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A Fibonacci-like terrace structure along a fivefold axig-@éfl ;sPd,sMng monograins has been observed by
Schaubet al. with scanning tunneling microscopy. In the planes of the terraces they see patterns of dark
pentagonal holes. These holes are well oriented both within and among terraces. In one of 11 planes Schaub
et al. obtain the autocorrelation function of the hole pattern. We interpret these experimental findings in terms
of the 7* (?F) tiling decorated by Bergman and Mackay polytopes. Following the suggestion of Elser that the
Bergman polytopes, clusters are the dominant motive of this model, we decorate thetif#{g with the
Bergman polytopes only. The tiling* *7) allows us to use the powerful tools of the projection techniques.

The Bergman polytopes can be easily replaced by the Mackay polytopes as the only decoration objects, if one
believes in their particular stability. We derive a picture of “geared” layers of Bergman polytopes from the
projection techniques as well as from a huge patch. Under the assumption that no surface reconstruction takes
place, this picture explains the Fibonacci sequence of the step heights as well as the related structure in the
terraces qualitatively and to a certain extent even quantitatively. Furthermore, this layer picture requires that
the polytopes are cut in order to allow for the observed step heights. We conclude that Bergman or Mackay
clusters have to be considered as geometric building blGoks the polytopesof the i-Al-Pd-Mn structure

rather than as energetically stable entifielsisters. [S0163-182609)02829-5

I. INTRODUCTION particular chemical identity of the atom#l, Pd, or Mn)

The surface ofi-AlggPdsMng perpendicular to fivefold occupying these positions. Therefore, all our conclusions
axes of an icosahedron has been explored in various papessill be valid for both the de Boissieu—Boudard motahd
and terraces similar to netplanes in crystals have beethe Elser modé&lwith the particular decoration of the atomic
observed. Schaubet al?! obtained by scanning tunneling mi- positions by Al, Pd, and Mn. The geometric mdtebnsists
croscopy(STM) atomic-scale direct space information and of alternating Bergman and Mackay polytopes on the verti-
low-energy electron diffractiofLEED) patterns of the sput- ces of the primitive tiling’ Elser proposed that the Bergman
tered and annealed quasicrystalline surface. The dynamicpblytopes are not onlygeometric clusterspolytopes, but
LEED study of Giereret al? of a similarly prepared surface should also be considered asergetically stable clusters
confirmed the quasicrystalline structure and yielded addi©Our considerations are testing the conjecture.
tional structural information allowing an identification of the ~ We interpret the geometric model as the tilifg %)
possible surface layers in terms of the bulk structure modelRef. 7) decorated by Bergman polytopes and some other,
by de Boissietet al? additional atomic positionésee Ref. 8 and Sec. JIforming

A second STM study oin situ cleaved surfaces by Ebert Mackay polytopes. As suggested by El8ehe dominant
et al? revealed terraces orthogonal to the fivefold directionmotives on this tiling model are dodecahedral Bergman clus-
only after annealing of the initially rather rough surface or-ters. We adopt this suggestiameglecting the additional
thogonal to the twofold direction. atomic positions and examine the layer stacking and the

For the bulk structure afAl-Pd-Mn there exists a model structure within planes perpendicular to a fivefold axis. We
due to de Boissielet al, see Ref. 3 and the references compare the qualitative and quantitative predictions of the
qguoted within. This structure was based on the geometriplanar structure of the bulk model with the experimental
model applied already oirAl-Cu-Fe by Katz and Gratias, findings at the surfack.
see Ref. 5 and the references within. The model has been The model analysis is made in terms of a patch of the
generalized by Els&into the geometric model that we rein- tiling 7* (?F) (Ref. 10 in the tenth step of inflation decorated
terpreted as the particular decoration of the tilifig®™.”® by Bergman polytopes. This method allows us to generate
We are interested for the geometric description, because thte relevant planar structure orthogonal to a fivefold direc-
experimental STM measuremehtre also giving only the tion. By the method of lifting we can relate the planar patch
geometric description, and we consider the geometric modedtructure ink to the relevant triacontahedral window lin
as a model for theatomic positions independently of the with its coding substructure for the tiling* (*7) and find in
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FIG. 1. The terrace structure of theAlggPdhs;Mny monograin FIG. 3. Patterson distribution function of the pentagonal holes
(Ref. 1. on terrace §Ref. 1). Thex andy axes extend from-100 to + 100

