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We compute energy-level correlations in weakly disordered metallic grains using the fermionic replica
method. We use the standasdmodel approach and show that nontrivial saddle points, which break replica
symmetry, must be included in the calculation to reproduce the oscillatory behavior of the correlations. We
calculate the correlation functions in all three classical ensembles Gaussian-orthogonal, -unitary, and
-sympletic, including the finite-dimensional gradient corrections. Our results coincide with those obtained by
the supersymmetrioc model and the semiclassical trace form{80163-18209)01230-9

I. INTRODUCTION the Gaussian unitary ensemll@UE). The calculations of
Ref. 11 were specific to the GUE and essentially used the
The statistics of energy levels of electrons in disorderedtzykson-Zubel integral for the unitary group. The purpose
metals has attracted much attention in the past decade@f the present paper is to present a more general approach to
Gorkov and EIiashberjgconjectured that it obeys Wigner- the. fe(m|on|c replica calculatlon§ Qf the level SFatIStICS,
Dyson laws derived for random matricedhis conjecture which is not based on the peculiarities of the unitary en-
received a strong support almost 20 years later when Efeto’€MPle, and uses rather the standard path of thdel. We

introduced the supersymmetri8USY) o model. It appears shall present the calculations of th_e level correlations in dIS—.
. ) . . ordered metals for all three classical symmetry ensembles:
that the zero-dimensional version of themodel gives ex-

actly the random matrix theory statistics of Wigner andprthogonaI(GOE), unitary, and symplecti¢€GSB. We also

. —~include the effects of gradient terms on the level statistics
Dyson. The use of the SUSY formulation seemed crumal g

. ) : - eproducing exactly the results of Refs. 8-10. Our col-
since the alternative replica thedty,when applied to the leagues I. V. Yurkevich and I. V. Lerner have independently

pure random matrix problem, seemed unable to reproducgeen developing a nonlinearmodel approach with replica

function® Later Altshuler and ShklovsKiirealized that in a Our strategy is as follows: we deal with the standard fer-

finite-dimensional system, the correlation function is mOdi-mionic rep"caa- modeP with an action written in terms of
f!ed WIFh resp_e_ct tp the universal random matrix Ie_zvel statls_-the (N,+1n,) ><(n1+n2)—dimensionaIQ matrix, wheren, ,
tics: this modification appears when the energy difference is, g 53re numbers of replicas. The symmetry group of the
of the order of the Thouless enerdy, (equal tofi over the  4ction G(ny+n,) is broken down to the exacG(n,)
diffusion time through the sampleand the corrections de- x G(n,) by a finite-energy difference = e; — e, of the cor-
pend on the dimensionality, conductance, and shape of relation function G is a symmetry group of thé matrix
the sample. They used diagrammatic perturbation theory angli- depends on a symmetry class of the probldﬂasea
consequently could trace only the modifications of thegn the experience of the GUE solutibhwe consider all
nonoscillatory part of the correlation functions. Finite dimen-,,ssiple saddle points of themodel both replica symmetric
sional modifications of the oscillatory part by the gradientang replica nonsymmetric. The latter spontaneously break
terms were calculated in Ref. 8, and more generally in Refthe exact symmetry of each sub-blo&n) down to G(p)
9, using the SUSY technique. The result were subsequently G(n—p) with 0<p=n (heren=n;,n, and p=p;,p,).
reproduced using a semiclassical trace formula apprfdeh. The corresponding manifold of the Goldstone modes has an
followed from these works that a power-law decay of theexact degeneracy for space-independert @) modes. The
oscillatory correlations crosses over to an exponential decagyontribution of such saddle-point manifolfthe coset space
at the scaleE.. The precise behavior of this crossover de-G(n)/G(p)G(n—p)] to the partition(generating function
pends both on the dimensionality and the symmetry class aé proportional to their volume. The volumes of the coset
problem. The essential feature of these results isataion-  spaces play a central role in our analysis, since after the
universal terms may be expressed through the spectral deteanalytical continuatiom—0 they determine which of the
minant of a single classical differential operator. For the casgaddle points contribute to the generating function. It turns
of a disordered metal grain it turns out to be the diffusionout that in addition to the replica-symmetriperturbative
operator in the corresponding geometry. saddle point p=0) there is only one additional saddle-point
In a recent papét we have shown how the fermionic manifold (in each block with p=1 in the GOE and GUE
replica method may be used to calculate the level statistics afases and two manifolds=1 andp=2 in the GSE case.

0163-1829/99/6(®)/394411)/$15.00 PRB 60 3944 ©1999 The American Physical Society



PRB 60 LEVEL CORRELATIONS IN DISORDERED METALS: ... 3945

These replica-nonsymmetric saddle points give rise to an oswhich we shall approximate by a constany(e))
cillatory part of the correlation functiofsince their action =(AV) . Hereafter the angular brackets stand for the av-
remains finite, and imaginary, in the—0 limit). One thus eraging over the ensemble of random disorder potentials,
gets the correct oscillatory behaviors of the correlations, withwhich we assume to be Gaussian and short-range correlated
one oscillation frequency in the GOE and GUE and twowith zero mean and a variance given by

oscillation frequencies in the GSE. One should notice that

the effect of the replica symmetry-breaking saddle points are (Ugis(NUgis(r))y=2mvr) " t8(r—r’), ()

not limited to the correlation of_IeveIs. In t_he r_andom _matrix wherer is an elastic scattering mean free time.

