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Rotational hopping model and decoherence
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The notion of classical reorientational jumps, which is frequently employed in the analysis of spin-lattice
relaxation or inelastic neutron scattering of symmetric molecular groups, is considered within the framework of
Feynman-Vernon influence functional theory. It is shown that the validity of the model requires disappearance
of certain interference cross terms between amplitudes for transitions among different minima of the hindering
potential. In particular, it is demonstrated that within the model discussed, the classical reorientational jump
approximation becomes valid when coupling betweendtHg motion and the bulk librational optical phonons
is sufficiently strong[S0163-18289)11729-9

[. INTRODUCTION order, an equation of motion for the reduced density matrix
can thus be obtained, which is equivalent to the Redfield
The rotational hopping or jump modehas been used equation:**° Nevertheless, we believe that it is Feynman

extensively in semiclassical calculations of spin-latticepath-integral formulation which enables one to see interfer-
relaxatior and inelastic neutron scatterirjof XH; and ~ ence effects very clearly and where methyl dynamics lends
XH, type molecules or molecular groups embedded in solidtself naturally to space-time visualization.
lattices. To simplify the discussion, let us restrict ourselves
to hindered uniaxial rotational motion &fHs-type molecular [l. FORMULATION OF THE PROBLEM
groups in solidqof which the methyl group is probably the

most important exampleas representative of systems which . , . X
decular group undergoing hindered rotational motion around

are believed to exhibit tunneling at low temperatures an i We shall al h I d
classical rotational hopping at high temperatures. The rotallS Symmetry axis. We shall also assume that an external dc

tional hopping is understood, in this particular case, as folmagnetic field is applied along a fixed direction in space,

lows: each group can assume only three angular orientatiorg‘Osen as the axis of the. Iaboratpry fixed coord!na_te Sys-
about its symmetry axis, which are equally spaced, and tem. The sole purpose of introducing the magnetic field is to

jumps from one orientation to another with a temperature MMIC @ typical NMR situation and its presence in no way

dependent probability per unit time. This, however, is not2ffeCts the conclusions regarding the rotational hopping
consistent with the form of spin-rotational wave functidris, model. The_ denS|_ty matrlx_deS(_:rlbmg the dynamics of the
where a strict correlation between spin and rotational comd"0UP and its environment is written as

ponents imposed by Pauli principle precludes orientational (ihHA " R HAt

localization of the group. As we will show below, the model p()=e "HU(t,0)p(0)U (1,0, @
is nevertheless applicable, provided the interference betweamhereH, is the Zeeman Hamiltonian representing the inter-
amplitudes for transitions among different pairs of minima ofaction between the proton spins and the external magnetic
the hindering potential is suppressed. It turns out that theield (the proton dipole-dipole interaction is not considered,
mechanism which bridges the gap between the lowsince itis notimportant for the present calculajiofhe time
temperature tunneling regime and high-temperature rotaevolution operatot)(t,0), which causes the entanglement of
tional hopping is, in our opinion, decoherence as formulatedhe XH, rotational states with the states of the environment,
by Zurek® '°To state it briefly, decoherence is a dynamicalis determined via the Feynman path-integral methog the
effect due to the interaction between the quantum system andagrangian’

its environment. It destroys quantum interferences, at least

for all practical purposés and allows one to associate prob- 1., .

abilities with certain suitably chosen classes of Feynman  L=31X _V(X)_Ej: lequ_; fi(0Q

paths. Needless to say, the mathematical formalism to be
employed is the Feynman-Vernon theory of influence
functionalst? However, to prevent personal preferences from +
being magnified into general guidelines, we should add that,

quite generally, the relaxation processes associated with ro- .
tational motion of CH groups in solids can be discussed also - E ij(X)/mej2+ 2 |2Cj2X2/2‘]' )
very efficiently by using standard wave mechanics and time- : :

ordered cumulantt’® This approach, for example, provides a p(0) in Eq. (1) represents the initial density matrix, while the
systematic procedure for computations to be carried to arbimeanings of the symbols in E() are the following;y is the
trary order in rotational-phonon interaction. In the lowestrotation angle of the group around its symmetry axs,

