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Rotational hopping model and decoherence
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The notion of classical reorientational jumps, which is frequently employed in the analysis of spin-lattice
relaxation or inelastic neutron scattering of symmetric molecular groups, is considered within the framework of
Feynman-Vernon influence functional theory. It is shown that the validity of the model requires disappearance
of certain interference cross terms between amplitudes for transitions among different minima of the hindering
potential. In particular, it is demonstrated that within the model discussed, the classical reorientational jump
approximation becomes valid when coupling between theXH3 motion and the bulk librational optical phonons
is sufficiently strong.@S0163-1829~99!11729-6#
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I. INTRODUCTION

The rotational hopping or jump model1 has been used
extensively in semiclassical calculations of spin-latt
relaxation2,3 and inelastic neutron scattering1,4 of XH3 and
XH4 type molecules or molecular groups embedded in s
lattices. To simplify the discussion, let us restrict ourselv
to hindered uniaxial rotational motion ofXH3-type molecular
groups in solids~of which the methyl group is probably th
most important example! as representative of systems whi
are believed to exhibit tunneling at low temperatures a
classical rotational hopping at high temperatures. The r
tional hopping is understood, in this particular case, as
lows: each group can assume only three angular orientat
about its symmetry axis, which are equally spaced, an
jumps from one orientation to another with a temperatu
dependent probability per unit time. This, however, is n
consistent with the form of spin-rotational wave functions1,5

where a strict correlation between spin and rotational co
ponents imposed by Pauli principle precludes orientatio
localization of the group. As we will show below, the mod
is nevertheless applicable, provided the interference betw
amplitudes for transitions among different pairs of minima
the hindering potential is suppressed. It turns out that
mechanism which bridges the gap between the lo
temperature tunneling regime and high-temperature r
tional hopping is, in our opinion, decoherence as formula
by Zurek.6–10 To state it briefly, decoherence is a dynamic
effect due to the interaction between the quantum system
its environment. It destroys quantum interferences, at le
for all practical purposes11 and allows one to associate pro
abilities with certain suitably chosen classes of Feynm
paths. Needless to say, the mathematical formalism to
employed is the Feynman-Vernon theory of influen
functionals.12 However, to prevent personal preferences fro
being magnified into general guidelines, we should add t
quite generally, the relaxation processes associated with
tational motion of CH3 groups in solids can be discussed a
very efficiently by using standard wave mechanics and tim
ordered cumulants.13 This approach, for example, provides
systematic procedure for computations to be carried to a
trary order in rotational-phonon interaction. In the lowe
PRB 600163-1829/99/60~6!/3989~6!/$15.00
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order, an equation of motion for the reduced density ma
can thus be obtained, which is equivalent to the Redfi
equation.14,15 Nevertheless, we believe that it is Feynm
path-integral formulation which enables one to see inter
ence effects very clearly and where methyl dynamics le
itself naturally to space-time visualization.

II. FORMULATION OF THE PROBLEM

To be quite specific, we consider a singleXH3-type mo-
lecular group undergoing hindered rotational motion arou
its symmetry axis. We shall also assume that an externa
magnetic field is applied along a fixed direction in spa
chosen as thez axis of the laboratory fixed coordinate sy
tem. The sole purpose of introducing the magnetic field is
mimic a typical NMR situation and its presence in no w
affects the conclusions regarding the rotational hopp
model. The density matrix describing the dynamics of t
group and its environment is written as

r~ t !5e2~ i /\!HztU~ t,0!r~0!U1~ t,0!e~ i /\!Hzt, ~1!

whereHZ is the Zeeman Hamiltonian representing the int
action between the proton spins and the external magn
field ~the proton dipole-dipole interaction is not considere
since it is not important for the present calculation!. The time
evolution operatorU(t,0), which causes the entanglement
the XH3 rotational states with the states of the environme
is determined via the Feynman path-integral method16 by the
Lagrangian17

L5
1

2
I ẋ22V~x!2(

j
Ic j ẋq̇ j2(

j
f j~x!Qj

1
1

2 (
j

J~ q̇ j
22V j

2qj
2!1

1

2 (
j

m~Q̇j
22v j

2Qj
2!

