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Electron transport through a circular constriction
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We calculate the conductance of a circular constriction of radius an insulating diaphragm which
separates two conducting half spaces characterized by the mean fréeUsitig the Boltzmann equation we
obtain an answer for all values of the raki@. Our exact result interpolates between the Maxwell conductance
in diffusive (I<a) and the Sharvin conductance in ballistic>(a) transport regimes. Following Wexler's
work, our main advance is to find the explicit form of the Green'’s function for the linearized Boltzmann
operator. The formula for the conductance deviates by less than 11% from the naive interpolation formula
obtained by adding resistances in the diffusive and the ballistic req®@4.63-18269)11929-5

[. INTRODUCTION ler's work. Recently, the size of orifice has been shrunk to
a=\p allowing the observation of quantum-size effects on
The problem of electron transport through an orifialso  the conductancg!® In the case of a tapered orifice on each
known as a point contactn an insulating diaphragm sepa- side of a short constriction between reservoirs, discrete trans-
rating two large conductoréFig. 1) has been studied for verse state$‘quantum channels) below the Fermi energy
more than a century. Maxwélfound the resistance in the which can propagate through the orifice give rise to a quan-
diffusive regime when the characteristic lengtifradius of  tum version of Eq(2). The gquantum point contact conduc-
the orifice is much larger than the mean free pattMax-  tance is equal to an integer number of conductance quanta
well’s answer, obtained from the solution of Poisson equa2e?/h.

tion and Ohm'’s law, is Here we report a semiclassical treatment using the Boltz-
mann equation. Bloch-wave propagation and Fermi-Dirac

p statistics are included, but quantum interference effects are
RMZZ_a' 1) neglected. Electrons are scattered specularly and elastically

at the diaphragm separating the electrodes made of material
wherep is the resistivity of the conductor on each side of thewith a spherical Fermi surface. Collisions are taken into ac-
diaphragm. Later on, Shanficalculated the resistance in the count through the mean free pdthA peculiar feature is that

ballistic regime (>a) the driving force can change rapidly on the length scale of a
mean free path around the orifice region. The local current
4pl [2e? k2A| 1 density depends on the driving force at all other points. Our

Rs=3x Z(T E) : (2 approach follows Wexler‘study. We find an explicit form

of the Green’s function for the integrodifferential Boltzmann
whereA is the area of the orifice. This “contact resistance” operator. The Green's function becomes the kernel of an
persists even for ideal conductomso scattering and has a integral equation defined on the compact domain of the ori-
purely geometrical origin, because only a finite current carfice. Solution of this integral equation gives the deviation
flow through a finite size orifice for a given voltage. In the
Landauer-Bttiker transmission formalistwe can think of
a reflection when a large number of transverse propagating
modes in the reservoirs matches a small number of propagat-
ing modes in the orifice. In the intermediate regime, when
a=|, the crossover fronRy, to Rg was studied by WexI&r 2
using the Boltzmann equation in a relaxation time approxi- 1 a/'
mation. The influence of electron-phonon collisions on the
orifice current-voltage characteristics was studied using clas- ‘e
sical kinetic equations in Ref. 5 and quantum kinetic equa-
tions (Keldysh formalism in Ref. 6. This provides a theoret- Pad
ical basis for an experimental technique allowing extraction P
of the phonon density of states from the nonlinear current-
voltage characteristicgpoint contact spectroscofly The
analogous problem for the conductance of a wire of length +:V C\)]
L>a (a is the width of the wirg for all ratios I/L was
solved by de Jorfgusing a semiclassical treatment of the  FIG. 1. Electron transport through the circular constriction in an
Landauer formula. De Jong makes a connection between higsulating diaphragm separating two conducting half-spgeash
approach and semiclassical Boltzmann theory used in Wexeharacterized by the mean free pa}h
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1.0 HereF(k,r) is the distribution functionf(e,) is the equilib-

rium Fermi-Dirac function®(r) is electric potential() is
ool the volume of the sample, andg(k,r) is a Fermi-Dirac

