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Surface structure of i-Al68Pd23Mn9: An analysis based on theT * „2F … tiling
decorated by Bergman polytopes
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A Fibonacci-like terrace structure along a fivefold axis ofi-Al68Pd23Mn9 monograins has been observed by
Schaubet al. with scanning tunneling microscopy. In the planes of the terraces they see patterns of dark
pentagonal holes. These holes are well oriented both within and among terraces. In one of 11 planes Schaub
et al. obtain the autocorrelation function of the hole pattern. We interpret these experimental findings in terms
of theT * (2F) tiling decorated by Bergman and Mackay polytopes. Following the suggestion of Elser that the
Bergman polytopes, clusters are the dominant motive of this model, we decorate the tilingT * (2F) with the
Bergman polytopes only. The tilingT * (2F) allows us to use the powerful tools of the projection techniques.
The Bergman polytopes can be easily replaced by the Mackay polytopes as the only decoration objects, if one
believes in their particular stability. We derive a picture of ‘‘geared’’ layers of Bergman polytopes from the
projection techniques as well as from a huge patch. Under the assumption that no surface reconstruction takes
place, this picture explains the Fibonacci sequence of the step heights as well as the related structure in the
terraces qualitatively and to a certain extent even quantitatively. Furthermore, this layer picture requires that
the polytopes are cut in order to allow for the observed step heights. We conclude that Bergman or Mackay
clusters have to be considered as geometric building blocks~just the polytopes! of the i-Al-Pd-Mn structure
rather than as energetically stable entities~clusters!. @S0163-1829~99!02829-5#
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I. INTRODUCTION
The surface ofi-Al68Pd23Mn9 perpendicular to fivefold

axes of an icosahedron has been explored in various pa
and terraces similar to netplanes in crystals have b
observed.1 Schaubet al.1 obtained by scanning tunneling m
croscopy~STM! atomic-scale direct space information a
low-energy electron diffraction~LEED! patterns of the sput
tered and annealed quasicrystalline surface. The dynam
LEED study of Giereret al.2 of a similarly prepared surfac
confirmed the quasicrystalline structure and yielded ad
tional structural information allowing an identification of th
possible surface layers in terms of the bulk structure mo
by de Boissieuet al.3

A second STM study ofin situ cleaved surfaces by Ebe
et al.4 revealed terraces orthogonal to the fivefold direct
only after annealing of the initially rather rough surface o
thogonal to the twofold direction.

For the bulk structure ofi-Al-Pd-Mn there exists a mode
due to de Boissieuet al., see Ref. 3 and the referenc
quoted within. This structure was based on the geome
model applied already oni-Al-Cu-Fe by Katz and Gratias
see Ref. 5 and the references within. The model has b
generalized by Elser6 into the geometric model that we rein
terpreted as the particular decoration of the tilingT * (2F).7,8

We are interested for the geometric description, because
experimental STM measurements1 are also giving only the
geometric description, and we consider the geometric mo
as a model for theatomic positions, independently of the
PRB 600163-1829/99/60~6!/3899~9!/$15.00
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particular chemical identity of the atoms~Al, Pd, or Mn!
occupying these positions. Therefore, all our conclusio
will be valid for both the de Boissieu–Boudard model3 and
the Elser model6 with the particular decoration of the atom
positions by Al, Pd, and Mn. The geometric model6 consists
of alternating Bergman and Mackay polytopes on the ve
ces of the primitive tiling.9 Elser proposed that the Bergma
polytopes are not onlygeometric clusters, polytopes, but
should also be considered asenergetically stable clusters.
Our considerations are testing the conjecture.

We interpret the geometric model as the tilingT * (2F)

~Ref. 7! decorated by Bergman polytopes and some oth
additional atomic positions~see Ref. 8 and Sec. III! forming
Mackay polytopes. As suggested by Elser,6 the dominant
motives on this tiling model are dodecahedral Bergman c
ters. We adopt this suggestion~neglecting the additiona
atomic positions! and examine the layer stacking and t
structure within planes perpendicular to a fivefold axis. W
compare the qualitative and quantitative predictions of
planar structure of the bulk model with the experimen
findings at the surface.1

The model analysis is made in terms of a patch of
tiling T * (2F) ~Ref. 10! in the tenth step of inflation decorate
by Bergman polytopes. This method allows us to gener
the relevant planar structure orthogonal to a fivefold dir
tion. By the method of lifting we can relate the planar pat
structure inEi to the relevant triacontahedral window inE'

with its coding substructure for the tilingT * (2F) and find in
3899 ©1999 The American Physical Society
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3900 PRB 60KASNER, PAPADOPOLOS, KRAMER, AND BU¨ RGLER
it the coding for the planes. An alternative approach to
terrace structure starting from the window side is given
Ref. 11.