A

it the coding for the planes. An alternative approach to the

terrace structure starting from the window side is given insuch that they are on Fibonacci distances, straatrow) N
Ref. 11. =7.17+0.08 A and long(wide) W=11.6-0.13 A. The

short interval N equals the height of the pentagonal holes.
The Patterson distribution function of the pentagonal holes in

Il. EXPERIMENT the biggest terracé) has been determined, see Fig. 3.
The terrace structure of theAlggPdsMng monograin has
been observed by STMThe terraces orthogonal to the five- IIl. GEOMETRIC MODEL FOR THE ATOMIC
fold axis are placed on Fibonacci distances with the short POSITIONS
(low) interval L=4.22+0.26 A and long(high) interval H ) ) )
=6.78+0.24 A. The planedas terracésoccur in the se- N order to see if the geometric model 6Al-Pd-Mn
quene HH L HHLHLH H, seeFig. 1. (Ref. 6 can explain the terrace structure, we consider this

. A 2F) 7,8 H
oriented parallel to each other, both in a terrace and amon P, _see F'%;F;‘-_ o
the terraces.In the terraces there are also white five stars The tiling 77 is related to the primitive tiling 7°
with five dark pentagons between the star arms, see Fig. 2.
In each plane one can draw lines through the structure

FIG. 4. The window of the tilingZ™* ?7), is a triacontahedron,
FIG. 2. Atomic-scale structure within the terrad&ef. 1). Data  the six tetrahedra are the tiléRef. 7). The symbolg5) and(® are
taken on terrace 8 of Fig. 1. The white 5 star is marked by an arrowthe standard lengths defined in Sec. Il A.



PRB 60 SURFACE STRUCTURE OR-AlggPd,Mng: AN . .. 3901

pentagonal
Cav N face

FIG. 5. The Bergman polytopes are typically hanging from the
golden triangleS3 andX% as the faces of the tiling™ 2", Pen-
tagonal faces of the Bergman polytof@ssentially a dodecahedion
and top equatorial pentagons, bigger by a factplare marked.
Pentagonal faces and top pentagons of the hanging Bergman poly-
topes are drawn in Fig. 11, see also the black pentagons of the size
of the top equatorial pentagons in Fig. 12.

FIG. 6. The window(triacontahedronsliced into ten perpen-
dicular zones orthogonal to a fivefold axis. The point zero is at the
(Ref. 9 by converting only the two(of six) tetrahedra center of the triacontahedron. With respect to this point zero, the
G* (Gf) andF* (Fj) into acute and obtuse rhombohe- zones are denoted by1, +2, +3, 4, and+5.
dra, respectively. The vertices of the tiliigt ?F) then coin-
cide with theeven verticegeven index sumof the primitive ~ The symbol(®) is the standard distance & along a direc-
tiling. In the full geometric model, all the Mackay polytopes tion parallel to a fivefold symmetry axis of an icosahedron,
are centered on these vertices, although, not all these vertices- (1+/5)/2. The symbol® is the standard distance
are the centers of the Mackay polytopes. In the decoration of/2/(7+2) along a direction parallel to a twofold symmetry
the tiling 7* *F), Bergman polytopefclusters are centerétl  axis of an icosahedron; the relation in length to the standard
at theodd vertices(odd index sumof the primitive tiling, ) is @=2/(\7+2) ®.
which arenot vertices of the tilingZ* *P). It turns out that at Considering the thickness of zones and their combinations
least some pentagonal faces of each Bergman poly@pe we look for windows that would be necessary to code Fi-
sentially a dodecahedrprappear in the tilingZ** in-  ponacci sequences of planes perpendicular to the fivefold
scribed in the face®; (23)) andX3 (3 of the tetrahe-  axis. The decagonal middle zone of typédicagonal prisin
dra, as shown in Fig. 5 on an example 6f and F* s the window for the canonical planar tiling™ A4 by two
tetrahedraX} and X3 are equilateral golden triangles-  golden triangled? This fact has been denoted as the dissec-
thogonalto the fivefold symmetry axes of an icosahedron.tability of the 7* (P into planar subtilings7* *4.” The
They are described in Sec. |1l A together with other geometthicknessx of the zone 1(the decagonal prisjrellows, as a

