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Spin-wave scattering in the effective Lagrangian perspective

Christoph P. Hofmarih
Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093
(Received 27 May 1998

Nonrelativistic systems exhibiting collective magnetic behavior are analyzed in the framework of effective
Lagrangians. The method, formulating the dynamics in terms of Goldstone bosons, allows us to investigate the
consequences of spontaneous symmetry breaking from a unified point of view. Low-energy theorems concern-
ing spin-wave scattering in ferromagnets and antiferromagnets are established, emphasizing the simplicity of
actual calculations. The present work includes approximate symmetries and discusses the modification of the
low-energy structure imposed by an external magnetic and an anisotropy field, respectively. Throughout the
paper, analogies between condensed matter physics and Lorentz-invariant theories are pointed out, demonstrat-
ing the universal feature of the effective Lagrangian technif8@163-1829)02725-3

I. INTRODUCTION giving rise to a nonzero spontaneous magnetization. Al-
though the antiferromagnetic ground state does not display
In the following presentation, our interest is devoted tospontaneous magnetization, it also spontaneously breaks the
the low-energy analysis of nonrelativistic systems, which exsymmetry. Unlike for a ferromagnet, its microscopic descrip-
hibit collective magnetic behavior. We adopt a unified pointtion is highly nontrivial—in our analysis, we assume the
of view, relying on the method of effective Lagrangians, andsame internal symmetry breaking pattern to inhere in this
try to understand how the symmetry, inherent in the undersystem as wellG=0(3)—-H=0(2).
lying theory, manifests itself at low energies. The complex Whenever a physical system exhibits spontaneous sym-
microscopic description of the systems under consideratiometry breaking and, furthermore, the corresponding Gold-
is taken into account only through a phenomenological pastone bosons represent the only low-energy excitations with-
rametrization, which, in the effective Lagrangian, emerges irout energy gap, we do have a very powerful means at our
the form of a few coupling constants. Our main concern willdisposal to analyze its low-energy structure: chiral perturba-
be the question, to what extent in the low-energy domain, théion theory (¢PT). The method was originally developed in
actual structure of quantities of physical interest is dictatectonnection with Lorentz-invariant field theori&® admit-
by the underlying symmetry. ting, in particular, a low-energy analysis of the strong inter-
Nevertheless, let us first consider the Heisenberg modehction, described by quantum chromodynant@€D). xPT
which describes the magnetic systems referred to omi-a has also proven to be very useful in the investigation of other

croscopiclevel. There, the exchange Hamiltoniafy, systems where Goldstone bosons odsee, e.g., Refs. 638
In condensed matter physics, spontaneous symmetry
- S & - breaking is a common phenomenon and effective field theory
=-J -S,, J=const, 1.1 : S .
Ho ; SmSn @3 methods are widely used in this domain. Only recently, how-

. ever, has chiral perturbation theory been extended to such
formulates the dynamics in terms of spin operatfs at-  nonrelativistic system$,*? demonstrating its applicability to
tached to lattice sitem. Note that the summation only ex- solid state physics as well; especially the ferromagnet and
tends over nearest neighbors and, moreover, the isotroptbe antiferromagnet, the systems to be examined below, may
interaction is assumed to be the same for any two adjaceitite analyzed in the framework gfPT. The method is based
lattice sites. According to the sign of the exchange intediral on effective Lagrangians which exploit the symmetry prop-
the above expression leads to an adequate low energy derties of the underlying theory, i.e., the Heisenberg model in
scription of systems exhibiting collective magnetic behavior,our case, and permits a systematic low-energy expansion of
both of ferromagnets and of antiferromagnets, respectivelyquantities of physical interest in powers of inverse wave-
In particular, the Heisenberg model is perfectly suited tolength.
study the properties of the excitations near the ground While in an anomaly free, Lorentz-invariant field theory
state—the spin waves or magnons. an invariance theoreh guarantees that the effective La-

