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Electron transport through a circular constriction

Branislav Nikolićand Philip B. Allen
Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, New York 11794-3800

~Received 17 November 1998!

We calculate the conductance of a circular constriction of radiusa in an insulating diaphragm which
separates two conducting half spaces characterized by the mean free pathl. Using the Boltzmann equation we
obtain an answer for all values of the ratiol /a. Our exact result interpolates between the Maxwell conductance
in diffusive (l !a) and the Sharvin conductance in ballistic (l @a) transport regimes. Following Wexler’s
work, our main advance is to find the explicit form of the Green’s function for the linearized Boltzmann
operator. The formula for the conductance deviates by less than 11% from the naive interpolation formula
obtained by adding resistances in the diffusive and the ballistic regime.@S0163-1829~99!11929-5#
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I. INTRODUCTION

The problem of electron transport through an orifice~also
known as a point contact! in an insulating diaphragm sepa
rating two large conductors~Fig. 1! has been studied fo
more than a century. Maxwell1 found the resistance in th
diffusive regime when the characteristic lengtha ~radius of
the orifice! is much larger than the mean free pathl. Max-
well’s answer, obtained from the solution of Poisson eq
tion and Ohm’s law, is

RM5
r

2a
, ~1!

wherer is the resistivity of the conductor on each side of t
diaphragm. Later on, Sharvin2 calculated the resistance in th
ballistic regime (l @a)

RS5
4r l

3A
5S 2e2

h

kF
2A

4p D 21

, ~2!

whereA is the area of the orifice. This ‘‘contact resistance
persists even for ideal conductors~no scattering! and has a
purely geometrical origin, because only a finite current c
flow through a finite size orifice for a given voltage. In th
Landauer-Bu¨ttiker transmission formalism,3 we can think of
a reflection when a large number of transverse propaga
modes in the reservoirs matches a small number of propa
ing modes in the orifice. In the intermediate regime, wh
a. l , the crossover fromRM to RS was studied by Wexler4

using the Boltzmann equation in a relaxation time appro
mation. The influence of electron-phonon collisions on
orifice current-voltage characteristics was studied using c
sical kinetic equations in Ref. 5 and quantum kinetic eq
tions ~Keldysh formalism! in Ref. 6. This provides a theore
ical basis for an experimental technique allowing extract
of the phonon density of states from the nonlinear curre
voltage characteristics~point contact spectroscopy7!. The
analogous problem for the conductance of a wire of len
L.a (a is the width of the wire! for all ratios l /L was
solved by de Jong8 using a semiclassical treatment of th
Landauer formula. De Jong makes a connection between
approach and semiclassical Boltzmann theory used in W
PRB 600163-1829/99/60~6!/3963~7!/$15.00
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ler’s work. Recently, the size of orifice has been shrunk
a.lF allowing the observation of quantum-size effects
the conductance.9,10 In the case of a tapered orifice on ea
side of a short constriction between reservoirs, discrete tra
verse states~‘‘quantum channels’’! below the Fermi energy
which can propagate through the orifice give rise to a qu
tum version of Eq.~2!. The quantum point contact conduc
tance is equal to an integer number of conductance qu
2e2/h.

Here we report a semiclassical treatment using the Bo
mann equation. Bloch-wave propagation and Fermi-Di
statistics are included, but quantum interference effects
neglected. Electrons are scattered specularly and elasti
at the diaphragm separating the electrodes made of mat
with a spherical Fermi surface. Collisions are taken into
count through the mean free pathl. A peculiar feature is that
the driving force can change rapidly on the length scale o
mean free path around the orifice region. The local curr
density depends on the driving force at all other points. O
approach follows Wexler’s4 study. We find an explicit form
of the Green’s function for the integrodifferential Boltzman
operator. The Green’s function becomes the kernel of
integral equation defined on the compact domain of the
fice. Solution of this integral equation gives the deviati

FIG. 1. Electron transport through the circular constriction in
insulating diaphragm separating two conducting half-spaces~each
characterized by the mean free pathl ).
3963 ©1999 The American Physical Society
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from the equilibrium distribution function on the orifice
Therefore, it defines the current through the orifice and
resistance.