ric properties of the tilingr™ (7). necessary condition, for coding a Fibonacci sequence of
planes with mutual distances i SESH=7'3(2l(7'+ 2)®
A. The planar structure of the tiling 7* 2F) andl=lj=rs
We start with a description of the window iy for the x=|s, [+]l,],

tiling 7*F) and its coding content. The window for the , , _

tiling is a triacontahedron. Our aim is to look for a possible Wherex is to be understood as a windd#The thicknesses
coding of the planes orthogonal to a fivefold direction of anfor the unions of the zones12, 1U2U3, and LU2U3U4
icosahedron, that appear as a Fibonacci sequence on mut§&@le this window by up to three powers ofConsequently
distances as observed in the experinferfthese planes they may code the Fibonacci sequences of planéy three
should contain the quasilattice pointsDf 7). With respect times mf!ated, respectively. The final sequence consists of
to a fixed fivefold axis, we slice the triacontahedron into tenMutual distances=[2/(7+2)]® and! = rs.

perpendicular zones of five typés, 2, ... 5 as shown in The significance of the zones in the tiling is related to
Fig. 6. The thickness of unions of these zones is their content of windows for geometric objects other than
quasilattice points: the 1D edges of the tiling have as win-
_ 1y dows the perpendicular projections of dual 5 boundaries, and
1=+10-1==1=x=[2(1+2)]® the faces of the tiling the perpendicular projections of dual 4
+1U*x2=1U2=17X boundaries. We consider the edges and the faces of the tiling
5 7*F) in the planes perpendicular to a fixed direction of a
*lUur2U=x3=1U2U3=1%X fivefold axes. They are coded by the corresponding dual
+1U+2U+3U+4 boundaries related to the same fivefold axe& in In these

planes there can appear only two of the four kinds of faces of
=1U2U3U4=17X. the tiling, the golden triangleX 7, andX3;. They are equi-
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FIG. 7. Examples il of the planar sections orthogonal to the fivefold axis of the tifiig?", such that the planes contain quasilattice
points, the tiling vertices. Types 1-5 are coded in the window by the correspondingzdne®, ... =5, see Fig. 6. The golden triangles
37, and3; (see also Fig. bdefine the structure of planes of types 1-4.

lateral triangles with one edge®2 and two edge%2), and At the same time we wish to keep track of the coding
one edg&?2) and two edges(2), respectively. They are coded window structure described above. For this purpose we pass
by the 4 boundaries projected tB, , X, , and 23, , to 5, by the unique procedure of lifting the quasilattice