II. EXPERIMENT

The terrace structure of thei-Al68Pd23Mn9 monograin has
been observed by STM.1 The terraces orthogonal to the five
fold axis are placed on Fibonacci distances with the sh
~low! interval L54.2260.26 Å and long~high! interval H
56.7860.24 Å. The planes~as terraces! occur in the se-
quence H H L H H L H L H H, seeFig. 1.

In each plane there are dark pentagons~pentagonal holes!
oriented parallel to each other, both in a terrace and am
the terraces.1 In the terraces there are also white five st
with five dark pentagons between the star arms, see Fig

In each plane one can draw lines through the struc

FIG. 1. The terrace structure of thei-Al68Pd23Mn9 monograin
~Ref. 1!.

FIG. 2. Atomic-scale structure within the terraces~Ref. 1!. Data
taken on terrace 8 of Fig. 1. The white 5 star is marked by an arr
e

rt

ng
s
.
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such that they are on Fibonacci distances, short~narrow! N
57.1760.08 Å and long~wide! W511.660.13 Å. The
short interval N equals the height of the pentagonal ho
The Patterson distribution function of the pentagonal hole
the biggest terrace~8! has been determined, see Fig. 3.

III. GEOMETRIC MODEL FOR THE ATOMIC
POSITIONS

In order to see if the geometric model ofi-Al-Pd-Mn
~Ref. 6! can explain the terrace structure, we consider t
atomic model interpreted in terms of the canonical tili
T * (2F),7,8 see Fig. 4.

The tiling T * (2F) is related7 to the primitive tiling T P

.

FIG. 3. Patterson distribution function of the pentagonal ho
on terrace 8~Ref. 1!. Thex andy axes extend from2100 to1100
Å.

FIG. 4. The window of the tilingT * (2F), is a triacontahedron
the six tetrahedra are the tiles~Ref. 7!. The symbolse andb are
the standard lengths defined in Sec. III A.
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PRB 60 3901SURFACE STRUCTURE OFi-Al68Pd23Mn9: AN . . .
~Ref. 9! by converting only the two~of six! tetrahedra
G* (Gi* ) and F* (F i* ) into acute and obtuse rhomboh
dra, respectively. The vertices of the tilingT * (2F) then coin-
cide with theeven vertices~even index sum! of the primitive
tiling. In the full geometric model, all the Mackay polytope
are centered on these vertices, although, not all these ver
are the centers of the Mackay polytopes. In the decoratio
the tiling T * (2F), Bergman polytopes~clusters! are centered8

at theodd vertices~odd index sum! of the primitive tiling,
which arenot vertices of the tilingT * (2F). It turns out that at
least some pentagonal faces of each Bergman polytope~es-
sentially a dodecahedron! appear in the tilingT * (2F) in-
scribed in the facesS2* (S2i* ) andS3* (S3i* ) of the tetrahe-
dra, as shown in Fig. 5 on an example ofG* and F*
tetrahedra.S2* and S3* are equilateral golden trianglesor-
thogonal to the fivefold symmetry axes of an icosahedro
They are described in Sec. III A together with other geom
ric properties of the tilingT * (2F).

A. The planar structure of the tiling T * „2F …

We start with a description of the window inE' for the
tiling T * (2F) and its coding content. The window for th
tiling is a triacontahedron. Our aim is to look for a possib
coding of the planes orthogonal to a fivefold direction of
icosahedron, that appear as a Fibonacci sequence on m
distances as observed in the experiment.1 These planes
should contain the quasilattice points ofT * (2F). With respect
to a fixed fivefold axis, we slice the triacontahedron into t
perpendicular zones of five types~1, 2, . . . 5! as shown in
Fig. 6. The thickness of unions of these zones is

1511ø21561[x5@2/~t12!#e

61ø6251ø25tx

61ø62ø6351ø2ø35t2x

61ø62ø63ø64

51ø2ø3ø45t3x.