' function with spatially varying chemical potentigk(r)

which has the same local charge densityFék,r). In gen-

?9-8 - eral, we have to deal with the local deviatién(r) of elec-

tron density from its equilibrium value self-consistently. The
collision integral is written in the standard relaxation time
approximation with scattering time=1/vg. This system of
equations should be supplemented with boundary conditions

0.7F

0.0601 0'1 1 1'0 100 on the left electrodéLE) at z= — oo, right electrodg RE) at
' ' I/a z=, and on the impermeable diaphragb) at z=0:
FIG. 2. The dependence of factprin Egs.(3), (60) on the ratio O(rp)=V, (103
I/a. Also shown is the variational calculation @fye, from Ref. 4.
D(rre)=—V, (10b
from the equilibrium distribution function on the orifice.
Therefore, it defines the current through the orifice and its iArp)=0, (100

resistance.

. where thez axis is taken to be perpendicular to the orifice. In
The exact answer can be written as

linear approximation we can express the distribution function
3) F(k,r) and local equilibrium distribution functiofy g(k,r)

R(l/a)=Rst¥(I/2)Ru. using du(r) (local change of the chemical potenjiand

where y(l/a) has the limiting value 1 as/a—0 and
Rs/Ry—0. We are able to computg(l/a) numerically to

W (k,r) (deviation function, i.e., energy shift of the altered
distribution

an accuracy of better than 1%. Our calculation is shown on

Fig. 2. We also find the first order Patle

1+0.83l/a

1+1.33l/a’ @

yi(1/a)=

which is accurate to about 1%. Our answer fadiffers little

from the approximate answer of Wexftalso shown on Fig.

af(ey)
fle(k,r)=f[e,—ou(r)]~f(e)— Fex ou(r), (12)

af(e)
F(k,r)=flex—V(k,r)]~f(e) — 7e, W(k,r).

(12

2 as ywe. Section Il formulates the algebra and Sec. 11l These equations imply thaiu(r) is identical to the angular

explains the solution.

Il. SEMICLASSICAL TRANSPORT THEORY
IN THE ORIFICE GEOMETRY

In order to find the current densifyr) through the ori-

average of¥ (k,r)

()
T () =N(O)(¥ (1)

€k

1
5n(r)=§ ; -

=N(0)ou(r), (13

fice, in the semiclassical approach, we have to solve simukyhereN(0) is the density of states at the Fermi eneegy
taneously the stationary Boltzmann equation in the presenqg the case of a spherical Fermi surface

of an electric field and the Poisson equation for the electric

potential

faF(k,r) _eva(r) aF(k,r)  F(kr)—fekr)

ar h ak T
(5)
VD (r)=— eéz(r), (6)
1
on(n=g 2 [Fkn=f(ed], (7
k
1
0= g 2 [F(kn)—fe(kn)], ®)
k
. e
i(N=g 2 WFkn). (9)

1
<\p(r)>=Ef dQ W (k,r). (14)

Following Wexler? we introduce a functiom(k,r) by writ-
ing ¥(k,r) as

V(k,r)=eVuk,r)—ed(r).

Thereby, the linearized Boltzmann equati@&@) becomes an
integrodifferential equation for the functian(k,r)

(15

au(k,r)
ar

Vi =(u(n)—u(k,r). (16)
To solve this equation we need to know only boundary con-
ditions satisfied byi(k,r) and then we can use this solution
to find the potentiakb(r). Thus the calculation of the con-
ductance fromu(k,r) is decoupled from the Poisson equa-
tion. This is an intrinsic property of linear response thedry.
The boundary conditions for E¢16) are
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(u(rp))y=1, (17a  the orifice is handled by replacing it by the disk electrode
which spreads particles into a scattering medium.
(u(rgp))=—1. (17b The Green’s function for Eq(24) is the inverse Boltz-

mann operatofincluding boundary conditions
They follow from the boundary conditiond 03, (10b) for P ( 9 y ')