limit, they are known to describe _thg finite-size oscnl_atory The main object of our study is the connected two-point
correction to the densl|ty of states inside the asymptotic SUPzyelation function of energy levels, defined as
port ofl}he spectruntt and the exponentially small tails

outside. =,2 _

We then calculate the fluctuations around each of the Rlene) =0 u(e)ler) 1. @
saddle-point manifolds in the Gaussian approximation. ThidJsing the fact tha{G*G*)=(G*)(G*)=—(mV)?, one
is legitimate at relatively large energy>A and for a good finds
metal,g=E./A>1 (A is the mean level spacing amdis 1
dimensionless conductancéNo relation betweemw andE, . .
is assumed. As a result, one obtains the energy dependent R(er, €)= ﬁ[Res(el’EZ)_W Ik
amplitudes of the oscillatory parts, as well as those of the
smpoth parts, of the correlation functions, in the gsymptotic S(ey,6)=A%G(1)G (€)). (5)
regimew>A. For small energyw<E,, the correlation co-
incides with the random matrix theory predictions, wheread/ith the replica trick the two-point functio8 may be writ-
for larger energyw>E. it gets modified in the nonuniversal ten as®t
(dimensionality andg dependentway in agreement with
Refs. 8-10.

The structure of the paper is as follows. In Sec. Il we
introduce notations and present a general discussion of the
matrix field theory which allows to compute the energy-levelwhere we have introduced the diagonal; {n;)x(ny
correlations. We compute the saddle points of this action and-n2) matrix Ej; = §;;E; with
the quadratic fluctuations around them. We also comment on ) )
the connection of our approach to the usual nonlinear E— ptetin j=1...n;
model. In Sec. Il we apply the theory to the three classical Vlute—in j=ni+1,...n;+n,.
ensembles. Finally in Sec. IV we briefly discuss the results . ) )
their range of validity, and the possible further develop-The generating functiog (" "2 may be written as a func-
ments. The Appendix contains the computations of the voltional integral over 21, +n,) fermionic fields. Getting from

umes of the relevant coset spaces, for each of the three syrﬁUCh a fermionic vector field theory to a matrix formulation
metry classes. is a standard procedur®which we shall not repeat in detail.

Performing the Gaussian averaging olky, introducing a

Il THE REPLICA MATRIX MODEL AND ITS SADDLE (An1+ n,) X (ny+n,) Hubbard-Stratonovich matrix field

POINTS Q(r) and integrating finally over the fermionic degrees of
freedom, one obtains for the generating functidn

AZ 2

S(El,ez): lim ——

(n1.n2) (E
Ny 20 n{n, &610752<Z (E)>, (6)

)

A. Preliminaries

We shall discus; the cor_relation functions of the density Z(nl,ng)(fg):f d[Q]exp[—A[Q,E]}, (8)
of states(DOS), which is defined as
W) =V"LTr 8(su+e—H), (1)  Where the actio[Q,E] is given by
whereV is the volume andH = Hy+ U ;s is the Hamiltonian Aol TV L, . VE o
of the system. Herel, is the Hamiltonian of the correspond- A[QE]= 2, QT -Tr In| E+ smt 3.9/ 9

ing regular(clean system, andJg;s is a random disorder R R

potential. We are interested in the large energy behavior anfihe symmetry ofQ and the integration measudg Q] de-

we thus measure all energies from the large positive chemipend on the symmetry class of the problem and will be dis-
cal potentialu: the deviatione from w is supposed to scale cussed in Sec. Il separately for each ensemble. The trace

as the mean level spacing operation includes both the replica indices and the spatial
The retarded/advanced Green functidBs (e) are de- variables.
fined as

B. Saddle points
G (e)=(u+e—H=ip? 2) _ .
We shall evaluate the integral in E() by the saddle-

with # infinitesimal. The density of stateg ¢) is thus equal point method, and chedk posteriorithat such an evaluation
to the smally limit of (G~ (e€)—G ™' (¢€))/(2i). The average is indeed justified in the limit of a weak disorder. A space
DOS at large enough is a featureless smooth function, independent solution of the saddle-point equation satisfies:
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_1 .
2 i 1
__=—2 E——11+ Qs.p. . (10 N=— > ~sgri\;). (12)
27 bomv %E - (p¥2m) + (i/27) gty
where the sum ovep runs over the set of eigenmodes of the Here we have used the standard approximation, valid at large
pure HamiltonianH, with some appropriate boundary con- 7, where one substitutes the sum over modes by an integral
ditions. The saddle-point matriQ, , may be diagonalized over ep=p’/2m—u, and neglects variations af(e) in a

by a transformation@s_p_:U‘lf\U, whereU is an element  Vicinity of e=0. We thus find that the eigenvaluesfog_p_
of the symmetry grous of the problemU e G(n,+n,),  (@Ke the values

and A is diagonal,A;;=8;\;. The saddle-point Eq(10) N==1, jel,...ni+ny. (13
then implies thatJ takes the form

There exist fi;+1)(n,+ 1) saddle-point manifolds. Each
YA such manifold/\/l(plpz) may be indexed by two integeps,
U=< 0 v ) V1eG(ny), VyeG(ny), (1)  {0,...n;} andp,e{0,...n,}, and is generated by the
2 block-diagonal symmetry transformatiobisof the type(11)
while each eigenvalue is a solution of the equation applied to the diagonal matrix

Apips) =diag{=1,... =1, +1,...+1,+1,...+1,-1,...— 1}. (14)

~-

Pt n1—p1 P2 na—psz

In order to scan the manifold/l(plpz) in a nonredundant way, one must restrict the symmetry transformatidnsthe coset
space