FIG. 5. The Bergman polytopes are typically hanging from
golden trianglesS2* andS3* as the faces of the tilingT * (2F). Pen-
tagonal faces of the Bergman polytope~essentially a dodecahedron!
and top equatorial pentagons, bigger by a factort, are marked.
Pentagonal faces and top pentagons of the hanging Bergman
topes are drawn in Fig. 11, see also the black pentagons of the
of the top equatorial pentagons in Fig. 12.
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The symbole is the standard distance 1/A2 along a direc-
tion parallel to a fivefold symmetry axis of an icosahedro
t5(11A5)/2. The symbolb is the standard distanc
A2/(t12) along a direction parallel to a twofold symmet
axis of an icosahedron; the relation in length to the stand
e is b52/(At12) e.

Considering the thickness of zones and their combinati
we look for windows that would be necessary to code
bonacci sequences of planes perpendicular to the five
axis. The decagonal middle zone of type 1~decagonal prism!
is the window7 for the canonical planar tilingT * (A4) by two
golden triangles.12 This fact has been denoted as the diss
tability of the T * (2F) into planar subtilingsT * (A4).7 The
thicknessx of the zone 1~the decagonal prism! allows, as a
necessary condition, for coding a Fibonacci sequence
planes with mutual distances inEi s[si5t3

„2/(t12)…e
and l[ l i5ts

x5us'u1u l'u,

wherex is to be understood as a window.10 The thicknesses
for the unions of the zones 1ø2, 1ø2ø3, and 1ø2ø3ø4
scale this window by up to three powers oft. Consequently
they may code the Fibonacci sequences of planes inEi three
times inflated, respectively. The final sequence consists
mutual distancess5@2/(t12)#e and l 5ts.

The significance of the zones in the tiling is related
their content of windows for geometric objects other th
quasilattice points: the 1D edges of the tiling have as w
dows the perpendicular projections of dual 5 boundaries,
the faces of the tiling the perpendicular projections of dua
boundaries. We consider the edges and the faces of the t
T * (2F) in the planes perpendicular to a fixed direction of
fivefold axes. They are coded by the corresponding d
boundaries related to the same fivefold axes inE' . In these
planes there can appear only two of the four kinds of face
the tiling, the golden trianglesS2i* andS3i* . They are equi-

ly-
ize

FIG. 6. The window~triacontahedron! sliced into ten perpen-
dicular zones orthogonal to a fivefold axis. The point zero is at
center of the triacontahedron. With respect to this point zero,
zones are denoted by61, 62, 63, 64, and65.
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FIG. 7. Examples inEi of the planar sections orthogonal to the fivefold axis of the tilingT * (2F), such that the planes contain quasilatti
points, the tiling vertices. Types 1–5 are coded in the window by the corresponding zones61,62, . . . ,65, see Fig. 6. The golden triangle
S2i* andS3i* ~see also Fig. 5! define the structure of planes of types 1–4.
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lateral triangles with one edgetb and two edgesb, and
one edgeb and two edgestb, respectively. They are code
by the 4 boundaries projected toE' , S2' , and S3' ,
respectively.7 Similarly the short edgeb5V1i* and the
long edgetb5V2i* of these two triangles have the window
V1' and V2' , respectively.7 All the points of these pro-
jected dual boundaries, related to the particular fivefold
rection, are located within the triacontahedron and moreo
inside the union 1ø2ø3ø4 and not in the zone 5. From
their intersections with the first decagonal prism we get
full coding for the triangle patternT * (A4) in Ei . For zones 2,
3, and 4 outside the decagonal prism we expect inEi a
gradual reduction in the density of triangle faces and edg
due to the disappearance of their coding in the zones.
also expect qualitative differences in the pattern in the pla
of different types. Finally, in zone 5 we expect no such
angles and edges. These reductions should go along w
reduction of the density of quasilattice points for the tilin
T * (2F).