the potentiakb (r) and the fact that far away from the orifice ~
we can expect local charge neutrality entailing (|kg+ 1—A) Gp(k,rik",r")=6(Q= Q) o(r—r")
_ o) s 27
{u(r))= v (18 andA is the angular average operator
The driving force does not explicitly appear in E36), but 1
it enters the problem through these boundary conditions. Af(k):—J dQy f(k)={(f). (28)
Since Eq(16) is invariant under the reflection in the plane of 4m
the diaphragm The Green’s function for the Boltzmann equation allows us
R .R to expressw(k,ro—v,dt) in the form of a four-dimensional
(k,r)—= (K%, (199 integral equation over the surface of the orifice
rR=(x,y,—2), (19b)
W(k,rO_det): f kor drlo GB(k,ro_det;k,,rlo
kR=(ky Ky, —k,), (199
the boundary conditions imply thai(k,r) has reflection an- Vi dt)s(k’,r'o). (29

tisymmetry The functionw(k,r) is discontinuous over the orifice, so we

__ R .R formulate the equation for this function at points infinitesi-
utk,r) u(k%re). (20 mally close @it— +0) to the orifice. We find the following
Wexler's solutioff to Eq. (16) relied on the equivalence be- explicit expression for the Green’s function:
tween the problem of orifice resistance and spreading resis- _
tance of a disk electrode in the place of orifice. Technically R -
this is achieved by switching from the equation for function Ge(K.rik",r')=& 2, 377
. ) q 1q-lx
u(k,r) to the equation for function

[(ql—arctangl) ~*
+Gl(q m!) _

w(k,r)=1+sgn(z)u(k,r). (21 x| 8(Q— Q) _
47(1+iq-ly)

The beauty of this transformation is that new function allows
us to replace the discontinuous behaviorugk,r) on the (30
diaphragm(which is the mathematical formulation of specu-

. Its form reflects the separable structure of Boltzmann opera-
lar scattering

tor, i.e., the sum of operators whose factors act in the space

u(k,rp—vidt) =u(kR rp—vidt) = —u(k,rp+v,dt) of functions of eitherr' or k. However, it is nontrivial be-

(22) cause the factors acting ko space d(_) not commute and the
Boltzmann operator is not normal—it does not have the com-

with continuous behavior of(k,r) over the diaphragm, dis- plete set of eigenvectors and the standard procedure for con-
continuous behavior over the orifice and simpler boundarytrycting the Green’s function from the projectors on these
conditions on the electrodes states fails. The first term in E30) is singular and gener-
ates the discontinuity ofv(k,r) over the orifice.

(W(rg))=(w(rge))=0. (23
The Boltzmann equatiofl.6) now becomes IIl. THE CONDUCTANCE OF THE ORIFICE
aw(k,r) The conductance of the orifice is defined by
i o +w(k,r)—(w(r))=s(k,r)5(z)6(a—r),
24 L [ i
where we have introduced the function G= R 2V~ 2v (32)
s(k,r) =2l u(k,r) (25 where thez component of the current at the surface of the

which is confined to the orifice region. It can be related to®"fce IS

w(k,r) at the orifice in the following way: N(0)e?V

jArg)=——5——1 dQ,s(k,rgp). 32
s(K,ro) = 2|1l [ 1—w(k,ro—v,dt)]. (26) Jdro)=—g 7 f «s(kiro) (32