Mppym S G 15
G(p1)G(n1—p1)  G(p2)G(n—p2)
It is useful to define the free propagator which is the diagonal matrix with eigenvalues
vz o -1
ijE Ej+ﬁ+z)\j (16)

The eigenvalues take four different values depending on the value of the jndéxe can characterize them by two binary
indices (,0), where a=1,2 designates two replica blocks with the energigsand o=sgn(\;). For each energy «
=1,2), we have a retarded and an advanced propadajpy,defined by
V2 i\t
G;E(,U,+2—+ea_27_) Doa=1,2. (17

In these notations the free propagator takes the form

G = diag{Gy,...G7,Gt,...Gf,Gf,...G},G7,...G; }. (19
P ni-p1 Pa na—pa
|
C. Saddle-point action where the traces involve only spatial variables. Expanding to
On the manifoldMq, ;. , the saddle-point action is given the first order inte,<1, and omitting unessential constant
factors, one finds
by
) TrinG, ~Fime,/A. (22)
Y T2 .V i~ . . . . . .
App,)= ETrA(Plpz)_Trln E+o— >m A(plpz) , Finally, neglecting all constants, which vanish in the limit

(19) n; ,—0, one obtains for the saddle-point action

where the trace involves both space and replica indices. In i
A =— - -2 +2 . 22
terms of the free propagato@ defined in Eq(17) it reads (p1pp) = g (M1~ N2€2= 2P1€1+2Pz€7).  (22)

—w(n1+ n2) - D. Quadratic fluctuations
A(plpz): A7A —piTrin G, —(ny—py)Trin GI Q

Let us expand around the saddle poirfDS_p_
—p2TrIiNG; —(n—py)TrinG, 20 =U AU, wiiting Q(r)=Qs, +UL8Q(r)U. The
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action expanded to the second order is diagonalized in terms ¢ Wheno# ¢’ anda# «’ the eigenvalues are
of the Fourier component8Q;; (q) of the fluctuations:

71- .
o nytny M(1+)(2—)=M(z—)(1+)=ﬁ(Dq2_|w)
ALQEI=App)t 5 2, 2 Mij(a)8Qu(a)8Q(~a), ) 28
23 M-y = M(2+)(1_)=ﬂ(Dq2+iw),
where the eigenvalue of the eigenmodg @), M;;(q), is
given by wherew= €;— €,. These are standard diffusive modes asso-

ciated with theG(n;+n,) symmetry of the action, which is
q q explicitly broken by a nonzer@. We shall call them “soft”
P ij(p— E)' (24 modes and denote their number for each spatial npds
Ns_ and Ng, correspondingly.
There exista priori sixteen different fluctuation eigenvalues  « Wheno+ o' anda=a’ the eigenvalue is
for each momentum modg It is convenient to index them
according to the binary decomposition introduced after Eq.
(16). Each index €1, ... n+n’is associated with a pair of
indices (,0), wherea=1,2 characterizes the energ,,

and o=sgn(\;) characterizes the retarded/advanced naturérhese are the Goldstone modes associated with the sponta-

of the propagator. The 16 different fluctuation eigenvaluesneo.us breaking of _the exaG(n.l)XG(nz) symmetry by
are then replica nonsymmetric saddle points. They exist only for the

manifolds with nonzerg; or p,. We shall call the corre-
a\ q sponding modes “zero” modes and denote their number for
E)Ga’( ) each spatial modg as .\, .
Such a separation of modes into massive, soft, and zero is

p+

T 1
Mij(Q):m—m Ep: Gj

T a2
M(a+)(a=)=M(a-)(a+) =57 DA™ (29

T 1
M (ao)(ar oy () = A 42 % G,

5/

p+

(25 well justified in the limit whereA<w; Dg?<1/r. This
The corresponding momentum sums are easily computedpecifies the regime where our methods and results are ap-
resulting in plicable. The number of modes depends on the number of
independent degrees of freedom of thematrix and should
> Gi(p+ a Gt,(p— g)mo, be specified separately for each of the ensembles. We can
P 2]« 2 o . ,
perform now the Gaussian integrals ov@® fluctuations.
q q Each eigenmode with eigenvali#,, (.’ ,(Q) contributes
* e | p— = a factor
il i3
27T 2 # (30
%T[l—Dq TEi(€,~ €4)T]. (26) M (ao)(a’ oy (D)

dp the generating functioiz("-"2)). The exception is the
zero mode in the space independent 0, sectort® This
mode has identically zero mass, originating from the exact

In the last expression we have expanded the sum to fir
order in the small parameteBg?7<1 and|e;— e,/ 7<1
where D is the diffusion constant defined a®

=2u7/(md) degeneracy of the\/l(plpz) saddle-point manifold. Therefore
We obtain eventually the following list of eigenvalues for in the q=0 sector the integral over the zero mode results in
each spatial moda: the volumevggigﬁ of the coset spac€l5). These volumes
* Wheno=0" the eigenvalue is are calculated in the Appendix for each of the three classical
a1 symmetry ensembles.
Mwoa' )= 55 —- 2
(@o)@' )™ 27 7 @) E. Generating function

We shall call the corresponding modes “massive” and de- Finally putting all the factors together one finds for the
note their number for each spatial mogesA\,. average generating function

<Z(n1,n2)(E)>: E e Ap,.pp) (P1P2)

Ny

by =0 (”1”2) (ZAT) 2
2A
Dg?

i —iw

ny.Nz <2A)Ns+/2( 2A )NS/Z
Nyl2

X
q#0

oA | N2
: (31)

Dg’+iw

Ne_ 12
———— ] (2A7)Mn2
Dg?—i a))
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wherg the. sad'dle-p')oint actio:lﬂ\(pl,pz) is given by Eq.(22). ' O of S, , staying onS, , are of the typeSQ:[Q,W], with an
The first line in this expression represents the saddle-poindrpitrary matrixw(r). The stationarity of the action imposes

action and the fluctuations in thg=0 sector, whereas the A o ) R
second line originates from the Gaussian fluctuationg of 11(ALQ,W1)=0, which implies that the saddle poing .

