| y) formally,
cal systems, and particularly to study their quantum phasgis rejation may not be preserved when truncations are

transitions and quantum order. : L g

The CCM has been used very successftfi§to calculate made, as explained _beon, Ih either parametnzaﬂo_n. .
the zero-temperature properties of a wide variety of extended, The energy functionaHe in the ECCM formulation is
many-body systems, including, for example, atoms and molt"US given by
ecules, nuclear matter and finite nuclei, the electron gas, and — v
lattice gauge field theory, as well as sping—glattice He=(¢le% e He ). 2.4
systems.*~32 In this paper, we present evidence from nu-The similarity transformed Hamiltoniaa SHeS may be ex-
merical results that demonstrates the particular superiority gfressed as the usual nested commutator expansion,
the ECCM over the NCCM, in practice, to study such global
properties of spin systems as their quantufmero-

1
-5 S_
temperaturgphase transitions. e “He*=H+[H,S]+ 5;[[H,S].8]+---. (2.9

SinceSis composed wholly of mutually commuting creation
[l. EXTENDED COUPLED CLUSTER METHOD operators, the similarity transform in E.5 only retains
FORMALISM terms in which all amplitudes, are linked to the Hamil-
Since detailed descriptions of the CCM formulation havei)orrc]jgni.nIztﬁgi?rzn}gtgbgroglde?gt;?gt ttﬁg eiagqrzlé?g:\aglvlvsaﬂglttgr—
been given elsewhere, “only the essential components wil minates at finitegorder thgrefore E)nce thg correlation ())/ era-
be given here. Hubbaffiwas one of the first to emphasize tor Sis approximated .no further ’truncations are necessgr
the importance of an exponential parametrization of the ex- iy ' p ; Y.
act ground-state ket wave functidgy) of an interacting Formally, the bra-state _parametrizations in bo_t_h_ the
ECCM and NCCM formulations still preserve Hermiticity.
many-body system, L )
Explicitly, we have the relations

=€), S=2"scCl, 2.9 <¢|§=<¢|eg’=<—¢|e+§i 2.6
I (dleSes|p)’

in terms of a model statkp) which is not orthogonal to the which are a consequence of satisfying the normalization con-

exact ground-state ket wave functigs). The correlation dition (¢]¢)=1. Although the manifest Hermiticity is usu-

operatorS in Eq. (2.1) is decomposed solely in terms of a ally sacrificed at any level of truncation, the distinct bra-state
complete set of mutually commuting, linked, multiconfigu- parametrizations produce fully Iinkgd gxpectation values in
rational creation operato] defined in terms of a complete Ed- (2.4), as they incorporate the similarity transform, and
set of many-body configuratior{$}. These are, in turn, de- bothS” andS are composed wholly of destruction operators.
fined by a set indext, which, for the spin-lattice systems  The double-exponential structure of the ECCM formalism
under consideration, describes the set of spins which argnplies that Eq.(2.4) can be expressed in terms of the am-
flipped with respect to those contained in the suitably choplitudes{s,,s/} via a double-similarity transform, and that

sen, normalized, model state). The prime on the sum in both of these sets of ECCM amplitudes are linked-cluster
Eq. (2.1 excludes the null set,—0, corresponding to the quantities. However, the NCCM formalism only allows a
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single-exponential structure in terms of the amplituf®$.  however, the physical condition in E¢2.10 will not in
Although the amplitudegs;} are linked-cluster quantities, general hold at arbitrary levels of truncation within this

the amplitudeqs,} are not. scheme.
An arbitrary expectation valua can thus be expressed in
the ECCM and the NCCM, respectively, as . TRANSFORMATION OF THE SPIN-HALF  XXZ

MODEL HAMILTONIAN FOR THE LINEAR CHAIN

Ac=(dle¥e SAe%p)=Acl{sis]).  (27) AND SQUARE LATTICE

A. CCM approach to the spin-half XXZ model Hamiltonian
An=(¢[Se 5Ae% ) =An({si}.{s}).- (2.8 The spin-halfXXZ model Hamiltonian is given by

In practice, either version of the CCM can only be imple-
mented by truncating the expansions in E@s1)—(2.3) by
retaining only a finite or infinite subset of the complete set of o _ )
configurations indice$l }. In this paper the SUBR-approxi- ~ Whereo{", a=x.,y,z, are the Pauli spin matrices, is the
mation scheme is employed, which retains all configuration@nisotropy parameter, and the summation is over allNhe
with up to two-body correlations between spins which are ndattice sites denoted by and over each of the nearest-
more than a certain distance apart, specified by the imdex Nneighbor vectors denoted lpy We note that the linear chain
The details of the approximation scheme are given explicithand the square lattice are both bipartite lattices which can be
in Sec. IV where the diagrammatic approach is described. Split into two identical sublattices, which we denote asAhe

All ground-state properties can be determined in theandB sublattices. Thus, each nearest-neighbor site to a site
ECCM and the NCCM, respectively, by the stationary prin-on theA sublattice is on thd® sublattice, and vice versa.

1
H:+Z % [Acriza'iz+p+0f(rf+p+0'}"a'iy+p], (3.1

ciple In the Ising limit A—o, the A-dependent term in the
Hamiltonian of Eq(3.1) becomes dominant and the classical
ﬁgE agE (?gN <9ﬁN z-aligned Nel gtate is the eigenstate that yield.s the Iowest
=0= , =0= —, (2.9 energy. Thez-aligned Nel state has nearest-neighbor spins
I8y as 98 s,

ordered antiparallel to one another in thelirection, as il-

, ~ lustrated below:
in the case wherfy) and( | correspond to the ground state.

We remark, however, that due to the lack of manifest Her- |p)= ® |T>k® [1), (3.2
miticity between(3| and|¢) at a given level of truncation, keA  1eB

the resulting stationary values bl and Hx are not neces- in a notation in which the axis points vertically upwards.
. 9 y E N However, for all finite values oA the terms in thex andy
sarily upper bounds to the ground-state energy.