The exact answer can be written as

R~ l /a!5RS1g~ l /a!RM , ~3!

where g( l /a) has the limiting value 1 asl /a˜0 and
RS /RM˜0. We are able to computeg( l /a) numerically to
an accuracy of better than 1%. Our calculation is shown
Fig. 2. We also find the first order Pade´ fit

gfit~ l /a!5
110.83l /a

111.33l /a
, ~4!

which is accurate to about 1%. Our answer forg differs little
from the approximate answer of Wexler,4 also shown on Fig.
2 as gWex. Section II formulates the algebra and Sec.
explains the solution.

II. SEMICLASSICAL TRANSPORT THEORY
IN THE ORIFICE GEOMETRY

In order to find the current densityj (r ) through the ori-
fice, in the semiclassical approach, we have to solve sim
taneously the stationary Boltzmann equation in the prese
of an electric field and the Poisson equation for the elec
potential

ṙ
]F~k,r !

]r
2

e¹F~r !

\

]F~k,r !

]k
52

F~k,r !2 f LE~k,r !

t
,

~5!

¹2F~r !52
edn~r !

«
, ~6!

dn~r !5
1

V (
k

@F~k,r !2 f ~ek!#, ~7!

05
1

V (
k

@F~k,r !2 f LE~k,r !#, ~8!

j ~r !5
e

V (
k

vkF~k,r !. ~9!

FIG. 2. The dependence of factorg in Eqs.~3!, ~60! on the ratio
l /a. Also shown is the variational calculation ofgWex from Ref. 4.
s
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HereF(k,r ) is the distribution function,f (ek) is the equilib-
rium Fermi-Dirac function,F(r ) is electric potential,V is
the volume of the sample, andf LE(k,r ) is a Fermi-Dirac
function with spatially varying chemical potentialm(r )
which has the same local charge density asF(k,r ). In gen-
eral, we have to deal with the local deviationdn(r ) of elec-
tron density from its equilibrium value self-consistently. Th
collision integral is written in the standard relaxation tim
approximation with scattering timet5 l /vF . This system of
equations should be supplemented with boundary condit
on the left electrode~LE! at z52`, right electrode~RE! at
z5`, and on the impermeable diaphragm~D! at z50:

F~rLE!5V, ~10a!

F~rRE!52V, ~10b!

j z~rD!50, ~10c!

where thez axis is taken to be perpendicular to the orifice.
linear approximation we can express the distribution funct
F(k,r ) and local equilibrium distribution functionf LE(k,r )
using dm(r ) ~local change of the chemical potential! and
C(k,r ) ~deviation function, i.e., energy shift of the altere
distribution!

f LE~k,r !5 f @ek2dm~r !#' f ~ek!2
] f ~ek!

]ek
dm~r !, ~11!

F~k,r !5 f @ek2C~k,r !#' f ~ek!2
] f ~ek!

]ek
C~k,r !.

~12!

These equations imply thatdm(r ) is identical to the angular
average ofC(k,r )

dn~r !5
1

V (
k

2
] f ~ek!

]ek
C~k,r !5N~0!^C~r !&

5N~0!dm~r !, ~13!

whereN(0) is the density of states at the Fermi energyeF .
In the case of a spherical Fermi surface

^C~r !&5
1

4pE dVkC~k,r !. ~14!

Following Wexler,4 we introduce a functionu(k,r ) by writ-
ing C(k,r ) as

C~k,r !5eVu~k,r !2eF~r !. ~15!

Thereby, the linearized Boltzmann equation~5! becomes an
integrodifferential equation for the functionu(k,r )

tvk

]u~k,r !

]r
5^u~r !&2u~k,r !. ~16!

To solve this equation we need to know only boundary c
ditions satisfied byu(k,r ) and then we can use this solutio
to find the potentialF(r ). Thus the calculation of the con
ductance fromu(k,r ) is decoupled from the Poisson equ
tion. This is an intrinsic property of linear response theory11

The boundary conditions for Eq.~16! are
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^u~rLE!&51, ~17a!

^u~rRE!&521. ~17b!

They follow from the boundary conditions~10a!, ~10b! for
the potentialF(r ) and the fact that far away from the orific
we can expect local charge neutrality entailing

^u~r !&5
F~r !

V
. ~18!

