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Level correlations in disordered metals: The replicas model
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We compute energy-level correlations in weakly disordered metallic grains using the fermionic replica
method. We use the standards-model approach and show that nontrivial saddle points, which break replica
symmetry, must be included in the calculation to reproduce the oscillatory behavior of the correlations. We
calculate the correlation functions in all three classical ensembles Gaussian-orthogonal, -unitary, and
-sympletic, including the finite-dimensional gradient corrections. Our results coincide with those obtained by
the supersymmetrics model and the semiclassical trace formula.@S0163-1829~99!01230-8#
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I. INTRODUCTION

The statistics of energy levels of electrons in disorde
metals has attracted much attention in the past deca
Gor’kov and Eliashberg1 conjectured that it obeys Wigner
Dyson laws derived for random matrices.2 This conjecture
received a strong support almost 20 years later when Efe3

introduced the supersymmetric~SUSY! s model. It appears
that the zero-dimensional version of thes model gives ex-
actly the random matrix theory statistics of Wigner a
Dyson. The use of the SUSY formulation seemed cruc
since the alternative replica theory,4,5 when applied to the
pure random matrix problem, seemed unable to reprod
the correct oscillatory behavior of the level correlati
function.6 Later Altshuler and Shklovskii7 realized that in a
finite-dimensional system, the correlation function is mo
fied with respect to the universal random matrix level sta
tics: this modification appears when the energy differenc
of the order of the Thouless energy,Ec ~equal to\ over the
diffusion time through the sample!, and the corrections de
pend on the dimensionalityd, conductanceg, and shape of
the sample. They used diagrammatic perturbation theory
consequently could trace only the modifications of t
nonoscillatory part of the correlation functions. Finite dime
sional modifications of the oscillatory part by the gradie
terms were calculated in Ref. 8, and more generally in R
9, using the SUSY technique. The result were subseque
reproduced using a semiclassical trace formula approach10 It
followed from these works that a power-law decay of t
oscillatory correlations crosses over to an exponential de
at the scaleEc . The precise behavior of this crossover d
pends both on the dimensionality and the symmetry clas
problem. The essential feature of these results is thatall non-
universal terms may be expressed through the spectral d
minant of a single classical differential operator. For the c
of a disordered metal grain it turns out to be the diffusi
operator in the corresponding geometry.

In a recent paper11 we have shown how the fermioni
replica method may be used to calculate the level statistic
PRB 600163-1829/99/60~6!/3944~11!/$15.00
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the Gaussian unitary ensemble~GUE!. The calculations of
Ref. 11 were specific to the GUE and essentially used
Itzykson-Zuber12 integral for the unitary group. The purpos
of the present paper is to present a more general approa
the fermionic replica calculations of the level statistic
which is not based on the peculiarities of the unitary e
semble, and uses rather the standard path of thes model. We
shall present the calculations of the level correlations in d
ordered metals for all three classical symmetry ensemb
orthogonal~GOE!, unitary, and symplectic~GSE!. We also
include the effects of gradient terms on the level statis
reproducing exactly the results of Refs. 8–10. Our c
leagues I. V. Yurkevich and I. V. Lerner have independen
been developing a nonlinears-model approach with replica
symmetry, using a complementary approach to ours.13

Our strategy is as follows: we deal with the standard f
mionic replicas model5 with an action written in terms of
the (n11n2)3(n11n2)-dimensionalQ̂ matrix, wheren1,2
˜0 are numbers of replicas. The symmetry group of
action G(n11n2) is broken down to the exactG(n1)
3G(n2) by a finite-energy differencev5e12e2 of the cor-
relation function (G is a symmetry group of theQ̂ matrix,
which depends on a symmetry class of the problem!. Based
on the experience of the GUE solution,11 we consider all
possible saddle points of thes model both replica symmetric
and replica nonsymmetric. The latter spontaneously br
the exact symmetry of each sub-blockG(n) down toG(p)
3G(n2p) with 0<p<n ~here n5n1 ,n2 and p5p1 ,p2).
The corresponding manifold of the Goldstone modes has
exact degeneracy for space-independent (q50) modes. The
contribution of such saddle-point manifolds@the coset space
G(n)/G(p)G(n2p)] to the partition~generating! function
is proportional to their volume. The volumes of the cos
spaces play a central role in our analysis, since after
analytical continuationn˜0 they determine which of the
saddle points contribute to the generating function. It tu
out that in addition to the replica-symmetric~perturbative!
saddle point (p50) there is only one additional saddle-poi
manifold ~in each block! with p51 in the GOE and GUE
cases and two manifoldsp51 and p52 in the GSE case
3944 ©1999 The American Physical Society
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PRB 60 3945LEVEL CORRELATIONS IN DISORDERED METALS: . . .
These replica-nonsymmetric saddle points give rise to an
cillatory part of the correlation function~since their action
remains finite, and imaginary, in then˜0 limit!. One thus
gets the correct oscillatory behaviors of the correlations, w
one oscillation frequency in the GOE and GUE and t
oscillation frequencies in the GSE. One should notice t
the effect of the replica symmetry-breaking saddle points
not limited to the correlation of levels. In the random mat
limit, they are known to describe the finite-size oscillato
correction to the density of states inside the asymptotic s
port of the spectrum,11 and the exponentially small tail
outside.14

We then calculate the fluctuations around each of
saddle-point manifolds in the Gaussian approximation. T
is legitimate at relatively large energyv@D and for a good
metal, g[Ec /D@1 (D is the mean level spacing andg is
dimensionless conductance!. No relation betweenv andEc
is assumed. As a result, one obtains the energy depen
amplitudes of the oscillatory parts, as well as those of
smooth parts, of the correlation functions, in the asympto
regimev@D. For small energy,v!Ec , the correlation co-
incides with the random matrix theory predictions, where
for larger energyv.Ec it gets modified in the nonuniversa
~dimensionality andg dependent! way in agreement with
Refs. 8–10.