We note that the NCCM equations at a given order Candlrectlons in the Hamiltonian in Eq.3.1) come into play,

formally be extracted from the corresponding ECCM equa-and thez-aligned Nel state is no longer an eigenstate of the

tions at the same order by truncating the expansion of thHamlltonlan. The grou_nd state for evehn(_)w consists of_a
. ) y %artlcular linear combination of all possible configurations

exponentiated correlation opleramﬁ at first order and per-  \yith N/2 up-pointing spins andl/2 down-pointing spins. All
forming the substitutiors—s;. In practice, the resulting the configurations apart from the classical state which are
ECCM equations from a particular truncation scheme argresent in the exact state are considered to be quantum fluc-
highly nonlinear and, therefore, of greater complexity thantuations upon that state. At the isotropic point the Hamil-
their NCCM counterparts. However, the diagrammatic reptonian in Eq.(3.1) becomes rotationally invariant, such that
resentation of the formalism which we present here makethe expectation value of an arbitrary spin is the same for any
tractable the numerical implementation of high-order ap-direction.
proximation schemes. For —1<A<1 the true classical ground state can be any

Very importantly, observables in the ECCM, which quan-one of an infinite number of degenerate eNestates with
tify the global behavior of a system in terms of its long-rangenearest-neighbor spins restricted to align antiparallel to one
order obey the cluster property. Thus, for example, we havenother in any direction in th¥Y plane. Schematically, we
the very general relation write

im AB, =AB,, (2.10 |p)= ® |<—>k® |=)1, (3.3

keA leB
choosing, say, thr direction to be the alignment axis, and in
whereA, andB,, are single-body operators acting at defineda notation in which the positive axis points horizontally to
sitesr andr’, respectively. This condition is preserved by the right. We note that there exists a trivial transformation of
the ECCM due to the exact multiplicative separability of the Hamiltonian in Eq(3.1) at the phase transition point
both the bra-state and ket-state parametrizations in the cor —1 between th&X'Y-Heisenberg and ferromagnetic phases
responding large-distance limit; however, the index{Beis (henceforth referred to as the ferromagnetic poiwith the
truncated. Consequently, the long-range order of physicat-aligned Nel state as eigenstate, to the ferromagnetic
systems can be examined unambiguously via the ECCM padeisenberg Hamiltonian, with thg-aligned ferromagnetic
rametrization of their correlation functions. As the NCCM state as eigenstate. ThereforeAat — 1 the x-aligned Nel
bra-state parametrization is not multiplicatively separablestate is the true ground state and this point is chosen to be the

‘I’*r"—rw
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initial point of the CCM calculation in the entire regime
—1<A<1. One imagines that thg-aligned Nel model
state is close to the true ground state in the neighborhood of

this point. e[ = INa N Ds [ A alV s

B. Transformation of the Hamiltonian in terms of a canted

model state o

. TC/2_|/>A |\ >B |6>AH'>B |\>A|/>B
In order to produce a ground-state solution that can de-
scribe both theXY-like (—1<A<1) and Ising-like A

>1) regions of theXXZ model, a canted model state is

introduced. The canted model stdtg.)=|¢p(&a,E8)) con- 0 _| W>A| \l’>a |/>A|/>B |€>A|6>B
0

sists of spins on thé sublattice pointing in one particular
direction and spins on thB sublattice also pointing in an-
other particular direction, defined by the spin-half spin vec- 3

tors {4 and &g, respectively.

In order to calculate the expectation values of arbitrary FIG. 1. Various model states canted in && plane, defined by
observables in the ECCM, an arbitrary rotation of the localthe anglesa and 8, are shown in the original global coordinate
spin axes is performed about tlyeaxis on each sublattice, frame, in a notation in which the positiveaxis points to the right
resulting in a notional rotation of the spins in the cantedand the positivez axis points upwards. Note that the states with
model state to the down position in the direction of the nega= 7 are all Neel states and those with=0 are all ferromagnetic
tive z axis, states.

7'5/2 n

N Particular values ofr and B lead to specific canted model
Ulo(én.€8))= ® |1)i=IF), (3.4  states, as shown in Fig. 1. The single-spin creation and de-
=1 struction operators are defined a$=3(c*+ig”) for all
whereU is a product of unitary matrices, which causes thesites on the lattice, once the spins have all been rotated into
spins in the canted modgp,) to undergo a passive rotation the down position, as given in E¢3.4). Thus,H" in Eq.
such that they all point downwards in the rotated local(3.7) can be expressed in the form
frames. Hence, the ECCM expectation value for an observ-

able A in Eq. (2.7) can be expressed with respect to the 1

T_
unrotated canted model state in the form H'=+ 3 % pz;] quUipUiqm, (3.9
A=(¢UTeSe S(UAUMeSU| ). (3.5  wherep,qe{z,+,—} andT,, are functions ofx, 8, andA.

_ ) Due to the Hermiticity of the Hamiltonian, the factdrg, in
The rotation matrices for the canted model state onAhe Egq. (3.9) satisfy the relationl , ,=T*,. Moreover, the spa-

sublattice andB sublattice are given by tial symmetry with respect to which lattice sites the spin
operators act upon yields the relations:
U,= 0,2 | —cod 2)1-isin 2] v 3-am
ITEXR IOy meoq i sin 5o JEA, T, =T.,, T, =T, T, =T.. (310

Finally, the transformed Hamiltonian with a canted model
where each rotation is chosen to be performed abouythe state can be expressed as
axis in theXZ plane. This involves no loss of generality,
since all directions in thXY plane are equivalent, due to the
U(1),y symmetry of the Hamiltonian in Eq3.1).
Now, the transformed Hamiltonian arising from E§.1)
can be written as

1 1
HT=+ 5 > E[(1+A)c05a+(1—A)cosﬁ—2](ai+ai++p
ip

1
+oi i)+ 5[(1+A)cosat (A 1)cosBlaiof,,

1
- T T t
HT=UHUT=+ 2 (kz” [A(UaoiU) (UgaiUg) +[(1+A)cosa+(1-A)cosp+2]oi oy,
+(UaofUR) (UgafUL) +(UacfUR) (UgafUD)], +(1-A)sinB(otof, + oty )| - (3.11

keA, leB, (3.7

. C. Mean-field calculation
wherek and| are nearest-neighbor vectors.