The driving force does not explicitly appear in Eq.~16!, but
it enters the problem through these boundary conditio
Since Eq.~16! is invariant under the reflection in the plane
the diaphragm

~k,r !˜~kR,rR!, ~19a!

rR5~x,y,2z!, ~19b!

kR5~kx ,ky ,2kz!, ~19c!

the boundary conditions imply thatu(k,r ) has reflection an-
tisymmetry

u~k,r !52u~kR,rR!. ~20!

Wexler’s solution4 to Eq. ~16! relied on the equivalence be
tween the problem of orifice resistance and spreading re
tance of a disk electrode in the place of orifice. Technica
this is achieved by switching from the equation for functi
u(k,r ) to the equation for function

w~k,r !511sgn~z!u~k,r !. ~21!

The beauty of this transformation is that new function allo
us to replace the discontinuous behavior ofu(k,r ) on the
diaphragm~which is the mathematical formulation of spec
lar scattering!

u~k,rD2vkdt!5u~kR,rD2vkdt!52u~k,rD1vkdt!
~22!

with continuous behavior ofw(k,r) over the diaphragm, dis
continuous behavior over the orifice and simpler bound
conditions on the electrodes

^w~rLE!&5^w~rRE!&50. ~23!

The Boltzmann equation~16! now becomes

lk
]w~k,r !

]r
1w~k,r !2^w~r !&5s~k,r !d~z!u~a2r !,

~24!

where we have introduced the function

s~k,r !52l kzu~k,r ! ~25!

which is confined to the orifice region. It can be related
w(k,r ) at the orifice in the following way:

s~k,r0!52u l kzu@12w~k,r02vkdt!#. ~26!

It plays the role of a ‘‘source of particles’’ in Eq.~24!. The
notationr0 refers to a vector lying on the orifice, that isr0
5(x,y,0) with x21y2<a2. The discontinuity ofw(k,r ) on
s.

is-
y

s

y

the orifice is handled by replacing it by the disk electro
which spreads particles into a scattering medium.

The Green’s function for Eq.~24! is the inverse Boltz-
mann operator~including boundary conditions!

S lk
]

]r
112ÂDGB~k,r ;k8,r 8!5d~Vk2Vk8!d~r2r 8!

~27!

and Â is the angular average operator

Âf ~k!5
1

4pE dVk f ~k!5^ f &. ~28!

The Green’s function for the Boltzmann equation allows
to expressw(k,r02vkdt) in the form of a four-dimensiona
integral equation over the surface of the orifice

w~k,r02vkdt!5E dVk8 dr 80 GB~k,r02vkdt;k8,r 80

1v8kdt!s~k8,r 80!. ~29!

The functionw(k,r ) is discontinuous over the orifice, so w
formulate the equation for this function at points infinites
mally close (dt˜10) to the orifice. We find the following
explicit expression for the Green’s function:

GB~k,r ;k8,r 8!5
1

V (
q

eiq•(r2r8)

11 iq• lk

3S d~Vk2Vk8!1
ql~ql2arctanql !21

4p~11 iq• lk8!
D .

~30!

Its form reflects the separable structure of Boltzmann ope
tor, i.e., the sum of operators whose factors act in the sp
of functions of eitherr or k. However, it is nontrivial be-
cause the factors acting ink space do not commute and th
Boltzmann operator is not normal—it does not have the co
plete set of eigenvectors and the standard procedure for
structing the Green’s function from the projectors on the
states fails. The first term in Eq.~30! is singular and gener
ates the discontinuity ofw(k,r ) over the orifice.

III. THE CONDUCTANCE OF THE ORIFICE

The conductance of the orifice is defined by

G5
1

R
5

I

2V
5

E dr0 j z~r0!

2V
, ~31!

where thez component of the current at the surface of t
orifice is

j z~r0!5
N~0!e2V

8pt E dVk s~k,r0!. ~32!

The Green’s function result~30! allows us to rewrite Eq.~29!
in the following integral equation for the smooth functio
s(k,r0) over the surface of the orifice:



’s

,

l

to
u
y

e

or

3966 PRB 60BRANISLAV NIKOLIĆ AND PHILIP B. ALLEN
15
s~k,r0!

2u l kzu
1E dVk8 dr 80 G~k,r0 ;k8,r 80!s~k8,r 80!,

~33!

whereG(k,r0 ;k8,r 80) is the nonsingular part of the Green
function ~30!