In a more general framework, which represents the startgrangian will inherit the symmetries of the underlying
ing point of our systematic approach, these low-energy excimodel, the same statement is no longer true in the nonrela-
tations are interpreted as Goldstone bosons resulting from @vistic domain: terms of topological nature happen to occur
spontaneously broken internal symmetry. Indeed, thén the effective description, the corresponding Lagrangian
Heisenberg Hamiltoniaifl.1) is invariant under a simulta- being G invariant only up to a total derivativet** Espe-
neous rotation of the spin variables, described by the symeially for ferromagnets, a term connected with the Brouwer
metry groupG=0O(3), whereas the ground state of a ferro- degree emerges which is not invariant under the grGup
magnet, e.g., breaks this symmetry spontaneously down te O(3), whereas an analogous contribution is absent in the
H=0(2): all thespins are aligned in one specific direction, effective Lagrangian of an antiferromagnet—as we will see,
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the main differences in the low-energy behavior of these twadopt “magnetic language,” paving the way to confront our

systems are a consequence of this striking fact. theoretical findings with the microscopic analysis.
The whole analysis concerns the properties of magnetic
systems at wavelengths large compared to the intrinsic scales [l. THE NONRELATIVISTIC DOMAIN

of the theory, i.e., to the lattice spaciray—the effective

theory does not resolve the lattice structure of the system, In the following two sections, we analyze systems exhib-
i.e., refers to the continuum limit. Clearly then, the effectiveiting collective magnetic behavior with respect to their sym-
Lagrangian method does not admit to discuss the physics dhetry properties, referring both to space-time and to internal
a solid body on a microscopic scale. Rather, we are intertransformations. Special emphasis is put into the internal
ested in how the actual structure of several low-energy pheSymmetry G=0(3) inherent in the Heisenberg model,
nomena encountered in magnetic systems can be interpretéfich is spontaneously broken by the ground state of the
as an immediate consequence of the hidden symmetry. TH@responding magnetic systems. Discussing the conse-
method has proven to be very efficient in other areas, abov@Uences resulting from this breaking in the general frame-
all in analyzing the low-energy behavior of the strong inter-WOrk of Goldstone’s theorem, we try to work out the main
action; in particular, the effective QCD Lagrangian allows usdifferences of the low-energy structure between Lorentz-
to perform a concise derivation of certain low-energy theoJ/nvariant theories and the nonrelativistic domain.

rems conceming the pions, which represent the Goldstone AS far asspace-timesymmetries are concerned, we are
bosons in this relativistic sector. The main intention of thefaced with the following situation in a continuum description
following work is to demonstrate, that chiral perturbation of condensed matter systems: the object under investigation,

theory, extended to nonrelativistic systems, is an equallf-9-» @ magnetic crystal, singles out a preferr_eo_l frame of _ref-
powerful tool. erence, the rest frame. In contrast to relativistic theories,

One principal result of the present paper will be the esWhere the vacuum is invariant under Lorentz transformations

tablishment of low-energy theorems concerning the scatte@» more generally, under the whole Poincapup, the

ing amplitude of ferromagnetic and antiferromagnetic spindround state of a solid fails to be invariant. As a conse-
waves, respectively. The straightforward effective calculaduence, the statement that the vacuum expectation value of a
tion, as opposed to the complicated microscopic analysis/€Ctor operatoA* has to vanish, no longer holds: the time
exhibits the efficiency of the method, which, moreover, cancOmponentA® may pick up an expectation value in the
systematically be extended to higher orders ofground state. This observation represents an essential ingre-
include a weak external magnetic or an anisotropy field, redomain, since such nonzero quant.ities can acquire the role pf
spectively, into the effective machinery, in order to discussorder parameters. As we soon will see, the ferromagnet is
the modifications thereby imposed on the low-energy strucSuch a nonrelativistic system, wheié is the time compo-
ture. nent of a conserved current.