#0 modes. In Sec. lll we shall evaluate the coset spaceommute with A. One easily deduces that, aof}, the
volumes, VP1P2 and the number of modes\,s, Saddle-point submanifolds are exactly the submanifolds

(nqny) i _ . . .
— N, s m(P1.P5), for each of the classical symmetry classes.™p; p, With P1—P2=r. This approach basically reorganizes

Hereafter we shall put =1, implying that all energies are our previous computation by grouping together all the sub-

measured in units of the mean level spaciag, manifolds with a fixed value of T® (or p;—p,). As we
shall see below, fon;,n,— 0, the only saddle points which
F. The nonlinear sigma model contribute to leading order il\7 are the ones withp;
Let us briefly comment on the connection to the usual= P2, Which are all located on the same manifold with
formulation of the problem in terms of the nonlinear ~=0. Hence to the leading order one can approximate the

model. For simplicity we discuss only the unitary case. Thisgenerating function in Eq33) by an integral over the single
basically amounts to a reorganization of the computation wénanifold Sy, which is what is usually done in the-model
did above, which uses the strong hierarchy of magties approach. We control this result well at largebecause we
massive modes are much more massive than the sofj.onesan do the sums over the;, p, and control the analytic
Assuming first that 1KA) is large, one finds that the saddle continuation. But we believe that it is probably correct also
points of Eq.(8) are given by the set of matrices wi@?>  for any w. The reason is the following: in E433) one may
=1. This set is actually an ensemblemf+n,+ 1 discon- extend the sum over to a sum going from-o to «, be-
nected manifoldss, , corresponding to all possible values of cause wherr is outside of the interva{—n,, ... n;} the
r=p,—p, (or equivalently of the trace o). It is easily Vvolume of the integration space vanishéhis can be
seen that all the modes which move away from these manichecked, e.g., in the limitv—0). One may then take the
folds are massive, with a mass/(2A7). These massive limit ny,n,—0 at fixedr. It is clear that the leading term
modes correspond to perturbing the ma@ixoy a 5Q such ~ comes fromr=0, which minimizes the number of massive
that 50+ 500+0, and the number of such massive modes. So the usua#—quel f_ormulation, with an integral
modes isn2+n2+2r(r—n,+ny). Performing the integra- °VET o only and the action given by E¢33), seems to be

tion over the massive modes one can wfiip to irrelevant correct. However, one must keep in mind that_, on this mgni-
fold there are, for largaev, several saddle-point submani-

constant ; s . )
5 folds, which lead to the oscillations in the correlation func-
Ny [n2+n2+2r (r —ny+n,)]K tions. In the random matrix case, at ledstithout the
n 2AT\t1T 2 172 . A 4
Z(n1n2)(E) = 2 ( \ /_) gradient termy one may also try to perform the integration
r=-n, ™ over the entire manifol&,, without resorting to the saddle-

point method. If the nonlineas- model, formulated ors,
XJ d[Qlexp—A[Q,E]}, (32)  only, is indeed correct, this should give the exact result, not
S restricted tow>1. This procedure was attempted in Ref. 6,
but the analytical continuation of the expressions emerging

whereK is the number of differeng modes. Notice that the from these calculations still remains to be studied.

manifold S, is characterized b@?=1, TrQ=n;—n,—2r.
It thus contains all matrices of the ty@zuflA(pl,pz)U

with U e G(ny+ny), andAp, ) defined in Eq(14), with lll. CORRELATION FUNCTIONS
P1—pP2=r. i A. Unitary ensemble
Expanding the action for slow spatial variations@fon In the presence of a weak magnetic field the Hubbard-

the manifoldS,, one gets to first order im the standard

; Stratonovich matrixQ is Hermitian® The corresponding
sigma model:

symmetry group is the unitary grou@,=U. The measure of
the functional integral over Hermitian matrics; (q) in Eq.

Ny [n24+n2+2r(r—ny+n,)1K R
zZmn)(Ey= > ( A /&) v L (8) is given by
T

r=-n,
N mvD . .
><Lrol[Q]exp{—T(VQ)2 d[Q]=];[ H dQ”(q)i];[j d ReQ;;(g)d Im Qij(q)}
iTrw ~ L (34)
- Tr(AQ)], (33

o . There are fi;+n,)? degrees of freedom for each spatial
whereA=A ). modeq. Looking at the classification of modes, Eq27)—
For largew, one can study the sigma model by a saddle<{29), one finds that the number of massive, soft, and zero
point approximation. The generic variations around a poininodes is
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Ny = p§+ (n;—py)2+ p§+ (Ny—P2)2+2p;(Ny—ps) _Differentiating overe; and € a_cco_rding to Eq(6) and _keep—
ing only the leading contribution im/A>1, one obtains for
+2p,(ny—py) the corresponding contribution to the correlation function
=n+n3+2(p;—P2)(P1—P2—Ny+Ny); e2mio
(35 S(@)]p,=p,=1= —5D(w), (42)
Not=2p1p2; P1=P2 w?