It plays the role of a “source of particles” in Eq24). The  The Green'’s function resu(80) allows us to rewrite Eq.29)
notationr, refers to a vector lying on the orifice, thatrig  in the following integral equation for the smooth function
=(x,y,0) with x>+y?<a?. The discontinuity ofw(k,r) on  s(k,r,) over the surface of the orifice:
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s(k,ro) 2T iaron—iM & 27 L cos(po— dg)a—iM ¢
1=m+fko,dr’oG(k,ro;k’,r’o)s(k’,r’o), . e'doe 0d¢gg= . g'dLro CoStPo™ ¢ole od¢yg
kzl
33 .
33 =27iMIy(q,ro)e” M7, (39

whereG(k,rq;k’,r'g) is the nonsingular part of the Green’s whereq, is projection ofq=g,+q, in the plane of orifice

function (30) and Jy(2) is the Bessel function of the first kind. For the
function f, (gl) in Eq. (38) we obtain
G(K,ro;k',r'g)= fd o —i)7t 1
N fL<q|>=<—1>LJ e ju(al) dx=——Qy =],
0 iql iql
q| eiCI'(rO_r(/)) (40)
- — T wherej (x) is spherical Bessel function ar@, (x) is Leg-
(1+ig-h)(ql—arctangl)(1+iq-l) endre function of the second kind. Explicit formulas for
(39 f (x) are
The distribution functiors(k,ry) has twok-space variables, fo(x)= arctanx, (413
the polar and azimuthal angle$,(,¢y) of the vectork on X
the Fermi surface and the radiug and azimuthal angleé,
of the pointry on the orifice. Because of the cylindrical f(x)= —X+tarctar (41b)
symmetry,s(k,ro) does not depend separately R, ¢, x? '
but only on their differencep,— ¢,. This allows the expan-
sion —3x+ (x?+ 3)arctarx
fa(x)= : (419
2x3
K,ro)= ro)Yim( O, e ™Moo, 35
sk.To) % Stm(Fo) Yim(fic: ) 39 — (4/13)x3—5x+ (5+ 3x?)arctarx
f3(x)= ., (41d

4
and Eq.(33) can now be rewritten as 2%

— (55/3)x3— 35x+ (35+ 30x2+ 3x*)arctarx

f =
21 COSHk: ’2’ SLer(ro)YLer(ak,(ﬁk) 4(X) 8X5
L'M (41¢
Xe*iM"/’Osgn(cosek) The final form of the integral equation fa y(rg) in the

expansion of(k,ry) is

+2|f dQ dry G(Kk,ro:k’,ro) ™
4] \/;5L15M0: E CLM’LeraMMrSLer(ro)
L!M!

X cosby >, S (Fe) YL (B, )e™ ™ %o,

M’ a ' ’ ’ ’
LM - +4> 0rOdrOKLM,L’M/(rOarO)SL’M/(ro).
L'Mm’
This four-dimensional integral equation can be reduced to a o 42
system of coupled one-dimensional Fredholm integral equavhere the kerneKyy L m/(ro.ro) is given by
tions of the second kind after it is multiplied by M =M M+M’
Y (6, ¢ )eM?o and integrated ovesy, ¢y, and gy We Kim,erm(To.o) =1 (=1
also use the following identities: o m
xf qquf sin 6, dé,
Yim(6,¢) cos60=01Y s1m(0,0) +9oY - 1m(6,6), ° °
(379 quZfL,(qI)YL,M,(Gq)
| —arctang|
=M+ D(L+M+1) ,q .
9= (2L+1)(2L+3) (37 XS (=1 g fea(a)

Yo g (0 it L1
LML+ M) XYL+1m(bg) +i
92~ V. (2L—-1)(2L+1)’ (379 (=D tg,f L _4(qh)
XYL -1m(0g)]Im(grosinéy)
dQ=itfL(a)Yim(bq. ¢q). (38) X (qrosinfg). (43)

The kernel(43) does not depend o so that only the part
and of spherical harmonic dependent @y, Y y(6,), is inte-

1 [ Yim(bc P
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grated(which is, up to a factor, associated Legendre polyno-and performing integrations numerically. The polynomials
mial). The kernel differs from zero only if + M has parity  p,(ro)=={_,Ciry are orthogonal with respect to the scalar
different fromL’+M’. This follows from the fact that the product
kernel is the expectation value

a
Kiw i (Fosf ) Jorodro Pn(ro)Pm(ro) = Snm- (50)
=(LMM|2l cosd G(k,rg;k’,r{)|L'M'M"), (44)  The first three polynomials are
. V2