As far as the ferromagnet is concerned, our continuum As the effective analysis refers to large wavelengths, it
approach makes contact with an important result to be founf0€s not resolve the microscopic structure of a solid and the
in the literature: Dyson, in his thorough microscopic analysisSystem hence appears homogeneous. Accordingly, the effec-
of a cubic ferromagnet within the Heisenberg model, calculive Lagrangian is invariant with respect to translations. On
lated the scattering cross section regarding ferromagneti®e other hand, the effective Lagrangian is not invariant un-
spin waves more than four decades &y@he fact that our der rotations, since the lattice structure of a solid singles out
result coincides with his, may be viewed as some kind of referred directions. In the case of a cubic lattice, the anisot-
test run for the applicability of chiral perturbation theory in ropy, however, ?7nly shows up at higher orders of the deriva-
the present context: the interaction among ferromagnetic spifive expansiori:*” In the following discussion, we assume
waves iS described Correcﬂy in th|s new framework_ that our magnetic SyStemS exhibit this type of lattice struc-

In a sense to be specified below, the leading order effedure: the underlying theory is the Heisenberg model of a
tive Lagrangian of an antiferromagnet closely resembles theubic ferromagnet and antiferromagnet, respectively. Under
one describing QCD at lowest order. As a consequencdhis assumption, the leading order effective Lagrangians re-
many results Concerning Chromodynamics can be adopted {@tlng to are then invariant both under translations and under
antiferromagnets, the corresponding low-energy phenomer@tations.
manifesting themselves in analogous ways. This feature of Letus now turn tdnternal symmetries. In addition to the
universality offers the opportunity to discuss certain phe-group R=0(3), which refers to rotations in three-
nomena well known in Lorentz-invariant theories in the dif- dimensional Euclidean space, a further symmetry gro(§) O
ferent language of solid state physics and vice versa. Indee§0mes into play, associated with the isotropic exchange in-
throughout the paper we will make quite often use of sucteraction in the Heisenberg mod&:=0O(3). Note that this
comparisons and analogies, in order to make the materi@roup corresponds to internal symmetry transformations in
easily accessible, both to condensed matter physicists and #e space of the spin variables.
the relativistic community. Invariance of the Heisenberg Hamiltoni&ty, (1.1) with

For the sake of self-consistency of the present work, wéespect to the Lie grous=O(3), characterized by the gen-
give a brief outline of the main ideas of chiral perturbationeratorsQ;,
theory and review the effective description of ferromagnets
and antiferromagnets, leaning thereby on Refs. 9, 13, and 16. [Qi o] =0,

In contrast to the analysis found therein, our approach tries tgives rise to three conserved curredf§x) 18

(2.1
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awjiﬂ(x)Ego\]?(x)Jr 8,/ (x)=0. (2.2 zero. The fact thallg(x) nevertheless does so, indicates, that
i . the ground state of a ferromagnet must single out some spe-
The generator®); are space integrals over the correspondinggific direction in the internal space of the spin variables:

charge densitied?(x), being symmetric only with respect to the subgrotfp
=0(2), theground state does not share the full symmetry of
Qi:f d3x J%(x), 2.3 the Hamiltonian—therefore,0|J3|0)# 0 may be viewed as
a quantitative measure of spontaneous symmetry breaking.
obeying the commutation relations Generally, nonzero vacuum expectation values of local op-
erators, which transform in a nontrivial manner under a sym-
[Qi,Qj]=ieijkQx- (2.9 metry groupG, are referred to as order parameters.

The above analysis exhibits, that the ferromagnet repre-
sents a physical system, where the most prominent order
) . parameter is associated with the time component of a con-
|nvet1r|an_t qnder_ thte fulll grgulﬁt:h the gro;gd state of the served current. Comparing this situation with the one in an
system IS invariant only under the subgradp . antiferromagnet, we realize that, in this case, the spontaneous