2(
j

f j
2~x!/2mv j

21(
j

I 2cj
2ẋ2/2J. ~2!

r~0! in Eq. ~1! represents the initial density matrix, while th
meanings of the symbols in Eq.~2! are the following:x is the
rotation angle of the group around its symmetry axis,ẋ
3989 ©1999 The American Physical Society
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3990 PRB 60J. PETERNELJ
[dx/dt, V(x)5V(x62p/3) is the threefold hindering po
tential, andI is the moment of inertia of the group. More
over, the environment with which theXH3 group is interact-
ing is modeled by two distinct sets of harmonic oscillato
the so-called librational and translational phonons17 denoted
by $q% and $Q%, respectively. The corresponding couplin
strengths are$c% and $f%, with the additional conditionf j (x)
5 f j (x62p/3), imposed by the symmetry properties of t
XH3 molecular group. The constantsJ andm have a dimen-
sion of moment of inertia and mass, respectively. The
two terms in Eq.~2! are the counterterms taking care of t
potential and moment of inertia renormalization.

Since we are interested only in the behavior of theXH3
groups we introduce, following Feynman and Vernon,12 the
reduced density matrixrR(t) obtained from Eq.~1! by trac-
ing the latter with respect to the oscillator coordinates$q,Q%.
The matrix elements ofrR(t) are most conveniently ex
pressed in the basis determined by

~HZ1HR!unvM &5@Ez~vM !1Er~nv !#unvM &, ~3!

whereHR52(\2/2I )d2/dx21V(x) is the rotational Hamil-
tonian of a singleXH3 group subject to a hindering potenti
V(x). n50,1,2,..., is the torsional or librational quantu
,

st

number,vPA,Ea ,Eb denotes the irreducible representatio
of the C3 symmetry group, andM is the magnetic quantum
number. For a givenn the rotational energy levels form
degenerate doublet ofE symmetry and a singlet ofA sym-
metry. The rotational component of the total wave functi
in the coordinate representation,^xunv&5Cn

(v)(x), satisfy-
ing cn

(v)(x12p)5cn
(v)(x), may be written for not too large

values ofn as5

cn
~v !~x!>

1

)
(

j
«s jH ~n!~x2 j 2p/3!, j 50,61. ~4!

H (n)(x2 j 2p/3) are the harmonic oscillator functions ce
tered at the minima ofV(x), and the symmetry labelA cor-
responds tos50, while Ea and Eb correspond tos561,
respectively.

It is usually assumed that the initial density matrixr~0!
factors into rR(0)•rosc(0) where, in addition,rosc(0) is
taken to represent the ensemble of oscillators in ther
equilibrium. Next, the matrix elements of the reduced de
sity matrix in the above basis are calculated using the Fe
man path-integral method. The result is
^MvnurR~ t !un8v8M 8&5e2 i /\@Ez~vM !2Ez~v8M8!#t(
m

(
m8

E
2p

p

...E
2p

p

dx1dx2dx18dx28cn
~v !* ~x2!cm

~v !~x1!cm8
~v8!* ~x18!cn8

~v8!
~x28!

3^MvmurR~0!um8v8M 8& (
N52`

`

(
N852`

`

KN,N8~x2 ,x28,t;x1 ,x18,0!, ~5!

where the propagatorsKN,N8 are defined as

KN,N8~x2 ,x28 ,t;x1 ,x18,0!5E
x1

x212pN

Dx̃E
x18

x2812pN8
Dx̃8A@ x̃#A* @ x̃8#e~ i/\!F@x̃,x̃8#, ~6!

and2p<x1 ,x18 ,x2 ,x28<p. A@ x̃#5ei /\(S0)@ x̃#, with

S0@ x̃#5E
0

t

dt8@ 1
2 Ix8 22 1

2 V3~12cos 3x̃ !#,

is the amplitude for theXH3 system following the pathx̃(t) in the absence of the environment such thatx̃(0)5x1 and
x̃(t)5x212pN. N is the winding number of the path,12,18 while x̃ runs from 2` to 1`. The rotation anglexP
@2p,p# is related tox̃ by x5x̃(modulo 2p). Finally, the influence functional is

F@x̃,x̃8#5 i E
0

t

dt8E
0

t8
dt9 f ~2 !