(ko LMM) =Y (6, )™ 0 (45 Po(ro)= = (513
of an operator which is odd under inversion. The basis func- o4
. . . ro_
tions|LMM) have parity given by Dy(ro)= e (51b)

PILMM)=(—1)"*M|LMM). (46) '

Exactly under this condition the kernel becomes a real quan- 10V6[r—(6/5)ro+(3/10]

(510

tity. This means that the nonzespy(ro) are real with the P2(ro) = a\/100a"— 288°+ 306a%— 144a+ 27
property
B M The system of integral equatio(4$2) then becomes a matrix
Stm(ro)=(=1)"s.,-m(ro), (47 equation for eithers_y(ro) at discretizedr, or expansion

. . . . coefficientsa,, . The latter version is
ensuring thas(k,rg) is real. The conductance is determined nLM

by the (L,M)=(0,0) functionsy(ry). The nonzercs y(ro) T
coupled to it are selected by the condition thatM is even.  41@ \[55L15M05n0: 2 CLm,L'm 8nLrm
This follows froms(k,rq) being even under reflection in the L
plane of orifice. Under this operation, cés~—cosé,, but
¢r, ¢o are unchanged; this means that the expan&san +4 2
contains only terms with. +M even.

_The first term on the right hand side in E®6) is deter- KE’LLN’lM’:iMuM(_1)M+M’fqudqfwsin0qd0q
mined by the matrix element 0 0

nL'M’
~ ,KnLM anrLms s (529
nL'M

. ql*fL(qD Yy (6g) . .
CLM,L’M':f doy Ay Sin, Y (O, i) T pp—— jm(gasing,)
XY Lm0k, i) sgr(cosby), (48) XjnM,,(qasin 6q)
which is expectation value of sgn(c@3 in the basis of e le1 L+l
spherical harmonics. It is different from zeroNf=M’ and X[i (=D 70afL+2(aD Y1 1m(6g)
L—L’ is odd. The states must be of different parity, as de- Sl Ll )bl f nY P
termined byL, because sgn (ca¥) is odd under inversion. ! (D78 -1 (AD Y1 (Fe)],
The system of equation@2) can be solved for all pos- (52b
sible ratios ofi/a by either discretizing the variablg or by a
expandings, 1y (rg) in terms of the polynomials ing jm(gasin gq):f rodroPn(ro)dm(argsindy),
0
(520
S m(ro)= a ro), 49 . o . .
tm(To) 2 nmPa(To) 49 which simplifies using the following result:
|
n 2+M+i ; M S0, ; . ; 2
] ] a (qsinfy)V'{Fo[1+M/2+i1/2;2+M/2+i1/2,1+M; — (1/4)(gasinb,) ]
im(gasingy)=>, ¢ @1 ey _ - (53
=] 22"+ MR2+i2)T(1+M)
|
where (F,(«a;B1,B2;2) is a hypergeometric function. N(0)le?aar
The lowest order approximation fos(k,rp) is obtained Go=———5m0 (59
by truncating the expansion ip,(r,) to zeroth order 7(3+Kpp

(i.e., constant—which is the space dependence of

the Sharvin limif and the expansion Y y(6y,dy) to 00

orderL=0. Then the conductance is determined only by theVhere the lowest order part of the kerri€g;o depends on
constantaggg following trivially from Eq. (52) I/a,
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” L _R=Rrd1+372 58

6 G, ~M=Rs| I+ 5 7). (58)

12~ Somewhat unexpectedly, the naive interpolation forntja
g deviates from our result fo6G at most by 11% wher/a

8 —1 as shown on Fig. 3. We can also cast our lowest order
Q approximation for the conductand®&4) in an analogous

S form as Eq.(58)

