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Spin-wave scattering in the effective Lagrangian perspective
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Nonrelativistic systems exhibiting collective magnetic behavior are analyzed in the framework of effective
Lagrangians. The method, formulating the dynamics in terms of Goldstone bosons, allows us to investigate the
consequences of spontaneous symmetry breaking from a unified point of view. Low-energy theorems concern-
ing spin-wave scattering in ferromagnets and antiferromagnets are established, emphasizing the simplicity of
actual calculations. The present work includes approximate symmetries and discusses the modification of the
low-energy structure imposed by an external magnetic and an anisotropy field, respectively. Throughout the
paper, analogies between condensed matter physics and Lorentz-invariant theories are pointed out, demonstrat-
ing the universal feature of the effective Lagrangian technique.@S0163-1829~99!02725-3#
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I. INTRODUCTION

In the following presentation, our interest is devoted
the low-energy analysis of nonrelativistic systems, which
hibit collective magnetic behavior. We adopt a unified po
of view, relying on the method of effective Lagrangians, a
try to understand how the symmetry, inherent in the und
lying theory, manifests itself at low energies. The comp
microscopic description of the systems under considera
is taken into account only through a phenomenological
rametrization, which, in the effective Lagrangian, emerges
the form of a few coupling constants. Our main concern w
be the question, to what extent in the low-energy domain,
actual structure of quantities of physical interest is dicta
by the underlying symmetry.

Nevertheless, let us first consider the Heisenberg mo
which describes the magnetic systems referred to on ami-
croscopiclevel. There, the exchange HamiltonianH0,

H052J(
n.n.

SW m•SW n , J5const, ~1.1!

formulates the dynamics in terms of spin operatorsSW m , at-
tached to lattice sitesm. Note that the summation only ex
tends over nearest neighbors and, moreover, the isotr
interaction is assumed to be the same for any two adja
lattice sites. According to the sign of the exchange integraJ,
the above expression leads to an adequate low energy
scription of systems exhibiting collective magnetic behavi
both of ferromagnets and of antiferromagnets, respectiv
In particular, the Heisenberg model is perfectly suited
study the properties of the excitations near the grou
state—the spin waves or magnons.

In a more general framework, which represents the st
ing point of our systematic approach, these low-energy e
tations are interpreted as Goldstone bosons resulting fro
spontaneously broken internal symmetry. Indeed,
Heisenberg Hamiltonian~1.1! is invariant under a simulta
neous rotation of the spin variables, described by the s
metry groupG5O(3), whereas the ground state of a ferr
magnet, e.g., breaks this symmetry spontaneously dow
H5O(2): all thespins are aligned in one specific directio
PRB 600163-1829/99/60~1!/388~18!/$15.00
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giving rise to a nonzero spontaneous magnetization.
though the antiferromagnetic ground state does not disp
spontaneous magnetization, it also spontaneously break
symmetry. Unlike for a ferromagnet, its microscopic descr
tion is highly nontrivial—in our analysis, we assume th
same internal symmetry breaking pattern to inhere in t
system as well:G5O(3)→H5O(2).

Whenever a physical system exhibits spontaneous s
metry breaking and, furthermore, the corresponding Go
stone bosons represent the only low-energy excitations w
out energy gap, we do have a very powerful means at
disposal to analyze its low-energy structure: chiral pertur
tion theory (xPT). The method was originally developed
connection with Lorentz-invariant field theories,1–5 admit-
ting, in particular, a low-energy analysis of the strong int
action, described by quantum chromodynamics~QCD!. xPT
has also proven to be very useful in the investigation of ot
systems where Goldstone bosons occur~see, e.g., Refs. 6–8!.

In condensed matter physics, spontaneous symm
breaking is a common phenomenon and effective field the
methods are widely used in this domain. Only recently, ho
ever, has chiral perturbation theory been extended to s
nonrelativistic systems,9–12 demonstrating its applicability to
solid state physics as well; especially the ferromagnet
the antiferromagnet, the systems to be examined below,
be analyzed in the framework ofxPT. The method is base
on effective Lagrangians which exploit the symmetry pro
erties of the underlying theory, i.e., the Heisenberg mode
our case, and permits a systematic low-energy expansio
quantities of physical interest in powers of inverse wav
length.

While in an anomaly free, Lorentz-invariant field theo
an invariance theorem13 guarantees that the effective La
grangian will inherit the symmetries of the underlyin
model, the same statement is no longer true in the nonr
tivistic domain: terms of topological nature happen to occ
in the effective description, the corresponding Lagrang
being G invariant only up to a total derivative.9,11,14 Espe-
cially for ferromagnets, a term connected with the Brouw
degree emerges which is not invariant under the groupG
5O(3), whereas an analogous contribution is absent in
effective Lagrangian of an antiferromagnet—as we will s
388 ©1999 The American Physical Society
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the main differences in the low-energy behavior of these
systems are a consequence of this striking fact.

The whole analysis concerns the properties of magn
systems at wavelengths large compared to the intrinsic sc
of the theory, i.e., to the lattice spacinga—the effective
theory does not resolve the lattice structure of the syst
i.e., refers to the continuum limit. Clearly then, the effecti
Lagrangian method does not admit to discuss the physic
a solid body on a microscopic scale. Rather, we are in
ested in how the actual structure of several low-energy p
nomena encountered in magnetic systems can be interp
as an immediate consequence of the hidden symmetry.
method has proven to be very efficient in other areas, ab
all in analyzing the low-energy behavior of the strong int
action; in particular, the effective QCD Lagrangian allows
to perform a concise derivation of certain low-energy the
rems concerning the pions, which represent the Goldst
bosons in this relativistic sector. The main intention of t
following work is to demonstrate, that chiral perturbatio
theory, extended to nonrelativistic systems, is an equ
powerful tool.

One principal result of the present paper will be the
tablishment of low-energy theorems concerning the sca
ing amplitude of ferromagnetic and antiferromagnetic s
waves, respectively. The straightforward effective calcu
tion, as opposed to the complicated microscopic analy
exhibits the efficiency of the method, which, moreover, c
systematically be extended to higher orders
momentum.10,11 Likewise, it is not a complicated matter t
include a weak external magnetic or an anisotropy field,
spectively, into the effective machinery, in order to discu
the modifications thereby imposed on the low-energy str
ture.

As far as the ferromagnet is concerned, our continu
approach makes contact with an important result to be fo
in the literature: Dyson, in his thorough microscopic analy
of a cubic ferromagnet within the Heisenberg model, cal
lated the scattering cross section regarding ferromagn
spin waves more than four decades ago.15 The fact that our
result coincides with his, may be viewed as some kind o
test run for the applicability of chiral perturbation theory
the present context: the interaction among ferromagnetic
waves is described correctly in this new framework.

In a sense to be specified below, the leading order ef
tive Lagrangian of an antiferromagnet closely resembles
one describing QCD at lowest order. As a consequen
many results concerning chromodynamics can be adopte
antiferromagnets, the corresponding low-energy phenom
manifesting themselves in analogous ways. This feature
universality offers the opportunity to discuss certain ph
nomena well known in Lorentz-invariant theories in the d
ferent language of solid state physics and vice versa. Ind
throughout the paper we will make quite often use of su
comparisons and analogies, in order to make the mate
easily accessible, both to condensed matter physicists an
the relativistic community.

For the sake of self-consistency of the present work,
give a brief outline of the main ideas of chiral perturbati
theory and review the effective description of ferromagn
and antiferromagnets, leaning thereby on Refs. 9, 13, and
In contrast to the analysis found therein, our approach trie
o
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adopt ‘‘magnetic language,’’ paving the way to confront o
theoretical findings with the microscopic analysis.

II. THE NONRELATIVISTIC DOMAIN

In the following two sections, we analyze systems exh
iting collective magnetic behavior with respect to their sy
metry properties, referring both to space-time and to inter
transformations. Special emphasis is put into the inter
symmetry G5O(3) inherent in the Heisenberg mode
which is spontaneously broken by the ground state of
corresponding magnetic systems. Discussing the co
quences resulting from this breaking in the general fram
work of Goldstone’s theorem, we try to work out the ma
differences of the low-energy structure between Loren
invariant theories and the nonrelativistic domain.

As far asspace-timesymmetries are concerned, we a
faced with the following situation in a continuum descriptio
of condensed matter systems: the object under investiga
e.g., a magnetic crystal, singles out a preferred frame of
erence, the rest frame. In contrast to relativistic theor
where the vacuum is invariant under Lorentz transformati
or, more generally, under the whole Poincare´ group, the
ground state of a solid fails to be invariant. As a cons
quence, the statement that the vacuum expectation value
vector operatorAm has to vanish, no longer holds: the tim
componentA0 may pick up an expectation value in th
ground state. This observation represents an essential in
dient of the whole low-energy analysis in the nonrelativis
domain, since such nonzero quantities can acquire the ro
order parameters. As we soon will see, the ferromagne
such a nonrelativistic system, whereA0 is the time compo-
nent of a conserved current.

As the effective analysis refers to large wavelengths
does not resolve the microscopic structure of a solid and
system hence appears homogeneous. Accordingly, the e
tive Lagrangian is invariant with respect to translations.
the other hand, the effective Lagrangian is not invariant
der rotations, since the lattice structure of a solid singles
preferred directions. In the case of a cubic lattice, the ani
ropy, however, only shows up at higher orders of the deri
tive expansion.8,17 In the following discussion, we assum
that our magnetic systems exhibit this type of lattice str
ture: the underlying theory is the Heisenberg model o
cubic ferromagnet and antiferromagnet, respectively. Un
this assumption, the leading order effective Lagrangians
lating to are then invariant both under translations and un
rotations.

Let us now turn tointernal symmetries. In addition to the
group R5O(3), which refers to rotations in three
dimensional Euclidean space, a further symmetry group O~3!
comes into play, associated with the isotropic exchange
teraction in the Heisenberg model:G5O(3). Note that this
group corresponds to internal symmetry transformations
the space of the spin variables.

Invariance of the Heisenberg HamiltonianH0 ~1.1! with
respect to the Lie groupG5O(3), characterized by the gen
eratorsQi ,

@Qi ,H0#50, ~2.1!

gives rise to three conserved currentsJi
m(x),18
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390 PRB 60CHRISTOPH P. HOFMANN
]mJi
m~x![]0Ji

0~x!1] rJi
r~x!50. ~2.2!

The generatorsQi are space integrals over the correspond
charge densitiesJi

0(x),

Qi5E d3x Ji
0~x!, ~2.3!

obeying the commutation relations

@Qi ,Qj #5 i« i jkQk . ~2.4!

The exact symmetryG5O(3) is spontaneously broke
down toH5O(2): whereas the Hamiltonian of the theory
invariant under the full groupG, the ground state of the
system is invariant only under the subgroupH.