The structure of the paper is as follows. In Sec. II w
introduce notations and present a general discussion o
matrix field theory which allows to compute the energy-lev
correlations. We compute the saddle points of this action
the quadratic fluctuations around them. We also commen
the connection of our approach to the usual nonlineas
model. In Sec. III we apply the theory to the three classi
ensembles. Finally in Sec. IV we briefly discuss the resu
their range of validity, and the possible further develo
ments. The Appendix contains the computations of the v
umes of the relevant coset spaces, for each of the three
metry classes.

II. THE REPLICA MATRIX MODEL AND ITS SADDLE
POINTS

A. Preliminaries

We shall discuss the correlation functions of the dens
of states~DOS!, which is defined as

n~e![V21 Tr d~m1e2H !, ~1!

whereV is the volume andH5H01Udis is the Hamiltonian
of the system. HereH0 is the Hamiltonian of the correspond
ing regular ~clean! system, andUdis is a random disorde
potential. We are interested in the large energy behavior
we thus measure all energies from the large positive che
cal potentialm: the deviatione from m is supposed to scal
as the mean level spacingD.

The retarded/advanced Green functionsG6(e) are de-
fined as

G6~e!5~m1e2H6 ih!21 ~2!

with h infinitesimal. The density of statesn(e) is thus equal
to the smallh limit of „G2(e)2G1(e)…/(2p i ). The average
DOS at large enoughm is a featureless smooth function
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which we shall approximate by a constant,^n(e)&
[(DV)21. Hereafter the angular brackets stand for the
eraging over the ensemble of random disorder potenti
which we assume to be Gaussian and short-range corre
with zero mean and a variance given by

^Udis~r !Udis~r 8!&5~2pnt!21d~r 2r 8!, ~3!

wheret is an elastic scattering mean free time.
The main object of our study is the connected two-po

correlation function of energy levels, defined as

R~e1 ,e2![n22^n~e1!n~e2!&21. ~4!

Using the fact that̂ G6G6&5^G6&^G6&52(pVn)2, one
finds

R~e1 ,e2!5
1

2p2
@ReS~e1 ,e2!2p2#;

S~e1 ,e2![D2^G1~e1!G2~e2!&. ~5!

With the replica trick the two-point functionS may be writ-
ten as5,6,11

S~e1 ,e2!5 lim
n1,2˜0

D2

n1n2

]2

]e1]e2
^Z(n1 ,n2)~Ê!&, ~6!

where we have introduced the diagonal (n11n2)3(n1
1n2) matrix Eji 5d j i Ej with

Ej5H m1e11 ih j 51, . . . ,n1 ;

m1e22 ih j 5n111, . . . ,n11n2 .
~7!

The generating functionZ(n1 ,n2) may be written as a func
tional integral over 2(n11n2) fermionic fields. Getting from
such a fermionic vector field theory to a matrix formulatio
is a standard procedure5,6 which we shall not repeat in detai
Performing the Gaussian averaging overUdis , introducing a
(n11n2)3(n11n2) Hubbard-Stratonovich matrix field
Q̂(r ) and integrating finally over the fermionic degrees
freedom, one obtains for the generating function5,6

Z(n1 ,n2)~Ê!5E d@Q̂#exp$2A@Q̂,Ê#%, ~8!

where the actionA@Q̂,Ê# is given by

A@Q̂,Ê#5
pn

4t
Tr Q̂22Tr lnS Ê1

¹2

2m
1

i

2t
Q̂D . ~9!

The symmetry ofQ̂ and the integration measured@Q̂# de-
pend on the symmetry class of the problem and will be d
cussed in Sec. III separately for each ensemble. The t
operation includes both the replica indices and the spa
variables.

B. Saddle points

We shall evaluate the integral in Eq.~8! by the saddle-
point method, and checka posteriorithat such an evaluation
is indeed justified in the limit of a weak disorder. A spa
independent solution of the saddle-point equation satisfie
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Q̂s.p.5
i

pn (
p

S Ê2
p2

2m
11

i

2t
Q̂s.p.D 21

, ~10!

where the sum overp runs over the set of eigenmodes of t
pure HamiltonianH0 with some appropriate boundary co
ditions. The saddle-point matrixQ̂s.p. may be diagonalized

by a transformation:Q̂s.p.5U21L̂U, whereU is an element
of the symmetry groupG of the problem,UPG(n11n2),

and L̂ is diagonal,L j i 5d j i l j . The saddle-point Eq.~10!
then implies thatU takes the form

U5S V1 0

0 V2
D , V1PG~n1!, V2PG~n2!, ~11!

while each eigenvalue is a solution of the equation
n

.

l j5
i

pn (
p

1

Ej2 ~p2/2m! 1 ~ i /2t! l j

'sgn~l j !. ~12!

Here we have used the standard approximation, valid at la
mt, where one substitutes the sum over modes by an inte
over ep5p2/2m2m, and neglects variations ofn(e) in a
vicinity of e50. We thus find that the eigenvalues ofQ̂s.p.
take the values

l j561, j P1, . . . ,n11n2 . ~13!

There exist (n111)(n211) saddle-point manifolds. Eac
such manifoldM(p1p2) may be indexed by two integersp1

P$0, . . . ,n1% and p2P$0, . . . ,n2%, and is generated by th
block-diagonal symmetry transformationsU of the type~11!
applied to the diagonal matrix
ry
~14!

In order to scan the manifoldM(p1p2) in a nonredundant way, one must restrict the symmetry transformationsU to the coset
space

M(p1p2)5
G~n1!

G~p1!G~n12p1!
3

G~n2!

G~p2!G~n22p2!
. ~15!

It is useful to define the free propagator which is the diagonal matrix with eigenvalues

Gj j [S Ej1
¹2

2m
1

i

2t
l j D 21

. ~16!