where we have introduced the spectral determinant of the

No-=2(n1=p1)(nz=p2); diffusion operatorD(w) defined as

Nz=2p1(N1—p1)+2pa(n—py), 21-1

which add up to (,+n,)? as they should. Notice that the D("’)EQO 1+ D_qz 1 . (43)
number of zero modeg/, coincides with the number of
dimensions of the degenerate coset space manifol8inally using Eq.(5) one finds
U(ny) / (U(p1)U(ny — p1)) X U(ny) / (U(p2)U(n, — py)).
The volume of this coset space is calculated in the Appendix ) 1 2 1 cog27w) )

is qi R(w)=——Re + D(w),
and is given by ( 2 o DGt 277’ (

VEE;F:S:(47T) p1(n1—=p1) +p2(na—p2) ng ng, (36) (44)
in agreement with Refs. 9 and 10.
where One may wonder why only the saddle points wiph
o _ =0,1 contribute to the result, while seemingly equivalent
Fp— I'(1+n) I r(1+j) ones withp=n,n—1 do not. Indeed, for integen all the
" T(A+p)(l+n—p) =1 T[1+(n=j+1)] expressionge.g., Eq.(31)] are symmetric with respect to the

(37 interchange < n—p. However, after the analytical continu-
) p>n_ ) ation n—0 this symmetry appears to be broken. After ex-
SinceF,~"=0 the sums ovep, andp, in Eq.(31) may be  ending summations in Eq31) up to infinity and taking
exte_nded up to |r_1f|n|ty. The resultlr_lg expression may be_ the’honinteger n, one faces highly divergent series, which
continued analytically tm, ,—0, using the procedure which spoyd be regularized in a proper way. The way suggested in
was detailed in our previous pap€rThe analytical continu-  Ref, 11 is to consider an integral equation for a function
ation,n—0 at fixedp, of the Ff symbol, Eq.(37), shows 9(z,n)==]_oFhz" and study its solutions for small nonin-
that tegern. The symmetryp«<—n—p would manifest itself in a
0 4. 1 =2 simple relation betweeg(z,n) andg(1/z,n). As was argued

Froo=1i Fno=n; FiZo=0(n"). (38) in Ref. 11, the solution of the integral equation for noninte-
Therefore only the terms witp, ,=0,1 may contribute to ger n exhibits a singularity at the unit circlig|=1. As a
the correlation functiors, Eq. (6). The number of massive result the initial series Eq31) is an asymptotic representa-
modes, in the limitn, ,—0 at fixed py,p,, is Ny—2(p; tion of the true solution only fofz|<1, which breaks the
—p,)2. Therefore the terms with; # p, can be neglected to Symmetryp< n—p. Note that it is the existence of a positive
leading order in the parametarr<1. One thus ends up with infinitesimal imaginary part o [cf. Eq. (7)] which dictates
the two contribution to the generating functiom;=p,=0 that in our caséz|<1. For a negative infinitesimal imagi-
andp,;=p,=1. nary part ofw this procedure would select instead the saddle

The first piece withp;=p,=0 is the usual replica sym- Points withp=n,n—1.
metric contribution. Using Eq$31), (35), and(38) one finds
B. Orthogonal ensemble

<Z(n1’n2)(|AE)>|p b _o=em(me e ]
1=P2=
q

nq{n,

;) _ If the time-reversal symmetry is not broken the Hubbard-

Do’ ~iw Stratonovich matrixQ appears to be a self-dual real-
(39 quaternion matrix.This means that each elemedyt may be

Using Eq.(6), one finds for the corresponding contribution to WWritten as
the correlation function

3
L Q=2 Q7 (45
S(@)|p,=p,=0= T2+ > ——5——. (40)

a (Dg°~iw) with real Q7 , where
This is the well-known perturbative contributiérChe rep- 10 0 .
lica nonsymmetric manifold witlp;=p,=1 gives - C= .

o 2)0 "t l-i o)
27miw (Dq2)2

(2M"D(E))| py=p,=1=N1N3

A2 w2 470 D2)2+2' _0—1_ _—iO
menen e " @ T2_<1 0)' 73_(0 i) 49
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Moreover,Qji = (Qij)T, where conjugation operation acts on . _ 1 2nan;

the 7 matrices. Such matrices may be diagonalized by rota{Z(”l'”2)(E))|p1=p2=0=e”'(“252*”151)1_[ 2—) .
tions from thesymplectiogroup? G=Sp(n, +n,), which is a \Do—iw

the relevant symmetry group for the GOE. Diagonal ele- (52)
ments of theQ matrix, Q;; are characterized by a single real Using Eq.(6), one finds for the corresponding contribution to
number Q;”, whereas off-diagonal one®;_; are param- the correlation function

etrized by four numbersQﬁ , a=0,...,3.Altogether there

are 2(;+n,)?>—(n,+n,) degrees of freedom for each spa- S(w)| _ 2+22

tial modeq. The measure of the functional integral in E8) (©)lp;=p,=0=7 7 (DP—iw)?’
is given by

(53

in agreement with the known perturbative calculatibii$ie
replica nonsymmetric saddle-point manifolg, =p,=1,

3
d[Q]Zl;[ H dQ?j(Q)L[j al;[O dQi(q)|. (47)  contribute as

i 2
One easily finds that the number of massive, soft, and zero (n, n,) ¢ _ e’™ (Dg?)?
m : (Z (EDpy=pp=1=MN2——, 2. 2
odes is 47w a#0 \ (D) + w
Noy=2p?—p;+2(n )2—(n )+2p? G4
m= P17 P 1P 1P P2~P2 Differentiating overe; ande, according to Eq(6) and keep-
+2(n,—pp)?—(Ny—py) ing only the leading contribution in/A>1, one obtains for

the corresponding term in the correlation function
+4p1(ny—p2) +4p2(ni—p1)