To be quite specific, we consider a singlél;-type mo-

N| =

1 .
2 3(5f-0fg) + 5 2 m(Qf - wfQp)
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=dy/dt, V(x)=V(x=2=/3) is the threefold hindering po- numbery e A,E,,E, denotes the irreducible representations
tential, andl is the moment of inertia of the group. More- of the C; symmetry group, and is the magnetic quantum
over, the environment with which théH; group is interact- number. For a givem the rotational energy levels form a
ing is modeled by two distinct sets of harmonic oscillators,degenerate doublet & symmetry and a singlet o& sym-
the so-called librational and translational phoridrienoted  metry. The rotational component of the total wave function
by {g} and {Q}, respectively. The corresponding coupling in the coordinate representatio(r){|nv>=\IfE]")(X), satisfy-
strengths argc} and{f}, with the additional conditiorij()() ing ¢S1V)(X+ 2m)= lﬁﬂ”(){% may be written for not too large
=fj(x=27/3), imposed by the symmetry properties of the yalues ofn as
XH3; molecular group. The constaniandm have a dimen-
sion of moment of inertia and mass, respectively. The last 1
two terms in Eq.(2) are the counterterms taking care of the V) e — Sig() o 0+
potential and moment of inertia renormalization. U (X)_‘/;; e H T (x~j2mf3), =01 (&)
Since we are interested only in the behavior of Xid;
groups we introduce, following Feynman and Verribthe (™ (y—j27/3) are the harmonic oscillator functions cen-
reduced density matrigg(t) obtained from Eq(1) by trac-  tered at the minima o¥/(), and the symmetry labe cor-
ing the latter with respect to the oscillator coordingg€}.  responds tes=0, while E, and E, correspond ts= =+ 1,
The matrix elements opg(t) are most conveniently ex- yespectively.
pressed in the basis determined by It is usually assumed that the initial density matfit0)
_ factors into pgr(0)- posd0) wWhere, in addition,p,s{0) is

(Hz+ HR)InvM)=[E(vM) +E(nv)][nvM), - (3) taken to represent the ensemble of oscillators in thermal
whereHg= — (22/21)d?/dx?+ V(x) is the rotational Hamil-  equilibrium. Next, the matrix elements of the reduced den-
tonian of a singleXH; group subject to a hindering potential sity matrix in the above basis are calculated using the Feyn-
V(x). n=0,1,2,..., is the torsional or librational quantum man path-integral method. The result is

(el e eSS 3 T[T dndiariannn " G v v o)
m’ - -
X(Mvm|pR(O)|m’v’M’)N2 > Kunr(x2:xgtix1.xi.0), 5

=—® N =—x

where the propagatotsy v are defined as

'y ' Xt 2N (g r2mN ke 1 ()BT ]
Knon (x2,x2 6 x1,x1,00 = DX DX'AlX]IA*[X']e X (6)

X1 X1

and — 7<x1.,x1 X2 x3=<m. AlX]=e"" O, with

t
S¥I= [ a1 - 3vs1-cos g0,

is the amplitude for theXH; system following the patfy(7) in the absence of the environment such tféd)= x, and
Y(t)=x,+27N. N is the winding number of the patf!® while ¥ runs from —= to +%. The rotation angley e
[ —, 7] is related toy by xy="y(modulo 27). Finally, the influence functional is

t ' 1 t 4 .
<I>[7(5<’]=ifodt’f; dt”f“)(?((t’))L{g(t’—t")l‘(‘)(?((t”))—§If0dt’Jot dt"f Gt )t =t F k(1))
1 t t t - -
_ 1)y ’ INE(=) (2t ; ' 7 INE T "
S If (X(O))J’Odt To(t)f O x(t ))+|f0dt fo dt"8(t )Lyt —t")S(t")
—IJtdt’Jt/dt"?S(t’)F (t'—t");,(t")+|?s(t)ftdt'r (t—t’)[?y(t’)—77(0)]—i~5(0)ftdt’~5(t’)8 ()
o Jo q o @ o 2

- t i - - - -
—i5(t)f0dt'6(t’)82(t—t’)+ #W(ﬁ)[(sz(owr 5%(1)]—i8(0)8(t)B4(1). (7)
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The quantities introduced in Eq7) are the following: cies corresponding to given values of the torsional and mag-
fOF(N)=FG()) =T (7)), 3(7)=%(1)—%'(7), and Nnetic quantum numbens and M. Moreover, to simplify the

1) =[(7)+%' (7)]/2. Moreover calculation, we shall restrict ourselves to valuesno$uch
’ that the pocket-state approximatigd) is applicable, and
L(t)=L'(t)+iL"(t) write (for eachn there are 2 distinct states
1 (> . 1
= —f dwJ(w)[coth B w/2)coswt—i sinwt], X¥\My= —[HM(x—27/3)