In a microscopic description of a ferromagnet, e.g., this o . ol

magnetization happens to vanigh|J;|0) = 0. Although the
statement shows up as follows. The generators of the SYMSymmetries of the ground state would have nothing against
metry group are given by the sum over all spins, y 0 . g g ag
(0]J3]0) taking on the role of an order parameter, this pos-
i sibility is ruled out for dynamical reasons. As far as the
Q=2 S,. (2.5  antiferromagnet is concerned, the so-called staggered magne-
" tization %4 turns out to be the most important order
The commutation rule parameter—this quantity, however, is not associated with the

o time component of a conserved current.
[Sh.Sh]=i SmreijiShy (2.6

insures that the Heisenberg Hamiltonian is invariant u@ler

The ground state of a ferromagnet, on the other hand, in An essential feature of the present low-energy analysis is
which all the spins are aligned in one specific direction, lethe occurrence of spontaneous symmetry breaking. The con-
us say along the positive third axis in spin space, is invariangequences of this phenomenon for the level spectrum of the
only underH=0(2), represented by the single generatorcorresponding systems are dictated by Goldstone’s theorem.
Qs=3,S:. Let us first consider itselativistic versiort®=2! for arbi-
At this point, the microscopic analysis makes contact withtrary Lie groupsG andH, associated with an internal sym-

the continuum approach: the third component of the operataetry. In the absence of gauge fields, spontaneous symmetry
of the total spins,,S: is related to the third component of the breaking in a Lorentz-invariant theory implies the existence

The exact symmetryG=0(3) is spontaneously broken
down toH =0O(2): whereas the Hamiltonian of the theory is

Ill. GOLDSTONE THEOREM

charge density operatdrg by of massless particles, whose numingyg is determined by
the dimension of the coset spaceG/H: ngg
=di —di . £ referring to
33:Jd3 (%), o dim(G)—dim(H). The current operatord’ re g
; n X J5(x) @7 G/H, a=1---ngg, couple to the vacuum, the correspond-

. , ) ) _ing vacuum-to-Goldstone boson matrix elements being non-
Taking the vacuum expectation value on either side of th'%ero In QCD, e.g., the axial currenlg“ displays this
equation, we arrive at propértfz o

NS=(0]J3l0)V, (28 (0]35#| 70 (K)) =i S5KHF . (3.1

where N denotes the total number of lattice sit&js the L . .
l The nonrelativistic version of the theorefiy?>?4is weaker.

highest eigenvalue of the spin operagj, andV is the vol- In the absence of long-range forces, spontaneous symmetr
ume of the entire crystal. Accordingly, the vacuum eXpeCta'breakin in a nonrelatgi]visticg system I’eagls to Iow-ene)r/ ex-y
tion value of the third component of the charge density op- 9 y 9y

erator is nonzero, citations, whose frequenay tends to zero fok—0. In con-
trast to the relativistic version, the theorem does now neither
specify the exact form of the dispersion relation at large
(0]30]0y= 5?7: 53, (2.9  wavelengths, nor does it determine the number of different
Goldstoneparticles these features of the Goldstone degrees
to be identified with the spontaneous magnetizalionThis  of freedom are not fixed by symmetry considerations
guantity represents the most prominent order parameter ialone—rather, in the case of a Lorentz-noninvariant ground
the description of a ferromagnet, its nonzero value signalingtate, they depend on the specific properties of the corre-
spontaneous symmetry breaking—Iet us elaborate this statsponding nonrelativistic systems. Only the number of real
ment a bit further. Goldstonefieldsturns out to be universal, given again by the
If the ground state of a ferromagnet was symmetric withdimension ofG/H.
respect to the whole group=0(3), none of the operators As far as the matrix elements of the operatdffsetween
Jio(x), which transform in a nontrivial manner und&, the vacuum and the Goldstone states are concerned, we find
could develop a vacuum expectation value different fromthe following situation in the nonrelativistic domain: two in-
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dependent coefficients have to be introduced, in order texcitations without energy gap. A more realistic description
characterize the matrix elements of the charge densities araf a magnet faces the fact that the system admits other exci-
the currents in question. Furthermore, the number of indetations with this property. In particular, phonons occur, rep-
pendent Goldstone states, labeled by the indekr"), re-  resenting the Goldstone bosons generated by the spontaneous