0 1 3+ 32 3wa -

100 Go Sl473,.278 1) 59

) The numerical coefficients in E¢G9) are not accurate in this
FIG. 3. The conductanc& (L=2n=2), normalized by the  gjmplest approximation. Replacement of 3/4 by 1 and
Sharvin conductancgs (2), plotted against the ratiga. Itis com- 35032 py 1 yields correct limiting values of the conduc-
pared to the naive interpolation formu@ (58), and the plausible 506 and jeads to a plausible interpolation formula. It differs
interpolation formulaG, (60). from Eq. (58) by the introduction of a factoty which mul-

tiplies the Maxwell resistance
000 A [~ m arctarg|
Keto=— |, 99 | 90eg ot

dq|— 1 37 a
gl—arctargl G_:RS 1+7§|— , (608
0
—3ql+(g??+ 3)arctarg|
><( E (1—-3cogd,) 7 oo
7=@Kom- (60D)

(65  This formula is compared t& and G, on Fig. 3. It differs
from our most accurate calculation &f by less than 1%.

Further corrections are obtained by solving the matrix equal nerefore, for all practical purposes it can be used as an

tion (52) with larger truncated basis set. The matrix element£X@ct expression for the conductance in this geometry, and it
Is the main outcome of our work. The factgris of order

n'L’'M’ ;
Koum ™ (52D ‘f."(;? tfeduljus to cgmpute, EUt t?]e Cﬁndgct?}nceone and depends on the ratia as shown on Fig. 2. We also
converges rapidly for larga andL. On the other hand, the 151 on Fig. 2 Wexler$ previous variational calculation
matrix elements - (48) are easy to compute and the ¥
conductance converges slowly in the ballistic limit deter- Wex:

ined by th el K | d In conclusion, we have calculated the conductance of the
mined by these ;n::xtux elements. We keep only low ordefyifice in all transport regimes, from the diffusive to the

matrix elements<y, " but go to high order irc v /w/.  ballistic. The altered versiof60) of the simplest approxi-
In practice we find that for thec matrix L,,=12 is  mate solution of our theor{54) is already accurate to 1%.
sufficient, whereas for theK matrix the approximation The naive interpolation formulésum of Maxwell and Shar-
L max=2, Nmax=2 gives convergence to 1%. The conductancevin resistancesagrees to 11% with our accurate answer.
as a function ofi/a is shown on Fig. 3. It is normalized Further corrections converge rapidly to an exact result. Our
to the Sharvin conductance, i.e., the limit=a, for  solution is not variational and therefore we cannot test its

. arctangl | [J1(qasing,)]?
ql siné, '

which stability with respect to the anisotropy in a simple manner.
G(k,r:k’,r')=0, This analysis is of interest in any situation where the geom-
etry of the sample can enhance the resistivity while the phys-
s(k,r)=2]1,]. (56) ics of conduction stays the same as in the bulk material. One
example is provided by some granular metals above the per-
In the oppositgMaxwell) limit, when|<a, we have colation threshold. In this system the grains can touch in a
way which provides thin, narrow and twisting conduction
ql _ 3 +9/5+0[(ql)?] (573 pathd? so that there is no macroscopic anisotropy induced by
ql—arctangl (ql)2 '

the special arrangement of the grains. The microstructure of
) this_ran_dom resi_sto_r_netwqu entai_ls_ the geometrical renor-
G(krik r")— f dqe _ 3 mallzathn _of resistivity. It is Fhe origin of thg anomalously
T 3274 (ql)? 167212 r—r'|’ high resistivity scale found in these materials. The resis-
(579  tances of the contacts between the grains resemble the type
of resistances we have studied, after taking into account the
which is the standard Green’s function for the Poisson equacorrection to the finite size of the grains on each side of the
tion. The dependence of the full Green’s functi@® onk  contact.
vector is reflection of nonlocality. The conductance in the
transition  region .from lVI_axvyeII to .Sharvin Iimit. ACKNOWLEDGMENT
can be compared with the naive interpolation formula which
approximates resistance of the orifice by the sum of Sharvin This work was supported in part by NSF Grant No. DMR
and Maxwell resistances 9725037.
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