The eigenvalues take four different values depending on the value of the indexj . One can characterize them by two bina
indices (a,s), where a51,2 designates two replica blocks with the energiesea and s5sgn(l j ). For each energy (a
51,2), we have a retarded and an advanced propagator,Ga

6 , defined by

Ga
6[S m1

¹2

2m
1ea6

i

2t D 21

; a51,2. ~17!

In these notations the free propagator takes the form

~18!
to
nt

it
C. Saddle-point action

On the manifoldM(p1p2) , the saddle-point action is give
by

A(p1p2)5
pn

4t
Tr L̂ (p1p2)

2 2Tr lnS Ê1
¹2

2m
1

i

2t
L̂ (p1p2)D ,

~19!

where the trace involves both space and replica indices
terms of the free propagatorsGa

s defined in Eq.~17! it reads

A(p1p2)5
p~n11n2!

4tD
2p1Tr ln G1

22~n12p1!Tr ln G1
1

2p2Tr ln G2
12~n22p2!Tr ln G2

2 , ~20!
In

where the traces involve only spatial variables. Expanding
the first order intea!1, and omitting unessential consta
factors, one finds

Tr ln Ga
6'7 ipea /D. ~21!

Finally, neglecting all constants, which vanish in the lim
n1,2˜0, one obtains for the saddle-point action

A(p1p2)5
ip

D
~n1e12n2e222p1e112p2e2!. ~22!

D. Quadratic fluctuations

Let us expand around the saddle pointQ̂s.p.

5U21L̂ (p1p2)U, writing Q̂(r )5Q̂s.p.1U21dQ̂(r )U. The
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action expanded to the second order is diagonalized in te
of the Fourier componentsdQi j (q) of the fluctuations:

A@Q̂,Ê#'A(p1p2)1
1

2 (
i , j 51

n11n2

(
q

Mi j ~q!dQi j ~q!dQji ~2q!,

~23!

where the eigenvalue of the eigenmode (i , j ,q), Mi j (q), is
given by

Mi j ~q!5
p

2tD
2

1

4t2 (
p

Gii S p1
q

2DGj j S p2
q

2D . ~24!

There exista priori sixteen different fluctuation eigenvalue
for each momentum modeq. It is convenient to index them
according to the binary decomposition introduced after
~16!. Each indexj P1, . . . ,n1n8is associated with a pair o
indices (a,s), wherea51,2 characterizes the energy,ea ,
and s5sgn(l j ) characterizes the retarded/advanced na
of the propagator. The 16 different fluctuation eigenvalu
are then

M (as)(a8s8)~q!5
p

2tD
2

1

4t2 (
p

Ga
sS p1

q

2DGa8
s8S p2

q

2D .

~25!

The corresponding momentum sums are easily compu
resulting in

(
p

Ga
6S p1

q

2DGa8
6 S p2

q

2D'0;

(
p

Ga
6S p1

q

2DGa8
7 S p2

q

2D
'

2pt

D
@12Dq2t6 i ~ea2ea8!t#. ~26!

In the last expression we have expanded the sum to
order in the small parametersDq2t!1 and ue12e2ut!1
where D is the diffusion constant defined asD
52mt/(md)

We obtain eventually the following list of eigenvalues f
each spatial modeq:

• Whens5s8 the eigenvalue is

M (as)(a8s)5
p

2D

1

t
. ~27!

We shall call the corresponding modes ‘‘massive’’ and d
note their number for each spatial modeq asNm .
s

.

re
s

d,
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-

• WhensÞs8 andaÞa8 the eigenvalues are

M (11)(22)5M (22)(11)5
p

2D
~Dq22 iv!

~28!

M (12)(21)5M (21)(12)5
p

2D
~Dq21 iv!,

wherev5e12e2. These are standard diffusive modes as
ciated with theG(n11n2) symmetry of the action, which is
explicitly broken by a nonzerov. We shall call them ‘‘soft’’
modes and denote their number for each spatial modeq as
Ns2 andNs1 correspondingly.

• WhensÞs8 anda5a8 the eigenvalue is

M (a1)(a2)5M (a2)(a1)5
p

2D
Dq2. ~29!

These are the Goldstone modes associated with the sp
neous breaking of the exactG(n1)3G(n2) symmetry by
replica nonsymmetric saddle points. They exist only for t
manifolds with nonzerop1 or p2. We shall call the corre-
sponding modes ‘‘zero’’ modes and denote their number
each spatial modeq asNz .

Such a separation of modes into massive, soft, and ze
well justified in the limit whereD!v; Dq2!1/t. This
specifies the regime where our methods and results are
plicable. The number of modes depends on the numbe
independent degrees of freedom of theQ̂ matrix and should
be specified separately for each of the ensembles. We
perform now the Gaussian integrals overdQ̂ fluctuations.
Each eigenmode with eigenvalueM (as)(a8s8)(q) contributes
a factor

A p

M (as)(a8s8)~q!
, ~30!

to the generating function̂Z(n1 ,n2)&. The exception is the
zero mode in the space independent,q50, sector.15 This
mode has identically zero mass, originating from the ex
degeneracy of theM(p1p2) saddle-point manifold. Therefore

in the q50 sector the integral over the zero mode results
the volumeV (n1n2)

(p1p2) of the coset space~15!. These volumes

are calculated in the Appendix for each of the three class
symmetry ensembles.

E. Generating function

Finally putting all the factors together one finds for th
average generating function
^Z(n1 ,n2)~Ê!&5 (
p1 ,p250

n1 ,n2

e2A(p1 ,p2)V (n1n2)
(p1p2)S 2D

iv DNs1/2S 2D

2 iv DNs2/2

~2Dt!Nm/2

3 )
qÞ0

F S 2D

Dq2D Nz/2S 2D

Dq21 iv
D Ns1/2S 2D

Dq22 iv
D Ns2/2

~2Dt!Nm/2G , ~31!
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where the saddle-point action,A(p1 ,p2) is given by Eq.~22!.
The first line in this expression represents the saddle-p
action and the fluctuations in theq50 sector, whereas th
second line originates from the Gaussian fluctuations oq
Þ0 modes. In Sec. III we shall evaluate the coset sp
volumes, V (n1n2)

(p1p2) and the number of modes,Nz,s,m

5Nz,s,m(p1 ,p2), for each of the classical symmetry class
Hereafter we shall putD51, implying that all energies are
measured in units of the mean level spacing,D.