mains open. Quite generally, we may write breaking of translation invariance. We will concentrate on
the magnons and disregard all other degrees of freedom—the
(o|Ji°(x)|77“>:ic{‘(E)e—ikX, same idealization has been used by Dyson and many others.
The exchange of magnons leads to singularities in the
r M — i Nf Ry a—ikx low-energy region, particularly to poles occurring in the
(O G0l =D (ke 32 time-ordered correlation functions of the currents and charge
The two quantities are related via current conservation, leaddensities. In the two-point functio0|T{J{(x)J3(0)}|0),
ing to the dispersion laf® e.g., the pole term arises from the exchange of a magnon
between the two currents: the first current emits a magnon
CM"(K)w=D""(k)k. (3.3  which propagates and gets absorbed by the second one.

) ) ) Apart from this one-magnon exchange, multimagnon-
Note that th_e exact form of the dispersion relation has not yeéxchange processes, corresponding to branch points, also oc-
been specified: symmetry alone does not allow us to detefsyr and complicate the analysis considerably. At this mo-
mine the explicitk dependence of the coefficier@s(k) and  ment, however, aecondassumption, known as the pion pole

D"(k)—rather, their actual structure depends on the specififominance hypothesis, comes into play: one postulates that
properties of the nonrelativistic systems under consideratiorfhe singularities due to one-magnon exchange dominate the
This is to be compared with the Lorentz-invariant situation,/0OW-energy expansion.

where the ratio of the energy to the momentum is universal, A third ingredient of the low-energy analysis is the as-
determined by the velocity of light?=c?Kk? every Gold- sumption _that the_ re5|dut_as of the pole terms, i.e., the vertices
stone boson turns out to be massless, providedGhigtan representing the Interaction among the magnons, do admit an
exact symmetry of the Lagrangian. expansion in powers of inverse wavelength. Note that the

From a theoretical analysis of magnetic systems, e_g.c':orrelatlon functions themselves, of course, cannot be ex-

based on the Heisenberg model, as well as from the expe -aﬂded_i” this way, (_1ue to the pole_ terms showing up ther_ein.
mental side, e.g., from neutron scattering, it is well known his th'_rd assumption is essential in chiral perturbation
that the structure of the ferromagnetic dispersion relation iéhe?try._ It allow.ﬁt us to ]Zanalyfze tthe Iow;jen(tarr]gy structt.l:_re Off
quite different from the antiferromagnetic one: at large wave-SCcatiering amplitudes, torm tfactors, and other quantities o

lengths, the former takescuadraticform, whereas the latter phVS'C?" interest in a systematlc manner. -
follows a linear law. The mechanism which leads to this " VIEW of some applications to be pres_ented Iate_r on, itis
&onvenient to make use of the external field technique: one

of independent magnon stateswe for a ferromagnetfwo considers the response of the system to perturbations gener-
for an antiferromagnet—is understo#ti?® Remarkably, in ated by suitable external fieldg(x), coupled to the currents

the framework of our effective description, the difference inJ/'(X). All the various correlation functions are collected
the value of a single observable, the spontaneous magnetizgompactly in a generating functionBl f},

tion, suffices to answer both questions: the one concerning

the number of independent magnon states as well as the one _ *oqn : i

referring to their dispersion laWe shall briefly review the eTth= Z o d*xy - - -d4an,fl(X1)' (%)
chain of arguments in a later paragraph, once we have the n=0 1"

corresponding effective Lagrangians at our disposal. X<O|T{Jiﬂll(xl)_ . "]il:n(xn)}|o>’ 4.1

In the following analysis, the microscopic structure of the
system does not play a significant role. A brief discussion of _ i N
the spin-wave excitations within the Heisenberg model of aVhere the external field$, (x) merely serve as auxiliary
ferromagnet may be found in Appendix A, which also triesVariables: appropriate functional derivatives &f'"! with