respectively. Similarly the short edge@zﬂ’{” and the points of the patch into the triacontahedral window. The
long edger®:Q§H of these two triangles have the windows points within each plane ofj perpendicular to a fivefold
Q,, andQ,, , respectively. All the points of these pro- axis are lifted into an intersection of the triacontahedron with
jected dual boundaries, related to the particular fivefold di-@ plane shifted along and perpendicular to the corresponding
rection, are located within the triacontahedron and moreoveifive axis inlk, . From the shift(with respect to the center of
inside the union U2U3U4 and not in the zone 5. From all the points of the patohwe assign to each plane one of
their intersections with the first decagonal prism we get théhe ten zones=1, £2, =3, =4, =5 of the triacontahedron
full coding for the triangle patter™ (A+) in E,. For zones 2, introduced before. In the generated patch there appear five
3, and 4 outside the decagonal prism we expecfijjina  families of planes inliy, corresponding to the ten zones of
gradual reduction in the density of triangle faces and edgedive types inE, : The decagonal prism yields the densest
due to the disappearance of their coding in the zones. Welanes with the golden triangle tiling. Zones 2, 3, and 4 give
also expect qualitative differences in the pattern in the planeplanes still containing golden triangléand edgesof the
of different types. Finally, in zone 5 we expect no such tri-triangle tiling. In contrast, the planes iy of type 5 ink;
angles and edges. These reductions should go along withca@ntain only points of the quasilattice but neither edges nor
reduction of the density of quasilattice points for the tiling faces(see Fig. 7. In the patch, there are 234 planes of the
7+ (2F), types 1U2U3U4 and they do appear in a Fibonacci se-
Here we do not prove the sufficient condition for the ex-quence with a shors and a longl spacing. As expected
istence of Fibonacci sequences of planes. In Ref. 11 we ider=s|=[2/(7+2)1®, |=lj=2/(7+2)1®; |s,|+]l | = X,
tify the vectors which generate this Fibonacci sequence. Inwhere 73x is the thickness of the window for the Fibonacci
stead we check our expectations based on the necessapacing. Also the types12U3, 1U2, and 1 appear in
conditions from the side of the window on the finite patch incorresponding byr, 72, and 7°, respectively, inflated Fi-
E; obtained by the inflation procedure for the tilidg ?7).*°  bonacci sequences. Finally, the planes of type 5 are not part
We inspect a ten-step inflation patch. We cut the patch obf the Fibonacci sequence, and lead to the three distances
7+ in [y by planes orthogonal to the fivefold direction among the planes o#ll types, Y 2/(r+2)]®), [2/(r
whenever there is a quasilattice point. There appear 318 2)]® and 7 2/(7+2)](®). The planes of type 5 carry a
planes on three mutual distances:[2/(7+2)]®), [2/(r  low density of quasilattice points.
+2)]® and 7 2/(7+2)]®). The patch construction will al- In the geometric model under consideration the scatle is
low us to simulate in detail the planar structure and its setimes bigger than i7* (?7) 8 The short edge has lengt®
quence and to compare it with experimental findihgs. and the long edge®(2. Fori-Al-Pd-Mn, the standard length
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Patch: 182 184
Type: +4 =5 +1 +5
STM: 1 2

186 187 188 190 191 182193 195 197
-4 +3 -1 45 -4 42 =3 +4-5 +14+5 -4
3 4 5 6 7 9 10 1

TABLE I. The densities of the quasilattice poirgsp(q) of the
tiling 7% in planes 177-197 of the ten-times inflated patch.
p(q) is normalized with respect to planes coded by the decagonal
prism in triacontahedron. The symbglis the normalizedz coor-
dinate ink, , n=2/(7 ®), the coordinate of the plane—coding in
the window for7* 2P is e (—1,1). pp(B) and p,(B) are, re-
spectively, the densities of the Bergman-polytope layers below and
above the planes with respect to the direction of zfeis in k.

p(B) are normalized with respect to the layers with the maximal
density(see Ref. 11, where the meaning of the expected sharp val-

ues 0 and 1 in the brackets is explainetihe corresponding 11

FIG. 8. In the ten-times inflated patch we find a sequence thaferraces are situated between planes 182 and 197 as in Fig. 8.
corresponds to the 11 terraces observed by STM. The plot shows_a