„x̃~ t8!…LQ8 ~ t82t9! f ~2 !
„x̃~ t9!…2

1

2
I E

0

t

dt8E
0

t8
dt9 f ~2 !

„x̃~ t8!…GQ~ t82t9! ḟ ~1 !
„x̃~ t9!…

2
1

2
I f ~1 !

„x̃~0!…E
0

t

dt8GQ~ t8! f ~2 !
„x̃~ t8!…1 i E

0

t

dt8E
0

t8
dt9d̃~ t8!Lq8~ t82t9!d̃~ t9!

2I E
0

t

dt8E
0

t8
dt9d̃~ t8!Gq~ t82t9!h8 ~ t9!1I d̃~ t !E

0

t

dt8Gq~ t2t8!@h̃~ t8!2h̃~0!#2 i d̃~0!E
0

t

dt8d̃~ t8!B2~ t8!

2 i d̃~ t !E
0

t

dt8d̃~ t8!B2~ t2t8!1
i\

4p2 W~b!@ d̃2~0!1 d̃2~ t !#2 i d̃~0!d̃~ t !B1~ t !. ~7!
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PRB 60 3991ROTATIONAL HOPPING MODEL AND DECOHERENCE
The quantities introduced in Eq.~7! are the following:
f (6)

„x̃(t)…[ f „x̃(t)…6 f „x̃8(t)…, d̃(t)[x̃(t)2x̃8(t), and
h̃(t)[@x̃(t)1x̃8(t)#/2. Moreover,

L~ t ![L8~ t !1 iL 9~ t !

5
1

p E
0

`

dvJ~v!@coth~b\v/2!cosvt2 i sinvt#,

~8a!

L9~ t !5~ I /2!dG~ t !/dt, ~8b!

JQ~v!5~p/2!(
j

~l j
2/mv j !d~v2v j !, ~8c!

Jq~v!5~p/2!(
j

~ I 2cj
2V j

3/J!d~v2V j !, ~8d!

B1~ t !5
1

p E
0

`

dv
Jq~v!

v2 coth~b\v/2!cosvt, ~8e!

B2~ t !52dB1~ t !/dt. ~8f!

We have also setf j (x)5l j f (x), wheref (x) is a dimension-
less function of order 1, ande2W(b), with W(b)
5(2p2/\)B1(0), is thefamiliar Debye-Waller factor asso
ciated with the librational or$q% modes. b51/kBT, kB is
the Boltzmann constant, andT is the temperature of the os
cillator heat bath.

III. ORIENTATIONALLY LOCALIZED STATES
AND TRANSITION PROBABILITIES

The eigenstates of the Zeeman-rotational Hamiltonian
defined by Eq.~3! are usually written as products of proper
symmetrized spin and rotational components.1,5 In order to
investigate the orientational transitions of theXH3 group, as
commonly envisaged whenever the rotational hopping mo
is used, we construct the ‘‘orientationally localized’’ stat
by forming linear combinations of the three symmetry sp
s

el

-

cies corresponding to given values of the torsional and m
netic quantum numbersn andM. Moreover, to simplify the
calculation, we shall restrict ourselves to values ofn such
that the pocket-state approximation~4! is applicable, and
write ~for eachn there are 23 distinct states!

^xuC1
~n!&5

1

)
@H ~n!~x22p/3!

1H ~n!~x!1H ~n!~x12p/3!#aaa&, ~9a!

^xuC2
~n!&5

1

)
@H ~n!~x22p/3!uaba&1H ~n!~x!uaab&

1H ~n!~x12p/3!ubaa&], ~9b!