There are two degrees of freedof, and 65, present in A mean-field calculation provides a guideline for the
the transformed Hamiltoniad T, which are conveniently ex- model-state analysis in the correlated CCM calculation,
pressed via an equivalent set of relative and total orientatiowhich will be performed in Sec. VI. We restrict our mean-
parameters field calculation here to finding an optimal state of the form

of the canted model statieb(éa,&g)), in which no other
a=(0g—0p), B=—(0,10g). (3.8 correlations are present apart from those between the two
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FIG. 2. The stationary energy eigenvald& as a function of R
the anisotropyA for the mean-field case. The ground-state energy is oy P oy (o]
denoted by a thick line NSNS 3 /o
y . +P |-4 /2,‘ ,,,,,,, / -2> /\/f ,,,,, / + Q 2\/)/,\/,\,»/,\/ +2 >//
A N / /
sublattices implied by the anglesand 8. Consequently, the - ’ T
mean-field energ¥, which is given by N — — N \y\/,w///
N 7N s {7
. _ T \) 3;71 NS S T \v4 N 7
E= < ¢C| H | ¢C> _<F | H | F>1 (312) + ;f 777777 + 2/// /+ 2\\/7?& S +<\f \\,,,,,,,f//
/ A / v
yields the following expression: / 14
E _ 2 [(a+1)cosa+ (A-1 (3.13 St aaN S N
—=— cos —1)cosp], . Nanad N ) /
N = 16l (A +L)cosa+ (A—1)cosp] ) T
L # I LN
whereN is the number of lattice sites ards the coordina- +R & P N L/ﬁ
tion number of the lattice. The factdr,, in the Hamiltonian +(Noan ) Lg (NS
in Eg. (3.9 yields the only nonzero, diagonal contribution ¢/ N YAERN
from Eq.(3.12. The stationary values af,, with respect to
the anglese and B yield the solutions for the energy, FIG. 4. The diagrams arising from the ECCM energy functional

which are shown in Fig. 2. Figure 2 also shows that thg; 4) using the HamiltoniaH, which yields the ground-state en-
model states which make up the ground state in the mearsgy. The factors denoted by the letters are composed of functions
field case are the-aligned Nel state forA=1, thex-aligned  of the anglesz and 8 and the anisotropy. The factorz denotes

(or y-aligned Neel state for—1<A=<1, and thez-aligned the coordination number of the lattice. The diagrams that appear up

ferromagnetic state foh<—1. to the solid line are those from the NCCM formulation.
IV. DIAGRAMMATIC APPROACH as shown by the NCCM diagrams in Fig. 4. On the other
A. Diagrammatic technique hand, Harri¥®> uses a representation where the algebra for

performing the CCM with respect to spin states is reformu-
Plated in terms of particle-hole states. This particular repre-

; . sentation was employed for the purpose of identifying can-
ample, Roger and Hethermgﬁ?rreprgsent the terms arising celing terms and to aid the simplification and systematization
from the NCCM energy functional diagrammatically simply of the algebra

for convenience. Unlike our representation, shown in Fig. 3, By contrast with these earlier diagrammatic approaches,

The terms arising from a CCM calculation have been re
resented diagrammatically in previous wéPk® For ex-

in Ref. 29, which do not contribute to the energy funCt'on"’ll’tions. Since the diagrammatic representation requires less

) > > computer memory and CPU time than the algebraic repre-
i o i L B I wp  OiOwe i p sentation, higher-order truncation schemes can be imple-
mented. There are several other advantages of using this par-
. .. ¢ ¢ ticular approach: applying the formalism is straightforward,
8 & ® 8 =kZq s Zhojel= X« T4 pir the terms which contribute the most in any calculation can
readily be pinpointed, and the correlation function and sub-
S8 + 8 =k'To. + Ebloon=TO0 4 I 00 lattice ma_gnetlzatlon can be expressed as se.ts of th.e.dla—
" m mm moom mn grams which appear in the CCM energy functional arising
T
FIG. 3. The diagrammatic representation of the ECCM formal-from H". _ _ _ _ _
ism. The dashed lines denote the interaction terms from the Hamil- Our diagrammatic technique involves casting the combi-
tonian. The circle and the cross denote, respectively, a creatioRations of creation and destruction operators which appear in
operator and a destruction operator. The straight solid lines arthe CCM in a diagrammatic form, as shown in Fig. 3. The
known as the ket lines and the wiggly solid lines are known as th&CCM SUBn approximation scheme retains all configurations
bra lines. up to and includingn-body correlations. Therefore, the
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SUB2 scheme retains all the one-body correlation terms, de- The correlation operatof, in Fig. 3, which is described
noted byS, in Fig. 3, that are allowed to arise from the terms as a ket line, flips two spins in the model st to the up

in the HamiltonianH™ in Eq. (3.11) which contain a single- position. The nested commutator in Eg.3 only allows
body creation or destruction operator, as well as all the twononzero contributions, if the ket line is connected to the term
body correlations, denoted b§, in Fig. 3. The SUB1 ofo7, ,, in the Hamiltonian. Therefore, at least one of the
scheme retains only the one-body correlations. In the presespins is flipped on either of the lattice siteandi+ p. Con-
work, the correlation operato&andS” defined in Eqs(2.1)  sequently, a spin is flipped on one other site of the lattice.
and (2.3) are truncated via the SUB2 scheme as shown in - The pra lines arising froneS” only yield nonzero contri-

Fig. 3. ) ) butions with the state described above if the final state is one
As the equations that arise from the SUB2 scheme are ngjt 51| down-pointing spins. As the bra lines flip up-pointing
analytically soluble, a further restriction is placed on thespins to down-pointing spins, the ends of the bra lines must

maximum range of the two-body correlations from the SUB2,¢ ~onnected to ket lines or to a term KT that contains
scheme. Therefore, the partial SUB2 approximation knownyeation operators. Otherwise, the destruction operators at
as the SUBZ scheme is implemented. In the current dia- gjther end of the bra line annihilate the state. The combina-
grammatic formulation the SUBR-scheme retains only igrics of both the bra lines and the ket lines in devising the
those two-body correlation coefficiertis, wherer runs over diagrams is taken care of by the CCM formalism. The ket
The vectors are defined to be distinct after allowing for a”arising fromeS" have counting factors that remove the pos-
lattice symmetries. For e'xample,'th'e Imear;qham case has ths‘?‘bility of obtaining diagrams which are equivalent under
property that all correlation coefficients arising from vectorsIattice symmetries

of the same length are identical. However, for the square- '
lattice case, vectors of the same length which are not other-

wise identical under the lattice symmetries yield distinct cor-  B. Diagrams arising from the ECCM formulation for
relation coefficients. For example the vectors (5,0) and (3,4) macroscopic quantities

have the same length but are distinct.