Here we do not prove the sufficient condition for the e
istence of Fibonacci sequences of planes. In Ref. 11 we id
tify the vectors which generate this Fibonacci sequence.
stead we check our expectations based on the nece
conditions from the side of the window on the finite patch
Ei obtained by the inflation procedure for the tilingT * (2F).10

We inspect a ten-step inflation patch. We cut the patch
T * (2F) in Ei by planes orthogonal to the fivefold directio
whenever there is a quasilattice point. There appear
planes on three mutual distances:t21@2/(t12)#e, @2/(t
12)#e andt@2/(t12)#e. The patch construction will al-
low us to simulate in detail the planar structure and its
quence and to compare it with experimental findings.1
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At the same time we wish to keep track of the codi
window structure described above. For this purpose we p
to E' by the unique procedure of lifting the quasilattic
points of the patch into the triacontahedral window. T
points within each plane ofEi perpendicular to a fivefold
axis are lifted into an intersection of the triacontahedron w
a plane shifted along and perpendicular to the correspon
five axis inE' . From the shift~with respect to the center o
all the points of the patch!, we assign to each plane one
the ten zones61, 62, 63, 64, 65 of the triacontahedron
introduced before. In the generated patch there appear
families of planes inEi , corresponding to the ten zones
five types inE' : The decagonal prism yields the dense
planes with the golden triangle tiling. Zones 2, 3, and 4 g
planes still containing golden triangles~and edges! of the
triangle tiling. In contrast, the planes inEi of type 5 inE'

contain only points of the quasilattice but neither edges
faces~see Fig. 7!. In the patch, there are 234 planes of t
types 1ø2ø3ø4 and they do appear in a Fibonacci s
quence with a shorts and a longl spacing. As expecteds
[si5@2/(t12)#e, l[ l i5t@2/(t12)#e; us'u1u l'u5t3x,
wheret3x is the thickness of the window for the Fibonac
spacing. Also the types 1ø2ø3, 1ø2, and 1 appear in
corresponding byt, t2, and t3, respectively, inflated Fi-
bonacci sequences. Finally, the planes of type 5 are not
of the Fibonacci sequence, and lead to the three dista
among the planes ofall types, t21@2/(t12)#e, @2/(t
12)#e and t@2/(t12)#e. The planes of type 5 carry a
low density of quasilattice points.

In the geometric model under consideration the scalet
times bigger than inT * (2F).8 The short edge has lengthtb
and the long edget2b. For i-Al-Pd-Mn, the standard length
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is e54.56 Å.3 Inserting it into the model the two spacing
of the planes 1ø2ø3ø4 becomets[L5t@2/(t12)#e
54.08 Å andt l[H5t2@2/(t12)#e56.60 Å, in agree-
ment with the measured step heights.1

B. The layers of the Bergman polytopes related to the planes
of the T * „2F … tiling

In the 10 times inflated patch we find 20 sequences of
planes such that each sequence could correspond to th
served 11 terraces in the experiment1 on the distances H H L
H H L H L H H, see Fig. 1. Let us take one of these s
quences, the one from 182–197 and plot it along the
quence determined by the experiment, Fig. 8. In the
quence 182–197 there are five planes of type 5 that are
observed in the measurement. The biggest terrace obse
in the experiment, denoted by the number 8~Ref. 1!, appears
to correspond to plane 192 of type 3 in the sequence. In
20 sequences, on the position of plane 8 there appear
times the plane of type 3, coded in the zone23, and four
times of type 2, coded in the zone22. For all 20 sequence
the first plane is of type 4, coded in the zone14 by the
interval @min(z'),max(z')];(0.681,0.825). The whole
zone 14 is coded by the interval (t3x/2,t2x/2)
;(0.828,0.521). The coding interval of the plane equival
to terrace 8 is (20.434,20.290),(2t2x/2, 2x/2).

So far we considered the points, edges, and faces of
tiling in the sequence of planes orthogonal to a fivefold
rection. Now we turn to the decoration by the Bergman cl
ters, as suggested by Elser.6 The decoration of the tiling

FIG. 8. In the ten-times inflated patch we find a sequence
corresponds to the 11 terraces observed by STM. The plot sho
histogram of Fig. 1~NODV is the number of data values!. The
numbers and types~zones! of the planes in the patch and the num
ber of the corresponding terrace in the STM image~Fig. 1! are
indicated above the plot. Note that the planes of types65 are not
observed in the experiment.