In a microscopic description of a ferromagnet, e.g., t
statement shows up as follows. The generators of the s
metry group are given by the sum over all spins,

Qi5(
n

Sn
i . ~2.5!

The commutation rule

@Sm
i ,Sn

j #5 idmn« i jkSm
k ~2.6!

insures that the Heisenberg Hamiltonian is invariant undeG.
The ground state of a ferromagnet, on the other hand
which all the spins are aligned in one specific direction,
us say along the positive third axis in spin space, is invar
only under H5O(2), represented by the single genera
Q35(nSn

3 .
At this point, the microscopic analysis makes contact w

the continuum approach: the third component of the oper
of the total spin(nSn

3 is related to the third component of th
charge density operatorJ3

0 by

(
n

Sn
35E d3x J3

0~x!. ~2.7!

Taking the vacuum expectation value on either side of
equation, we arrive at

NS5^0uJ3
0u0&V, ~2.8!

where N denotes the total number of lattice sites,S is the
highest eigenvalue of the spin operatorSn

3 , andV is the vol-
ume of the entire crystal. Accordingly, the vacuum expec
tion value of the third component of the charge density
erator is nonzero,

^0uJi
0u0&5d i

3 NS

V
5d i

3S, ~2.9!

to be identified with the spontaneous magnetizationS. This
quantity represents the most prominent order paramete
the description of a ferromagnet, its nonzero value signa
spontaneous symmetry breaking—let us elaborate this s
ment a bit further.

If the ground state of a ferromagnet was symmetric w
respect to the whole groupG5O(3), none of the operators
Ji

0(x), which transform in a nontrivial manner underG,
could develop a vacuum expectation value different fr
g

s
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-
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g
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zero. The fact thatJ3
0(x) nevertheless does so, indicates, th

the ground state of a ferromagnet must single out some
cific direction in the internal space of the spin variable
being symmetric only with respect to the subgroupH
5O(2), theground state does not share the full symmetry
the Hamiltonian—therefore,̂0uJ3

0u0&Þ0 may be viewed as
a quantitative measure of spontaneous symmetry break
Generally, nonzero vacuum expectation values of local
erators, which transform in a nontrivial manner under a sy
metry groupG, are referred to as order parameters.

The above analysis exhibits, that the ferromagnet rep
sents a physical system, where the most prominent o
parameter is associated with the time component of a c
served current. Comparing this situation with the one in
antiferromagnet, we realize that, in this case, the spontane
magnetization happens to vanish,^0uJi

0u0&50. Although the
symmetries of the ground state would have nothing aga
^0uJ3

0u0& taking on the role of an order parameter, this po
sibility is ruled out for dynamical reasons. As far as t
antiferromagnet is concerned, the so-called staggered ma
tization Ss turns out to be the most important ord
parameter—this quantity, however, is not associated with
time component of a conserved current.

III. GOLDSTONE THEOREM

An essential feature of the present low-energy analysi
the occurrence of spontaneous symmetry breaking. The
sequences of this phenomenon for the level spectrum of
corresponding systems are dictated by Goldstone’s theo

Let us first consider itsrelativistic version19–21 for arbi-
trary Lie groupsG andH, associated with an internal sym
metry. In the absence of gauge fields, spontaneous symm
breaking in a Lorentz-invariant theory implies the existen
of massless particles, whose numbernGB is determined by
the dimension of the coset spaceG/H: nGB

5dim(G) –dim(H). The current operatorsJa
m referring to

G/H, a51•••nGB , couple to the vacuum, the correspon
ing vacuum-to-Goldstone boson matrix elements being n
zero. In QCD, e.g., the axial currentJa

5m displays this
property22

^0uJa
5mupb~kW !&5 ida

bkmF. ~3.1!

The nonrelativisticversion of the theorem21,23,24 is weaker.
In the absence of long-range forces, spontaneous symm
breaking in a nonrelativistic system leads to low-energy
citations, whose frequencyv tends to zero forkW→0. In con-
trast to the relativistic version, the theorem does now neit
specify the exact form of the dispersion relation at lar
wavelengths, nor does it determine the number of differ
Goldstoneparticles: these features of the Goldstone degre
of freedom are not fixed by symmetry consideratio
alone—rather, in the case of a Lorentz-noninvariant grou
state, they depend on the specific properties of the co
sponding nonrelativistic systems. Only the number of r
Goldstonefieldsturns out to be universal, given again by th
dimension ofG/H.

As far as the matrix elements of the operatorsJi
m between

the vacuum and the Goldstone states are concerned, we
the following situation in the nonrelativistic domain: two in
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PRB 60 391SPIN-WAVE SCATTERING IN THE EFFECTIVE . . .
dependent coefficients have to be introduced, in orde
characterize the matrix elements of the charge densities
the currents in question. Furthermore, the number of in
pendent Goldstone states, labeled by the indexn, upn&, re-
mains open. Quite generally, we may write

^0uJi
0~x!upn&5 iCi

n~kW !e2 ikx,

^0uJi
r~x!upn&5 iD i

nr~kW !e2 ikx. ~3.2!

The two quantities are related via current conservation, le
ing to the dispersion law25

Ci
n~kW !v5Di

nr~kW !kW . ~3.3!

Note that the exact form of the dispersion relation has not
been specified: symmetry alone does not allow us to de
mine the explicitkW dependence of the coefficientsCi

n(kW ) and

Di
nr(kW )—rather, their actual structure depends on the spec

properties of the nonrelativistic systems under considerat
This is to be compared with the Lorentz-invariant situatio
where the ratio of the energy to the momentum is univer
determined by the velocity of lightv25c2kW2: every Gold-
stone boson turns out to be massless, provided thatG is an
exact symmetry of the Lagrangian.

From a theoretical analysis of magnetic systems, e
based on the Heisenberg model, as well as from the exp
mental side, e.g., from neutron scattering, it is well kno
that the structure of the ferromagnetic dispersion relation
quite different from the antiferromagnetic one: at large wa
lengths, the former takes aquadraticform, whereas the latte
follows a linear law. The mechanism which leads to th
pattern and, at the same time, explains the different num
of independent magnon states—one for a ferromagnet,two
for an antiferromagnet—is understood.26–28 Remarkably, in
the framework of our effective description, the difference
the value of a single observable, the spontaneous magne
tion, suffices to answer both questions: the one concern
the number of independent magnon states as well as the
referring to their dispersion law.9 We shall briefly review the
chain of arguments in a later paragraph, once we have
corresponding effective Lagrangians at our disposal.

In the following analysis, the microscopic structure of t
system does not play a significant role. A brief discussion
the spin-wave excitations within the Heisenberg model o
ferromagnet may be found in Appendix A, which also tri
to give an intuitive understanding of Goldstone’s theorem
the present context.

IV. ASPECTS OF CHIRAL PERTURBATION THEORY

Chiral perturbation theory is an efficient method to an
lyze the low-energy structure of systems with a sponta
ously broken symmetry. It is an effective theory, formulat
in terms of Goldstone fields, applicable both to Loren
invariant theories and to the nonrelativistic domain. An
sential condition for the whole framework to be consisten
the validity of three assumptions, whose significance in c
nection with magnetic systems, we are now going to exa
ine in succession.

The first one supposes, that the magnons are the o
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excitations without energy gap. A more realistic descripti
of a magnet faces the fact that the system admits other e
tations with this property. In particular, phonons occur, re
resenting the Goldstone bosons generated by the spontan
breaking of translation invariance. We will concentrate
the magnons and disregard all other degrees of freedom—
same idealization has been used by Dyson and many oth

The exchange of magnons leads to singularities in
low-energy region, particularly to poles occurring in th
time-ordered correlation functions of the currents and cha
densities. In the two-point function̂0uT$Ji

r(x)Jk
s(0)%u0&,

e.g., the pole term arises from the exchange of a mag
between the two currents: the first current emits a mag
which propagates and gets absorbed by the second
Apart from this one-magnon exchange, multimagno
exchange processes, corresponding to branch points, als
cur and complicate the analysis considerably. At this m
ment, however, asecondassumption, known as the pion po
dominance hypothesis, comes into play: one postulates
the singularities due to one-magnon exchange dominate
low-energy expansion.

A third ingredient of the low-energy analysis is the a
sumption that the residues of the pole terms, i.e., the vert
representing the interaction among the magnons, do adm
expansion in powers of inverse wavelength. Note that
correlation functions themselves, of course, cannot be
panded in this way, due to the pole terms showing up ther
This third assumption is essential in chiral perturbati
theory: it allows us to analyze the low-energy structure
scattering amplitudes, form factors, and other quantities
physical interest in a systematic manner.

In view of some applications to be presented later on, i
convenient to make use of the external field technique:
considers the response of the system to perturbations ge
ated by suitable external fieldsf m

i (x), coupled to the currents
Ji

m(x). All the various correlation functions are collecte
compactly in a generating functionalG$ f %,

eiG$ f %5 (
n50

`
i n

n! E d4x1•••d4xnf m1

i 1 ~x1!••• f mn

i n ~xn!

3^0uT$Ji 1

m1~x1!•••Ji n

mn~xn!%u0&, ~4.1!

where the external fieldsf m
i (x) merely serve as auxiliary

variables: appropriate functional derivatives ofeiG$ f % with
respect to these quantities reproduce the correlation funct
referred to above. The generating functional describes
transitions which occur when the system is perturbed by
external fieldH→H2*d3x fm

i Ji
m , whereH represents the

Hamiltonian of the theory. In particular,eiG$ f % is the prob-
ability amplitude for the system to remain in the ground st
for t→1`, if it was there att→2`.

Up to this point, the discussion of magnetic systems w
based on a spontaneously broken internal symmetryG
5O(3), inherent in theunderlying theory, the Heisenberg
model. The basic idea now in constructing aneffectivetheory
is to interpret the one-particle reducible graphs occurring
the underlying theory as tree graphs of an effective fi
theory, which involves magnon fields as fundamental va
ables: magnons are to be described by two scalar fields,



by
fie

e
sio
u
a
e

ni
be
ag
on
ib
s

ty
o
ld
ts

th

c-
te
n-
in

ng
an

r

en

ys
a

i
u
e

er
he
al
ns
g
.
s
op

er
th
te
ym
en

e
es

of

iant

g-
u-
-

lve
-

t,
res-
er-
e-
ics,
or-

nd,
the
e-
d-

a-

n
ties

t
ing

or-

ns
now
two
nd
This
the
ur
he
ter

392 PRB 60CHRISTOPH P. HOFMANN
noted bypa(x), a51,2, and the pole terms generated
one-magnon exchange, e.g., arise now from magnon-
propagators.