F. The nonlinear sigma model

Let us briefly comment on the connection to the us
formulation of the problem in terms of the nonlinears
model. For simplicity we discuss only the unitary case. T
basically amounts to a reorganization of the computation
did above, which uses the strong hierarchy of masses~the
massive modes are much more massive than the soft o!.
Assuming first that 1/(tD) is large, one finds that the sadd
points of Eq.~8! are given by the set of matrices withQ̂2

51. This set is actually an ensemble ofn11n211 discon-
nected manifoldsSr , corresponding to all possible values
r 5p12p2 ~or equivalently of the trace ofQ̂). It is easily
seen that all the modes which move away from these m
folds are massive, with a massp/(2Dt). These massive
modes correspond to perturbing the matrixQ̂ by a dQ̂ such
that Q̂dQ̂1dQ̂Q̂Þ0, and the number of such massiv
modes is:n1

21n2
212r (r 2n11n2). Performing the integra-

tion over the massive modes one can write~up to irrelevant
constants!

Z(n1 ,n2)~Ê!. (
r 52n2

n1 SA2Dt

p D [n1
2
1n2

2
12r (r 2n11n2)]K

3E
Sr

d@Q̂#exp$2A@Q̂,Ê#%, ~32!

whereK is the number of differentq modes. Notice that the
manifold Sr is characterized byQ̂251, TrQ̂5n12n222r .

It thus contains all matrices of the typeQ̂5U21L̂ (p1 ,p2)U

with UPG(n11n2), andL̂ (p1 ,p2) defined in Eq.~14!, with

p12p25r .
Expanding the action for slow spatial variations ofQ̂ on

the manifoldSr , one gets to first order inv the standard
sigma model:

Z(n1 ,n2)~Ê!. (
r 52n2

n1 SA2Dt

p D [n1
2
1n2

2
12r (r 2n11n2)]K

3E
Sr

d@Q̂#expH 2
pnD

4
~¹Q̂!2

2
ipnv

2
Tr ~L̂Q̂!J , ~33!

whereL̂[L̂ (0,0) .
For largev, one can study the sigma model by a sadd

point approximation. The generic variations around a po
nt

e

.

l

s
e

s
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Q̂ of Sr , staying onSr , are of the typedQ̂5@Q̂,W#, with an
arbitrary matrixW(r ). The stationarity of the action impose

Tr(L̂@Q̂,W#)50, which implies that the saddle pointsQ̂s.p.

commute with L̂. One easily deduces that, onSr , the
saddle-point submanifolds are exactly the submanifo
Mp1 ,p2

with p12p25r . This approach basically reorganize

our previous computation by grouping together all the s

manifolds with a fixed value of TrQ̂ ~or p12p2). As we
shall see below, forn1 ,n2˜0, the only saddle points which
contribute to leading order inDt are the ones withp1

5p2 , which are all located on the same manifold withr
50. Hence to the leading order one can approximate
generating function in Eq.~33! by an integral over the single
manifoldS0 , which is what is usually done in thes-model
approach. We control this result well at largev because we
can do the sums over thep1 , p2 and control the analytic
continuation. But we believe that it is probably correct al
for any v. The reason is the following: in Eq.~33! one may
extend the sum overr to a sum going from2` to `, be-
cause whenr is outside of the interval$2n2 , . . . ,n1% the
volume of the integration space vanishes~this can be
checked, e.g., in the limitv˜0). One may then take the
limit n1 ,n2˜0 at fixed r . It is clear that the leading term
comes fromr 50, which minimizes the number of massiv
modes. So the usuals-model formulation, with an integra
over S0 only and the action given by Eq.~33!, seems to be
correct. However, one must keep in mind that, on this ma
fold there are, for largev, several saddle-point subman
folds, which lead to the oscillations in the correlation fun
tions. In the random matrix case, at least~without the
gradient term!, one may also try to perform the integratio
over the entire manifoldS0 , without resorting to the saddle
point method. If the nonlinears model, formulated onS0
only, is indeed correct, this should give the exact result,
restricted tov@1. This procedure was attempted in Ref.
but the analytical continuation of the expressions emerg
from these calculations still remains to be studied.

III. CORRELATION FUNCTIONS

A. Unitary ensemble

In the presence of a weak magnetic field the Hubba
Stratonovich matrixQ̂ is Hermitian.5 The corresponding
symmetry group is the unitary group,G5U. The measure of
the functional integral over Hermitian matricesQi j (q) in Eq.
~8! is given by

d@Q̂#5)
q

F)
j

dQj j ~q!)
i , j

d ReQi j ~q!d Im Qi j ~q!G .
~34!

There are (n11n2)2 degrees of freedom for each spati
modeq. Looking at the classification of modes, Eqs.~27!–
~29!, one finds that the number of massive, soft, and z
modes is
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Nm5p1
21~n12p1!21p2

21~n22p2!212p1~n22p2!

12p2~n12p1!

5n1
21n2

212~p12p2!~p12p22n11n2!;
~35!

Ns152p1p2 ;

Ns252~n12p1!~n22p2!;

Nz52p1~n12p1!12p2~n22p2!,

which add up to (n11n2)2 as they should. Notice that th
number of zero modesNz coincides with the number o
dimensions of the degenerate coset space man
U(n1) / „U(p1)U(n1 2 p1)…3 U(n2) / „U(p2)U(n2 2 p2)….
The volume of this coset space is calculated in the Appen
and is given by

V (n1n2)
(p1p2)

5~4p!p1(n12p1)1p2(n22p2) Fn1

p1 Fn2

p2, ~36!

where

Fn
p[

G~11n!