The one-body terms i6; from the SUB1 scheme simply
transform a particular model statk to an improved model The diagrammatic technique applied to the ECCM energy
state| ¢'), where| ¢) is in the neighborhood di’), via the functional arising from the transformed Hamiltoniah'
transformation ¢’ ) =e%1| ¢). The one-body terms from the Yields the diagrams shown in Fig. 4.

SUB1 scheme are rigorously zero when the chosen model
state is the same as the ground-state mean-field states, as the 2. Sublattice magnetization

SUBL scheme corresponds to a mean-field calculation. Thus, the sublattice magnetization or the order parameter in the

the particular cases of the-aligned andx-aligned Nel |giyg Heisenberg and Y-Heisenberg phases, respectively, is
model states forA=1 and —1<A<1, respectively, as jqfined by

shown in Fig. 2, from the Hamiltonial" in the local ro-
tated axes in Eq(3.11), yield rigorously zero one-body co- ) )
efficients. More general canted model states yield very small 7 7 7zt~ z
one-body contributions. Therefore, in order to keep the num- M N EA (LU= N EA {0, A
ber of diagrams under control, we restrict the one-body terms

to give, at most, a linear contribution, which corresponds to

the NCCM SUBL1 scheme. Hence, the restricted SUB2 bra- ,x_
state parametrization can now be expressed as

1. Diagrams arising from the energy functional

=1,

2
S (Uoiui=- 5 3 (oD, -1=a=1
ke A

2
N ke A
(4.4

(W=($l(1+S)exd Sy (4.2)

The inclusion of the minus sign ensures tvet andM* are
positive in our rotated N&l basis, wheréJ? andU* are the
_ 4.2) unitary operators, which rotate the local spin axes of the
z-aligned andx-aligned Nel model states, respectively, to
give the statdF). The sublattice magnetization far=1 is
solely that of thez-aligned spindvi?, and for—1<A<1 the
ublattice magnetization is that of thealigned spindv* in
he present model state formulation. The formal reason for
this behavior of the sublattice magnetization is given in Sec.

=(¢|

1+ k"ai)exp[_E blo o),
i ir

Once the energy functiong®.4) arising fromH" is cal-
culated, the ground-state properties can be derived by appl
ing the stationary principle of Eq2.9). An example of how
the diagrammatic calculation is performed can be shown b
taking the expectation value of the tewio?, ,, which is a
constituent oHT. The nested commutator in E@.5) yields
the following expression:

As the forms of the sublattice magnetizatidri$ and M*
for the respective regions shown in Eg.4) are equivalent,
they arise from the same diagrams, which are shown in Fig.
5. Local quantities in the CCM formulation yield size-
extensive results. The diagrams for the ECCM sublattice
magnetization are the same as those for the NCCM. Even
(4.3  though they are local quantities, the order parameters arise

1
e_SO'iZa'iZWeS: ofof, tlofol,, S+ E[[(riza'izﬂ) ,S],S].
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FIG. 5. The diagrams constituting the sublattice magnetizations +e m NN
MZ andM*. o o

from summing correlations over the whole lattice, and in this 16 6. The diagrams for the correlation functiog&’ andg**.
way they are able to describe the ordering of individual spins

throughout the system.
g Y (1) =(U oo, U
3. Correlation function — (UXUEUXU(UchﬁHUXT), —1<A=<1.
In order to study critical phenomena it is important to (4.9

study a particular correlation function which is consistent o _ _ _
with the definition of the order parameter. The spin-spin cor4dn the limit r—oc, the correlations between spins die off as

relation functiongg'ﬁ is defined by shown in Eq(4.7). The spin-spin correlation function for the
region —1<As<w has the form =(colof. ) as
95 A(N=(ogal, ), a.p=xy.z, 4.5 (Ulofof, UT)=(Uolal, Uy =+ (ofof,,), where the

sign is positive if both lattice sites are on the same sublattice
in terms of which we define the correlation functigfi?(r)  and negative otherwise. Therefore, the correlation function

as follows: consists of diagrams similar to the connected diagrams aris-
ing from the term(o7o?, ) in the energy functionatl ™. The
g*B(n=g5P(r)—(oO(ots ), (4.6)  diagrams arising from the correlation function in E¢.9)
are shown in Fig. 6.
wherer is restricted such thdt andk+r are both on theA The connected diagrams which appear in the NCCM cor-

sublattice. The translational invariance of the lattice impliesyelation function are equivalent to those in Fig. 6 with the
if @= on a particular sublatticdo*)=(o”, ). Hence, the exception of those indicated in the box. However, there are
correlation function satisfies the fundamental property also disconnected diagrams in the NCCM formulation of the
correlation function. This occurs because one of the dia-
2 2 grams that arises from the square of the sublattice magneti-
limgg“(r)= (N E (oﬁ)) =(M9)?, 4.7 zation in Fig. 6 is disconnected and corresponds to a higher-
keh order term that cannot appear in the spin-spin correlation
) i function, due to the NCCM bra-state parametrization. Con-
whereM® is the order parameter ands summed over the sequently, the cancellation of the disconnected diagram can-
sublattice ofN/2 lattice sites. The expression fgp(r) in not occur when the correlation function is calculated in Eq.

r—oe

terms of the rotated canted model state is given by (4.9). However, the ECCM bra-state parametrization yields
higher-order terms than the NCCM, which allows this can-
go(r)=(Uajor, UN+(Ualol, UM +(Uofor, UT), cellation to take place. Hence, the correlation function is