In this language, the expansion of the vertices in pow
of inverse wavelength corresponds to a derivative expan
of the effective Lagrangian. The translation of the vario
vertices into the corresponding terms of the effective L
grangian is trivial: the one describing the interaction betwe
four magnons, e.g., is represented through a term contai
four magnon fields, together with a not yet specified num
of space and time derivatives. In addition to the purely m
nonic vertices, describing the interaction of magnons am
themselves, the effective Lagrangian also contains contr
tions involving the external fields, which describe the tran
tions generated by the perturbationf m

i Ji
m . The matrix ele-

ment ^0u f m
i Ji

mupn&, e.g., which represents the probabili
amplitude for the external field to excite one of the magn
states, is represented through a term linear in the fie
f m

i (x), pa(x). The effective Lagrangian thus merely collec
the information about the various vertices occurring in
underlying theory.

In switching from the underlying theory over to the effe
tive Lagrangian, one could think, at first sight, that the lat
would simply inherit the former’s internal symmetry: in co
nection with magnetic systems, one would therefore be
clined to construct an effective Lagrangian out of O~3!-
invariant expressions of increasing complexity—respecti
of course, the symmetry properties under space-time tr
formations, i.e., invariance under translations and space
tations in the present context.

This plausible way of proceeding, however, does not g
erally lead to correct effective Lagrangians.9,11,29A detailed
analysis of the low-energy structure of nonrelativistic s
tems shows9 that the leading order effective Lagrangian of
ferromagnet indeed is not invariant under the groupG
5O(3) of the Heisenberg model. Note that this peculiarity
specific to the nonrelativistic domain and does not show
in an anomaly free, Lorentz-invariant theory—there, the
fective Lagrangian can always be brought to aG-invariant
form.13

Once the explicit effective Lagrangian at hand, chiral p
turbation theory exhibits its full strength, emphasizing t
simplicity of actual calculations. Moreover, the method
lows us to systematically take into account interactio
which explicitly break the symmetry of the underlyin
theory, provided that they can be treated as perturbations
far as our magnetic systems are concerned, we will inve
gate the effect of an external magnetic and an anisotr
field on the structure of various low-energy phenomena.

V. LOW-ENERGY BEHAVIOR OF FERROMAGNETS
AND ANTIFERROMAGNETS

We now confine our attention to the low-energy prop
ties of ferromagnets and antiferromagnets. First of all,
corresponding effective Lagrangians have to be writ
down. According to Goldstone’s theorem, spontaneous s
metry breaking of the rotation group inherent in the Heis
berg modelG5O(3)→H5O(2), gives rise to two real
magnon fields. It is convenient to use a covariant repres
tation for the magnon field, replacing the two variabl
ld
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p1,p2 by a three-dimensional unit vectorUW 5(U1,U2,U3),
which transforms with the vector representation ofG
5O(3).

In this notation, the leading order effective Lagrangian
a ferromagnetreads9

Leff
F 5S

]0U1U22]0U2U1

11U3
1S f 0

i Ui2 1
2 F2 DrU

i DrU
i ,

~5.1!

the last term being proportional to the square of the covar

derivative ofUW ,

DrU
i5] rU

i1« i jk f r
j Uk. ~5.2!

At leading order of the low-energy expansion, the ferroma
net is thus characterized by two different low-energy co
pling constantsS andF. The first term is related to a topo

logical invariant, to the Brouwer degree of the mapUW (p).
Remarkably, due to this contribution, which does not invo
the auxiliary field f 0

i , the effective Lagrangian of a ferro
magnet fails to be invariant under the groupG5O(3). The
second term in Eq.~5.1! exhibits the same coupling constan
the spontaneous magnetization. Note that these two exp
sions, proportional to the order parameter, would not be p
mitted in Lorentz-invariant effective theories—they repr
sent the main novelty occurring in condensed matter phys
where nonrelativistic kinematics is less restrictive than L
entz invariance.

The ground state of an antiferromagnet, on the other ha
does not exhibit spontaneous magnetization, such that
above two contributions do not show up in the effective d
scription of this system. The explicit expression for the lea
ing order effective Lagrangian of anantiferromagnet is
given by

Leff
AF5 1

2 F1
2 D0Ui D0Ui2 1

2 F2
2 DrU

i DrU
i ,

DmUi5]mUi1« i jk f m
j Uk. ~5.3!

As it is the case in the relativistic domain, the effective L
grangian is invariant with respect to the symmetry groupG.
Since the expression~5.3! gives rise to a linear dispersio
relation, it is more convenient to count energies as quanti
of the same order as momenta,v}ukW u, rather than organizing
the bookkeeping according tov}kW2, as for the ferromagne
before. The Lagrangian also contains two effective coupl
constantsF1 andF2. Note that the contribution involvingF2

2

represents the analog of theF2 term in Eq.~5.1!, whereas the
first contribution, proportional toF1

2, would appear in the
effective Lagrangian of a ferromagnet only at subleading
der.

Having the explicit leading order effective Lagrangia
for ferromagnets and antiferromagnets at hand, we are
capable of describing the low-energy behavior of these
systems.30 Let us start with the ferromagnet, whose grou
state displays a nonzero spontaneous magnetization.
specific information on the system suffices to determine
corresponding leading order effective Lagrangian within o
framework. The associated equation of motion is t
Landau-Lifshitz equation, well known in condensed mat
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physics, which describes the dynamics of ferromagnetic s
waves. Its nonrelativistic, Schro¨dinger-type structure—firs
order in time, but second order in space—for its part de
mines the number of independent magnon states: as
positive frequencies occur in its Fourier decomposition
complex field is required to describe one particle—in a f
romagnet there exists onlyone type of spin-wave excitation
Remember that in the nonrelativistic domain, Goldston
theorem is too weak to make such a statement: it only p
dicts the number of real magnonfields, dim$O(3)/O(2)%
52, but leaves open the number of different magnonpar-
ticles. Moreover, merely claiming that the frequenciesv

must tend to zero forkW→0, the theorem does not quantit
tively specify the dispersion relation at large wavelengths.
quadratic form, resulting from the effective Lagrangian~5.1!,

v~kW !5gkW21O~ ukW u4!, g[
F2

S
, ~5.4!

is a consequence of the Euclidean symmetryR5O(3) as
well as of the specific information on the ground state of
ferromagnet, concerning the nonzero value of its sponta
ous magnetization.

The effective machinery, relying on the external fie
technique, may now be put in operation, providing us with
derivative expansion of the correlation functions needed:
Landau-Lifshitz equation is to be solved iteratively and t
respective solutions for the magnon fieldUa are to be in-
serted into the effective Lagrangian~5.1!. At leading order,
the whole information on the correlation functions is th
collected compactly in the generating functionalG$ f %u tree

5*d4xLeff
F , and may be obtained by taking appropriate d

rivatives with respect to the auxiliary fieldsf. Our interest is
now devoted to the contribution proportional tof 0

af 0
b , i.e., to

the two-point function of the charge densities^0uT$Ja
0Jb

0%u0&,
for it is this quantity which allows us to calculate the matr
element̂ 0uJa

0up(kW )&. The result is

^0uJa
0up~kW !&5«aAS, «a5

1

A2
~1,2 i !. ~5.5!

Current conservation and invariance underR5O(3) deter-
mine the corresponding spatial expression

^0uJa
r up~kW !&5«akrgAS5«akrF2/AS. ~5.6!

At this stage of the effective analysis, we may look back
the general expressions~3.2! for these matrix elements
Within the effective framework, the explicit structure of th
two quantitiesCi

n(kW ) andDi
nr(kW ) has now been determined

For ferromagnets, there exists only one polarization s
up(kW )&⇔upn&, n51. In particular, the coefficientCa

n(kW )
does not depend on momentum—Eq.~3.3! then takes the
quadratic form~5.4!.

As far as the antiferromagnet is concerned, quite a dif
ent low-energy description emerges, because, for this
tem, the spontaneous magnetization happens to vanish.
corresponding equation of motion is of second order both
space and in time, its relativistic structure determining
number of independent magnon states: the Fourier decom
sition contains both positive and negative frequencies, s
in
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that a single real field suffices to describe one particle. A
cordingly, there existtwo different types of spin-wave exci
tations in an antiferromagnet—as is the case in Loren
invariant theories, Goldstone fields and Goldstone partic
are in one-to-one correspondence. Moreover, these ex
tions now follow a linear dispersion relation

v~kW !5vukW u1O~ ukW u2!, v[
F2

F1
, ~5.7!

corresponding to a massless particle moving with velocityv.
The transition matrix elements of the charge densities

currents take the specific form

^0uJa
0upb~kW !&5 ida

bukW uF2 /A2v,

^0uJa
r upb~kW !&5 ida

bkrvF2 /A2v. ~5.8!

There are now two polarization statesupa(kW )&, a
51,2⇔upn&, n51,2, which are associated with the oper
tors Ja

0 ,Ja
r , referring to the coset spaceG/H. Unlike for

ferromagnets, the coefficientCa
n(kW ) does depend on momen

tum: Eq.~3.3! then leads to the linear dispersion law~5.7!.
We would like to emphasize, once more, that this striki

difference in the low-energy behavior of ferromagnets a
antiferromagnets, cannot be understood in terms of sym
try considerations: with respect to internal as well as~con-
tinuous! space-time symmetries, the two systems are ide
cal in our effective framework. Rather, the differen
originates from the actual value of asingleeffective coupling
constant, the spontaneous magnetization. The number o
dependent magnon states, the form of their dispersion r
tion, the low-energy representation of scattering amplitud
etc.—the explicit appearance of all these low-energy p
nomena can be traced back to the different behavior of
respective ground states.

VI. EFFECTIVE COUPLING CONSTANTS

In the nonrelativistic domain the manifold of effectiv
coupling constants is larger than in Lorentz-invariant the
ries. In connection with our systems exhibiting collecti
magnetic behavior, the situation is the following. Both f
ferromagnets and for antiferromagnets there are two c
plings to be determined at leading order:S andF for ferro-
magnets,F1 andF2 for antiferromagnets.

In relativistic theories, Lorentz symmetry imposes a u
versal lawv25c2kW2, independent of the specific propertie
of the system under consideration. In the nonrelativistic
main, effective constants happen to show up in the lead
order dispersion relation: for ferromagnets we obtainedv

5gkW2[(F2/S)kW2, for antiferromagnets we gotv5vukW u
[(F2 /F1)ukW u. So, on the one hand, the nonrelativistic situ
tion is more complex: less information on the systems
available via symmetry, such that a larger number of c
stants has to be fixed phenomenologically. On the ot
hand, those combinations of low-energy constants wh
happen to appear in the dispersion law, are comparativ
easy to determine by experiment: the respective coefficie
g andv, may be obtained by scattering neutrons on a giv
magnetic crystal.
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As far as the ferromagnet is concerned, the spontane
magnetization is easily accessible as well—the two lo
energy couplingsS and F, occurring in the leading orde
effective LagrangianL eff

F , are thus fixed. For the antiferro
magnet, which does not develop such a vacuum expecta
value, the situation is more delicate. So far, we have me
been determining the ratiov5F2 /F1.