G~11p!G~11n2p! )
j 51

p
G~11 j !

G@11~n2 j 11!#
.

~37!

SinceFn
p.n50 the sums overp1 andp2 in Eq. ~31! may be

extended up to infinity. The resulting expression may be t
continued analytically ton1,2˜0, using the procedure whic
was detailed in our previous paper.11 The analytical continu-
ation, n˜0 at fixedp, of the Fn

p symbol, Eq.~37!, shows
that

Fn˜0
0 51; Fn˜0

1 5n; Fn˜0
p>2 5O~np!. ~38!

Therefore only the terms withp1,250,1 may contribute to
the correlation functionS, Eq. ~6!. The number of massive
modes, in the limitn1,2˜0 at fixed p1 ,p2 , is Nm˜2(p1
2p2)2. Therefore the terms withp1Þp2 can be neglected to
leading order in the parameterDt!1. One thus ends up with
the two contribution to the generating function:p15p250
andp15p251.

The first piece withp15p250 is the usual replica sym
metric contribution. Using Eqs.~31!, ~35!, and~38! one finds

^Z(n1 ,n2)~Ê!&up15p2505ep i (n2e22n1e1))
q

S 1

Dq22 iv
D n1n2

.

~39!

Using Eq.~6!, one finds for the corresponding contribution
the correlation function

S~v!up15p2505p21(
q

1

~Dq22 iv!2
. ~40!

This is the well-known perturbative contribution.7 The rep-
lica nonsymmetric manifold withp15p251 gives

^Z(n1 ,n2)~Ê!&up15p2515n1n2

e2p iv

4p2v2 )
qÞ0

S ~Dq2!2

~Dq2!21v2D .

~41!
ld

ix

n

Differentiating overe1 ande2 according to Eq.~6! and keep-
ing only the leading contribution inv/D@1, one obtains for
the corresponding contribution to the correlation function

S~v!up15p2515
e2p iv

v2
D~v!, ~42!

where we have introduced the spectral determinant of
diffusion operatorD(v) defined as

D~v![)
qÞ0

F11S v

Dq2D 2G21

. ~43!

Finally using Eq.~5! one finds

R~v!5
1

2p2
Re(

q

1

~Dq22 iv!2
1

cos~2pv!

2p2v2
D~v!,

~44!

in agreement with Refs. 9 and 10.
One may wonder why only the saddle points withp

50,1 contribute to the result, while seemingly equivale
ones withp5n,n21 do not. Indeed, for integern all the
expressions@e.g., Eq.~31!# are symmetric with respect to th
interchangep↔n2p. However, after the analytical continu
ation n˜0 this symmetry appears to be broken. After e
tending summations in Eq.~31! up to infinity and taking
noninteger n, one faces highly divergent series, whic
should be regularized in a proper way. The way suggeste
Ref. 11 is to consider an integral equation for a functi
g(z,n)5(p50

n Fn
pzp and study its solutions for small nonin

tegern. The symmetryp↔n2p would manifest itself in a
simple relation betweeng(z,n) andg(1/z,n). As was argued
in Ref. 11, the solution of the integral equation for nonin
ger n exhibits a singularity at the unit circleuzu51. As a
result the initial series Eq.~31! is an asymptotic representa
tion of the true solution only foruzu,1, which breaks the
symmetryp↔n2p. Note that it is the existence of a positiv
infinitesimal imaginary part ofv @cf. Eq. ~7!# which dictates
that in our caseuzu,1. For a negative infinitesimal imagi
nary part ofv this procedure would select instead the sad
points withp5n,n21.

B. Orthogonal ensemble

If the time-reversal symmetry is not broken the Hubba
Stratonovich matrix Q̂ appears to be a self-dual rea
quaternion matrix.5 This means that each elementQi j may be
written as

Qi j 5 (
a50

3

Qi j
a ta ~45!

with real Qi j
a , where

t05S 1 0

0 1D ; t15S 0 2 i

2 i 0 D ;

t25S 0 21

1 0 D ; t35S 2 i 0

0 i D . ~46!
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Moreover,Qji 5(Qi j )
†, where conjugation operation acts o

the t matrices. Such matrices may be diagonalized by ro
tions from thesymplecticgroup,2 G5Sp(n11n2), which is
the relevant symmetry group for the GOE. Diagonal e
ments of theQ̂ matrix, Qii are characterized by a single re
number Qii

0 , whereas off-diagonal onesQi , j are param-
etrized by four numbers,Qi j

a , a50, . . . ,3.Altogether there
are 2(n11n2)22(n11n2) degrees of freedom for each sp
tial modeq. The measure of the functional integral in Eq.~8!
is given by

d@Q̂#5)
q

F)
j

dQj j
0 ~q!)

i , j
)
a50

3

dQi j
a ~q!G . ~47!

One easily finds that the number of massive, soft, and z
modes is

Nm52p1
22p112~n12p1!22~n12p1!12p2

22p2

12~n22p2!22~n22p2!

14p1~n22p2!14p2~n12p1!

52n1
212n2

22~n11n2!14~p12p2!~p12p22n11n2!;

Ns154p1p2 ;

Ns254~n12p1!~n22p2!;

Nz54p1~n12p1!14p2~n22p2!, ~48!

which add up to 2(n11n2)22(n11n2). The number of zero
modesNz coincides with the number of dimensions of th
degenerate coset space manifoldSp(n1)/@Sp(p1)Sp(n1
2p1)#3Sp(n2)/@Sp(p2)Sp(n22p2)#. The volume of this
coset space is calculated in the appendix and is given b

V (n1n2)
(p1p2)

5~4p!2p1(n12p1)12p2(n22p2) En1

p1 En2

p2, ~49!

where

En
p[

G~11n!

G~11p!G~11n2p! )
j 51

p
G~112 j !

G@112~n2 j 11!#
.

~50!