=2n7+2n5— (N1 +N,) +4(py—P2) (P1— P2— N1+ Ny);

27w

S<w)|p1:p2:1: 7T2a)4D2(w), (55

Nsr=4p1py;

Ns—=4(n;—p1)(N—pa);

where the spectral determinab{ ) is defined by Eq(43).
Finally, from Eq.(5) one finds

1 1 cog2
Nz=4p1(n1—p1)+4pa(n—py), (48) R(w)= — Re>. —+ i mu)Dz(w),
) w2 7 (Dg’—iw)®> 27%w*
which add up to 21, +n,)?—(n;+n,). The number of zero (56)
modesA/, coincides with the number of dimensions of the o _
degenerate coset space manifa®h(n,)/[ Sp(p;)Sp(N, again in agreement with Refs. 9 and 10.
—p) IXSp(n)/[Sp(py)Sp(n,—p,)]. The volume of this .
coset space is calculated in the appendix and is given by C. Symplectic ensemble

If the spin of electrons is taken into account and the
strong spin-orbit scattering is assumed the Hamiltonian of

V(p1p2): (477)2p1(n17p1)+2p2(n27p2) Egl EEZ, (49)
1 2
the system acquires a quaternisymplectio structure> The

(nqny)

where corresponding symmetry of th@ matrix is theorthogonal
p ; one,G=0(n;+n,). TheQ is a real symmetric matrix and
EP= ra+n F(1+21_) ) the integration measure in E) is
" I'(l+p)I'(1+n—p) =2 I'[1+2(n—j+1)]
(50 R
diQI=1II |II dQj(m|. (57)
SinceER~"=0 the sums ovep, andp;, in Eq. (31) may be a L=

extended up to infinity. The resulting expression may be thefrnere arg (n, +n,)2+ (n,+n,)1/2 real degrees of freedom

n—0 theER symbol, Eq.(50), is given by zero modes is

EC o=1; El ,=2n; EPZ2=0(nf). (51

1 1 1
Nar=5[Pi+p1]+ 5[(N1=p1)?+ (N1 = p1) ]+ S [P3+p2]
Therefore only the terms witip; ,=0,1 may contribute to

the correlation functior§(w), Eq.(6). The number of mas- 1

sive modes, in the limit where, ,—0 at fixed p;,p,, is + E[(nz_pz)z"'(nz_pz)]
Nin—4(p1— P2)2. Therefore the terms with, # p, may be

neglected to leading order in the paramefer<1. As in the +p1(Ny—po) +pa(ni—py)

unitary case, only two terms with,;=p,=0 andp;=p- 1
=1 contribute to the generating function. 2.2 _ o :

The replica symmetric contributiop;=p,=0 is very Z LN+ N2H N1+ N2 ]+ (P1=P2) (P1= P2~ N1t N2);
similar to the one of the unitary ensemble. Using E§Y), (58)
(48), and(51) one finds N+ =p1P2;
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Ns—=(n1—p1)(Ny—Py);

N;=p1(N1—p1) +pa(n—py),

which correctly add up td (n;+n,)?+(n;+n,)]/2. The
number of zero modeg/, coincides with the number of

ISORDERED METALS: ... 3951

2e27TIm

VD(w),

where the spectral determinab{w) is defined by Eq(43).
Finally, the second replica nhonsymmetric manifatd = p,
=2, gives

2w (65)

S(w)|pl=p2=1:

dimensions of the degenerate coset space manifold

O(n1) /[O(p1)O(Ny — p1)]1XO(N2) /[O(p2) O(nz — p2) 1.
The volume of this coset space is calculated in the Appendi
and is given by

Vggifl;;:(2\/;)p1(”1*P1)+pz(n2*P2)GEiG2§, (59)
where
- [(1+n) P L(1+j/2)
"TT(1+p)L(1+n—p) =i T[1+(n—j+1)/2]
(60)

SinceGR~"=0 the sums ovep, andp, in Eq. (31) may be

extended up to infinity. The resulting expression may be con-

tinued analytically tan; ,—0 (cf. Ref. 11. The GE symbol,
Eq. (60), in the limit n—0 is

Vm o, 1
> 0=~ 7z

4

0o _
n—0"

G 1, Gl ,,=—-n G

GRZ5=0(nl(P+D72), (61)

where[ x] denotes integer part af Therefore only the terms
with p; ,=0,1,2 contribute to the correlation functi@w),
Eqg. (6). The number of massive modes, in the limit where
n, ,—0 at fixedp,,p,, is Ny—(p1—p,)?, making terms
with p;#p, small in the parameteA 7<1. One therefore
finds three relevant contributions to the generating function
P1=p2=0, p1=p,=1, andp;=p,=2.