Here comes the appropriate place, where we may pa
for a moment and deviate into the field of the strong int
action. The point is that a close resemblance between
leading order effective Lagrangian of an antiferromagnet
the one describing QCD is observed. Since we know that
low-energy sector of the strong interaction is successf
described within chiral perturbation theory, it might prove
be instructive to have a look at the specific way the lo
energy couplings are determined there. Maybe, reasonin
analogy, we will then be able to unravel the individual valu
of F1 andF2.

At leading order, the effective QCD Lagrangian for tw
massless flavors~up- and down-quark mass equal to zer!
involves a single coupling constantFp ~see, e.g., Ref. 16!,

L eff
QCD5 1

2 Fp
2 ]m Ui ]mUi , ~6.1!

whereas the effective Lagrangian of an antiferromagnet
volves two such quantities

L eff
AF5 1

2 F1
2 ]0Ui ]0Ui2 1

2 F2
2 ] rU

i ] rU
i . ~6.2!

As it is commonly done with the velocity of light in relativ
istic theories, we may put the spin-wave velocityv
5F2 /F1 to one. In this ‘‘\5v51’’ system the two coupling
constants coincide: F15F2[FAF . Also, the two
Lagrangians above are then the same, except for the num
of fields Ui and the actual values of the couplingsFp and
FAF . In this framework, where only one low-energy consta
FAF exists, neutron scattering experiments again, of cou
do not shed any light on its value—they merely fix the fu
damental scale of the spin-wave velocityv in the respective
crystal, analogous to a determination of the velocity of lig
which is then put to one.

Now, in the standard model of elementary particle ph
ics, Fp is related to the electroweak interaction: the const
shows up in the description of pion-decay processes and
be determined by measuring the lifetime of charged pion
Fp is therefore referred to as pion decay constant. This n
way of fixing Fp , offered by nature, has to be regarded a
present from heaven, which, unfortunately, does not rep
itself in an analogous manner for the antiferromagnet. La
on, in connection with spin-wave scattering, we will take
the question of how to phenomenologically determineFAF
anew.

VII. LOW-ENERGY THEOREM FOR FERROMAGNETS

Let us now turn to our original intention, namely, to stu
the low-energy behavior of spin-wave scattering within t
effective description. To begin with, consider an elastic sc
tering process between two identical particles

p~kW1!1p~kW2!→p~kW3!1p~kW4!.

In a nonrelativistic normalization of the one-magnon stat
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^p~kW !up~kW8!&5~2p!3d3~kW2kW8!, ~7.1!

the S-matrix relating to it is given by

S5^p~kW3!p~kW4!outup~kW1!p~kW2!in&

5~2p!6$d3~kW12kW3!d3~kW22kW4!1d3~kW12kW4!d3~kW22kW3!%

1 i ~2p!4d~v11v22v32v4!d3~kW11kW22kW32kW4!T.

~7.2!

As far as the evaluation of theT-matrix element is con-
cerned, we will lean on the canonical approach, since
calculation is more readily done by means of field operato
rather than by making use of the external field techniq
Within the latter framework, where one uses the equation
motion to evaluate appropriate four-point functions, t
analysis of ferromagnetic spin-wave scattering, althou
straightforward, turns out to be tedious. The point is that, d
to contributions proportional tof 0

aUa appearing in the effec-
tive Lagrangian, a second order iteration of the Land
Lifshitz equation is required—accordingly, careful boo
keeping is advised. Nonetheless, the final result coinci
with the one to be obtained below: of course, it does
depend on the specific procedure used. Let us now bri
provide ourselves with the tools needed in the canon
formalism—we start with the ferromagnet and construct
corresponding magnon field operators in the interaction p
ture.

The Lagrangian is split up into two parts,

L5Lu f 501 f m
i Ji

m1O~ f 2!. ~7.3!

Making use of the effective expression for ferromagn
L⇔L eff

F ~5.1!, the charge densities are identified as

~Ji
0!eff5SUi . ~7.4!

Recalling the transition matrix element~5.5! relating to it,

^0uJa
0~x!up~kW !&5«aASe2 ikx, «a5

1

A2
~1,2 i !,

we finally arrive at the representation of the magnon fi
operatorsUa in the interaction picture,

Ua~x!5
1

AS
E d3k

~2p!3
$«aa~kW !e2 ikx1«a

!a~kW !†eikx%,

~7.5!

@a~kW !,a~kW8!†#5~2p!3d3~kW2kW8!, up~kW !&5a~kW !†u0&.

The magnon field operators to be used below, read
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u~x!5A2

SE d3k

~2p!3
a~kW !e2 ikx,

u~x!†5A2

SE d3k

~2p!3
a~kW !†eikx. ~7.6!

Note that, on the classical level, these operators corresp
to the following linear combinations of the components

the magnon fieldUW : u5U11 iU 2 andu!5U12 iU 2, respec-
tively.

Next, we determine those terms in the effective Lagra
ian, which are relevant to the scattering process in ques
Turning off the external fieldsf m

i (x) in the original expres-
sionL eff

F ~5.1! altogether, we find

L eff
F u f 505

S

11U3
«abU̇

aUb2 1
2 F2 ] rU

i ] rU
i ,

«ab52«ba , «1251. ~7.7!

Expanding the fieldU3,

U35~12UaUa!1/2512 1
2 UaUa2•••, ~7.8!

the terms quartic inUa, which describe the spin-wave inte
action, can be read off,

L int
F 5 1

8 S«abU̇
aUb~UcUc!2 1

2 F2~Ua ] rU
a!~Ub ] rU

b!.
~7.9!

Written in terms of the field operatorsu andu†, the relevant
expression is given by

L int
F 5 1

16 iS~u†u†uu̇2uuu†u̇†!2 1
8 F2] r~u†u!] r~u†u!.

~7.10!

With the representation~7.6! of the field operators, the evalu
ation of theT-matrix element is readily done, resulting in

TF5^p~kW3!p~kW4!uL int
F up~kW1!p~kW2!&5

2g

S
kW1•kW2 .

~7.11!

For the corresponding differential cross section, we obt
~see Appendix B!

dsF

dV
5

1

32p2S2
~kW1•kW2!2. ~7.12!

The evaluation of the total cross section is trivial, beca
theT-matrix element~7.11!, remarkably, does not depend o
any angles associated with the outgoing particles. For fe
magnetic spin-wave scattering, the low-energy theorem
the total cross section thus amounts to

stot
F 5

1

8pS2
~kW1•kW2!2. ~7.13!

This result is the same as the one Dyson derived in his
croscopic theory of spin waves a long time ago.15 Clearly,
the expression obtained, although invariant under space
nd
f

-
n.

in

e

o-
r

i-

o-

tations, violates Lorentz symmetry—a peculiarity, that c
only occur if the ground state of the theory is Lorentz no
invariant.

Whereas the above expression only reflects the~isotropic!
S-wave part of the scattering cross section, Dyson work
out all terms to the order considered. In particular, the
isotropy of the lattice manifests itself in the scattering re
tion: for each one of the three types of cubic crystals, he g
in addition to the term~7.13!, D-wave contributions. In the
framework of the effective expansion, these terms only sh
up at next-to-leading order. Even with these additional c
tributions, the resulting scattering amplitude would not
the whole story: since all these expressions are real, the s
tering amplitude does not satisfy the requirements impo
by unitarity. If we had included loop corrections to our tre
level calculation, imaginary contributions in the scatteri
amplitude would then have shown up.

An analogous feature arises in quantum chromodynam
where the next-to-leading order effective Lagrangian h
been worked out already some time ago.5 While with the
leading order effective QCD Lagrangian a concise rederi
tion of low-energy theorems concerning the pions may
achieved, the next-to-leading order Lagrangian as well
loop graphs, originating from the leading order contributio
permit to systematically correct these theorems. In particu
imaginary terms resulting from loop graphs play a decis
role in the pion-pion scattering amplitude, which has be
worked out to even higher orders.31 As it is characteristic of
the effective Lagrangian method, new effective coupli
constants appear, if one extendsxPT to higher orders of
momentum. As far as QCD is concerned,32 two such new
couplings show up in the next-to-leading order effective L
grangian, which are left undetermined by chiral or Loren
symmetry, and hence have to be fixed phenomenologica
In fact, the analysis of pion-pion scattering experiments le
to a determination of these fundamental constants of ch
perturbation theory.

Unfortunately, we are not in an equally satisfactory po
tion as far as magnetic systems are concerned: in orde
experimentally detect spin-wave interactions, scattering p
cesses are not the suitable tool—the corresponding cross
tion turns out to be very small~see, e.g., Ref. 26!. As far as
I know, no experiments making this quantity directly acce
sible have ever been performed. Having this experime
situation in mind, it would certainly not be a very clever ide
to work out the effective Lagrangian of a ferromagnet
next-to-leading order, with the only intention to elaborate t
analysis of spin-wave scattering further—an experimen
determination of these additional effective couplings, appe
ing at higher orders of momentum, clearly cannot come fr
this sector. Rather, the access to some of these low-en
constants will be made available by another field: appli
tions of the method to thermodynamic quantities, such as
variation of the magnetization with temperature, may be
considerable help to carry through this program.

In any case, at leading order of the derivative expans
the effective Lagrangian method reproduces the low-ene
theorem found by Dyson. Once the machinery is develop
predictions for quantities of physical interest are obtained
a concise and straightforward manner. In particular, for
total cross section to exhibit the above Lorentz-noninvari
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structure, it is essential that the effective Lagrangian o
ferromagnet contains a contribution, proportional to t
spontaneous magnetization, which is not invariant under
symmetry groupG5O(3)—from a methodical point o
view, this is the main conclusion to be drawn from this se
tion.

VIII. LOW-ENERGY THEOREM
FOR ANTIFERROMAGNETS

Turning now to antiferromagnetic spin-wave scatterin
we are faced with a minor complication arising from the fa
that there exist two independent polarization states. Acco
ingly, the interaction in question may generally be form
lated as

pa~kW1!1pb~kW2!→pc~kW3!1pd~kW4!, a, . . . ,d51,2.

Analogous to the preceding paragraph, we are going to u
nonrelativistic normalization of the one-magnon states

^pa~kW !upb~kW8!&5~2p!3dabd3~kW2kW8!, ~8.1!

and the evaluation of theT-matrix element will be based o
the canonical approach.

So again, the Lagrangian is split up into two parts,

L5Lu f 501 f m
j Jj

m1O~ f 2!.