to give an intuitive understanding of Goldstone’s theorem inf€SPect to these quantities reproduce the correlation functions
the present context. referred to above. The generating functional describes the
transitions which occur when the system is perturbed by an
external fieldH—H— [d3x f,.Jf, where represents the
Hamiltonian of the theory. In particulae't} is the prob-
Chiral perturbation theory is an efficient method to ana-ability amplitude for the system to remain in the ground state
lyze the low-energy structure of systems with a spontanefor t— + o, if it was there at— —o.
ously broken symmetry. It is an effective theory, formulated Up to this point, the discussion of magnetic systems was
in terms of Goldstone fields, applicable both to Lorentz-based on a spontaneously broken internal symmegy,
invariant theories and to the nonrelativistic domain. An es-=0(3), inherent in theunderlyingtheory, the Heisenberg
sential condition for the whole framework to be consistent ismodel. The basic idea now in constructingeffectivetheory
the validity of three assumptions, whose significance in conis to interpret the one-particle reducible graphs occurring in
nection with magnetic systems, we are now going to examthe underlying theory as tree graphs of an effective field
ine in succession. theory, which involves magnon fields as fundamental vari-
The first one supposes, that the magnons are the onlables: magnons are to be described by two scalar fields, de-

IV. ASPECTS OF CHIRAL PERTURBATION THEORY
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noted by 7?(x), a=1,2, and the_pole terms generated pywlmz by a three-dimensional unit vecth}z(ul,uz,u3),
one-magnon exchange, e.g., arise now from magnon-fielghnich transforms with the vector representation Gf
propagators. =0(3).

In this language, the expansion of the vertices in POWers | thjs notation, the leading order effective Lagrangian of
of inverse wavelength corresponds to a derivative expansiog ferromagnetread
of the effective Lagrangian. The translation of the various

vertices into the corresponding terms of the effective La- doUTU2— g,u2UL o . .
grangian is trivial: the one describing the interaction between LE=3 3 +3fU'—=3F2D,U' D, U/,
four magnons, e.g., is represented through a term containing 1+U

four magnon fields, together with a not yet specified number (5.

of space and time derivatives. In addition to the purely magthe last term being proportional to the square of the covariant
nonic vertices, describing the interaction of magnons among . ~tive ofU

themselves, the effective Lagrangian also contains contribu-
tions involving the external fields, which describe the transi- D, U'=g,U'+ &, FlUX. (5.2
tions generated by the perturbautbp\]{ﬂ The matrix ele- . .
ment <O|fiu\]i/-¢|,n.n>, e.g., which represents the probability At Igadmg order of thg low-energy expansion, the ferromag-
amplitude for the external field to excite one of the magnoret is thus characterized by two different low-energy cou-
states, is represented through a term linear in the fieldBling constants andF. The first term is related to a topo-
f'ﬂ(x), 72(x). The effective Lagrangian thus merely collects logical invariant, to the Brouwer degree of the mdp).
the information about the various vertices occurring in theRemarkably, due to this contribution, which does not involve
underlying theory. the auxiliary fieldf{,, the effective Lagrangian of a ferro-
In switching from the underlying theory over to the effec- magnet fails to be invariant under the groGe=0(3). The
tive Lagrangian, one could think, at first sight, that the lattersecond term in E¢(5.1) exhibits the same coupling constant,
would simply inherit the former’s internal symmetry: in con- the spontaneous magnetization. Note that these two expres-
nection with magnetic systems, one would therefore be insions, proportional to the order parameter, would not be per-
clined to construct an effective Lagrangian out of3®  mitted in Lorentz-invariant effective theories—they repre-
invariant expressions of increasing complexity—respectingsent the main novelty occurring in condensed matter physics,
of course, the symmetry properties under space-time transvhere nonrelativistic kinematics is less restrictive than Lor-
formations, i.e., invariance under translations and space raentz invariance.
tations in the present context. The ground state of an antiferromagnet, on the other hand,
This plausible way of proceeding, however, does not gendoes not exhibit spontaneous magnetization, such that the
erally lead to correct effective Lagrangiahs-?°A detailed  above two contributions do not show up in the effective de-
analysis of the low-energy structure of nonrelativistic sys-scription of this system. The explicit expression for the lead-
tems showsthat the leading order effective Lagrangian of aing order effective Lagrangian of aantiferromagnetis
ferromagnet indeed is not invariant under the groBp given by
=0(3) of the Heisenberg model. Note that this peculiarity is

specific to the nonrelativistic domain and does not show up Lof=3FIDoU' DU~ 3F3D,U' DU,

in an anomaly free, Lorentz-invariant theory—there, the ef- , _ ,

fective Lagrangian can always be brought t@adnvariant D,U'=d,U"+ &l UK. (5.3
form.!3