(4.8 solely composed of connected diagrams, which possesses the
. . ) fundamental property of Eq4.7). In this way the impor-
whereU is the unitary operator in E¢3.6). Clearly the form  tance of the cluster property, which is intrinsic in the ECCM

of the exprgssion in Ec(.4.8).is similar to the fo.rm of the _formalism in Eq.(2.10, can be seen for the correlation func-
corresponding energy functional. The same diagrams arisgyp,.

for go(r) as for the energy functional, which is shown in Fig.
4. However, the links can now be of arbitrary lengthTrhe
property in Eq(4.7) implies that in the limitr — o, surviving
diagrams fromg(r) can be interpreted as being topologi-  The criteria for a good choice of model state in terms of
cally disconnected. Conversely, E@.6) implies that the the maximum overlap between the model state and the ket
correlation functiong(r) consists of the topologically con- state have been derived by"mmel?*6 One of these criteria
nected diagrams arising frogy(r). Examining the topology specifies that there should be no contribution from the one-
of diagrams arising from the functional provides a straight-body terms(or the SUB1 schemen the CCM calculation.
forward way to deduce the terms that yield the sublatticeThe model states arising from the ground-state mean-field
magnetization and the correlation function in an ECCM cal-calculation satisfy this criteria. From the canted model state,
culation. the mean-field calculation yields the ground state for the
The relevant correlation functions for the regions whichz-aligned Nel model state in the regiod=1 and the
encompass the Ising-Heisenberg afid-Heisenberg phases, x-aligned Nel model state in the regior-1<A<1, as

V. SYMMETRIES OF THE MEAN-FIELD MODEL STATE

respectively, are given by shown in Fig. 2. However, it can be shown, by applying a
theorem first enunciated by Xi&tto these mean-field model
g*q(r)=(U%otop +rUZT) states, that the ket stat¢s) cannot exhibit symmetry break-
ing atA=1.

—(UPagU*) (V%0 U™),  A=1, Xian's theorem’ states that the CCM equations provide
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at least one solution which guarantees the symmetry of the
model state, if this symmetry is one of those belonging to the

Hamiltonian. The theorem is proved by employing a symme- 1.0 +
try operatorA, which has the properties that the Hamiltonian
in Eqg. (3.1) commutes withA and that the model state is an 0.8 | P
eigenstate of\. T
In the case of the-aligned Nel model state, the symme- M- e T
7 - . . 0.6 - =T - i
try operatorA? is given by the rotation operator = ~
N 0.4 / - —_— field
. L - mean fie B
A= ® cos(% 1+i sin(%) atl, (5.0 // ——- SUB2-4
o % ---- 8UB2-40
i=1 02 L - —-— Exact 4
wherei runs over all lattice sites. The order parameter for an //
arbitrary direction in theXY plane is defined byM*¥ 0.0 O ‘ ‘ .
=MXcosa+MYsina. The action of the rotation operatdr 08 1.0 12 1A4 16 18
on the operators whose expectation values on the sublattice
yield M*Y is given by FIG. 7. The sublattice magnetization in thelirection,M?, as a

2 x Vo Sy Vo function of the anisotropyA for the linear-chain case, from the
A*(o" cosat o sina)A*=o" cofa+ x)+o’sin(a+ x).  ECCM SUB2n schemes using thealigned Nel model state, a
mean-field calculation, and the exact results.

The only solution that guarantees the required invariance of
M*¥ under rotation isM*=0 and MY=0, such that the A. Spin-half XXZ model on the linear chain
U(1)yy symmetry of thez-aligned Nel model state is pre-
served. Consequently, the theorérmhows thaf ) cannot
exhibit broken U(1), symmetry.

Similarly, the discrete symmetry operator for the particu-
lar case of thex-aligned Nel model state is given by

There are both exact results for the case of the linear
chain and more appropriate numerical techniques than the
CCM, such as the density matrix renormalization group and
spin-wave theory, for examining more general one-
dimensional spin chains. However, the presence of exact re-

N sults makes the linear chain an important case to gain insight
AX= ® o (5.3 into the behavior of the numerical results from the approxi-
' mated ECCM formalism.

The mean-field calculation shows that both thaligned
The transformation of the order parameéf to —MZ?with ~ and x-aligned Nel model states introduce complete
A* implies thatM?=0. Thus, the Z(2) symmetry of the z-aligned andx-aligned Nel ordering respectively, at the
x-aligned Nel model state is preserved and consequentlySotropic point. Figures 7 and 8 show that the ECCM SUB2-
|4) cannot exhibit broken Z(2) symmetry. Hence, it follows N scheme fails to pick up all the quantum fluctuations in the
that thez-aligned Nel model state only describes the region
A=1, where the ground state does not have broken {J(1) '

i=1

symmetry. Similarly, thex-aligned Nel model state only 1.0 —=—=— .
describes the region 1<A <1, where the ground state does L \\ e i
not have broken Z(2) symmetry. 08 | \‘\\'\ |
VI. NUMERICAL RESULTS 06 I e |
x V.0 - T N
The diagrams in the ECCM energy functional correspond- M | , : ./—/;Z_;‘_: |
ing to the HamiltonianH™, which arise from the SUB®2- T ean field C
approximation scheme in Fig. 4, are used to obtain the nu- 045 sisee i
merical results for both the linear-chain and square-lattice T o 1
cases. The qualitative behavior of the numerical results dif- 0.2 | ——- suB2-16 .
fers for the two cases. This difference can only arise from the | ---- SuB2-24 ,
different multiplicities of the diagrams, which themselves are 0.0 . ‘ ‘ ‘
due to the symmetries of the lines in the diagrams differing ~1.0 -0.6 -0.2 A 0.2 0.6 1.0

in these cases.

From the implementation of the 'ﬂCCM, SUBL scheme it ¢ g The sublattice magnetization in thelirection,M*, as a
can be seen that the coefficiektandk” provide a negligible  ynction of the anisotropy for the linear-chain case, from the
contribution to the overall calculation, where they are noteccm suB2n schemes and a mean-field calculation with the

rigorously zero for thex-aligned andz-aligned N@' model  xaligned Nel model state. For truncation schemes higher than the
states. Therefore, with the benefit of hindsight, implementingsuB2-2, solutions turn back, and so only the physical solution is

the ECCM SUBL, which only introduces additional higher- shown with a solid circle indicating the turning back point, also
order terms, would not be much different to the NCCM known as the terminating point. It is known that there is no LRO
SUBI. over the whole region;- 1<A<1.
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FIG. 9. The ground-state energy per siig/N, as a function of
the anisotropyA for the linear-chain case from high-order ECCM
SUB2n schemes using the-aligned Nel model state, compared
with the exact results.