With the effective expression for antiferromagnets,L⇔L eff
AF

~5.3!, the currents are identified as

~Jj
r !eff52F2

2« i jk] rU
iUk. ~8.2!

Considering the transition matrix element~5.8! relating to it,

^0uJa
r ~x!upb~kW !&5 ida

bkrvF2e2 ikx/A2v,

the magnon field operators, associated with the two polar
tion states, read33

Ua~x!5
v
F2
E d3k

~2p!3A2v
$aa~kW !e2 ikx1aa~kW !†eikx%,

~8.3!

@aa~kW !,ab~kW8!†#5~2p!3dabd3~kW2kW8!,

upa~kW !&5«aba
b~kW !†u0&.

In order to determine the relevant interaction terms in
effective LagrangianL eff

AF ~5.3!, we put the external fields
f m

i (x) to zero,

L eff
AFu f 505 1

2 F1
2 ]0Ui ]0Ui2 1

2 F2
2 ] rU

i ] rU
i , ~8.4!

expand the variableU3, and extract the terms quartic inUa,

L int
AF5 1

2 F1
2~Ua ]0Ua!~Ub ]0Ub!2 1

2 F2
2~Ua ] rU

a!~Ub ] rU
b!.

~8.5!

We then obtain the following low-energy theorem for t
T-matrix element describing antiferromagnetic spin-wa
scattering:
a
e
e

-

,
t
d-
-

a

a-

e

e

TAF5^pc~kW3!pd~kW4!uL int
AFupa~kW1!pb~kW2!&

5
1

2Av1v2v3v4

v4

F2
2 $dabdcd~ ukW1uukW2u2kW1•kW2!

2dacdbd~ ukW1uukW3u2kW1•kW3!

2daddbc~ ukW1uukW4u2kW1•kW4!%. ~8.6!

As far as actual measurements of the corresponding sca
ing cross section are concerned, we are in an equally un
isfactory position as that of the ferromagnet before. This
perimental dead end is indeed highly unwelcome, since
have not yet been able to determine the individual values
the two low-energy constantsF1 and F2, occurring in the
leading order effective Lagrangian of the antiferromagn
From the dispersion law we merely know their ratiov
5F2 /F1. Note that the constantF2 shows up separately in
formula ~8.6!. In principle then, a measurement of the corr
sponding cross section would offer the possibility to fix th
constant and hence allow us to extract the other couplingF1
from experimental data.

Turning now to the theoretical side, the literature on a
tiferromagnetic spin-wave scattering appears to be ra
scarce. Unlike for the ferromagnet, where, after Dyso
monumental work, a whole lot of publications on the subje
showed up~some of them trying to simplify his calculation
and rederive his results, see, e.g., Ref. 34!, only a few refer-
ences dealing with the analogous problem in antiferrom
nets seem to be available. References 35–37 rely on a
croscopic description of the antiferromagnet, while Ref.
approaches the subject on the basis of a phenomenolo
theory. However, these authors rather direct their attentio
other aspects of the spin-wave interaction. Moreover, the
per of Brooks Harris37 appears to be the only one which is
agreement with the energy-momentum dependence of
scattering amplitude~8.6! obtained above.

From a methodical point of view, it is instructive to com
pare the result regarding antiferromagnetic spin-wave s
tering with what is known about the analogous item in QC
pion-pion scattering. There, at leading order of the effect
expansion, theT-matrix element in question takes th
Lorentz-invariant form39 ~see, e.g., Ref. 5!

TQCD5
1

Fp
2 $dabdcds1dacdbdt1daddbcu%, ~8.7!

wheres,t,u denote the Mandelstam variables

s5~k11k2!2, t5~k12k3!2, u5~k12k4!2. ~8.8!

The indicesa, . . . ,d in Eq. ~8.7!, labeling the three differen
isospin states, are analogous to the ones needed to deno
two independent polarization states of antiferromagne
magnons in Eq.~8.6!. Comparing these two amplitudes, w
see that the energy-momentum dependence is the same
respective terms in Eq.~8.6! may be viewed as scalar prod
ucts of momentum four vectors. As a matter of fact, t
analogy between the two expressions is even more
nounced. If, just for the moment, a relativistic normalizati
of the one-magnon states is used and the spin-wave velo
v is put to 1, ‘‘\5v51’’→F15F2[FAF , then they for-
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mally coincide: apart from the number of independent Go
stone states and the actual values of the constantsFp and
FAF , the two formulas are identical.

Clearly, this finding does not come about unexpected
The similarity between the effective Lagrangian of an an
ferromagnet and the one of QCD is transferred to the s
tering amplitudes: they exhibit analogous low-energy rep
sentations. In fact, the above example may serve as a
illustration of a characteristic feature of the effective L
grangian technique—universality. Let us close this paragr
with some remarks on the subject.

In the construction of the effective Lagrangian, the sp
cific properties of the underlying theory do not matter: th
merely affect the numerical values of the coupling consta
appearing inLeff . The only relevant information is the struc
ture of the two groupsG and H, associated with the exac
symmetry of the underlying theory—the low-energy descr
tion turns out to be universal. Now, QCD with two massle
flavors displays an exact SU(2)R3SU(2)L symmetry which
is spontaneously broken to SU(2)V ; these two groups are
locally isomorphic toG5O(4) andH5O(3), respectively.
Hence, the analogy to the$O(3)→O(2)% antiferromagnet,
considered in this paper, is almost perfect: except for
magnitude of the constantsFAF and Fp , the two effective
Lagrangians also differ in the number of Goldstone partic

Since ferromagnets and antiferromagnets, in our
proach, are undistinguishable from the point of view of co
tinuous symmetries, these two nonrelativistic systems sho
actually provide us with a perfect illustration of the unive
sality concept. It so happens, however, that, for the la
system, one of the low-energy constants, the spontan
magnetization, turns out to bezero. As a consequence, th
corresponding effective Lagrangians are apparently differ
although, in either case, their construction is based on
symmetry groupsG5O(3) and H5O(2) inherent in the
Heisenberg model. Note that, nonetheless, the concep
universality applies—the specific properties of an antifer
magnet, however, manifest themselves in a rather dra
way.

This striking difference in the structure of these tw
Lagrangians on the effective level is quite remarkable,
cause, in the underlying theory, the respective Hamiltoni
only differ in the sign of the exchange integralJ. A contra-
gredient behavior, now really illuminating the concept
universality, concerns the antiferromagnet and the strong
teraction: although the underlying theories, the Heisenb
model and QCD, respectively, are completely different,
corresponding effective Lagrangians are almost the sam

IX. EXTERNAL MAGNETIC FIELD

Up to now, the analysis of spontaneous symmetry bre
ing was related toexactsymmetries: it was assumed that t
underlying theory is invariant with respect to an intern
symmetry groupG. In what follows in the remaining part o
this presentation, we will let aside this idealization and dir
our attention toapproximatesymmetries. The low-energ
phenomena considered so far will be studied in this exten
framework and their modification, imposed by explicit sym
metry breaking, will be discussed.40

As a first example of explicit symmetry breaking, let
-
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work out the effect of an external magnetic field on the lo
energy behavior of ferromagnets and antiferromagnets. O
microscopic level, the interaction between a constant m
netic field HW and the spin degrees of freedom is taken in
account through the Zeeman term. In the corresponding
tension of the Heisenberg model41

H5H02m(
n

SW n•HW , ~9.1!

the magnetic field is coupled to the vector of the total sp
WhereasH0 is invariant under a simultaneous rotation of t
spin variables, the second term explicitly breaks the symm
try G5O(3). In the effective Lagrangian framework, th
interaction with a magnetic field corresponds to the te

*d3x f0
i Ji

0 : the operator of the total spin(nSW n is to be iden-

tified with *d3xJW0, while the magnetic fieldHW , playing the
role of a symmetry breaking parameter, is related to the t
components of the auxiliary fieldf 0

i 5mHi .
Independently of whether the effective description ref

to a ferromagnet or an antiferromagnet, an external magn
field is taken into account through the quantitiesf 0

i (x). Apart
from the identificationf 0

i 5mHi , nothing further has to be
done—the effective machinery developed earlier applies a
stands. However, in order to obtain the change in the lo
energy structure induced by the magnetic field, the effec
expansion is to be performed around the nonzero, cons
value ofmHi appearing in the underlying theory, i.e., in th
extended Heisenberg model~9.1!.

As far as the ferromagnet is concerned, the magnetic fi

HW 5(0,0,H), H.0, couples to the order parameter: it ente
the leading order effective Lagrangian~5.1! through a term
proportional to the spontaneous magnetization,

L eff
F ~HW !5S

«ab ]0Ua Ub

11U3
1SmHiUi2 1

2 F2 ] rU
i ] rU

i .

ExpandingU35(12UaUa)1/2 in powers of the two compo-
nentsUa, a51,2, the term in question gives rise to the fo
lowing contributions:

SmHiUi5SmH~12 1
2 UaUa2 1

8 UaUaUbUb2••• !.
~9.2!

The linearized equation of motion shows that, in the pr
ence of an external magnetic field, the dispersion law
ferromagnetic spin waves keeps its quadratic structure,
corresponding coefficientg being unchanged. The energy o
the single spin-wave branch,u5U11 iU 2, is merely shifted
by a constant amount, proportional to the symmetry break
parameter

v5gkW21mH. ~9.3!

Much like an approximate chiral symmetry provides t
pions with a mass, an approximate symmetry concerning
ternal rotationsG5O(3), causes an energy gap in the spi
wave spectrum of a ferromagnetDv5mH. Note that the
spontaneous magnetization drops out in this expression:
energy gap is determined by the measure ofexplicit symme-
try breaking alone.
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Due to the term quartic in the magnon variables in E
~9.2!, the scattering amplitude of ferromagnetic spin wav
seems to experience a modification by the magnetic field
well. However, the resulting extra term in theT-matrix ele-
ment is canceled by the contribution originating from t
unperturbed Lagrangian~7.10!, evaluated with the dispersio
relation~9.3!—hence, to the order considered, the interact
in question is not affected by a magnetic field.

As far as the antiferromagnet is concerned, an exte
magnetic field does not manifest itself in an analogous m
ner in the low-energy expansion: terms involving the sp
taneous magnetization do not occur in the effective Lagra
ian ~5.3!. Rather, the magnetic field appears in the tim

component of the covariant derivative ofUW ,

L eff
AF~HW !5 1

2 F1
2D0UiD0Ui2 1

2 F2
2 ] rU

i ] rU
i ,

D0Ui5]0Ui1« i jkmH jUk.

Concentrating on those contributions which involve the m
netic field, the expansion yields

F1
2mH$2«ab]0UaUb1 1

2 mHUaUa%. ~9.4!