SinceEn
p.n50 the sums overp1 andp2 in Eq. ~31! may be

extended up to infinity. The resulting expression may be t
continued analytically ton1,2˜0 ~cf. Ref. 11!. In the limit
n˜0 theEn

p symbol, Eq.~50!, is given by

En˜0
0 51; En˜0

1 52n; En˜0
p>2 5O~np!. ~51!

Therefore only the terms withp1,250,1 may contribute to
the correlation functionS(v), Eq. ~6!. The number of mas-
sive modes, in the limit wheren1,2˜0 at fixed p1 ,p2 , is
Nm˜4(p12p2)2. Therefore the terms withp1Þp2 may be
neglected to leading order in the parameterDt!1. As in the
unitary case, only two terms withp15p250 and p15p2
51 contribute to the generating function.

The replica symmetric contributionp15p250 is very
similar to the one of the unitary ensemble. Using Eqs.~31!,
~48!, and~51! one finds
-

-

ro

n

^Z(n1 ,n2)~Ê!&up15p2505ep i (n2e22n1e1))
q

S 1

Dq22 iv
D 2n1n2

.

~52!

Using Eq.~6!, one finds for the corresponding contribution
the correlation function

S~v!up15p2505p212(
q

1

~Dq22 iv!2
, ~53!

in agreement with the known perturbative calculations.7 The
replica nonsymmetric saddle-point manifold,p15p251,
contribute as

^Z(n1 ,n2)~Ê!&up15p2515n1n2

e2p iv

4p4v4 )
qÞ0

S ~Dq2!2

~Dq2!21v2D 2

.

~54!

Differentiating overe1 ande2 according to Eq.~6! and keep-
ing only the leading contribution inv/D@1, one obtains for
the corresponding term in the correlation function

S~v!up15p2515
e2p iv

p2v4
D 2~v!, ~55!

where the spectral determinantD(v) is defined by Eq.~43!.
Finally, from Eq.~5! one finds

R~v!5
1

p2
Re(

q

1

~Dq22 iv!2
1

cos~2pv!

2p4v4
D 2~v!,

~56!

again in agreement with Refs. 9 and 10.

C. Symplectic ensemble

If the spin of electrons is taken into account and t
strong spin-orbit scattering is assumed the Hamiltonian
the system acquires a quaternion~symplectic! structure.5 The
corresponding symmetry of theQ̂ matrix is theorthogonal

one,G5O(n11n2). The Q̂ is a real symmetric matrix and
the integration measure in Eq.~8! is

d@Q̂#5)
q

F)
i< j

dQi j ~q!G . ~57!

There are@(n11n2)21(n11n2)#/2 real degrees of freedom
for each spatial modeq. The number of massive, soft, an
zero modes is

Nm5
1

2
@p1

21p1#1
1

2
@~n12p1!21~n12p1!#1

1

2
@p2

21p2#

1
1

2
@~n22p2!21~n22p2!#

1p1~n22p2!1p2~n12p1!

5
1

2
@n1

21n2
21n11n2#1~p12p2!~p12p22n11n2!;

~58!
Ns15p1p2 ;
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Ns25~n12p1!~n22p2!;

Nz5p1~n12p1!1p2~n22p2!,

which correctly add up to@(n11n2)21(n11n2)#/2. The
number of zero modesNz coincides with the number o
dimensions of the degenerate coset space man
O(n1) / @O(p1)O(n1 2 p1)#3O(n2) / @O(p2)O(n2 2 p2)#.
The volume of this coset space is calculated in the Appen
and is given by

V (n1n2)
(p1p2)

5~2Ap!p1(n12p1)1p2(n22p2)Gn1

p1Gn2

p2, ~59!

where

Gn
p[

G~11n!

G~11p!G~11n2p! )
j 51

p
G~11 j /2!

G@11~n2 j 11!/2#
.

~60!

SinceGn
p.n50 the sums overp1 andp2 in Eq. ~31! may be

extended up to infinity. The resulting expression may be c
tinued analytically ton1,2˜0 ~cf. Ref. 11!. TheGn

p symbol,
Eq. ~60!, in the limit n˜0 is

Gn˜0
0 51; Gn˜0

1 5
Ap

2
n; Gn˜0

2 52
1

4
n;

Gn˜0
p>3 5O~n[( p11)/2]!, ~61!

where@x# denotes integer part ofx. Therefore only the terms
with p1,250,1,2 contribute to the correlation functionS(v),
Eq. ~6!. The number of massive modes, in the limit whe
n1,2˜0 at fixed p1 ,p2 , is Nm˜(p12p2)2, making terms
with p1Þp2 small in the parameterDt!1. One therefore
finds three relevant contributions to the generating functi
p15p250, p15p251, andp15p252.

The replica symmetric contributionp15p250 comes al-
most without changes. Employing Eqs.~31!, ~58!, and ~61!
one finds

^Z(n1 ,n2)~Ê!&up15p250

5ep i (n2e22n1e1))
q

S 1

Dq22 iv
D n1n2/2

. ~62!

From Eq.~6!, one finds for the corresponding contribution
the correlation function

S~v!up15p2505p21
1

2 (
q

1

~Dq22 iv!2
, ~63!

in agreement with Ref. 7. The first replica nonsymmet
manifold, p15p251, results in

^Z(n1 ,n2)~Ê!&up15p2515n1n2

e2p iv

8v )
qÞ0

S ~Dq2!2

~Dq2!21v2D 1/2

.

~64!

Differentiating overe1 ande2 according to Eq.~6! and keep-
ing only the leading contribution inv/D@1, one obtains for
the corresponding contribution to the correlation function
ld

ix

-

:

S~v!up15p2515
p2e2p iv

2v
AD~v!, ~65!

where the spectral determinantD(v) is defined by Eq.~43!.
Finally, the second replica nonsymmetric manifold,p15p2
52, gives

^Z(n1 ,n2)~Ê!&up15p252

5n1n2

e4p iv

~4p!4v4 )
qÞ0

S ~Dq2!2

~Dq2!21v2D 2

, ~66!

and consequently

S~v!up15p2525
e4p iv

16p2v4
D 2~v!. ~67!