7 Jo V3

(8a) +H" () +H (y+27/3) Jaaa), (93
L"(t)=(1/2)dI'(t)/dt, (8b)

1
(Xg")= H™ (x=2mi3)|apa) + H V(0| aap)
Jo(w)=(m/2) 2, (N2Imw)) 8(w—w;), (80)
] +HM(x+27/3)| Baa)], (9b)
) s ¥y (x| M) are obtained from Eq9b) by cyclic per-
J(w)=(712) 2 (12¢?Q313)8(w— 1)), (8d)  mutations of the proton-spin labets and 3, which corre-
J spond to the spin projections: and—3, respectively, along

1= Iy ) the direction of the external dc magnetic field(y| ¥ ("),
Bl(t)z—f do— -— coth( Bh w/2)coswt,  (8€) i=5,...,8 follow from Eqgs.(9a and (9b) by replacinga’s
TJo @ with 8's and vice versa. Among the states defined by Egs.
B,(t) = —dBy(1)/dt. (8 (9), only those corresponding thl ==+ 35 can be assigned

some sort of orientation, characterized by the location of the
We have also st (x)=\;f(x), wheref(x) is a dimension- spin-down or spin-up corner of the equilateral triangle
less function of order 1, ande ™¥) with w(g) formed by the protons of th&H; group. For small torsional
=(27?/4h)B,(0), is thefamiliar Debye-Waller factor asso- quantum numbers, the three equilibrium orientations cor-
ciated with the librational ofq} modes. B=1/kgT, kg is  responding to these states are separatedm$.2

the Boltzmann constant, aridis the temperature of the os- ~ To bring out the nature of the rotational transitions let us

cillator heat bath. assume that the initial density matrix is given ag(0)
=E?:1Pj(0)|\lfj(“)><\1f](“)|. Next, let us inquire what is the
Ill. ORIENTATIONALLY LOCALIZED STATES probability, P;(t) = Tr{| w{W)(Ww{"V|p(t)}, for the group to
AND TRANSITION PROBABILITIES be in the staté¥ (") at timet (we consider only transitions

which do not change). Using Egs.(4), (5), and(9) and the
gxpressions given in Refs. 1 or 5 for the symmetrized spin
components which multiply Eq4), we obtain

The eigenstates of the Zeeman-rotational Hamiltonian a
defined by Eq(3) are usually written as products of properly
symmetrized spin and rotational componertdn order to
investigate the orientational transitions of tkel; group, as 8
commonly envisaged whenever the rotational hopping model Pi(t)= E A; j(1H)P;(0), (10
is used, we construct the “orientationally localized” states =1
by forming linear combinations of the three symmetry spe-where the matriXA has the form

FALL ]
A2,2 A2,3 A2,4
A2,4 A2,2 A2,3
A= A2,3 A2,4 A2,2 . (11)
A2,2 A2,3 A2,4
A2,4 A2,2 A2,3
A2,3 A2,4 A2,2
L A1l
1
Ag(t)= 5 pgw K(p,2m/3,py2mi3t;pi2m/3,p,273,0), (11a
1
Aodt) =5 > K(p2m/3,p’ 23t p27/3,p' 27/3,0), (11b

p,p'=0,x1
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1

Aodt) =g > K(p2w/3p'2w/3t;(p—1)27/3,(p’ —1)2w/3,0), (110
p,p’=0,~x1
1

Aot =5 > K(p2w@/3p'2m/3t;(p+1)2m/3,p’ +1)2m/3,0), (11d
p,p’=0,~x1

and, whenever-47/3 or +47/3 occurs in Eq(110 or Eq.(11d), it has to be replaced by2#/3 or —27/3, respectively. We
have also introduced the so-called coarse-grained propagators

K(p,2m/3,p52mI3t;p127/3,p527/3,00= >,

J XmddeXidXéH(n)(Xz_p2277/3)H(n)(X1_p1277/3)H(n)
NN ST e

X (x5—ps2mI3H™ (x;—p12m/3) Ky nr (X2, X5 tix1.x1,0)- (12)

It is clear that such designation is meaningful only for small values, efhen the torsional oscillator states are fairly well
localized at the minima of the hindering potenti&(y). Furthermore, since the environment is assumed to be in thermal
equilibrium, the equalityA, 3= A, 4, should hold.