The linearized equation of motion leads to the dispers
relation

v65vukW u6mH. ~9.5!

In the presence ofHW , the dispersion law of antiferromagnet
spin waves keeps its linear structure—as for a ferromag
before, it is merely shifted by a constant amount, prop
tional to the symmetry breaking field. Note that the two
dependent spin-wave branches,u5U11 iU 2 and u!5U1

2 iU 2, respectively, are affected in distinct ways: the ma
netic field lifts their degeneracy by splitting them up sym
metrically. Remarkably, the magnetic field does not give r
to a ‘‘mass term:’’ in the case of a relativistic dispersio
relation, as we see it here with the antiferromagnet, suc
term would show up under a square root

v5Av2kW21v4MGB
2 . ~9.6!

Finally, let us consider the effect of an external magne
field on antiferromagnetic spin-wave scattering. Remarka
the expansion~9.4! does not contain any terms quartic in th
magnon fields. Now, in order to evaluate theT-matrix ele-
ment referring to the unperturbed effective Lagrangian~8.5!
with the dispersion relation~9.5!, we have to choose th
representation of the two polarization states accordin
up1& (up2&) corresponds to the spin-wave branchu5U1

1 iU 2 (u!5U12 iU 2), which experiences a positive~nega-

tive! shift by HW . The calculation shows that the respecti
T-matrix elements do not receive additional terms from
magnetic field.

Take, for example, the reactionp1(kW1)1p2(kW2)
→p2(kW3)1p1(kW4), which yields
.
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TAF~HW !5^p2~kW3!p1~kW4!uL int
AFup1~kW1!p2~kW2!&

5
1

4Av1v2v3v4

v2

F2
2 $~v11v3!22v2~kW11kW3!2%.

~9.7!

The magnetic field drops out in the sumv11v3—it only
appears in the denominator of the scattering amplitu
which exhibits the dispersion relation~9.5!.

X. ANISOTROPY FIELD

While the preceding section was devoted to a single sy
metry breaking parameter, an external magnetic field,
would now like to discuss the question of explicit symme
breaking from a general point of view. In the case of
approximate symmetry, the Lagrangian of the underly
theory contains contributions, which explicitly break the i
ternal symmetry associated with the groupG,

L5L01maOa. ~10.1!

Whereas the first term represents the invariant part, the
eratorsOa transform nontrivially under the symmetry grou
G. The constantsma , for their part, play the role of symme
try breaking parameters.

In this perspective, the interaction of an external magne
field with the spin degrees of freedom represents a spe
case: the operatorsOa are to be identified with the charg
densitiesJi

0 , and are thus related to the generatorsQi of the
group G. Hence, in the effective description, the symme
breaking parametersma of the underlying theory are to b
taken into account through the time components of the
ternal field f 0

i (x)—in connection with explicit symmetry
breaking, these auxiliary fields, as we have seen before,
quire physical significance.

If the operatorsOa are not related to the generators of t
group G, then the effective Lagrangian has to be enlarg
including additional contributions which take into accou
the approximate character of the spontaneously broken s
metry. It is convenient to extend the effective machine
accordingly, treating the corresponding symmetry break
parametersma also as external fieldsma(x) on the same
footing as the vector fieldsf m

i (x) associated with the current
and charge densities. The generating functional then cont
two argumentsG5G$ f ,m%. Correlation functions of the
novel operatorsOa may be obtained the same way as tho
involving the currents and charge densities. The only mo
fication brought about by the fieldsma(x) is that the low-
energy expansion of the functionalG$ f ,m% now amounts to a
double series—in an expansion in powers of the exter
fields f m

i (x), as well as in an expansion in powers of th
quantitiesma(x), associated with the novel operatorsOa. As
a prototype of this more general way of symmetry breaki
we mention the quark mass termq̄Mq of the QCD Lagrang-
ian: if the quark masses, playing the role of symmetry bre
ing parameters, are taken at their physical, nonzero val
chiral symmetry is explicitly broken. An application in con
nection with nonrelativistic systems will be given below.
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From a methodical point of view, the following observ
tion related to order parameters is of interest. Concerning
nature of these quantities, nonrelativistic kinematics, as
have seen, is less restrictive: in the case of a Lore
noninvariant ground state, the time components of conse
currents may develop such nonzero vacuum expectation
ues. Now, this type of order parameter^0uJi

0u0& already
shows up in the effective theory, if the underlying theory
symmetric—the ferromagnet represents such a system, wh
the spontaneous magnetization embodies this possib
Similarly, the vacuum expectation values of the more gen
operatorsOa, which are not related to the generators of t
group G, also represent order parameters, which, for th
part, may occur both in Lorentz-invariant theories and in
nonrelativistic domain. However, this type of order para
eter only shows up in the effective theory, if the symmetry
the underlying theory isapproximate—on the effective level,
the quantitieŝ 0uOau0& then appear in association with th
fields ma(x). As an illustration, referring to the relativisti
domain, we quote QCD, where the quark condens

^0uq̄qu0& represents the order parameter in question. Li
wise, the staggered magnetizationSs of an antiferromagne
may serve as an example of an order parameter releva
condensed matter physics, which belongs to this more g
eral class.

In what follows, we are going to consider a further exte
sion of the Heisenberg model

H5H02m(
n

SW n•HW 2m(
n

~21!nSW n•hW , ~10.2!

which illustrates the concept of explicit symmetry breaki

exposed above. The two fieldsHW and hW are assumed to b
weak, such that the respective interaction terms involving
spin degrees of freedom, may be considered as a perturb
of the isotropic Heisenberg HamiltonianH0. In the Zeeman
term, the sum over the spin operators is associated with

spontaneous magnetizationSW }^0u(nSW nu0&, while the
vacuum expectation value of the second sum is related to

staggered magnetizationSW s}^0u(n(21)nSW nu0&.
The fieldhW in Eq. ~10.2! corresponds to those symmet

breaking parametersma , which are not associated with th
generators of the groupG. Since the quantityhW , much like a
magnetic field, transforms with the vector representation
G5O(3), thecorresponding additional contribution in th
leading order effective Lagrangian exhibits the same str
ture as the effective representation of the Zeeman term~9.2!,

Leff~hW !5SsmhiUi . ~10.3!

The staggered magnetizationSs enters the leading order La
grangian in the form of a new coupling constant, who
value has yet to be determined.

As we have seen earlier, a term proportional to the sp
taneous magnetization does not appear in the effective
grangian of the antiferromagnet. For ferromagnets, howe
the contribution~9.2! is essential: it describes the modific
tion of the low-energy structure imposed by a magnetic fie
On the other hand, the term~10.3!, which is proportional to
the staggered magnetization, does not show up in the e
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tive Lagrangian of the ferromagnet considered in this pap
in the case of identical spins at each lattice site, we h
Ss50. However, for antiferromagnets, it is the stagger
magnetization which is nonzero. Much like the auxilia
field f 0

i (x) acquires physical significance through a magne

field HW , the quantityhi in Eq. ~10.3! is related to a so-called
anisotropy fieldhW A . In any real magnetic system, there ex
interactions whose description is beyond the reach of
isotropic Heisenberg Hamiltonian. One of these is magn
anisotropy, which either originates from dipole-dipol
interactions between the spins or may be caused by the
pling of the electron orbits to the crystal field.42 In order to
take these interactions into account on a microscopic le
one may introduce the artifice of an effective anisotropy fi
hW A into the microscopic Hamiltonian. For the antiferroma
net, which is then referred to as uniaxial, one obtains~see,
e.g., Refs. 26,43!

H AF52J(
n.n.

SW m•SW n2m (
nanb

~Sna

3 1Snb

3 !H

2m (
nanb

~Sna

3 2Snb

3 !hA . ~10.4!

In this model, which represents a special case of the Ha
tonian~10.2!, the antiferromagnet is considered as compo
of two sublatticesa andb, wherea andb spins are of equa
magnitude. The arrangement is such that all nearest ne
bors of ana spin areb spins and vice versa. In an idealize
picture of the ground state,a spins point up andb spins point
down. Note that, unlike for the external magnetic field b
fore, we are now dealing with a hypothetical field, whic
changes its direction over atomic distances:hW A points along
the positive third axis ata sites, but along the negative thir
axis atb sites.

As far as ferromagnets are concerned, magnetic aniso
pies manifest themselves in a different manner in the mic
scopic description: again, they may be taken into acco

through an effective fieldHW A , which locally points in the
same direction as every single spin vector; but here, they
point along one and the same direction. Accordingly, t

field HW A , which is also referred to as anisotropy field~see,
e.g., Refs. 43–46!, enters the microscopic Hamiltonia

through the term2m(nSW n•HW A , i.e., it couples to the vecto

of the total spin, much like a magnetic fieldHW . Therefore, on
the effective level, it is also to be incorporated into the qua
tities f 0

i (x), f 0
i (x)⇔mHA

i , such that the qualitative effects o
an external magnetic and an anisotropy field, respectiv
are the same.

For the antiferromagnet, on the other hand, anisotro

field hW A and magnetic fieldHW are not to be treated in analo
gous ways, since the quantityhW A does not couple to the vec
tor of the total spin. It is instructive to discuss this nov
interaction in our effective framework and confront the r
sulting modification of our previous findings with what
known in condensed matter physics.

Let us first examine the spin-wave dispersion relatio
According to the preceding section, a magnetic field lifts t
degeneracy of the two polarization states observed in an
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tiferromagnet, but does not provide the magnons with
‘‘mass’’—an anisotropy fieldhW A , however, does the job. In
the corresponding effective expansion

SsmhA
i Ui5SsmhA~12 1

2 UaUa2 1
8 UaUaUbUb2••• !,

~10.5!

the term quadratic in the magnon variables leads to the r
tivistic scenario referred to in Eq.~9.6!: in the presence of an
anisotropy field,hW A5(0,0,hA), as well as of an external mag

netic field,HW 5(0,0,H), the dispersion law of antiferromag
netic spin waves takes the form47

v65Av2kW21SsmhA /F1
26mH. ~10.6!

Accordingly, the following relation holds:

F1
2~v2MGB!25SsmhA , ~10.7!

showing that the square of the ‘‘magnon mass’’ is prop
tional to the product of order parameterSs and symmetry
breaking parametermhA . This formula may be viewed as th
antiferromagnetic analog of the well-known Gell-Mann
Oakes–Renner relation encountered in QCD,48

Fp
2 Mp

2 5u^0uūuu0&u~mu1md!. ~10.8!

The two equations are indeed in one-to-one corresponde
the square of the pion mass is determined by the produc
the order parameter, the quark condensate^0uūuu0&, with the
symmetry breaking parameter, the sum of the quark ma
mu1md . While the first factor is a measure ofspontaneous
symmetry breaking, the second one is a measure ofexplicit
symmetry breaking.