FIG. 9. All layers of Bergman polytopes orthogonal to a fivefo
direction (z axis! in a part of the ten-step inflation patch containin
the planes 177–197. The dotted intervals mark the relative
tances between the planes and the height of the Bergman polyt
The height of the Bergman polytope equals the lengthH, where
H56.60 Å. In the figureH;t2.
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T * (2F) by the Bergman polytopes is performed as stated
Sec. III A, and Ref. 8. As a final result, related to the plan
of type 1–5 orthogonal to a fivefold axes, there appearlayers
of Bergman polytopes. The edge of the Bergman polyto
~dodecahedron! is t21b52.96 Å and consequently th
height of the dodecahedron, and the layers,
t2@2/(t12)#e56.60 Å. It equals the high spacing of th
Fibonacci planes of type 1–4,H56.60 Å.

In Fig. 9 all layers of Bergman polytopes with two opp
site pentagonal faces orthogonal to a fivefold directionz
axis! in a part of the ten-step inflation patch are present
Part of the patch contains the planes 177–197, such th
includes 11 planes from Fig. 8. The length of horizontal lin
in the rows~B1!, ~B2!, ~B3! represents the height of a Berg
man dodecahedron, and their horizontal positions give
positions with respect to quasilattice planes. Horizontal lin
to the right of a quasilattice plane denote Bergman polyto
hanging below the plane, and horizontal lines to the left
Bergman polytopes standing on the plane. In particular,~B1!
are the layers of Bergman polytopes such that they are
between the planes of type61,62,63,64, hanging from
one plane and standing on another.~B2! are the layers of
Bergman polytopes hanging from some of the planes of t
61,62,63,64 and eventually standing on a plane of ty

TABLE I. The densities of the quasilattice pointsq, r(q) of the
tiling T * (2F) in planes 177–197 of the ten-times inflated patc
r(q) is normalized with respect to planes coded by the decago
prism in triacontahedron. The symbolh is the normalizedz coor-
dinate inE' , h5z/(t e!, the coordinate of the plane–coding i
the window forT * (2F), is hP(21,1). rb(B) and ra(B) are, re-
spectively, the densities of the Bergman-polytope layers below
above the planes with respect to the direction of thez axis in Ei .
r(B) are normalized with respect to the layers with the maxim
density~see Ref. 11, where the meaning of the expected sharp
ues 0 and 1 in the brackets is explained!. The corresponding 11
terraces are situated between planes 182 and 197 as in Fig. 8

Plane Type h(q) r(q) rb(B) ra(B)

177 21 20.050 1.00 0.95 0.99
178 5 0.845 0.10 0.62 0.00~0!
179 24 20.603 0.55 0.05 0.95
180 3 0.292 0.97 1.00~1! 0.62
181 22 20.261 0.98 0.66 1.00~1!
182 4 0.633 0.51 0.92 0.04
183 25 20.814 0.13 0.00~0! 0.66
184 1 0.081 1.00 1.00 0.92
185 5 0.975 0.00 0.37 0.00~0!
186 24 20.472 0.76 0.25 1.00
187 3 0.422 0.85 1.00~1! 0.37
188 21 20.131 1.00 0.86 1.00
189 5 0.764 0.23 0.75 0.00~0!
190 24 20.683 0.39 0.01 0.86
191 2 0.211 0.99 1.00~1! 0.75
192 23 20.342 0.92 0.51 1.00~1!
193 4 0.553 0.66 0.97 0.13
194 25 20.894 0.04 0.00~0! 0.51
195 1 0.000 1.00 0.98 0.97
196 5 0.894 0.05 0.53 0.00~0!
197 24 20.553 0.64 0.10 0.98
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5. ~B3! are the layers of Bergman polytopes standing
some of the planes of type61,62,63,64 and eventually
hanging on a plane of type 5. Hence, the latter cannot
interpreted as situated below any of the planes of type61,
62,63,64 . The densities of all the layers,r(B) @rb(B),
ra(B)] are written in Fig. 9 under the horizontal lines re
resenting Bergman layers, see also Table I. The layer
Bergman polytopes are ‘‘geared’’ to each other.