Using Eq.~5! one finds

R~v!5
1

4p2 Re(
q

1

~Dq22 iv!2
1

cos~2pv!

4v
AD~v!

1
cos~4pv!

32p4v4
D 2~v!, ~68!

again in agreement with Refs. 9 and 10.

IV. DISCUSSION OF THE RESULTS

Let us briefly discuss the energy scales, the approxim
tions involved in the calculations, and their range of validi
There are four important energy scales: the mean level s
ing D; the Thouless energyEc5\D/L2 (L is the system
size!; the inverse scattering time\/t; and the chemical po-
tential m. In the calculations above, the following hierarch
was assumed:D!Ec!\/t!m. The condition \/t!m,
which means that the disorder is weak enough, was use
evaluate momentum sums by contour integration. The
equalityEc!\/t, which is equivalent toL much larger than
the mean free pathl , tells that the system is in the diffusiv
regime. It was used to derive the diffusive dispersion law
Eq. ~26!. Finally, g5Ec /D is the dimensionless conduc
tance, and the condition thatg@1 means that the system
metallic. This condition was used to calculate integrals o
zero modes withqÞ0 in the saddle-point approximation
One more inequality was assumed in our derivation, the
that the difference in energiesv is much larger than the leve
spacingD. This is a technical assumption, which allowed
to evaluate soft modes integrals by the saddle-point te
nique. It would be interesting to perform the calculatio
without this last assumption, extending thus the results
arbitrarily smallv.

Our calculations give the correlation as functions ofv in
the form of a finite sum of oscillating harmonics~two in the
GOE and GUE and three in the GSE!, with v dependent
amplitudes. The set of harmonics is exact and has to do o
with the symmetry of the problem, specifically with the vo
umes of the relevant coset spaces. The amplitudes, on
other hand, were obtained in the saddle-point approxima
only. Using our formulation, one may develop a perturbat
theory near the replica nonsymmetric saddle points, muc
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the same way as it was done near the replica symmetric
see, e.g., Ref. 16. From such a perturbation theory one
obtain a systematic expansion of the amplitudes of the os
latory terms, in powers ofD/v,1

We would like to point out striking similarities betwee
our replica approach and the SUSY one of Ref. 9 which w
also based on the saddle-point calculations. In particular
list of modes is the same. In the SUSY case, the zero mo
and soft modes are, respectively, associated with the r
tions inside the fermionic block and between fermions a
bosons. In some sense ourp and n2p replica blocks are
similar to the bosonic and fermionic blocks of the SUS
theory. To appreciate better this analogy, one would nee
more detailed understanding of the mathematical structur
the theory. In particular, one would like to define the unita
~or other! group,U(n), for nonintegern and trace its relation
to the graded symmetry. Another interesting problem is
appreciate better connections to the semiclassical metho
Ref. 10.

The existence of the replica nonsymmetric saddle po
opens two very important questions. One concerns their
evance to the renormalization-group treatment of the lo
ization problem for one electron. Another, even more ch
lenging one is to extend the replica theory of interact
electrons17 to account for new saddle points.
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APPENDIX: ZERO MODES AND VOLUME OF THE
COSET SPACE

1. Unitary case

The manifoldM(p1p2) of saddle-point matricesQ̂ is gen-

erated by unitary transformationsU of U(n1)3U(n2), ap-

plied to the diagonal matrixL̂ (p1p2) , cf. Eq. ~11!. We must

first find which choices ofV1 ,V2 actually change theQ̂ ma-
trix. A general unitary transformationV of U(n1) can be
written as a productRW where the matrixW has the block
diagonal structure

W5S Wp1 0

0 Wn12p1

D , ~A1!

whereWp1
and Wn12p1

are unitary matrices of sizep1 and

n12p1 , respectively. The matrixW belongs to the subgrou
U(p1)3U(n12p1) of U(n1) which leaves the saddle-poin
matrix invariant. The ‘‘proper’’V1 transformations which
change the matrixQ̂ while staying on the saddle-point man
folds are thus the elementsR1 of the coset space
e,
ay
il-

s
e

es
a-
d

a
of

o
of

ts
l-
l-
l-

.

.

a-
.

U(n1)/U(p1)U(n12p1), and similarly the properV2 trans-
formations are elementsR2 which belong to U(n2)/
U(p2)U(n22p2).

To compute the volume of the set of properR transfor-
mations inU(n) ~heren stands for eithern1 or n2), we start
from the usual decomposition2 of the integral over the group
of n3n Hermitian matricesX in terms of then eigenvalues
xj , and the unitary transformationV such that X
5V21(diag$x1 , . . . ,xn%)V:

drn~X!5)
j 51

n

dxj )
j 51

n21

u~xj 112xj !

3 )
1< j ,k<n

~xj2xk!
2drn~V!. ~A2!

In this integral we have ordered the eigenvalues~theu func-
tion is Heavyside’s step function!, in such a way that the
integral overV scans the whole set of allowed unitary tran
formations. We can compute the normalization of the ‘‘a
gular’’ measure for instance by integrating a Gaussian fu
tion:

I[E drn~X!expS 2
1

2
Tr X2D5pn2/22n/2 ~A3!

which can be computed using the above decomposition
the Selberg’s integral:2

I 5
1

n! F E drn~V!G E )
j 51

n

dxj )
j ,k

~xj2xk!
2

3expS 2
1

2 (
j

xj
2D

5
1

n! F E drn~V!G~2p!n/2 )
j 51

n

G~ j 11!. ~A4!

Therefore one gets the normalization of the integral over
angular measure:

V n
U[E drn~V!5p (n22n)/2

n!

P j 51
n G~ j 11!

. ~A5!