The replica symmetric contributiop; =p,=0 comes al-
most without changes. Employing Eq81), (58), and (61)
one finds

<Z(n1'n2)(é)>|p1:p2:0

1

:ewi(nzfz—nlel)H -
Dg’—iw

q

niny/2
) . (62

From Eq.(6), one finds for the corresponding contribution to
the correlation function

1 1

29 (Do —iw)?’ ©3

S(w)|pl=p2=0= o+
in agreement with Ref. 7. The first replica honsymmetric
manifold, p;=p,=1, results in
1/2

2miw

n
1N2=g a0

(Dg?)?
(Dq2)2+0)2

<Z(nl'n2)(é)>|p1=p2=l: n

<Z(n1,nz)(|§)>|pl:p2:2

X
e477'iw (Dq2)2 2
=n4N , (66
! 2(477)4w4 q#0 (Dq2)2-l-oo2 (66)
and consequently
Aiw
— 2
S(@)|p,=p,=2= mp (o). (67)
Using Eq.(5) one finds
1 1 coy27w)
R(w)=-— Re + VD(w
cod4mw)
——— D3 w), 68
3ot (o) (68)

again in agreement with Refs. 9 and 10.

IV. DISCUSSION OF THE RESULTS

Let us briefly discuss the energy scales, the approxima-
tions involved in the calculations, and their range of validity.
There are four important energy scales: the mean level spac-
ing A; the Thouless energf.=#%D/L? (L is the system
size); the inverse scattering tim#/ 7; and the chemical po-
tential u. In the calculations above, the following hierarchy
was assumedA<E.<h/7<u. The condition i/r<<pu,
which means that the disorder is weak enough, was used to
evaluate momentum sums by contour integration. The in-
equalityE.<#/7, which is equivalent t&. much larger than
the mean free path tells that the system is in the diffusive
regime. It was used to derive the diffusive dispersion law in
Eqg. (26). Finally, g=E./A is the dimensionless conduc-
tance, and the condition thgte>1 means that the system is
metallic. This condition was used to calculate integrals over
zero modes withg#0 in the saddle-point approximation.
One more inequality was assumed in our derivation, the fact
that the difference in energiesis much larger than the level
spacingA. This is a technical assumption, which allowed us
to evaluate soft modes integrals by the saddle-point tech-
nique. It would be interesting to perform the calculations
without this last assumption, extending thus the results to
arbitrarily smallw.

Our calculations give the correlation as functionswofn
the form of a finite sum of oscillating harmoni@svo in the
GOE and GUE and three in the GKEvith » dependent
amplitudes. The set of harmonics is exact and has to do only

with the symmetry of the problem, specifically with the vol-
umes of the relevant coset spaces. The amplitudes, on an-
other hand, were obtained in the saddle-point approximation
only. Using our formulation, one may develop a perturbation
theory near the replica nonsymmetric saddle points, much in

(64)

Differentiating overe; ande, according to Eq(6) and keep-
ing only the leading contribution im/A>1, one obtains for
the corresponding contribution to the correlation function
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the same way as it was done near the replica symmetric on&(n,)/U(p;)U(n,;—p4), and similarly the propeY, trans-

see, e.g., Ref. 16. From such a perturbation theory one mdgrmations are elementdRk, which belong to U(n,)/

obtain a systematic expansion of the amplitudes of the oscild (p,)U(n,—p,).

latory terms, in powers oA/ w<<1 To compute the volume of the set of progertransfor-
We would like to point out striking similarities between mations inU(n) (heren stands for eithen; or n,), we start

our replica approach and the SUSY one of Ref. 9 which wasrom the usual decompositidwof the integral over the group

also based on the saddle-point calculations. In particular thef nx n Hermitian matricesX in terms of then eigenvalues

list of modes is the same. In the SUSY case, the zero modeg, and the unitary transformatioV such that X

and soft modes are, respectively, associated with the rota=V~(diag{x,, . .. X,})V:

tions inside the fermionic block and between fermions and

bosons. In some sense oprand n—p replica blocks are

similar to the bosonic and fermionic blocks of the SUSY dpo(X) =TT dx [T 6(x:1—x))

theory. To appreciate better this analogy, one would need a =

more detailed understanding of the mathematical structure of

the theory. In particular, one would like to define the unitary x <H< (X=X *dpn(V). (A2)

(or othep group,U(n), for nonintegen and trace its relation reiskeEn

to the graded symmetry. Another interesting problem is tdn this integral we have ordered the eigenval(ibs ¢ func-

appreciate better connections to the semiclassical method ¢bn is Heavyside's step functignin such a way that the

Ref. 10. integral overV scans the whole set of allowed unitary trans-
The existence of the replica nonsymmetric saddle pointgormations. We can compute the normalization of the “an-

opens two very important questions. One concerns their relgular” measure for instance by integrating a Gaussian func-

evance to the renormalization-group treatment of the localtion:

ization problem for one electron. Another, even more chal-

lenging one is to extend the replica theory of interacting

electrond’ to account for new saddle points. 'Ef dpn(X)ex;{

n n-1

1
—STrX? | =a"2272 (A3)

2

which can be computed using the above decomposition and
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fWMVﬂfLquH<m—MV

1<k

-t m" ] rj+1). (A4)
n! j=1

f dpn(V)
APPENDIX: ZERO MODES AND VOLUME OF THE
COSET SPACE Therefore one gets the normalization of the integral over the