If we wish to interpret the observed terraces as the pla
of types 1–4 and consider the Bergman polytopes as
clusters,6 then we relate to each terrace~plane! the layer of
the Bergman polytopesbelow the plane, i.e., the layer o
hanging Bergman clusters. These clusters touch with a p
tagonal face a plane of quasilattice points from below. If t
happens, the atomic position at the midpoint of the face
lowered with respect to the plane by 0.48 Å, occupied by
in theB5 position of the model.3 This face could appear as
dark hole in the STM experiment. The search for these p
tagonal faces within the planes of types 1–4 is equivalen
the search for those Bergman clusters which hang be
these planes~from layers B1 and B2!. Knowing the coding
interval in the window for terrace 8, (20.434,20.290),
(2t2x/2, 2x/2), one can, as shown in Ref. 11, compute
density of the corresponding hanging Bergman polyto
layer. Using this approach we find the density of terrace 8
be in the range of 5.72–8.6231023 hanging Bergman
clusters/Å2.

As we already stated, the planes of types 1–4 are by t
mutual distances in agreement with the terraces observe
STM.1 The planes of type 5 are not observed as terra
probably due to the low densities of the quasilattice points
the planes. How is the appearance of the terraces relate
the Bergman layers? The planes as terraces appear t
correlated to two or three Bergman layers such that one la
is above the plane, another below the plane, and the eve
third one is dissected by the plane. These planes are of t
1–4. For planes which appear correlated to only two Be
man layers such that, with respect to the previous case, e
the layer above or below the plane is missing, a terrace d
not appear. These planes are of type 5.

C. Interpretation of the pentagonal holes in the planes

The observed dark pentagonal holes1 of the estimated
height 7.1760.08 Å are approximatelyt times bigger than
the pentagonal faces~face pentagons, see Fig. 5! of the Berg-
man polytopes. The height of the Bergman face within
plane is 4.56 Å. The observed pentagonal holes are as b
the pentagons on a parallel cut through five vertices of
dodecahedron with identical orientation, see Fig. 5. Th
height is 7.38 Å. We call them top equatorial pentago
Such a pentagonal cut through a Bergman cluster wo
again have a midpoint, in this case lowered by 0.78 Å,
cupied by Pd according to the model.3 Such a pentagon coul
also appear as a hole. The planes in the tiling and in
patch which contain these top equatorial pentagons
shifted with respect to the former planes by@2/(t12)#e
52.52 Å. Tentatively we propose this alternative interpre
tion of the pentagonal holes in the planes. The identificat
of the pentagonal holes as top equatorial pentagons of B
man polytopes is appealing because it readily explains
n
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size of the pentagons. However, there is a disagreement
the separation of the two topmost layers determined i
LEED-IV analysis by Giereret al.2 They find a separation o
0.38 Å, which is interpreted as a contracted bulk layer se
ration of 0.48 Å. This value, in turn, would nicely fit th
depth of the Bergman ‘‘faces.’’ Therefore, a clearcut inte
pretation of the pentagons observed by STM is still lackin

It is important to note that if we wish to relate the expe
mental data with the geometric model,6,8 this implies in any
case that the Bergman polytopes of heightt2@2/(t12)#e
56.60 Å are cut by the terrace structure with a minimal lay
separation of 4.22 Å, see Fig. 9.

The Mackay polytopes of the full geometric model6,8

would also provide pentagonal holes. Their height would
7.38 Å, but they are much deeper~2.52 Å!, and Mn atoms on
M0 positions should be in the center.3

The lines analyzed in Ref. 1 in a fixed plane with pen
gons~see Fig. 2! can be understood in the model as follow
Take another fivefold axis at an anglea ~see Fig. 10!,
cosa5t/(t12)51/A5 with respect to the fixed one~chosen
as z axes! and consider its set of planes of type 1ø2ø3.
These planes will intersect the fixed plane in parallel lines
Fibonacci spacing with distances N and W, whereN
5(A5/2)H57.38 Å and W5(A5/2)(L1H)511.94 Å,
sina52/A5, see Fig. 10. These distances compare well w
the experiment.1

From Fig. 8 we see that terrace 8, on which the Patter
distribution function of the pentagonal holes~Figs. 2 and 3!
was determined,1 corresponds to plane 192 in the sequen
of planes 182–197 of the ten-times inflated patch.