FIG. 10. The ground-state energy per sfitg/N, as a function
of the anisotropyA for the linear-chain case, from the low-order
ECCM SUB2-2 scheme using thealigned andx-aligned Nel
model states in the regioms=1 and—1<A<1, respectively, and
the exact results.

physical system that result in the LRO being completely de_energy occurs at the isotropic point. Numerical results from

stroyed at the isotropic point. However, the exact order pa; : .
rameter from the linear-chain case exhibits subtle behaviorIhe NCCM LSUB schem& yields a numerically accurate

which, in principle, would require the implementation of ex- ground-state energy at the isotropic point from an_extrapola-
tremely high-order ECCM approximation schemes. tion, as sh_own n Taple . The LSUBscheme re’galns only
The ECCM numerical solutions, for the quantits and those configurations in the correlation operadarhich con-

Egy, from truncation schemes of orders higher than SUBZ-éanan¥ nulrinzbzr rOf ?pr|1n0f1li|ps r\:\tlilth respeift to t?}g r\zﬁ?ﬂ strate
with the x-aligned Nel model state, at the initial point = over a focallzed regio contiguous sites, a ch are

— 1, do not exist fod > — 1, as shown in Figs. 8 and 9. This cOmpatible with the restrictioS; =33 ,07=0. We note

occurs for any scheme higher than SUB2-2 because there id32t this restriction follows from the facts thaf commutes
degeneracy in the numerical solutions &t —1, which Wzlth H and that the ground state is expected to be in the
makes it a poor choice of starting point. An alternative St=0 sector.
choice of initial point for the CCM calculation is the isotro-
pic point, since the rotated Hamiltonians obtained from both
the x-aligned andz-aligned Nel model states are equivalent )
at this point. These solutions turn back and become unphysi- Theré are no exact results for the square-lattice case,
cal. The points at which the solutions become unphysical ar¢/hich therefore presents a significant challenge for numeri-
known as the terminating points, and are shown in Figs. &l techniques, particularly for the study of the nature of the
and 9. expected transition at the isotropic point. Unlike the linear-
The terminating points from the SUB2-scheme based Cchain case, the square-lattice case is believed to possess LRO
on thex-aligned Nel model state, at the orders that have sodtthe isotropic point. Ew_dence for this comes from a number
far been obtained, converge weakly to 1.825005 asn _of techniques as _shown in Table Il. The quantum fluctuat_lons
—, which can be interpreted as the SUB2 terminating” the square-lattice case should be smaller than those in the

point. This result was obtained from the best possible mealin€ar-chain case, due to the higher coordination number of
square fit of %53 It indicates that thex-aligned Nel the lattice. For this reason one expects that the CCM should
model state from the SUB2 approximation scheme would noP€ Petter at deducing the physical behavior of the square-
yield a solution in theX Y-like region, where it is considered attice case. _ , _
to be a better model state than thaligned Nel model- The numerical solutions fa* andE, from truncation
state. This is surprising since higher orders include more ofchemes at orders higher than SUB2-12 with zwigned
the long-range correlations in the system, and consequentf)€&! model state terminate before the isotropic point, as
should reveal more of the physical behavior of the systemS1OWn in Figs. 11 and 12, respectively. The SUB2 terminat-
The exact ground state of the linear chain in t¥-like Ng point of the CCM calculations based on tealigned
region possesses U(4,)symmetry, which indicates that the Neel model state can be accurately determined by an ex-
x-aligned Nel model state, as the sole input in the technique, _
breaks this symmetry causing solutions to terminate in the TABLE I. The ground-state energy per spin for the one-
region A<1. However, the numerical results from the dimensional chain at the isotropic poidt=1, under various CCM
ECCM for the ground-state energy and sublattice magnetize2chemes, compared with the exact results.
tion M* are good at low orders.

Figure 10 shows that the low-order ECCM SUBZo0lu-
tions have the same qualitative behavior as the exact ground-g.419 —0.433 —0.443149 —0.443147
state energy solution, where a maximum deviation in the

B. Spin-half XXZ model on the square lattice

NCCM SuUB2 ECCM SUB2 NCCM LSUB Exact
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TABLE Il. The sublattice magnetizatioll  for the two-dimensional square lattice at the isotropic point
A=1 as a fraction of the saturation value, from various CCM approximation schemes, a series expansion, a
Monte Carlo simulation, and spin-wave thed8WT).

ECCM SUB2-12 NCCM LSUB& NCCM LSUBx 2 Series expansioh Monte Carlo® SWT?

0.689 0.705 0.622 0.6140.002 0.6146:0.0006 0.606

8Reference 32.
bReference 20.
‘Reference 18.
dReference 15.