G~k,r0 ;k8,r 80!5
1

32p4E dq

3
ql eiq•(r02r08)

~11 iq• lk!~ql2arctanql !~11 iq• lk8!
.

~34!

The distribution functions(k,r0) has twok-space variables
the polar and azimuthal angles (uk ,fk) of the vectork on
the Fermi surface and the radiusr 0 and azimuthal anglef0
of the point r0 on the orifice. Because of the cylindrica
symmetry,s(k,r0) does not depend separately onfk , f0,
but only on their differencefk2f0. This allows the expan-
sion

s~k,r0!5(
LM

sLM~r 0!YLM~uk ,fk!e
2 iM f0, ~35!

and Eq.~33! can now be rewritten as

2l cosuk5 (
L8M8

sL8M8~r 0!YL8M8~uk ,fk!

3e2 iM 8f0sgn~cosuk!

12l E dVk8 dr08 G~k,r0 ;k8,r08!

3cosuk (
L8M8

sL8M8~r 08!YL8M8~uk8 ,fk8!e
2 iM 8f08.

~36!

This four-dimensional integral equation can be reduced
system of coupled one-dimensional Fredholm integral eq
tions of the second kind after it is multiplied b
YLM* (uk ,fk)e

iM f0 and integrated overuk , fk , andf0. We
also use the following identities:

YLM~u,f! cosu5g1YL11,M~u,f!1g2YL21,M~u,f!,
~37a!

g15A~L2M11!~L1M11!

~2L11!~2L13!
, ~37b!

g25A ~L2M !~L1M !

~2L21!~2L11!
, ~37c!

1

4pE YLM~uk ,fk!

11 iq• lk
dVk5 i L f L~ql !YLM~uq ,fq!, ~38!

and
a
a-

E
0

2p

eiqr0e2 iM f0 df05E
0

2p

eiq'r 0 cos(f02fq)e2 iM f0 df0

52p i MJM~q'r 0!e2 iM fq, ~39!

whereq' is projection ofq5qz1q' in the plane of orifice
and JM(z) is the Bessel function of the first kind. For th
function f L(ql) in Eq. ~38! we obtain

f L~ql !5~21!LE
0

`

e2xj L~qlx! dx5
~2 i !2L

iql
QLS 1

iql D ,

~40!

where j L(x) is spherical Bessel function andQL(x) is Leg-
endre function of the second kind. Explicit formulas f
f L(x) are

f 0~x!5
arctanx

x
, ~41a!

f 1~x!5
2x1arctanx

x2
, ~41b!

f 2~x!5
23x1~x213!arctanx

2x3
, ~41c!

f 3~x!5
2~4/3!x325x1~513x2!arctanx

2x4
, ~41d!

f 4~x!5
2~55/3!x3235x1~35130x213x4!arctanx

8x5
.

~41e!

The final form of the integral equation forsLM(r 0) in the
expansion ofs(k,r0) is

4lAp

3
dL1dM05 (

L8M8
cLM ,L8M8dMM8sL8M8~r 0!

14 (
L8M8

E
0

a

r 08 dr08 KLM ,L8M8~r 0 ,r 08!sL8M8~r 08!,

~42!

where the kernelKLM ,L8M8(r 0 ,r 08) is given by

KLM ,L8M8~r 0 ,r 08!5 i M82M~21!M1M8

3E
0

`

q2 dqE
0

p

sinuq duq

3
ql2f L8~ql !YL8M8~uq!

ql2arctanql

3@ i L81L11~21!L11g1f L11~ql !

3YL11,M~uq!1 i L81L21

~21!L21g2f L21~ql !

3YL21,M~uq!#JM~qr0 sinuq!

3JM8~qr08 sinuq!. ~43!

The kernel~43! does not depend onfq so that only the part
of spherical harmonic dependent onuq , YLM(uq), is inte-
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grated~which is, up to a factor, associated Legendre poly
mial!. The kernel differs from zero only ifL1M has parity
different from L81M 8. This follows from the fact that the
kernel is the expectation value

KLM ,L8M8~r 0 ,r 08!