In Fig. 11 only those golden triangles of plane 192 a
presented, from which Bergman polytopes are hanging. T
are hanging with respect to the positive direction of thez axis
of Figs. 8 and 9. These Bergman polytopes are placed
tween planes 192 and 194, below 192 and above 194.

In Fig. 12 we show the patterns of the top equator
pentagons of Bergman polytopes in planes 188, 190, 1
and 192. These planes represent terraces 5, 6, 7, and 8
spectively. The pentagons are oriented parallel to each o
both in a terrace and among the terraces, as observed in
1. Big fluctuations in the density of the Bergman polytop
in the layers is expected, see also Table I.

In order to compare our model to the experimentally o
tained results on the distribution of the dark pentagonal ho
in the STM measurement, we calculate the autocorrela
function ~ACF! or Patterson function

FIG. 10. Possible relation of the Fibonacci spacings of
planes~terraces! of type 1–3 with the Fibonacci spacings of th
lines in the planes based on theT * (2F) tiling.
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FIG. 11. The representation of terrace 8 by plane 192 of the ten-times inflatedT * (2F) patch. Note the pentagonal faces ort bigger top
equatorial pentagons of Bergman polytopes, hanging in the direction orthogonal to the plane, the lines on N and W distances~see Fig. 10!,
and the white star of height 2W1N. Compare to Fig. 2.
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whererW5(x,y) andzh(rW) denotes the hole image. The AC
for the distribution of the dark pentagons was calculated
digitizing plane 192 of the model in exactly the same man
as described in Ref. 1 by assigning the value 1 to those p
of the plane inside a pentagon and 0 otherwise. The res
tion was also chosen to coincide with the one used in Re
namely 0.5 Å per pixel. Numerically we obtained the AC
for plane 192 of size 7643764 Å2. The layer below plane
192 in the patch contains 3835 hanging Bergman polyto
and hence, the density of the pentagons in plane 19
6.5831023 Å22. With respect to noise in the STM image
local-density fluctuations in small patches of a quasiperio
cally decorated plane, and freedom in the choice of the g
scale level~which separates between black and white in
digitizing procedure of the STM pattern!, the estimated den
sity on terrace 8 of 4.2231023 Å22 can be considered to b

FIG. 12. The representation of terraces 5, 6, 7, and 8 by pla
188, 190, 191, and 192, respectively. The content are the go
triangles and the top equatorial pentagons of the Bergman p
topes.
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in rather good agreement with that obtained from our mod
The minimal distance between the pentagons equals the s
edge of the tilingT * (2F). In the geometric model6,8 it equals
tb5r calc(I 8)'7.8 Å. The mean distance for the pentago
in plane 192 is calculated to 12.33 Å. In Fig. 13 the resulti
ACF is shown for a range of the displacement vectors
6100 Å in x andy directions. Labels on the first ten maxim
are in correspondence with those of Fig. 4 in Ref. 1 a
Table II. The calculated peak positions fit well to those o
tained from the hole pattern extracted from STM measu
ment, see Fig. 3 and Table II. The most intensive peak is
one marked by II in Fig. 13 and Table II, in the reasona
agreement with the Fig. 3. Instead of the series of planes
Fibonacci distances that we have studied in Sec. III A, fr
which the layers of Bergman polytopes are hanging, see

es
en
y- FIG. 13. The Patterson distribution function~the correlation
maxima! of the pentagonal holes in plane 192. Compare to Fig
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TABLE II. Radii of the Patterson correlation maxima in Fig. 3r exp and in Fig. 13r calc.