trapolation, where the best mean-square fit o’ Igives a The SUB2-12 scheme is the highest-order SUB2-
SUB2 terminating point ah ~1.039 03-0.000 77. Since the scheme that yields the sublattice magnetizatiéh at the
z-aligned Nel model state only breaks the discrete Z(2)isotropic point, because at higher orders the solutions termi-
symmetry of the ground state, the SUB2terminating nate before the isotropic point. The SUB2-12 scheme yields
points exhibit this good convergence. a value of M*~0.689 of the saturation value. This is an
Similarly, solutions starting ak = —1 from the SUB2-20 improvement upon the NCCM SUB2 value Mdf’~0.81, and
scheme with thex-aligned Nel model state foEy andM*  the best NCCM result from the LSUBS schefffewhich
terminate in theX Y-like region, as shown in Figs. 12 and 13, yields a value ofM*~0.705, when compared to other nu-
respectively. The SUB2-20 approximation scheme is themerical techniques, as shown in Table Il. The extrapolated
highest we have so far investigated, as well as being the onlgumerical value of the magnetization from LS4YB M?*
scheme to yield a terminating solution in tK&-like region.  ~0.622, is the result of a quadratic fit innlwith a restricted
By contrast, at lower orders terminating points occur for set of three data points. The best linear fit im With the
>1. Therefore, although the SUB2 terminating point cannotsame data points yieldd “~0.646+ 0.002.
be accurately determined, it is expected to be closex+o Although, as can been seen from Fig. 11, the LRO at the
—1 than the SUB2-20 terminating point at 0.78. Conse-sotropic point decreases with increasing order, the four so-
quently, it is not possible to obtain a solution from high- lutions that do not terminate before the isotropic point do not
order SUB2n schemes that can describe the neighborhoodby themselves allow for a trustworthy extrapolation. Such an
of the isotropic point on th& <1 side. extrapolation should be independent of a particular scheme,
Unlike in the linear-chain case the existence of a solutioras there is no known theoretical reason on how the results
from high-order schemes with thealigned Nel model state  should converge. However, note that the nonextrapolated
in the square-lattice case indicates that the continuougalue ofM?~0.689 of the saturation value is the best direct
U(1)«y symmetry of the ground state is broken. However,result available even |nclud|ng the best Monte Carlo calcu-
the bad convergence of the terminating points from thdations on a 16 16 lattice®® a clear indication that, already
x-aligned Nel model state in the square-lattice case mayat low orders, the ECCM describes the system well.
indicate that the ground state is almost symmetric and, Quantitatively, the CCM yields accurate values for the
hence, a model state with U()symmetry would be a more ground-state energf, compared to other numerical tech-
appropriate starting point for a CCM calculation.
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A FIG. 12. The ground-state energy per sfitg/N, as a function
FIG. 11. The sublattice magnetization in thdirection,M? as  of the anisotropyA, from the z-aligned andx-aligned Nel model
a function of the anisotropy for the square-lattice case, from the states in the regionA=1 and —1<A<1, respectively, for the
high-order ECCM SUBZ schemes using thealigned Nel model  square-lattice case. The terminating points of the solutions from the
state. The results converge at high orders of the SUB2mncation  ECCM full SUB2 and SUB2-20 approximation schemes, in the
scheme, thus giving the full SUB2 result, which corresponds to regionsA=1 and—1<A=<1, respectively, are indicated by solid
— 0, circles.
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FIG. 13. The sublattice magnetization in teirection,M*, as FIG. 14. The ground-state energy per siiig/N, as a function

a function of the anisotropyA for the square-lattice case, from a ©f the orientation of nearest-neighbor spirgs, in a model state,

mean-field calculation and high-order ECCM SUBZchemes us- Which is restricted to the canted model state space, for the linear-

ing thex-aligned Nel model state. chain case, when the relative anglds 7 (Neel stat¢. The exami-
nation of the model-state space is performed in bothXhelike

n|ques as Shown |n Table 111. The NCCM SUBZ Schéhm and |Sing-|ike regions in the neigthI’hOOd of the iSOtrOpiC pOint,

the isotropic point yields a ground-state energy Ef~  YSINg the converged ECCM full SUB2 values.

—0.651, which the ECCM SUB2 scheme improves upon, via

an extrapolation with values that converge well, with a nu-automatically chosen fos and B8 at each value of the an-

merical result of Eg~—0.667. The calculation of the jsotropyA. Therefore, we employ this particular form for the

ground-state energy from the NCCM LStBscheme¥ is  numerical CCM calculation, in the hope that it will choose

extremely accurate when compared to the best Monte Carlgyode| states which lie closest to the true ground state.
result® where the limith— is equivalent to including the

complete set of many-body configurations. ) ) _
1. Behavior of the canted model state with varying angles

C. Canted model state in the correlated ECCM SUBX For the calculations with varying anisotropy, the angles
calculation and g8 are free to vary. The model states that arise from the

The effect of the canted model state, which has two deECCM SUB2n calculation in this case are the same as those

grees of freedom, in a CCM calculation is examined here. 1ffom the mean-field calculation, as shown in Fig. 2, for
practice, the spins in the canted model state are restricted fo L=~A<. This is also illustrated by Fig. 14 in the neigh-
point in one direction on a particular sublattice. Neverthe-Porhood of the isotropic point. As discussed in Sec. V, these
less, for the spin-halk XZ model, the CCM with the canted mean-field model states yield the CCM ground state that
model state provides a good analysis of the effect of thdreserves either the U(L)or Z(2) symmetry of the Hamil-
model state in these calculations. In terms of the numericaionian.
calculations, performing the CCM with the canted model ~Kimmel's work® provides a guideline to examine the
state is a new approach, since the earlier CCM calculationsffect of the mean-field model states in the CCM calculation,
for spin systems have chosen predetermined model statéfstranslational invariance of the rotated model st is
with no free parameters, and with the choice based on eitherssumed. It can be shown that the overlap condition for the
prior knowledge or classical behavior. The use of the cantethean-field model states is maximized if the sum, over the
model state allows the extra freedom to partially tailor thewhole lattice, of the two-body correlations, which is defined
model state to the specific value of the anisotropy parametein Fig. 3 asS,, obeys> b, <1/2. This result is extended to
This is achieved by the application of the stationary equatiorshow thatX b, — 1/2 indicates a phase transition point. As
(2.9 and the variation with respect to the anglesand 3, A—1 this condition holds for the-aligned Nel model state
which define the model state, where the minimum energy isn the linear-chain case and only approximately holds for the
square-lattice case. For the square-lattice case, this may in-
TABLE lIl. The ground-state energy per spin for the two- dicate the numerical instability of the solution As»1 and

dimensional square lattice at the isotropic pdint 1 from various  consequently the need for a model state with greater overlap
CCM schemes, compared with the results of a Monte Carlo simuin this region.

lation. The solution for the energy at the isotropic point has a
a continuous degeneracy in terms of the anglefor a fixed
ECCM SuB2 NCCM LSUBe Monte Carl§ value of o= which yields the set of all model states with

—0.6676:0.0005 —0.66968-0.00004 —0.6694370.000005 Néel symmetry. However, away from the isotropic point
there is a unigue minimum in the solution. Therefore, in

®Reference 32. practice, by choosing a fixed angk we break the SU(2)
bReference 18. symmetry at the isotropic point. In doing so, LRO is intro-
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duced in the direction specified by the angde which is 0.0
diminished by the correlations from a CCM calculation. A

2. Behavior of the canted model state with fixed angles — T~ T

The effect of particular model states that require the in-
clusion of one-body terms in the CCM calculation is exam- EMN
ined here. In the Ising-like region, for the angeset tor, o S8y
the anglea is fixed to various values which define model . o~
states in the neighborhood of tizealigned Nel state, i.e., . ’
a~1. As « is decreased, each numerical solution for the v < N
energy in the square-lattice case, from the highest-order
ECCM SUB2n scheme, is successively higher and termi-
nates earlier than the previous solution. Furthermore, for Yosr oon  osn ,} Lsn 2 25m
model states defined hy< /2, a solution cannot be recov- B
ered. .