^xuC3
(n)&,^xuC4

(n)& are obtained from Eq.~9b! by cyclic per-
mutations of the proton-spin labelsa and b, which corre-
spond to the spin projections11

2 and21
2, respectively, along

the direction of the external dc magnetic field.̂xuC i
(n)&,

i 55,...,8 follow from Eqs.~9a! and ~9b! by replacinga’s
with b’s and vice versa. Among the states defined by E
~9!, only those corresponding toM56 1

2 can be assigned
some sort of orientation, characterized by the location of
spin-down or spin-up corner of the equilateral triang
formed by the protons of theXH3 group. For small torsiona
quantum numbersn, the three equilibrium orientations cor
responding to these states are separated by 2p/3.

To bring out the nature of the rotational transitions let
assume that the initial density matrix is given asrR(0)
5( j 51

8 Pj (0)uC j
(n)&^C j

(n)u. Next, let us inquire what is the
probability, Pi(t)5Tr$uC i

(n)&^C i
(n)urR(t)%, for the group to

be in the stateuC i
(n)& at time t ~we consider only transitions

which do not changen!. Using Eqs.~4!, ~5!, and~9! and the
expressions given in Refs. 1 or 5 for the symmetrized s
components which multiply Eq.~4!, we obtain

Pi~ t !5(
j 51

8

Ai , j~ t !Pj~0!, ~10!

where the matrixA has the form
A53
A1,1

A2,2 A2,3 A2,4

A2,4 A2,2 A2,3

A2,3 A2,4 A2,2

A2,2 A2,3 A2,4

A2,4 A2,2 A2,3

A2,3 A2,4 A2,2

A1,1

4 . ~11!

A1,1~ t !5
1

9 (
pi ,pi850,61

K~p22p/3,p282p/3,t;p12p/3,p182p/3,0!, ~11a!

A2,2~ t !5
1

9 (
p,p850,61

K~p2p/3,p82p/3,t;p2p/3,p82p/3,0!, ~11b!
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A2,3~ t !5
1

9 (
p,p850,61

K„p2p/3,p82p/3,t;~p21!2p/3,~p821!2p/3,0…, ~11c!

A2,4~ t !5
1

9 (
p,p850,61

K„p2p/3,p82p/3,t;~p11!2p/3,~p811!2p/3,0…, ~11d!

and, whenever24p/3 or 14p/3 occurs in Eq.~11c! or Eq.~11d!, it has to be replaced by12p/3 or 22p/3, respectively. We
have also introduced the so-called coarse-grained propagators

K~p22p/3,p282p/3,t;p12p/3,p182p/3,0!5 (
N,N8

E
2p

p

...E
2p

p

dx1dx2dx18dx28H
~n!~x22p22p/3!H ~n!~x12p12p/3!H ~n!

3~x282p282p/3!H ~n!~x182p182p/3!KN,N8~x2 ,x28 ,t;x1 ,x18,0!. ~12!

It is clear that such designation is meaningful only for small values ofn, when the torsional oscillator states are fairly we
localized at the minima of the hindering potentialV(x). Furthermore, since the environment is assumed to be in the
equilibrium, the equalityA2,35A2,4, should hold.

IV. DISCUSSION OF THE RESULTS AND CONCLUSIONS

Let us assume that initially theXH3 group is in the statêxuC3
(n)&, i.e., P3(0)51. Then it follows from Eq.~10! that the

probability P2(t) for the group to be in the statêxuC2
(n)& at time t equalsA2,3(t). Now, it is evident from Eq.~11c! that, in

general, this transition cannot be interpreted as being due to orientational jumps of the group from one equilibrium ori
to another. Namely, the terms in Eq.~11c! with pÞp8 are the familiar interference cross terms.~Incidentally, the transitions
among the states,^xuC i