IV. DISCUSSION OF THE RESULTS AND CONCLUSIONS

Let us assume that initially th€H; group is in the statéﬂ‘lf%")), i.e.,P3(0)=1. Then it follows from Eq(10) that the
probability P,(t) for the group to be in the sta(e(|‘lf(2”)> at timet equalsA, 5(t). Now, it is evident from Eq(11¢ that, in
general, this transition cannot be interpreted as being due to orientational jumps of the group from one equilibrium orientation
to another. Namely, the terms in Ed.10 with p#p’ are the familiar interference cross ternisicidentally, the transitions
among the state$X|\Ifi(”)), i =2,3,4, for example, represent a situation analogous to the one which would occur in a triple slit
experiment. The three alternative paths are, in the present case, fixed by the spin components of the total wayeThaction
interference is especially pronounced in the case of an isolated;—0)XH; group in a threefold hindering potential. In the

low-temperature limit, when only thid(°)( y) state needs to be considered, the dilute-instanton-gas approximation yields for
Eq. (12,71

Ko(pa2m/3,p52mI3t;p127/3,p12713,0)=5{1+ 4 co$(p,— p1)27/3]cod (p,— p;)27/3]

+2eioft cog (p,—py)27/3] + 2¢' ot cog (py—p;)27/3]}, (13

where o{”=6w.(Sy/27h) %%/ is the tunneling fre- e~ WBATIFO+F0O) in Eq. (7). 3(0)=x1—xl, 3(1)
qguency corresponding to thie-A splitting of the ground-
state manifoldﬂg")(x). w:=+(9V3/2]) is the classical tor-
sional or librational frequency, whil&,=8lws/9 is the 573 gpecifically, ifw(/) is sufficiently large, the inter-
instanton (anti-instanton action associated with the

. . ) ) . i , .~ ference cross terms in E¢L1c are completely suppressed.
imaginary-time solutlon_ connecting two neighboring m'n'maTherefore, just the terms witp=p’ survive in Eq.(110
of the hindering potential. Ny .

In general, however, this interference is suppressed due t%nd’ moreover, only the_ paths W'.m_ N’ will contribute
the presence of the Debye-Waller-like factor substantially to the path integrals in E§2). Thus,

=x2—x»+2m(N—N’") and, in particular, for the terms in
Eq. (110 corresponding top#p’, x1— X1, X2— X2=