These non-mean-field model states, in the neighborhoog, ':G' 15. 'Irlhe _groupd-sta:cte energy pe_rst;)ﬁla/N._ as e[t}functl_on
of the z-aligned Nel model state, require one-body terms ino the overall orientation of nearest-neighbor spiiswhen a Is

- ., fixed atar, for the linear-chain case. The examination of the model-

the CCM calculation. Hsnce, the ground state can eXh'blgtate space is performed in the Ising-like region for increasing val-
broken U(1)y ;ymmetry3. ‘However, these model states are o5 of the anisotropy, using the converged ECCM full SUB2 val-
bad choices in comparison to the symmetry-preserving,qog.
mean-field model states, due to the poor qualitative and
quantitative behavior of the numerical solutions for the en-isotropic point the most accurate value for the order param-
ergy. Moreover, due to the termination of these numericakter ofM?*~0.689 for any nonextrapolated CCM calculation
solutions well beforeA =1, broken U(1), symmetry does has been obtained. This suggests that the ECCM SwB2-
not physically occur in this region. Thus, the symmetry-scheme describes the wave function better than previous
breaking nature of these poor choices of model state cann®CCM formulations at similar levels of truncation.
be utilized. It seems that non-mean-field model states with The qualitative behavior of the numerical results indicate
one-body correlations try to approach the mean-field modehat the present CCM treatment requires further improve-
states and, in doing so, do a worse job at describing thenent for the study of phase transitions. In the case of the

system. linear chain the ECCM fails to describe the system |fbf
<1. For the square-lattice case there is a failure to describe
3. Nontrivial behavior of the canted model state the region near to the isotropic point. Alternatively, the man-
in the Ising limit ner in which the numerical solutions become unphysical pro-

We now examine the effect of the canted model states i¥ides further knowledge of the system and the ECCM.
the Ising limit. As shown in Fig. 14, for the Ising-like region !t iS intuitively clear that a good choice of model state in
of the linear-chain case the lowest energy, and therefore th CCM calculation should _be as close as possible to the exact
optimum model state to yield the ground-state energy, is thground state or, alternatively, share the same underlying

z-aligned Nel state. Initially, in the Ising-like region the symmetries as 'fhe ex_act groun_d state, depending on the sys-
periodicity of the solution for the ground-state energy int€m under consideration. The high-order SUBECCM nu-

terms of the angle8 is 27, when is fixed tow, as shown Merical results show that the important facet of a good
in Fig. 15 for the linear-chain case and with minima atChoice of model state is dependent on the extent to which the
7 mod(2x). In the Ising limit the solution asymptotically SyStém is ordered at the isotropic point and in X like
develops a periodicity ofr in the angle8. The states ag ~ "€9ion. The linear-chain case with both theand x-aligned

=0 mod(27), which define thex-aligned Nel state, be- €€l model states and the square-lattice case with the
come degene,rate with those @& = mod(2n) WhiCh' de- Xx-aligned Nel model state indicate that when either LRO
fine the z-aligned Nel state. Interestingly, this analysis re- d0€S not exist or the value of the order parameter may be
veals that in the Ising limit, the-aligned Nel ground state is quite small, it is important to chose a model state which does

obtained from the the-aligned Nel model state with large not artificially break the symmetry of the Hamiltonian.

one-body coefficient. _Alternatively, the square-lattice case with taaligned
Neel model state suggests that if the system has broken sym-
VII. DISCUSSION AND CONCLUSIONS metry, the large quantum fluctuations that result from the

massless excitations could also cause solutions to terminate.

The diagrammatic technique has made possible the impldn this case, it is more important to chose a model state
mentation of high-order SUBB-schemes in the ECCM for- which is as close as possible to the exact ground state. This
mulation, since it requires less computer memory and CPUroblem of correlations becoming too large seems to occur
time than performing the CCM with algebraic methods. Thisgenerally in quantum many-body techniques. Advanta-
is because the multiplicities of the diagrams are only detergeously, introducing broken symmetry into such a system
mined once and can thereafter be used throughout the calcyields the benefit of not having to perform high-order calcu-
lation. For the case of the square lattice, accurate numeric#tions to approximate the true ground state well.
results in comparison to other numerical techniques have As shown above, our analysis, as it stands, requires prior
been obtained for the region1<A<cc. In particular, at the knowledge of the system. Although we know from other



4042 J. ROSENFELD, N. E. LIGTERINK, AND R. F. BISHOP PRB 60

numerical techniqué3 ?°that the square-lattice Heisenberg the isotropic point. In this way the ECCM formulation can be
model possesses LRO, the value of the order parameteixtended over the whole regime to include the long-range
might be too small for the ECCM to describe the isotropiccorrelations at the critical point.

point. Therefore, the best CCM approach for this system is to
define a model state with a flexible parametrization, so that it
does not artificially break the symmetry of the Hamiltonian,
and in so doing can give indications of possible symmetry
breaking by examining the effect of correlations on the order We thank S. Fantoni for a useful discussion. One of us
parameter. In order to achieve this end the model-state pdR.F.B) gratefully acknowledges support for this work in the
rametrization should yield a mean-field solution in which theform of a research grant from the Engineering and Physical
order parameter smoothly and continuously tends to zero &ciences Research CountPSRQ of Great Britain.
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