Finally, let us consider how the scattering amplitude
antiferromagnetic spin waves is affected by the anisotr
field. From the expansion~10.5!, we derive the following
low-energy theorem:

TAF~hW A!5
1

4Av1v2v3v4

v4

F2
2

3H dabdcdS 2

v2
v1v222kW1•kW21SsmhA /F2

2D
1dacdbdS 2kW1•kW32

2

v2
v1v31SsmhA /F2

2D
1daddbcS 2kW1•kW42

2

v2
v1v41SsmhA /F2

2D J ,

~10.9!

where v represents the modified dispersion relationv

5Av2kW21SsmhA /F1
2. Again, the formula~10.9! has its

counterpart in QCD, if the pion-pion scattering amplitude
evaluated around nonzero quark mass.

In summary, the anisotropy fieldhW A is on the same foot-
ing as the quark masses—both quantities belong to th
symmetry breaking parametersma , which are not related to
the generators of the symmetry groupG. As we have pointed
out in the analysis of symmetric underlying theories, t
a

la-

-

ce:
of

es

f
y

se

e

leading order effective Lagrangian of an antiferromag
closely resembles the one describing QCD. Now, if the
fective framework is extended to approximate symmetri
including an anisotropy field and quark masses, respectiv
then the corresponding analogy in the low-energy struct
of the two theories is maintained.

XI. SYMMETRY BREAKING PARAMETERS

We have to recall that the entire analysis in the last t
sections, concerning approximate symmetries, relies on
essential assumption: the respective contributions, which
plicitly break the symmetry of the underlying theory, are
be regarded asperturbations—the analysis in terms of effec
tive fields is useful only, if the corresponding symmet
breaking parameters are sufficiently small. Let us now fo
on this important requirement and discuss the various s
metry breaking parameters encountered so far from this p
of view. We start with the anisotropy field.

Assuming that this field is weak, the predictions of t
effective Lagrangian method, given in the previous secti
can be trusted. For ferromagnets, as we have seen, mag
anisotropies may be taken into account through an effec

field HW A : the dispersion law experiences an overall shiftlin-
ear in the perturbation

v5gkW21mHA . ~11.1!

For antiferromagnets, the perturbation shows up unde
square root, the corresponding coefficient being proportion
to the staggered magnetization

v5Av2kW21SsmhA /F1
2. ~11.2!

Hence, if the anisotropy fieldsHW A andhW A , respectively, are
of the same order of magnitude and weak, the dispers
relation of antiferromagnetic spin waves exhibits a larger
ergy gap.

Indeed, this striking difference concerning the signi
cance of anisotropy effects in ferromagnets and antife
magnets is well known in condensed matter physics. In
romagnets, these interactions only play a minor role, wher
in antiferromagnets they are much more pronounced: a
microscopic analysis, relying on some rough approxim
tions, indicates~see, e.g., Ref. 49!, the spin-wave spectrum
of an antiferromagnet exhibits a characteristic energy ga

Dv5mAhA~2hW1hA!, kW→0, HW→0. ~11.3!

hW is the so-called Weiss field, which turns out to be ve
large compared to the anisotropy fieldhW /hA'103, such
that the second term can be neglected. Accordingly,
above combination of anisotropy field and Weiss field, wh
does not show up in the analysis of ferromagnets, may l
to a substantial energy gap in the spin-wave spectrum o
antiferromagnet.

In particular, the formula for the energy gap~11.3! is
consistent with the dispersion law~11.2!: the contribution
involving the Weiss fieldhW corresponds to the term involv
ing the staggered magnetizationSs—one identifies
hW⇔Ss /2mF1

2. The other term appearing under the squa
root in Eq.~11.3!, m2hA

2 , is not reproduced by the effectiv



n
k

m
e
m

ro
io

io
r

no
nl
t

on
om
s
an
t t

in
ak
r

uc
N
rg
w
u
T

rb
D

an
to
es
di

v

a
tc
he
ou

th
eld

is
o
e
th
t

f t
o

tu
an

l-
ex-
in

s of
ive

ay

of
e-
ate,
tone
ym-
e
k-
rom
try
dy-

n-
the
pe-
the
our
eous
ni-
ar-

in-
ex-
ane-

a
ot

nly
ela-
ter-
it-

ons
ate
ent
r-

ibit
is

w-
ag-
r-
in

nt

les
ics

ic
rns
hat
D,
ng-

PRB 60 401SPIN-WAVE SCATTERING IN THE EFFECTIVE . . .
theory: in our counting scheme, this expression correspo
to a contribution of subleading order. Generally, our boo
keeping is based on a systematic counting of powers of
mentum, such that the respective terms of a given order n
not be correlated one-to-one with those obtained from a
croscopic investigation of condensed matter.

In the case of very strong anisotropy effects, antifer
magnetic spin waves no longer follow the dispersion relat

~11.2!; rather, they obey a quadratic law,42 v5a1bkW2—the
effective description no longer applies. Chiral perturbat
theory, which is based on the assumption that the ene
gap, associated with the Goldstone bosons, is small,
breaks down. The fact that the effective machinery o
makes sense if the anisotropy field is weak, thus restricts
range of application of the method. However, as far as c
densed matter systems are concerned, one has the freed
choose appropriate objects of investigation—one may ea
find another antiferromagnetic body, displaying a weaker
isotropy field, and hence a smaller energy gap, such tha
effective method now perfectly applies.

Note the difference with the description of the strong
teraction: QCD is a universal theory—the symmetry bre
ing parameters, the quark masses, are fixed once and fo
at their physical values. Up and down quarks are light, s
that these quantities can be treated as perturbations.
comes the strange quark, whose mass is considerably la
but nonetheless can be regarded as a perturbation, as
The mass of the charmed quark, on the other hand, is m
too large so as to be treated in an analogous manner.
three lightest quarks, however, may be viewed as pertu
tions of the symmetric Lagrangian of massless QC
which is invariant under chiral transformationsG
5SU(3)R3SU(3)L .

This so-called chiral limitmu ,md ,ms→0 represents a
purely theoretical abstraction—chiral symmetryis explicitly
broken in nature. Likewise, a zero anisotropy field in an
tiferromagnet is to be regarded as an idealized situation,
As far as the third symmetry breaking parameter of inter
the external magnetic field, is concerned, the situation is
ferent, because this quantity represents anexternalfield. In a
laboratory we can organize a world of our own, for we ha

the possibility to tune the strength ofHW . In particular, the
situation which is analogous to the fictitious chiral limit or
zero anisotropy field, can easily be realized: simply swi
off the magnetic field. Then, at zero field strength, t
ground state of a ferromagnet exhibits spontane
magnetization—much like an antiferromagnet displays
nonzero staggered magnetization in the limithW A→0, or
massless QCD exhibits a nonzero quark condensate.

Since the magnetic field can be varied continuously,
effective calculation is under control: as long as the fi

strengthuHW u is kept weak, the effective Lagrangian method
an efficient tool to investigate the low-energy behavior
magnetic systems. Moreover, the fact that the magnetic fi
can be tuned, is a major advantage over QCD, where
quark masses are fixed: it provides us with a new way
accurately determine some of the low-energy constants o
effective theory. Consider, for example, the magnetization
a ferromagnet and its variation with respect to tempera
and magnetic field. In the effective expansion of this qu
ds
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tity, different low-energy constants will show up. Their va
ues may be unraveled by fitting the calculated curves to
perimental data, which, furthermore, are already available
condensed matter physics. In particular, at higher order
the low-energy expansion, where the number of effect
coupling constants turns out to be large, this procedure m
be of considerable help.

XII. SUMMARY AND OUTLOOK

The present work deals with the low-energy analysis
nonrelativistic systems which exhibit collective magnetic b
havior. The corresponding excitations near the ground st
the spin waves or magnons, are regarded as Golds
bosons, resulting from a spontaneously broken internal s
metry O(3)→O(2). Their properties may be analyzed in th
framework of the effective Lagrangian method, which tac
les the phenomenon of spontaneous symmetry breaking f
a unified point of view. The method exploits the symme
properties of the underlying theory and formulates the
namics in terms of Goldstone fields.

At large wavelengths, the microscopic structure of co
densed matter systems does not play a significant role: in
corresponding leading order effective Lagrangians, the s
cific properties of the system only manifest themselves in
numerical values of a few low-energy couplings. Rather,
attention is devoted to the consequences of spontan
symmetry breaking—it is the hidden symmetry which ma
fests itself at small momenta, dictating the explicit appe
ance of the respective low-energy phenomenon.

If the ground state of the system fails to be Lorentz
variant, charge densities may pick up nonzero vacuum
pectation values. In the case of a ferromagnet, the spont
ous magnetization embodies this possibility, giving rise to
topological term in the effective Lagrangian, which is n
invariant under the internal symmetry O~3!. Ferromagnetic
magnons are nonrelativistic particles, which possess o
one polarization state and obey a quadratic dispersion r
tion. The low-energy theorem concerning spin-wave scat
ing indeed displays a structure, which would not be perm
ted in the relativistic domain: the corresponding expressi
for the scattering amplitude and total cross section viol
Lorentz symmetry. The results obtained are in agreem
with Dyson’s pioneering microscopic analysis of a cubic fe
romagnet within the Heisenberg model.

The antiferromagnet, on the other hand, does not exh
spontaneous magnetization, such that a topological term
absent in the effective Lagrangian. In contrast to the lo
energy excitations in a ferromagnet, antiferromagnetic m
nons are relativistic particles, which follow a linear dispe
sion law and possess two polarization states. Much like
the relativistic domain, the effective Lagrangian is invaria
with respect to the hidden symmetry O~3!; moreover, the
explicit expression for an antiferromagnet closely resemb
the one referring to massless quantum chromodynam
~QCD!. The T-matrix element, describing antiferromagnet
spin-wave scattering, unlike for the ferromagnet before, tu
out to be Lorentz-invariant—its structure is analogous to t
of the leading order pion-pion scattering amplitude in QC
demonstrating the universal feature of the effective Lagra
ian technique.
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In either case, ferromagnetic and antiferromagnetic sp
wave scattering, the calculation is readily done within t
effective framework, to be contrasted with the microsco
approach, where the corresponding analysis turns out to
fairly involved. In this respect, the situation is analogous
that of quantum chromodynamics, where the complica
analysis of pion-pion scattering by means of current alge
methods has been replaced by the effective Lagrangian t
nique. Unlike for the strong interaction, scattering proces
in magnetic systems, unfortunately, are not the suitable
to experimentally detect interactions among the Goldst
degrees of freedom.