5^LMM u2l cosu G~k,r0 ;k8,r08!uL8M 8M 8&, ~44!

^ukfkf0uLMM &5YLM~uk ,fk!e
2 iM f0 ~45!

of an operator which is odd under inversion. The basis fu
tions uLMM & have parity given by

PuLMM &5~21!L1MuLMM &. ~46!

Exactly under this condition the kernel becomes a real qu
tity. This means that the nonzerosLM(r 0) are real with the
property

sLM~r 0!5~21!MsL,2M~r 0!, ~47!

ensuring thats(k,r0) is real. The conductance is determin
by the (L,M )5(0,0) functions00(r 0). The nonzerosLM(r 0)
coupled to it are selected by the condition thatL1M is even.
This follows froms(k,r0) being even under reflection in th
plane of orifice. Under this operation, cosuk˜2cosuk , but
fk , f0 are unchanged; this means that the expansion~35!
contains only terms withL1M even.

The first term on the right hand side in Eq.~36! is deter-
mined by the matrix element

cLM ,L8M85E duk dfk sinukYLM* ~uk ,fk!

3YL8M8~uk ,fk!sgn~cosuk!, ~48!

which is expectation value of sgn (cosuk) in the basis of
spherical harmonics. It is different from zero ifM5M 8 and
L2L8 is odd. The states must be of different parity, as
termined byL, because sgn (cosuk) is odd under inversion.

The system of equations~42! can be solved for all pos
sible ratios ofl /a by either discretizing the variabler 0 or by
expandingsL8M8(r 0) in terms of the polynomials inr 0

sLM~r 0!5(
n

anLMpn~r 0!, ~49!
.

th
-

-

n-

-

and performing integrations numerically. The polynomia
pn(r 0)5( i 50

n ci r 0
i are orthogonal with respect to the scal

product

E
0

a

r 0 dr0 pn~r 0!pm~r 0!5dnm . ~50!

The first three polynomials are

p0~r 0!5
A2

a
, ~51a!

p1~r 0!5
6r 024

aA9a2216a19
, ~51b!

p2~r 0!5
10A6@r 0

22~6/5!r 01~3/10!#

aA100a42288a31306a22144a127
. ~51c!

The system of integral equations~42! then becomes a matrix
equation for eithersLM(r 0) at discretizedr 0 or expansion
coefficientsanLM . The latter version is

4laAp

6
dL1dM0dn05(

L8
cLM ,L8M anL8M

14 (
n8L8M8

KnLM
n8L8M8an8L8M8 , ~52a!

KnLM
n8L8M85 i M82M~21!M1M8E

0

`

q2 dqE
0

p

sinuq duq

3
ql2f L8~ql !YL8M8~uq!

ql2arctanql
j M
n ~qa sinuq!

3 j M8
n8 ~qa sinuq!

3@ i L81L11~21!L11g1f L11~ql !YL11,M~uq!

1 i L81L21~21!L21g2f L21~ql !YL21,M~uq!#,

~52b!

j M
n ~qa sinuq!5E

0

a

r 0 dr0 pn~r 0!JM~qr0 sinuq!,

~52c!

which simplifies using the following result:
j M
n ~qa sinuq!5(

i 50

n

ci

a21M1 i~q sinuq!M
1F2@11M /21 i /2;21M /21 i /2,11M ;2~1/4!~qa sinuq!2#

211M~11M /21 i /2!G~11M !
, ~53!
where 1F2(a;b1 ,b2 ;z) is a hypergeometric function
The lowest order approximation fors(k,r0) is obtained
by truncating the expansion inpn(r 0) to zeroth order
~i.e., constant—which is the space dependence
the Sharvin limit! and the expansion inYLM(uk ,fk) to
orderL50. Then the conductance is determined only by
constanta000 following trivially from Eq. ~52!
of

e

Glo5
N~0!le2a2p

t~31K010
000!

, ~54!

where the lowest order part of the kernelK010
000 depends on

l /a,
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K010
0005

4l

p E
0

`

dq E
0

p

duq

arctanql

ql2arctanql

3S 23ql1~q2l 213!arctanql

2q3l 3
~123 cos2uq!