histogram of Fig. 1(NODV is the number of data valuesThe

NODV
= 4.10%

= 3-104

= 2.10%
H L 2:10°

J _ L

5-fold
2 [A] T ——T T
0

= 1.104

=0

numbers and typeizones of the planes in the patch and the num- Plane Type 7(a) p(a) Po(B) Pa(B)
ber of the corresponding terrace in the STM imd§ey. 1) are 177 -1 —0.050 1.00 0.95 0.99
indicated above the plot. Note that the planes of typésare not 178 5 0.845 0.10 0.62 0.00)
observed in the experiment. 179 -y ~0.603 0.55 0.05 0.95
180 3 0.292 0.97 1.0Q0) 0.62
is ®=4.56 A2 Inserting it into the model the two spacings 1g1 -2 —0.261 0.98 0.66 1.001)
of the planes U2U3U4 becomers=L=12/(7+2)]® 182 4 0.633 0.51 0.92 0.04
=4.08 A and TlEHITZ[Z/(T-I— 2)]@2 6.60 A, in agree- 183 -5 —-0.814 0.13 0.0G0) 0.66
ment with the measured step heights. 184 1 0.081 1.00 1.00 0.92
185 5 0.975 0.00 0.37 0.00)
B. The layers of the Bergman polytopes related to the planes 186 -4 —0.472 0.76 0.25 1.00
of the 7* M) tiling 187 3 0.422 0.85 1.0Q0) 0.37
In the 10 times inflated patch we find 20 sequences of 1 88 -1 ~od1st 1.00 0-86 1.00
planes such that each sequence could correspond to the o 89 ° 0.764 0-23 0-75 0.00)
served 11 terraces in the experimenn the distanceH H L —4 ~0.683  0.39 0.01 0.86
HHLHLHH, seeFig. 1. Let us take one of these se- 191 2 0211 0.99 1.0a1) 0.75
guences, the one from 182-197 and plot it along the se er92 -3 -0342 092 0.51 1.000)
guence determined by the experiment, Fig. 8. In the sel93 4 0.553 0.66 0.97 0.13
guence 182-197 there are five planes of type 5 that are n —o —0.894 0.04 0.0q0) 0.51
observed in the measurement. The biggest terrace observed® 1 0.000 1.00 0.98 0.97
in the experiment, denoted by the numbeR&f. 1), appears 5 0.894 0.05 0.53 0.00)
-4 —0.553 0.64 0.10 0.98

to correspond to plane 192 of type 3 in the sequence. In o
20 sequences, on the position of plane 8 there appears 16
times the plane of type 3, coded in the zon&, and four
times of type 2, coded in the zore2. For all 20 sequences
the first plane is of type 4, coded in the zonet by the
interval [min(z,),max(z,)]~(0.681,0.825). The whole
zone +4 is coded by the interval £x/2,7°x/2)
~(0.828,0.521). The coding interval of the plane equivalen
to terrace 8 is € 0.434—0.290)C (— 7°x/2, —x/2).

So far we considered the points, edges, and faces of th{_é
tiling in the sequence of planes orthogonal to a fivefold di- :
rection. Now we turn to the decoration by the Bergman clus-

7*(F) by the Bergman polytopes is performed as stated in
Sec. llIA, and Ref. 8. As a final result, related to the planes
of type 1-5 orthogonal to a fivefold axes, there appapers
of Bergman polytopes. The edge of the Bergman polytope
dodecahedronis 7 1@=2.96 A and consequently the
e'ght of the dodecahedron, and the layers, is
[2/(m+2)]B)=6.60 A. It equals the high spacing of the
bonacci planes of type 1-#]=6.60 A.

In Fig. 9 all layers of Bergman polytopes with two oppo-
site pentagonal faces orthogonal to a fivefold directian (

ters, as suggested by Eleffhe decoration of the tiling

Plane No.
190 191 192 193 195 197
|| | ~Terrace

-3 4-5 1 5-4 Type

177 179180 151182 4 186 187 1

1543 1543 542

1
' [Too) 057098 &)

oo
fold . T¢ .
' 095 10 [0.92]1.00 100086
005 066 0.25 001 0.51 (B2)
062 ooﬂ 037 075 013

axig in a part of the ten-step inflation patch are presented.
Part of the patch contains the planes 177-197, such that it
includes 11 planes from Fig. 8. The length of horizontal lines
in the rows(B1), (B2), (B3) represents the height of a Berg-
man dodecahedron, and their horizontal positions give the
positions with respect to quasilattice planes. Horizontal lines
to the right of a quasilattice plane denote Bergman polytopes
hanging below the plane, and horizontal lines to the left are

(83)

FIG. 9. All layers of Bergman polytopes orthogonal to a fivefold Be€rgman polytopes standing on the plane. In particuit)
direction (z axis) in a part of the ten-step inflation patch containing are the layers of Bergman polytopes such that they are in
the planes 177-197. The dotted intervals mark the relative disbetween the planes of type 1,=2,=3,=4, hanging from
tances between the planes and the height of the Bergman polytope¥ie plane and standing on anothé82) are the layers of
The height of the Bergman polytope equals the lengihwhere ~ Bergman polytopes hanging from some of the planes of type
H=6.60 A. In the figureH ~ 72. +1,£2,+3,+4 and eventually standing on a plane of type
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5. (B3) are the layers of Bergman polytopes standing on
some of the planes of type1,+2,+3,+4 and eventually z | 5fold
hanging on a plane of type 5. Hence, the latter cannot be -1 Sfold
interpreted as situated below any of the planes of tyfde coso=—Ly . 375
+2,+3,£4 . The densities of all the layers(B) [p,(B), ; L
pa(B)] are written in Fig. 9 under the horizontal lines rep- . H
resenting Bergman layers, see also Table I. The layers of 2 H
Bergman polytopes are “geared” to each other. o 4 DX H
If we wish to interpret the observed terraces as the planes L
of types 1-4 and consider the Bergman polytopes as the W N W W N X