A, =(1/9) K(p2m/3,p27/3t;(p—1)2m/3,(p—1)2/3,0),
p=0,x1
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understood in the coarse-grained sense referred to in connegensity of the librational modes and temperature. Conse-
tion with Eg. (12), represents a sum of probabilities quently, in most molecular crystals at temperatures such that
K(p2m/3p2m/3t;(p—1)2m/3,(p—1)27/3,0), correspond- kg T<<(%2/21)\JOV4/(4?/21), the rotational motion of the
ing to orientational jumps between neighboring minima of XH3 groups cannot be interpreted consistently as reorienta-
the hindering potential. This is then the content of the rotational jumps. This is in agreement with the experimental re-
tional hopping or jump modélWe also note, by inspecting sults pertaining to rotatiqnal tunneling of methyl groups, for
Eq. (12), that there is a probability for orientational jump €xample, that the effect is observable at temperatures much
associated with each winding numbirseparately. For a higher than the tunneling splitting themsel¥&©n the other
given N, on the other hand, we have to add the amplituded'@nd, at higher temperatures wheéf{)> 1, the rotational
for all Feynman paths starting at one minimum of the potenmotion may be considered, at least for all practical purposes,
tial and ending at the adjacent one. as classical rg_on_entauqnal jumping of the molecular group
The degree of interference suppression depends, Jfom one equilibrium orientation to another.'
course, on the magnitude of _ The rc_)le of the remaining terms of the influence func-
' tional (7) is not crucial for the hopping model, and moreover,
. they were already discussed briefly in Ref. 17. Let us only
W(B) = (Zwlﬁ)f dw(Jq(w)/wz)cotr(,Bﬁw/Z), mention that coupling to translational phonons via the three-
0 fold symmetric coupling ternf;(x)Q; is not very effective
in suppressing interference between different Feynman
whereJ (o) is given by Eq.(8d). In order to make an esti- paths!’
mate forW(B) we shall assume that the librational spectrum Last but not least, we should also acknowledge a consid-
is similar to the spectrum of optical phonons, namely, theerable effort that has been devoted in the past to a wide range
librational frequencies2(k) [we made a replacemeni2;  of problems concerning methyl dynamics in sofid$® and
—Q(k), where—r<k=< is a dimensionless wave num- references cited therein. In spite of some difference between
ben form a narrow band arouna..?° The width of the various author_s on specific points, a fairly coherent picture
librational band is, in this model, due to electrostaticaPout the motion of methyl groups has emerged. However,
octupole-octupole interactio Vs between neighboring the rathe'r important issue, namgaly, ﬁhe cor'15|stency'of class_,l-
XHa groups. Vs is the height of the hindering potential and ¢ NoPPINg, whenever this notion is applicable, with Paull
g+ is a dimensionless torsion-torsion coupling constant. Th&MNCiPle h?]S not befen clarified. We bghevfe that decohgr?.nc%
corresponding width of the librational band is then roughlyas a mechanism for suppressing interference as define
equal t o Consequently. at low temperatures such tha::}bove, which occurs Whenev'er one |s'deallng Wlthzogfnta-
q O9110C eq Y, P ) ttlonally delocalized(3) or partially localized stateg9),>
kgT<fhowe, we obtamW(ﬁ)”:‘ngTTJq(wc)/hwc. Using  ,chieves this goal.
also Eq. (8d) e can finally write W(B)=(gr1/16m) But, is such an extension of a description of a physical
X(H3) (hwe/(h521)){c(K)),, . where the rotational con- sysiem into the classical domain, when a satisfactory
stant#?/21 equals 0.65 meV in the case of Glroups, for quantum-mechanical prediction is available, still necessary
example. The last fact0|(c2(k)>wc=fn(k):wcdskc2(k)/ or, is it still useful, especially, since “nature isn’t classical,
|VQ(K)/w,| is some sort of a weighted average of the cou-dammit...,” as Feynman once sdfiiTo be quite precise, by
pling constantc(k) over the constant frequency surface Magding classical hopping of methyl groups we are assigning
Q(K) = w,, in k space. In the case of electrostatic octupole-even more clas§|cal|ty to trle system as is usually plone in the
octupole interactions it is fairly reasonable to assume th gase of S|mp!e measured systems, where clqs_S|caI behay-
~0.1. To get an estimate. we sét | and consideri or is approximated by appropriate coarse graining of their
9rr~0.L1. get St , W ! 5 iaering description(passage of a nuclear particle through a bubble
the range 02f hindering potentials, §¥/3/(% /22|)<100 chamber?” In the world of everyday experience such an
[20<fiwc/(7/21)<30], we obtainW(B)=0.1(c*(K))w..  extension is certainly mandatory. Here quantum mechanics
Unfortunately, not much information of interest regarding has to account for the classical trajectories of the planets, for
the lattice dynamics in molecular crystals is available. We deexample, whether or not any “observer” is looking at
know, however, that quantum coherence effects are observéddem?’ This is achieved, at least in some scherfleby
up to temperatures high compared to typical tunneling splitenvironment-induced decoherence in the sense discussed
tings, which are on the order of a fexeV. Thus, we suspect above (apparently even scattering by cosmic background
that in most Iattices(cz(k)>wc is rather small and, conse- Photons is sufficientt). On the other hand, when one is deal-

guently, the Debye-Waller factor is ineffective in suppress-Ing with a genumgly microscopic system, such as a methyl
ing the interference at temperatuted </ w, . On the other group embedded in a solid lattice, there seems to be no com-

hand, at higher temperatures the c@hg/2) factor in the pelling reason for invoking classical notions, apart from the
expression folW(B) can be large enough for decoherence tofaCt that they appeal to our common-sense intuition. On
ore general terms, however, it is, of course, gratifying to

gﬁgﬂgﬁ oer:‘faeﬁﬂ\r;e{)i:]edzs.ult|ng In the appearance of classical r ind out that decoherence could be effective also on a micro-
We therefore conclude that the onset of rotational hoppingSCOpIC scale.

motion, at least in the model considered, is primarily due to

the velocity-dependent interactidic, xq; , of the XH;z group

with librational phonons. The extent of the suppression of

the interference cross terms, which is required for the valid- This work was supported by the Ministry of Science and

ity of the model, depends on the magnitude of the DebyeTechnology of Slovenia under the Contract No. J1-7260-

Waller factor which, in turn, is determined by the spectral0106-98.
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