Once the explicit effective Lagrangian at hand, chiral per_As it is the case in the relativistic domain, the effective La-

: g . grangian is invariant with respect to the symmetry gr@up
tL.erapc.)n theory exhibits |t§ full strength, emphasizing theSince the expressio(b.3) gives rise to a linear dispersion
simplicity of actual calculations. Moreover, the method al-

. . . . _relation, it is more convenient to count energies as quantities
lows us to systematically take into account interactions, 2 o
k|, rather than organizing

which explicitly break the symmetry of the underlying Of the same order as momenéa ||
theory, provided that they can be treated as perturbations. Ae bookkeeping according t«k?, as for the ferromagnet
far as our magnetic systems are concerned, we will investibefore. The Lagrangian also contains two effective coupling
gate the effect of an external magnetic and an anisotropgonstantd=, andF,. Note that the contribution involvinﬁg
field on the structure of various low-energy phenomena. represents the analog of tRé term in Eq.(5.1), whereas the
first contribution, proportional td=2, would appear in the
effective Lagrangian of a ferromagnet only at subleading or-

V. LOW-ENERGY BEHAVIOR OF FERROMAGNETS

AND ANTIFERROMAGNETS der. - . . .
Having the explicit leading order effective Lagrangians

We now confine our attention to the low-energy proper-for ferromagnets and antiferromagnets at hand, we are now
ties of ferromagnets and antiferromagnets. First of all, thecapable of describing the low-energy behavior of these two
corresponding effective Lagrangians have to be writtersystems? Let us start with the ferromagnet, whose ground
down. According to Goldstone’s theorem, spontaneous symnstate displays a nonzero spontaneous magnetization. This
metry breaking of the rotation group inherent in the Heisen-specific information on the system suffices to determine the
berg modelG=0(3)—H=0(2), gives rise to two real corresponding leading order effective Lagrangian within our
magnon fields. It is convenient to use a covariant represerframework. The associated equation of motion is the
tation for the magnon field, replacing the two variablesLandau-Lifshitz equation, well known in condensed matter
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physics, which describes the dynamics of ferromagnetic spithat a single real field suffices to describe one particle. Ac-
waves. Its nonrelativistic, Schdmger-type structure—first cordingly, there existwo different types of spin-wave exci-
order in time, but second order in space—for its part detertations in an antiferromagnet—as is the case in Lorentz-
mines the number of independent magnon states: as onlgvariant theories, Goldstone fields and Goldstone particles
positive frequencies occur in its Fourier decomposition, aare in one-to-one correspondence. Moreover, these excita-
complex field is required to describe one particle—in a fer-tions now follow a linear dispersion relation

romagnet there exists onbnetype of spin-wave excitation.
Remember that in the nonrelativistic domain, Goldstone’s
theorem is too weak to make such a statement: it only pre-
dicts the number of real magndields dim{O(3)/O0(2)}
=2, but leaves open the number of different magmpain-
ticles Moreover, merely claiming that the frequencies

must tend to zero fok—0, the theorem does not guantita-

. . - F,

w(k)=vlk|+O([K?), V=g (5.7

corresponding to a massless particle moving with velagcity
The transition matrix elements of the charge densities and

currents take the specific form

tively specify the dispersion relation at large wavelengths. Its 013 72K =i 8°IKIF- /2@
quadratic form, resulting from the effective Lagrangiart), (Ol m (k) =Tz K[F2/ V2o,
L . F2 (0|95 7°(k)) =i 82K vF ,/\2w. (5.9
oK)=y +O(K",  r=+5, (5.4) o .
There are now two polarization statesm?(k)), a
is a consequence of the Euclidean symmeyO(3) as =1,2=|7"), n=1,2, which are associated with the opera-

well as of the specific information on the ground state of thetors J2,3%, referring to the coset spad8/H. Unlike for

ferromagnet, concerning the nonzero value of its spontangerromagnets, the coefﬁciemg(ﬁ) does depend on momen-
ous magnetization. tum: Eq.(3.3) then leads to the linear dispersion 188:7).