(n)&, i 52,3,4, for example, represent a situation analogous to the one which would occur in a trip
experiment. The three alternative paths are, in the present case, fixed by the spin components of the total wave func!. The
interference is especially pronounced in the case of an isolated (l j ,cj˜0)XH3 group in a threefold hindering potential. In th
low-temperature limit, when only theH (0)(x) state needs to be considered, the dilute-instanton-gas approximation yiel
Eq. ~12!,17,19

K0~p22p/3,p282p/3,t;p12p/3,p182p/3,0!5 1
9 $114 cos@~p22p1!2p/3#cos@~p282p18!2p/3#

12e2 ivT
~0!t cos@~p22p1!2p/3#12eivT

~0!t cos@~p282p18!2p/3#%, ~13!
e
a

e
or

.

where vT
(0)56vc(S0/2p\)1/2e2S0 /\ is the tunneling fre-

quency corresponding to theE-A splitting of the ground-
state manifoldc0

(v)(x). vc5A(9V3/2I ) is the classical tor-
sional or librational frequency, whileS058Ivc/9 is the
instanton ~anti-instanton! action associated with th
imaginary-time solution connecting two neighboring minim
of the hindering potential.

In general, however, this interference is suppressed du
the presence of the Debye-Waller-like fact
to

e2(W(b)/4p2)@ d̃2(0)1 d̃2(t)# in Eq. ~7!. d̃(0)5x12x18 , d̃(t)
5x22x2812p(N2N8) and, in particular, for the terms in
Eq. ~11c! corresponding topÞp8, x12x18 , x22x28>
62p/3. Specifically, ifW(b) is sufficiently large, the inter-
ference cross terms in Eq.~11c! are completely suppressed
Therefore, just the terms withp5p8 survive in Eq.~11c!
and, moreover, only the paths withN5N8 will contribute
substantially to the path integrals in Eq.~12!. Thus,
A2,3>~1/9! (
p50,61

K„p2p/3,p2p/3,t;~p21!2p/3,~p21!2p/3,0…,
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PRB 60 3993ROTATIONAL HOPPING MODEL AND DECOHERENCE
understood in the coarse-grained sense referred to in con
tion with Eq. ~12!, represents a sum of probabilitie
K„p2p/3,p2p/3,t;(p21)2p/3,(p21)2p/3,0…, correspond-
ing to orientational jumps between neighboring minima
the hindering potential. This is then the content of the ro
tional hopping or jump model.1 We also note, by inspecting
Eq. ~12!, that there is a probability for orientational jum
associated with each winding numberN separately. For a
given N, on the other hand, we have to add the amplitu
for all Feynman paths starting at one minimum of the pot
tial and ending at the adjacent one.

The degree of interference suppression depends
course, on the magnitude of

W~b!5~2p/\!E
0

`

dv„Jq~v!/v2
…coth~b\v/2!,

whereJq(v) is given by Eq.~8d!. In order to make an esti
mate forW(b) we shall assume that the librational spectru
is similar to the spectrum of optical phonons, namely,
librational frequenciesV~k! @we made a replacementV j
˜V(k), where2p<k<p is a dimensionless wave num
ber! form a narrow band aroundvc .20 The width of the
librational band is, in this model, due to electrosta
octupole-octupole interactiongTTV3 between neighboring
XH3 groups. V3 is the height of the hindering potential an
gTT is a dimensionless torsion-torsion coupling constant. T
corresponding width of the librational band is then rough
equal togTTvc . Consequently, at low temperatures such t
kBT!\vc , we obtain W(b)>2pgTTJq(vc)/\vc . Using
also Eq. ~8d! we can finally write W(b)>(gTT/16p)
3(I /J)„\vc /(\2/2I )…^c2(k)&vc

, where the rotational con

stant\2/2I equals 0.65 meV in the case of CH3 groups, for
example. The last factor̂ c2(k)&vc