0 I8 I II III IV V VI VII VIII IX X

r exp~Å! 0 '12 19.7 31.7 36.9 41.3 49.4 51.0 60.5 63.3 68
r calc~Å! 0 7.8 12.6 20.3 32.9 38.6 43.7 50.7 53.2 62.5 65.7 66
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III B, we could have found the Fibonacci sequence of
Bergman layers themselves.11 In this frame, to terrace 8
would correspond the layer of Bergman polytopes hang
from Plane 195 with a much higher density of the Bergm
polytopes~pentagons! ~0.89! than in plane 192~0.51! pre-
sented in Fig. 11, see also Table I. The first strongest pea
the Patterson distribution for the penatogons in the la
would have been on the corresponding much shorter dista
in disagreement with the STM measurement, see Fig. 3. B
concepts, the Fibonacci sequence of planes and the laye
Bergman polytopes hanging from these planes, seem to b
importance for the terrace structure of the surface.

IV. DISCUSSION

In this paper we have used the projection tools related
tiling T * (2F). We have refined the already known dissectab
ity property7,10 of the tiling T * (2F) along the fivefold direc-
tion and have transferred this inherent property of the til
into the layer structure of the geometric model.6,8

In addition, we have generated a huge patch of the til
T * (2F) by a highly nontrivial inflation procedure10 to linear
dimensions of about 750 Å. It is large enough to reprodu
all statistical predictions about densities from the project
method as well as to contain inflation symmetries~tenth step
of the inflation!.

We do not consider the choice of the geometric mo
with the Bergman and Mackay polytopes6,8 as a significant
restriction because most of the results derived above
also hold for models with approximately the same size
windows, as for example, the model from Janot13 that we
have not yet considered. We have focused on the geom
model defined as a decoration of the tiling~primitive T P, or
T * (2F)) because all powerful tools known from the proje
tion methods are applicable.

V. CONCLUSION

We prove that the experimentally observed successio
the step heights L~low! and H~high! along the fivefold axis
(z direction!, which obeys the Fibonacci sequence, also
ists in the patch of the geometric model.6,8 Additionally, we
relate this sequence to another Fibonacci sequence o
distances N~narrow! and W~wide! between lines within the
planes (x-y planes! of the terraces also found i
experiments.1

The estimated coding of the observed finite Fibona
subsequence along the fivefold direction restricts the ch
of planes in the model which have to be compared with
experimentally analyzed terraces. Our model predicts
variations of the densities of quasilattice points~or equiva-
lently pentagonal holes! among terraces which should b
measurable in future high-quality STM images.
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Our analysis shows that the geometric model6,8 can be
understood as being composed of ‘‘geared’’ layers of Be
man polytopes~Fig. 9!. We relate sequences of these laye
of Bergman polytopes to the observed terraces and derive
patterns of pentagons within the terraces. We calculate
densities of Bergman clusters~Table I! within the layers
based on the knowledge of the window for the Bergm
clusters11 as well as using our huge patch~Fig. 9!. The cal-
culated pentagon distribution yields a reasonable mean
sity and good agreement of the Patterson data~Fig. 13, Table
II !. The direct space patterns even reproduce some struc
~white 5 stars! observed on the surface of the terraces. Ot
features of the patterns~Figs. 11 and 12! should be observ-
able in future high-quality STM images. Hence, we pred
more detailed criteria to judge from STM data whether t
geometric model6,8 is realized or not.

If we assume that the surface ofi-Al-Pd-Mn is not recon-
structed with respect to the bulk, a fact that follows from t
work of Giereret al.,2 then the Bergman polytopes represe
a correct geometric decoration, but they may not be con
ered as energetically stable clusters. This follows from
picture of ‘‘geared’’ layers of Bergman polytopes present
in Fig. 9 which requires that Bergman clusters are cut
order to allow for the observed step heights~H and L!. Fur-
ther, from the alternating decoration with Bergman a
Mackay polytopes of the primitive tiling6 one can also easily
conclude that the same model cannot be interpreted as
Mackay-cluster model either. Therefore, the Bergman a
Mackay clusters have to be considered as geometric build
blocks of the quasicrystalline structure rather than as e
getically stable entities. Strictly speaking, we can draw t
conclusion only for clusters at surfaces as the vacuum in
face gives rise to surface energy. Its influence on the sur
morphology is not easily predictable as surface energy c
tributions play an important role for the cluster stability, to
The determination of the different energy contributions
beyond the scope of this study which is based on geome
considerations. However, we hope that our work stimula
future investigations of the energetic stability of Bergm
and Mackay polytopes in icosahedral quasicrystals and
their surfaces.
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