The present work includes approximate symmetries
discusses the modification of the low-energy structure
posed by explicit symmetry breaking. Two different pertu
bations of the isotropic Heisenberg model are considere
constant external magnetic and a constant anisotropy fi
The former quantity represents a rather special case, s
this symmetry breaking parameter is coupled to the gen
tors of the group O~3!—in the effective Lagrangian of a fer
romagnet the magnetic field is associated with the spont
ous magnetization, while, for the antiferromagnet, it appe
in the time component of a covariant derivative. The anis
ropy field, on the other hand, which plays a significant role
connection with the antiferromagnet, belongs to the m
general class of symmetry breaking parameters which are
coupled to the generators of the hidden symmetry. It lead
an additional term in the effective Lagrangian, which is p
portional to the staggered magnetization.

The dispersion relations regarding spin waves in the p
ence of an external magnetic and an anisotropy field, res
tively, are in agreement with the findings of condensed m
ter physics. Due to a magnetic field, ferromagnetic magn
experience an overall shift, while the degeneracy of the
polarization states of antiferromagnetic magnons is lift
The anisotropy field provides antiferromagnetic magno
with a ‘‘mass,’’ leading to a formula analogous to the Ge
Mann–Oakes–Renner relation in QCD.

Remarkably, to the order considered, the scattering p
cess concerning ferromagnetic spin waves is not affected
a magnetic field. Also, theT-matrix element, describing th
analogous interaction in an antiferromagnet, does not rec
additional terms from the magnetic field. On the other ha
the anisotropy field modifies the low-energy theorem c
cerning antiferromagnetic spin-wave scattering, leading to
additional contribution in theT-matrix element, which is on
the same footing as the quark mass term in the pion-p
scattering amplitude.

The present work demonstrates that the leading orde
fective Lagrangians permit a concise and straightforw
analysis of the low-energy properties of ferromagnets
antiferromagnets, above all in connection with spin-wa
scattering processes. The effective machinery may now
transferred to more complicated applications, such as the
vestigation of thermodynamic quantities. Indeed, the lo
temperature expansion for the partition function of an a
ferromagnet has been calculated to three loops,50 while the
results concerning the temperature dependence of the s
taneous magnetization of a ferromagnet will be presente
a forthcoming paper.51
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APPENDIX A: SPIN WAVES
AS COLLECTIVE EXCITATIONS

In this appendix, we develop a semiclassical picture
spin waves, which regards these low-energy excitations
some kind of distortion of the microscopic sp
structure.42,52–54 Afterwards, we try to illuminate Gold-
stone’s theorem in the present context. As a first step,
have to construct the microscopic representation of the o
magnon states.

Instead of the spin operatorsSn
i , introduced in Sec. II, we

take the following linear combinations thereof:

Sn
15Sn

11 iSn
2 , Sn

25Sn
12 iSn

2 ~A1!

and perform a discrete Fourier transformation

S6~kW !5(
n

exp~ ikW rWn!Sn
6 . ~A2!

Note that the operatorsS6(kW ) refer to the reciprocal lattice
Next, we apply these operators to the ground state o

ferromagnet. Since, in our convention, all of the spins po
in the direction of the positive third axis, the spin-raisin
operatorS1(kW ) yields identically zero,S1(kW )u0&[0. The
spin-lowering operatorS2(kW ), however, leads to an eigen
state of the Heisenberg Hamiltonian

ukW &5
1

A2SN
S2~kW !u0&, ^kW ukW &51. ~A3!

S is the spin quantum number andN denotes the total num
ber of lattice sites. Consider now the expectation value of
local operatorSn

3 in this one-magnon state~see, e.g., Ref.
42!:

^kW uSn
3ukW &5S21/N. ~A4!

This is quite a remarkable finding, since the right hand s
is independent of the specific lattice siten as well as of the
wave vectorkW . A spin deviation of one unit, relative to th
ground state, is thus uniformly distributed over the who
lattice—per siten, the spin deviation from the totally ordere
state equals 1/N. In this picture, a spin wave corresponds
some sort of collective excitation moving through the lattic
characterized by a wave vectorkW . Since the total spin devia
tion amounts to one unit, these quasiparticles are bosons
far so good.

In accordance with the semiclassical vector model, e
localized spin which takes part in such a collective mo
precesses around the third axis. The corresponding ope
angle is such that the projection of a particular spin vector
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the third axis is given byS21/N. Moreover, there is a con
stant phase difference between any two adjacent spins o
collective mode, depending on the magnitude of the w
vectorkW—in particular, at large wavelengths,ukW u→0, all the
spins precess in phase.

Now, in order to get an intuitive understanding of Gol
stone’s theorem in the present context, let us briefly discu
simple model of a ferromagnet.55 Consider a linear chain o
N spin-12 vectors, bent around into a ring, such that the fi
and the (N11)th spin are identical. Suppose that there is
interaction between adjacent spins, tending to align th
parallel. The ground state, in which all the spins point in
same direction, is degenerate. From the manifold of th
N11 lowest lying states let us choose, for definiteness,
one with maximal spin projectionN/2 on thez axis. Next,
construct a one-magnon stateuk&,

uk&5
1

AN
(

n
eiknun&, k5

2p

N
r , r 51,2, . . . ,

un&5 1
2 ~sn,x2 isn,y!u0&, ~A5!

where the quantitiessn represent Pauli matrices. Now, fo
k50, the one-magnon stateuk& is energetically degenerat
with u0&—these two states differ, however, with respect
the projection of their total spin on the third axis: foruk
50&, one obtainsN/221. In particular, this state may b
regarded as another of the possible ground states, w
‘‘spontaneous magnetization’’ points in a direction differe
from the third axis or, equivalently, with a different value
the third component of the spin vector along the same di
tion. These two configurations are thus related by a sym
try transformation: with a suitable rotation, the ground st
u0& may be transformed intouk50&.

Reasoning by analogy, we may transfer these statem
to a three-dimensional ferromagnet. In particular, such a
tation of the system as a whole would not require any
ergy: since the spin structure of the ground state is not
torted while rotating the rigid spin lattice, there are
restoring forces. As a consequence, there exists at leas
form of elementary excitation, the one corresponding tokW
50, which gives a rotation of the entire system in sp
space, and which must have zero frequencyv50.56 These
‘‘( kW50,v50) excitations’’ above the ground state, how
ever, are just other ground states and the real question ra
is, whether there is some sort of excitation with no ene
gap in thelimit kW→0.23 Under one additional condition, th
absence of long-range forces, there will indeed exist a wh
branch in the spectrum of elementary excitations, whose
quency continuously tends to zerov→0, in the limit
kW→0—here we recognize the nonrelativistic version
Goldstone’s theorem.

Imagine an external field, causing a slight distortion of t
ordered spin structure, such that the direction of the mag
tization slowly varies in space, periodically over some ch
acteristic lengthl. If the external field is switched off, the
system begins to oscillate with some characteristic freque
or frequencies. Goldstone’s theorem then deals with
question whether or not such collective modes have an
ergy gap as the characteristic length in the original distort
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of the order parameter tends to infinity. Since the summa
in the Heisenberg exchange Hamiltonian merely exte
over nearest neighbors, by definition, no long-range for
are present in this model. Therefore, Goldstone excitati
do occur.

APPENDIX B: SCATTERING AMPLITUDE
AND CROSS SECTION

As is well known from relativistic quantum mechanic
the cross section referring to elastic two-particle scatterin
given by

ds5
uTRu2

4A~k1•k2!22m1
2m2

2 ~2p!4d4~k11k22k32k4!

3
d3k3

~2p!32v3

d3k4

~2p!32v4

, ~B1!

with

d4~k11k22k32k4!

5d~v11v22v32v4!d3~kW11kW22kW32kW4!. ~B2!

For collinear collisions, the Lorentz-invariant square ro
may be expressed by the relative velocityuvW u of the ingoing
particles57,58

v1v2uvW u5A~k1•k2!22m1
2m2

2, uvW u5uvW 12vW 2u. ~B3!

Proceeding this way, we do not specialize to the dispers
law of massive relativistic particles. Note that a relativis
normalization of the one-particle states has been used,

^kW ukW8&5~2p!32vd3~kW2kW8!⇔E d3k

~2p!32v
ukW &^kW u.

~B4!

Likewise, in Born approximation, the quantityTR,

TR5^kW3kW4uLintukW1kW2&
R, ~B5!

is theT-matrix element, evaluated in this specific normaliz
tion.

Since our analysis of ferromagnets and antiferromagn
is based on a nonrelativistic normalization of the one-part
states

^kW ukW8&5~2p!3d3~kW2kW8!⇔E d3k

~2p!3
ukW &^kW u, ~B6!

the expression~B1! has to be modified accordingly: instea
of normalizing to 2v particles in a given volumeV, we shall
normalize to one particle per volumeV. Hence, the formula
for the scattering cross section now reads

ds5
uTNRu2

uvW u
~2p!4d4~k11k22k32k4!

d3k3

~2p!3

d3k4

~2p!3
.

~B7!

The quantityTNR then represents theT-matrix element



to
o

h
a

id
l
i

the
mo-

inte-

nts

ove
are

404 PRB 60CHRISTOPH P. HOFMANN
TNR5^kW3kW4uLintukW1kW2&
NR, ~B8!

where the one-particle states as well as the field opera
appearing in the interaction Lagrangian, are normalized n
relativistically.

We are now going to derive the explicit expression for t
differential cross section, assuming that the interacting p
ticles obey a quadratic dispersion relationv5gkW2. In con-
nection with condensed matter, it is appropriate to cons
the specific frame of reference, which is given by the so
body at rest. Accordingly, the initial particle configuration
to be characterized by two arbitrary wave vectorskW1 andkW2.
It is convenient to choose ingoing and outgoing momenta
follows:

kW15 1
2 ~KW 1qW !, kW25 1

2 ~KW 2qW !,

kW35 1
2 ~KW 1qW 8!, kW45 1

2 ~KW 2qW 8!, ~B9!

where the vectorsKW andqW ,

KW 5kW11kW2 , qW 5kW12kW2 , ~B10!
o

-
e

i

rs,
n-

e
r-

er
id
s

as

represent total and relative momentum, respectively. In
case of quadratic kinematics, conservation of energy and
mentum leads touqW u5uqW 8u. The scattering angleq is chosen
as the angle between the direction ofqW 8 relative to that ofqW .
In these coordinates, the evaluation of the phase space
gral is readily done, resulting in

E d4~k11k22k32k4!d3k3 d3k4→
1

8g
uqW udV.

~B11!

With the relative velocity of the ingoing particles,

uvW u52gukW12kW2u52guqW u, ~B12!

the expression for the differential cross section then amou
to

ds

dV
5

1

128p2g2
uTNRu2. ~B13!

Note that a factor of one half has been included in the ab
formula, considering the fact that the interacting particles
identical.
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