clusters? then we relate to each terragelane the layer of
the Bergman polytopebelow the plane, i.e., the layer of FIG. 10. Possible relation of the Fibonacci spacings of the
hanging Bergman clusters. These clusters touch with a pemianes(terrace of type 1-3 with the Fibonacci spacings of the
tagonal face a plane of quasilattice points from below. If thatines in the planes based on tf& (2" tiling.

happens, the atomic position at the midpoint of the face is

lowered with respect to the plane by 0.48 A, occupied by Alsize of the pentagons. However, there is a disagreement with
in the Bs position of the modet. This face could appear as a the separation of the two topmost layers determined in a
dark hole in the STM experiment. The search for these pentEED-IV analysis by Giereet al? They find a separation of
tagonal faces within the planes of types 1—4 is equivalent t®@.38 A, which is interpreted as a contracted bulk layer sepa-
the search for those Bergman clusters which hang belowation of 0.48 A. This value, in turn, would nicely fit the
these planegfrom layers B1 and BR Knowing the coding depth of the Bergman “faces.” Therefore, a clearcut inter-
interval in the window for terrace 8,-0.434-0.290)C pretation of the pentagons observed by STM is still lacking.
(— 7x/2, —x/2), one can, as shown in Ref. 11, compute the It is important to note that if we wish to relate the experi-
density of the corresponding hanging Bergman polytopamental data with the geometric modéthis implies in any
layer. Using this approach we find the density of terrace 8 taase that the Bergman polytopes of heighit2/(+2)]®

be in the range of 5.72-8.6210 % hanging Bergman =6.60 A are cut by the terrace structure with a minimal layer
clusters/A?. separation of 4.22 A, see Fig. 9.

As we already stated, the planes of types 1—4 are by their The Mackay polytopes of the full geometric modl
mutual distances in agreement with the terraces observed lwyould also provide pentagonal holes. Their height would be
STM.! The planes of type 5 are not observed as terraces,.38 A, but they are much deep@:52 A), and Mn atoms on
probably due to the low densities of the quasilattice points inVl, positions should be in the center.
the planes. How is the appearance of the terraces related to The lines analyzed in Ref. 1 in a fixed plane with penta-
the Bergman layers? The planes as terraces appear to hens(see Fig. 2 can be understood in the model as follows:
correlated to two or three Bergman layers such that one layerake another fivefold axis at an angte (see Fig. 10,
is above the plane, another below the plane, and the eventugbsa=7/(7+2)=1/\/5 with respect to the fixed on@hosen
third one is dissected by the plane. These planes are of types z axeg and consider its set of planes of typ&2U 3.
1-4. For planes which appear correlated to only two BergThese planes will intersect the fixed plane in parallel lines in
man layers such that, with respect to the previous case, eithgibonacci spacing with distances N and W, whexe
the layer above or below the plane is missing, a terrace doe§.(\/§/2)|_| =738 A and W=(\5/2)(L+H)=11.94 A,

not appear. These planes are of type 5.

C. Interpretation of the pentagonal holes in the planes

The observed dark pentagonal hdles the estimated
height 7.17-0.08 A are approximately times bigger than
the pentagonal facdface pentagons, see Fig.& the Berg-

sina=2/\/5, see Fig. 10. These distances compare well with
the experiment.

From Fig. 8 we see that terrace 8, on which the Patterson
distribution function of the pentagonal holésigs. 2 and 3
was determined,corresponds to plane 192 in the sequence
of planes 182-197 of the ten-times inflated patch.