5*V(k)5vc
dSkc

2(k)/

u¹V(k)/vcu is some sort of a weighted average of the co
pling constantc(k) over the constant frequency surfa
V(k)5vc , in k space. In the case of electrostatic octupo
octupole interactions it is fairly reasonable to assume
gTT'0.1. To get an estimate, we setJ'I , and considering
the range of hindering potentials, 50,V3 /(\2/2I ),100
@20,\vc /(\2/2I ),30#, we obtain W(b)>0.1̂ c2(k)&vc

.
Unfortunately, not much information of interest regardi
the lattice dynamics in molecular crystals is available. We
know, however, that quantum coherence effects are obse
up to temperatures high compared to typical tunneling sp
tings, which are on the order of a fewmeV. Thus, we suspec
that in most latticeŝ c2(k)&vc

is rather small and, conse
quently, the Debye-Waller factor is ineffective in suppre
ing the interference at temperatureskBT!\vc . On the other
hand, at higher temperatures the coth(b\v/2) factor in the
expression forW(b) can be large enough for decoherence
become effective, resulting in the appearance of classica
orientational jumping.4

We therefore conclude that the onset of rotational hopp
motion, at least in the model considered, is primarily due
the velocity-dependent interaction,Ic j ẋq̇ j , of theXH3 group
with librational phonons. The extent of the suppression
the interference cross terms, which is required for the va
ity of the model, depends on the magnitude of the Deb
Waller factor which, in turn, is determined by the spect
ec-
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density of the librational modes and temperature. Con
quently, in most molecular crystals at temperatures such
kBT!(\2/2I )A9V3/(\2/2I ), the rotational motion of the
XH3 groups cannot be interpreted consistently as reorie
tional jumps. This is in agreement with the experimental
sults pertaining to rotational tunneling of methyl groups, f
example, that the effect is observable at temperatures m
higher than the tunneling splitting themselves.21 On the other
hand, at higher temperatures whenW(b)@1, the rotational
motion may be considered, at least for all practical purpos
as classical reorientational jumping of the molecular gro
from one equilibrium orientation to another.

The role of the remaining terms of the influence fun
tional ~7! is not crucial for the hopping model, and moreove
they were already discussed briefly in Ref. 17. Let us o
mention that coupling to translational phonons via the thr
fold symmetric coupling termf j (x)Qj is not very effective
in suppressing interference between different Feynm
paths.17

Last but not least, we should also acknowledge a con
erable effort that has been devoted in the past to a wide ra
of problems concerning methyl dynamics in solids22–25 and
references cited therein. In spite of some difference betw
various authors on specific points, a fairly coherent pict
about the motion of methyl groups has emerged. Howe
the rather important issue, namely, the consistency of cla
cal hopping, whenever this notion is applicable, with Pa
principle has not been clarified. We believe that decohere
as a mechanism for suppressing interference as defi
above, which occurs whenever one is dealing with orien
tionally delocalized~3! or partially localized states~9!,23,24

achieves this goal.
But, is such an extension of a description of a physi

system into the classical domain, when a satisfact
quantum-mechanical prediction is available, still necess
or, is it still useful, especially, since ‘‘nature isn’t classica
dammit...,’’ as Feynman once said.26 To be quite precise, by
imaging classical hopping of methyl groups we are assign
even more classicality to the system as is usually done in
case of simple ‘‘measured’’ systems, where classical beh
ior is approximated by appropriate coarse graining of th
description~passage of a nuclear particle through a bub
chamber!.27 In the world of everyday experience such a
extension is certainly mandatory. Here quantum mecha
has to account for the classical trajectories of the planets
example, whether or not any ‘‘observer’’ is looking a
them.27 This is achieved, at least in some schemes,27 by
environment-induced decoherence in the sense discu
above ~apparently even scattering by cosmic backgrou
photons is sufficient10!. On the other hand, when one is dea
ing with a genuinely microscopic system, such as a met
group embedded in a solid lattice, there seems to be no c
pelling reason for invoking classical notions, apart from t
fact that they appeal to our common-sense intuition.
more general terms, however, it is, of course, gratifying
find out that decoherence could be effective also on a mic
scopic scale.
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