This result is easily checked by a direct counting argume
the choice ofV is a choice of a Hermitian basis. The fir
vector of the basis is an arbitrary unit vector, the correspo
ing volume of integration is thusS2n/2p where Sd
5dpd/2/G(11d/2) is the volume of thed-dimensional unit
sphere, and the division by 2p deals with a global phase
choice. The second unit vector of the basis must be ortho
nal to the first one, which fixes two real conditions, and
volume is thusS2n22/2p. After iterating this construction
one gets the result~A5!.

We now decomposeV5RW, and the angular integra
drn(V) as

drn~V!5drp~Wp!drn2p~Wn2p!drn,p~R!. ~A6!

This defines the measuredrn,p in the 2p(n2p) space of the
proper transformationsR. The normalization of this measur
is
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E drn,p~R!5
V n

U

V p
UV n2p

U
5pp(n2p) Fn

p , ~A7!

where we have introduced the symbolFn
p defined by

Fn
p[

n!

p! ~n2p!!

P j 51
p G~ j 11!P j 51

n2pG~ j 11!

P j 51
n G~ j 11!

. ~A8!

We can now go on to the exact evaluation of the z
mode integrals. We keep within the subspace of the sp
independentQ̂ matrices (q50 modes! which are the only
modes having a zero eigenvalue sector. Clearly the z
modes integrals factorize into two independent pieces, a
ciated with each of the two coset spac
U(n1)/U(p1)U(n12p1) and U(n2)/U(p2)U(n22p2). We
d

in

ou
iv
ti
o
ce

ro
o-

can compute each such piece by working with ann3n Her-
mitian matrixX and computing

Z(n)[E drn~X!expF2
pn

4t
Tr X21Tr lnS E1

i

2t
XD G .

~A9!

We expand around the saddle-point manifold generated
X5Lp[diag$l1 . . . ln%5diag$21 . . . ,21,1,. . . 1% by writ-
ing

X5RLpR211dX, dX5RW~diag$x1 , . . . ,xn%!W21R21,
~A10!

whereW, as above, is inU(p)3U(n2p) andR is a proper
transformation. Using the decompositions of the measure
fined in Eqs.~A2! and ~A6!, one obtains
Z(n)5E dx1 . . . dxp )
1< i , j <p

~xi2xj !
2 )

j 51

p21

u~xj 112xj !E drp~Wp!E dxp11 . . . dxn )
p11< i , j <n

~xi2xj !
2

3 )
j 5p11

n21

u~xj 112xj !E drn2p~Wn2p!E drn,p~R!)
i 51

p

)
j 5p11

n

~221xi2xj !
2u~21xp112xp!

3expH 2Ap1
pn

4t (
j 51

n

xj
21

1

8t2
Tr[(E1 iLp/2t)21dX~E1 iLp/2t!21dX] J , ~A11!
e

ral
whereAp is the saddle-point action

Ap5
pn

4t
Tr Lp

21Tr ln~~E1 iLp/2t!!. ~A12!

The integral in Eq.~A11! can be simplified by the following
observations: the integrals overxi are all massive modes, an
thus one can assume thatuxi2xj u!1. Therefore the third line
of Eq. ~A11! is just a constant, equal topp(n2p)Fn

p22p(n2p).
Apart from this constant, the rest of Eq.~A11! is nothing but
the integrals over the massive modes.

What we have shown here is that, in the sectorq50 of
uniform fluctuations, the exact integral over the saddle-po
manifold ~the zero mode directions! gives a factor

~4p!p1(n12p1)1p2(n22p2) Fn1

p1Fn2

p2. ~A13!

2. Orthogonal case

We shall not repeat here all the steps of the previ
computation, they run in exactly the same way. We just g
the main modifications. The integral over the symplec
group, generalizing Eq.~A4! is equal to

V n
S5E drn~V!5n! XE drn~X!expS 2

X2

2 D C
3S E )

j 51

n

dxj )
j ,k

~xj2xk!
4 expF2

1

2 (
j

xj
2G D 21

~A14!
t

s
e
c

and the computation of Selberg’s integral gives the volum

V n
S5n!

p2n223n/22n

P j 51
n G~112 j !

. ~A15!

The ratio of volumes is

V n
S

V p
SV n2p

S
5p2p(n2p)En

p , ~A16!

where

En
p[

n!

p! ~n2p!!

P j 51
p G~2 j 11!P j 51

n2pG~2 j 11!

P j 51
n G~2 j 11!

.

~A17!

Finally the factor coupling the eigenvaluesj <p to thosej
.p in the analog of Eq.~A11! becomes

)
i 51

p

)
j 5p11

n

~221xi2xj !
4 ~A18!

so that the final integral over the zero mode manifold is

~4p!2[p1(n12p1)1p2(n22p2)]En1

p1En2

p2. ~A19!

3. Symplectic case

We just give again the main modifications. The integ
over the orthogonal group, generalizing Eq.~A4!, is equal to
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V n
O5E drn~V!5n! XE drn~X!expS 2

X2

2 D C
3S E )

j 51

n

dxj )
j ,k

uxj2xkuexpF2
1

2 (
j

xj
2G D 21

,

~A20!

where X is a real symmetric matrix. The computation
Selberg’s integral gives the volume

V n
O5n!

pn2/41~n/4)2n2/425n/4

P j 51
n G~11 j /2!

. ~A21!

The ratio of volumes is

V n
O

V p
OV n2p

O
5~2p!p(n2p)/2Gn

p , ~A22!
-

where

Gn
p[

n!

p! ~n2p!!

P j 51
p G~ j /211!P j 51

n2pG~ j /211!

P j 51
n G~ j /211!

.

~A23!

Finally the factor coupling the eigenvaluesj <p to thosej
.p in the analog of Eq.~A11! becomes

)
i 51

p

)
j 5p11

n

u221xi2xj u ~A24!

so that the final integral over the zero mode manifold is

~4p! [ p1(n12p1)1p2(n22p2)]/2 Gn1

p1 Gn2

p2. ~A25!
.
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