In Fig. 11 only those golden triangles of plane 192 are

man polytopes. The height of the Bergman face within thepresented, from which Bergman polytopes are hanging. They
plane is 4.56 A. The observed pentagonal holes are as big ase hanging with respect to the positive direction ofzlais

the pentagons on a parallel cut through five vertices of thef Figs. 8 and 9. These Bergman polytopes are placed be-
dodecahedron with identical orientation, see Fig. 5. Theitween planes 192 and 194, below 192 and above 194.
height is 7.38 A. We call them top equatorial pentagons. In Fig. 12 we show the patterns of the top equatorial
Such a pentagonal cut through a Bergman cluster woulgentagons of Bergman polytopes in planes 188, 190, 191,
again have a midpoint, in this case lowered by 0.78 A, ocand 192. These planes represent terraces 5, 6, 7, and 8, re-
cupied by Pd according to the modebuch a pentagon could spectively. The pentagons are oriented parallel to each other,
also appear as a hole. The planes in the tiling and in théoth in a terrace and among the terraces, as observed in Ref.
patch which contain these top equatorial pentagons arg. Big fluctuations in the density of the Bergman polytopes
shifted with respect to the former planes f®/(7+2)]® in the layers is expected, see also Table I.

=2.52 A. Tentatively we propose this alternative interpreta- In order to compare our model to the experimentally ob-
tion of the pentagonal holes in the planes. The identificatioriained results on the distribution of the dark pentagonal holes
of the pentagonal holes as top equatorial pentagons of Berga the STM measurement, we calculate the autocorrelation
man polytopes is appealing because it readily explains th&nction (ACF) or Patterson function
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FIG. 11. The representation of terrace 8 by plane 192 of the ten-times infiaf@® patch. Note the pentagonal facesobigger top
equatorial pentagons of Bergman polytopes, hanging in the direction orthogonal to the plane, the lines on N and W distaRiesl)
and the white star of height 2WN. Compare to Fig. 2.

- _ - in rather good agreement with that obtained from our model.
A(r)= f Zy(r")zp(r’ +r)d?r’, The minimal distance between the pentagons equals the short
d edge of the tilingZ* 7). In the geometric mod&f it equals
1@=rqdl')~7.8 A. The mean distance for the pentagons

for the distribution of the dark pentagons was calculated b n P'af‘e 192is calculated to 12.33 A..In Fig. 13 the resulting
digitizing plane 192 of the model in exactly the same mannef CF 1S ghown for a range of the d|splace.ment vectors of
as described in Ref. 1 by assigning the value 1 to those partg 10_0 Ainxandy dlrectlon_s. Labels on the f|rst_ ten maxima

of the plane inside a pentagon and 0 otherwise. The resol@€ IN correspondence with those of Fig. 4 in Ref. 1 and

tion was also chosen to coincide with the one used in Ref. 1, "flble Il. The calculated peak positions fit well to those ob-
namely 0.5 A per pixel. Numerically we obtained the ACFtalned from the hole pattern extracted from STM measure-

for plane 192 of size 764764 A2. The layer below plane ment, see Fig. 3 and Table Il. The most intensive peak is the

192 in the patch contains 3835 hanging Bergman polytopeS"€ marked by |l in Fig. 13 and Table Il, in the reasonable
and hence, the density of the pentagons in plane 192 | greement with the Fig. 3. Instead of the series of planes on

6.58< 10~ A~2 With respect to noise in the STM images ibonacci distances that we have studied in Sec. Il A, from
local-density fluctuations in small patches of a quasiperiodiyvhICh the layers of Bergman polytopes are hanging, see Sec.

cally decorated plane, and freedom in the choice of the grey-
scale level(which separates between black and white in the
digitizing procedure of the STM patterrthe estimated den-
sity on terrace 8 of 4.2210 2 A~? can be considered to be

Wherefz(x,y) andz,(r) denotes the hole image. The ACF
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FIG. 12. The representation of terraces 5, 6, 7, and 8 by planes
188, 190, 191, and 192, respectively. The content are the golden
triangles and the top equatorial pentagons of the Bergman poly- FIG. 13. The Patterson distribution functidthe correlation
topes. maxima of the pentagonal holes in plane 192. Compare to Fig. 3.
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TABLE II. Radii of the Patterson correlation maxima in Figr 3, and in Fig. 13r .