, angular measure:
1. Unitary case

The manifoldMy ) of saddle-point matrice® is gen- VUEJ dpn(V):ﬂT(nz_n)/z (A5)
n

erated by unitary transformatiot$ of U(n;) xU(n,), ap-

plied to the diagonal matriA(plpz), cf. Eq.(11). We must  This result is easily checked by a direct counting argument;
the choice ofV is a choice of a Hermitian basis. The first
vector of the basis is an arbitrary unit vector, the correspond-
ing volume of integration is thusS,,/27 where S
=d7%/T'(1+d/2) is the volume of thel-dimensional unit
sphere, and the division by deals with a global phase
choice. The second unit vector of the basis must be orthogo-
W, 0 nal to the first one, which fixes two real conditions, and its
Y : (Al)  volume is thusS,,_,/2. After iterating this construction,
Ni=Py one gets the resu(tA5).
We now decompos&=RW, and the angular integral
whereWp1 and Wh,—p, are unitary matrices of sizg; and  dp,(V) as
n,—p;, respectively. The matri¥v belongs to the subgroup
U(p;) XU(n;—p;) of U(n,;) which leaves the saddle-point dpn(V)=dpp(Wp)dpn—p(Wn—p)dpn p(R).  (AB)

matrix invariant. :I'he “proper”V; transformations which This defines the measudp,, , in the 2p(n—p) space of the
change the matriQ) while staying on the saddle-point mani- proper transformation®. The normalization of this measure
folds are thus the element®; of the coset space is

o r(+1)°

first find which choices o¥,,V, actually change th® ma-
trix. A general unitary transformatiol of U(n;) can be
written as a producRW where the matriXV has the block
diagonal structure
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u can compute each such piece by working withnain Her-
j dpnp 5 =7P(0=P EP (A7)  mitian matrixX and computing
. ) . TV i
where we have introduced the symiief] defined by Z(“)EJ dpn(X)exp{ - X2+Trln( E+ Z_X”
T T
ot TP TG+DIPr(j+1) (A9)
Fn= p!'(n—p)! H}Lﬂ"(j +1) (A8) We expand around the saddle-point manifold generated by

X=Ap=diagi\; ... \pp=diag—1...,—1,1,...1} by writ-
We can now go on to the exact evaluation of the zerang

mode integrals. We keep within the subspace of the space 1 ) PP
independen) matrices (=0 mode$ which are the only =RA R+ X, SX=RWdiagx,, . .. X)W ilo
modes having a zero eigenvalue sector. Clearly the zero (A10)
modes integrals factorize into two independent pieces, assevhereW, as above, is itJ(p) X U(n—p) andR is a proper
ciated with each of the two coset spacestransformation. Using the decompositions of the measure de-
U(ny)/U(p1)U(n;—p1) andU(n,)/U(p,)U(Nn,—p,). We  fined in Egs.(A2) and(A6), one obtains

p—1
Z(“)=f dx, ...dx, Ki];[jsp (Xi—Xj)? H O(Xj 11 X; )J dp p)f dXpiq ... dX, p+1£l<jsn (Xi—X;j)?
n-1
X H 0(X1+1 X)f dpn p(Wn p)J' dpn p(R)l_[l ] 1;!_1 2+Xi_xj)20(2+xp+1_xp)
1
X e p{ A, + E X +8—Tr[(E+|A 127) " LSX(E+iApf27)~ 15x1] (A11)
|
whereA,, is the saddle-point action and the computation of Selberg’s integral gives the volume
TV 2 . 77_2n273n/22n
AD=ETFAP+TY|n((E+IAp/27')). (A12) Vﬁzm— (A15)

T, T(1+2))
The integral in Eq(A11) can be simplified by the following
observations: the integrals overare all massive modes, and
thus one can assume thaf—x;|<1. Therefore the third line s
of Eq. (A11) is just a constant equal toP("~PFR22P(N=P), Vn
Apart from this constant, the rest of Egh11) is nothmg but ViVaoo
the integrals over the massive modes.

What we have shown here is that, in the secterO of
uniform fluctuations, the exact integral over the saddle-point . n— .
manifold (the zero mode directiongjives a factor EP= n! H}"le“(ZJ + 1)Hi:fr(21 +1)

" p!(n—p)! M, T(2j+1)
(4m) p1(n1—p1) +P2(N2—p2) ngpgz (A13) (A17)

The ratio of volumes is

= 2P("=PIEP, (A16)

where

Finally the factor coupling the eigenvalugs:p to thosej
2. Orthogonal case >p in the analog of Eq(A11) becomes

We shall not repeat here all the steps of the previous p n
computation, they run in exactly the same way. We just give H H —2+X —xj)“ (A18)
the main modifications. The integral over the symplectic i=1j=

group, generalizing EqA4) is equal to so that the final integral over the zero mode manifold is

2
V= f dpn(V)=n!( f dpn(X)exp(—7)) (477)2“’1(”1*pl)*pz(”Z’pz)lEEiEEz. (A19)

-1
3. Symplectic case

n
X f H dXJ
j=1 J

1<k

1
(x—xk F{_EEJ:X

We just give again the main modifications. The integral
(A14) over the orthogonal group, generalizing EA4), is equal to
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NG where
vﬁ’:f dpn(V)=n!(f dpn(X)exp(—?))

n
11:[1 dx; jl;[k |x]-—xk|exp{—

) oo M TP T (j/2+ DI Pr(j/2+1)
) , " pl(n—p)! I_,T(jl2+1)

X

N| -

2%
i

(A23)

A20
] ) ] ( ] ) Finally the factor coupling the eigenvalugs:p to thosej
where X is a real symmetric matrix. The computation of - in the analog of Eq(A11) becomes

Selberg’s integral gives the volume

n

p
(A21) IT II |-2+x-x| (A24)
i=1j=p+1

2 210
) /4+(n/4)2n /4—5n/4

o' I(1+j/2)

Oo_
Vy=n!

The ratio of volumes is o . .
so that the final integral over the zero mode manifold is

o
n__ -p)/
oo =(2mPrPEGh, (A22) (4)IPL—PD+Po- P2 GPL G2 (A2E)
VoVn-p ng TN
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