1
arctanql

ql D @J1~qa sinuq!#2

sinuq
. ~55!

Further corrections are obtained by solving the matrix eq
tion ~52! with larger truncated basis set. The matrix eleme

KnLM
n8L8M8 ~52b! are tedious to compute, but the conductan

converges rapidly for largen andL. On the other hand, the
matrix elementscLM ,L8M8 ~48! are easy to compute and th
conductance converges slowly in the ballistic limit det
mined by these matrix elements. We keep only low or

matrix elementsKnLM
n8L8M8 but go to high order incLM ,L8M8 .

In practice we find that for thec matrix Lmax512 is
sufficient, whereas for theK matrix the approximation
Lmax52, nmax52 gives convergence to 1%. The conductan
as a function ofl /a is shown on Fig. 3. It is normalized
to the Sharvin conductance, i.e., the limitl @a, for
which

G~k,r ;k8,r 8!˜0,

s~k,r !52u l kzu. ~56!

In the opposite~Maxwell! limit, when l !a, we have

ql

ql2arctanql
5

3

~ql !2
19/51o@~ql !2#, ~57a!

G~k,r ;k8,r 8!˜
3

32p4E dq
eiq•(r2r8)

~ql !2
5

3

16p2l 2ur2r 8u
,

~57b!

which is the standard Green’s function for the Poisson eq
tion. The dependence of the full Green’s function~30! on k
vector is reflection of nonlocality. The conductance in t
transition region from Maxwell to Sharvin limi
can be compared with the naive interpolation formula wh
approximates resistance of the orifice by the sum of Sha
and Maxwell resistances

FIG. 3. The conductanceG (L52,n52), normalized by the
Sharvin conductanceGS ~2!, plotted against the ratiol /a. It is com-
pared to the naive interpolation formulaGI ~58!, and the plausible
interpolation formulaG0 ~60!.
-
s

e

-
r

e

a-

h
in

1

GI
5RI5RSS 11

3p

8

a

l D . ~58!

Somewhat unexpectedly, the naive interpolation formulaGI
deviates from our result forG at most by 11% whenl /a
˜1 as shown on Fig. 3. We can also cast our lowest or
approximation for the conductance~54! in an analogous
form as Eq.~58!

1

Glo
5RSS 3

4
1

32

3p2
g

3p

8

a

l D . ~59!

The numerical coefficients in Eq.~59! are not accurate in this
simplest approximation. Replacement of 3/4 by 1 a
32/(3p2) by 1 yields correct limiting values of the conduc
tance and leads to a plausible interpolation formula. It diff
from Eq. ~58! by the introduction of a factorg which mul-
tiplies the Maxwell resistance

1

G0
5RSS 11g

3p

8

a

l D , ~60a!

g5
p l

16a
K010

000. ~60b!

This formula is compared toG and GI on Fig. 3. It differs
from our most accurate calculation ofG by less than 1%.
Therefore, for all practical purposes it can be used as
exact expression for the conductance in this geometry, an
is the main outcome of our work. The factorg is of order
one and depends on the ratiol /a as shown on Fig. 2. We als
plot on Fig. 2 Wexler’s4 previous variational calculation
gWex.

In conclusion, we have calculated the conductance of
orifice in all transport regimes, from the diffusive to th
ballistic. The altered version~60! of the simplest approxi-
mate solution of our theory~54! is already accurate to 1%
The naive interpolation formula~sum of Maxwell and Shar-
vin resistances! agrees to 11% with our accurate answ
Further corrections converge rapidly to an exact result. O
solution is not variational and therefore we cannot test
stability with respect to the anisotropy in a simple mann
This analysis is of interest in any situation where the geo
etry of the sample can enhance the resistivity while the ph
ics of conduction stays the same as in the bulk material. O
example is provided by some granular metals above the
colation threshold. In this system the grains can touch i
way which provides thin, narrow and twisting conductio
paths12 so that there is no macroscopic anisotropy induced
the special arrangement of the grains. The microstructur
this random resistor network entails the geometrical ren
malization of resistivity. It is the origin of the anomalous
high resistivity scale found in these materials. The res
tances of the contacts between the grains resemble the
of resistances we have studied, after taking into account
correction to the finite size of the grains on each side of
contact.
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