0 I’ | Il 1 v \% \ Vi Vil IX X

rexp(A) 0 ~12 197 317 369 413 494 510 605 633 681
read®) 0 7.8 126 203 329 386 437 50.7 532 625 657 66.7

Il B, we could have found the Fibonacci sequence of the Our analysis shows that the geometric m88etan be
Bergman layers themselv&s.in this frame, to terrace 8 understood as being composed of “geared” layers of Berg-
would correspond the layer of Bergman polytopes hangingnan polytopesFig. 9). We relate sequences of these layers
from Plane 195 with a much higher density of the Bergmarof Bergman polytopes to the observed terraces and derive the
polytopes(pentagons (0.89 than in plane 1920.51) pre-  patterns of pentagons within the terraces. We calculate the
sented in F|g 11, see also Table I. The first Strongest peak iaensities of Bergman C|uste|(§'ab|e I) within the |ayers
the Patterson distribution for the penatogons in the layepssed on the knowledge of the window for the Bergman
yvogld have been on the corresponding much shortgr distancg,sterd! as well as using our huge patéfig. 9. The cal-
in disagreement with the STM measurement, see Fig. 3. Both|ated pentagon distribution yields a reasonable mean den-
concepts, the Fibonacci sequence of planes and the layers v and good agreement of the Patterson d&ig. 13, Table
Bergman polytopes hanging from these planes, seem to be Y. The direct space patterns even reproduce some structures
importance for the terrace siructure of the surface. (white 5 starg observed on the surface of the terraces. Other
features of the patterngigs. 11 and 1Pshould be observ-
able in future high-quality STM images. Hence, we predict
In this paper we have used the projection tools related ténore detailed criteria to judge from STM data whether the
tiling 7* *F). We have refined the already known dissectabil-geometric modéf® is realized or not.

IV. DISCUSSION

ity property'1° of the tiling 7* ?) along the fivefold direc- If we assume that the surface iefl-Pd-Mn is not recon-
tion and have transferred this inherent property of the tilingstructed with respect to the bulk, a fact that follows from the
into the layer structure of the geometric mo@él. work of Giereret al,? then the Bergman polytopes represent

In addition, we have generated a huge patch of the tilinga correct geometric decoration, but they may not be consid-
7* py a highly nontrivial inflation procedut®to linear  ered as energetically stable clusters. This follows from the
dimensions of about 750 A. It is large enough to reproducepicture of “geared” layers of Bergman polytopes presented
all statistical predictions about densities from the projectionin Fig. 9 which requires that Bergman clusters are cut in
method as well as to contain inflation symmetiiesith step  order to allow for the observed step heigtitsand L). Fur-
of the inflation. ther, from the alternating decoration with Bergman and

We do not consider the choice of the geometric modeMackay polytopes of the primitive tilifigone can also easily
with the Bergman and Mackay polytofésas a significant conclude that the same model cannot be interpreted as the
restriction because most of the results derived above wilMackay-cluster model either. Therefore, the Bergman and
also hold for models with approximately the same size ofMackay clusters have to be considered as geometric building
windows, as for example, the model from JdAdhat we  blocks of the quasicrystalline structure rather than as ener-
have not yet considered. We have focused on the geometrigetically stable entities. Strictly speaking, we can draw this
model defined as a decoration of the tiliqgimitive 77, or  conclusion only for clusters at surfaces as the vacuum inter-
7*(2P) pecause all powerful tools known from the projec- face gives rise to surface energy. Its influence on the surface

tion methods are applicable. morphology is not easily predictable as surface energy con-
tributions play an important role for the cluster stability, too.
V. CONCLUSION The determination of the different energy contributions is

] ] beyond the scope of this study which is based on geometric
We prove that the experimentally observed succession qfgnsjderations. However, we hope that our work stimulates
the step heights ilow) and H(high) along the fivefold axis  fytyre investigations of the energetic stability of Bergman

(z direction, which obeys the Fibonacci sequence, also exyng Mackay polytopes in icosahedral quasicrystals and at
ists in the patch of the geometric modélAdditionally, we  their surfaces.

relate this sequence to another Fibonacci sequence of the

distances Nnarrow and W (wide) between lines within the
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