The effective machinery, relying on the external field \we would like to emphasize, once more, that this striking
technique, may now be put in operation, providing us with adifference in the low-energy behavior of ferromagnets and
derivative expansion of the correlation functions needed: th@ntiferromagnets, cannot be understood in terms of symme-
Landau-Lifshitz equation is to be solved iteratively and thetry considerations: with respect to internal as well(esn-
respective solutions for the magnon fidltf are to be in-  tinuouy space-time symmetries, the two systems are identi-
serted into the effective Lagrangiab.1). At leading order, cal in our effective framework. Rather, the difference
the whole information on the correlation functions is thenoriginates from the actual value okingleeffective coupling
collected compactly in the generating functiori{f}|ec  constant, the spontaneous magnetization. The number of in-
= [d* Egﬁ, and may be obtained by taking appropriate de-dependent magnon states, the form of their dispersion rela-
rivatives with respect to the auxiliary fieldsOur interest is  tion, the low-energy representation of scattering amplitudes,
now devoted to the contribution proportionalﬂgm‘g, i.e.,to etc.—the explicit appearance of all these low-energy phe-
the two-point function of the charge densiti@T{J2J2}|0),  nomena can be traced back to the different behavior of the
for it is this quantity which allows us to calculate the matrix respective ground states.

element(0|J2| (k). The result is
VI. EFFECTIVE COUPLING CONSTANTS

<O|Jg|ﬂ(|2)>:8a\/§, sa=i(1,—i). (5.5) In _the nonrelativi_stic domain the manifolq of _effective
J2 coupling constants is larger than in Lorentz-invariant theo-
. . . ries. In connection with our systems exhibiting collective
Cl_Jrrent conservation and invariance ur_uﬂér O(3) deter- magnetic behavior, the situatioyn is the foIIowingg. Both for
mine the corresponding spatial expression ferromagnets and for antiferromagnets there are two cou-
- lings to be determined at leading ord&randF for ferro-
(035 m(K)) = 2ok y\E =&k F2/X. (56 [r)nagnetsFl andF, for antiferromggnets.
At this stage of the effective analysis, we may look back to In relativistic theories, Lorentz symmetry imposes a uni-
the general expression@.2) for these matrix elements. versal laww?=c2k?, independent of the specific properties
Within the effective framework, the explicit structure of the of the system under consideration. In the nonrelativistic do-
two quantitiesci”(IZ) and Di’"(R) has now been determined. main, effective constants happen to show up in the leading
For ferromagnets, there exists only one polarization stat@rder dispersion relation: for ferromagnets we obtaired

|7(K))=|#", n=1. In particular, the coefficienC!(k) IVRZE(FZ{E)EZ, for antiferromagnets we got=u|k|
does not depend on momentum—E@g.3) then takes the =(F,/F;)|k|. So, on the one hand, the nonrelativistic situa-
quadratic form(5.4). tion is more complex: less information on the systems is

As far as the antiferromagnet is concerned, quite a differavailable via symmetry, such that a larger number of con-
ent low-energy description emerges, because, for this systants has to be fixed phenomenologically. On the other
tem, the spontaneous magnetization happens to vanish. Thand, those combinations of low-energy constants which
corresponding equation of motion is of second order both ihappen to appear in the dispersion law, are comparatively
space and in time, its relativistic structure determining theeasy to determine by experiment: the respective coefficients,
number of independent magnon states: the Fourier decompg-andv, may be obtained by scattering neutrons on a given
sition contains both positive and negative frequencies, suchagnetic crystal.
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As fqr as tht_a ferromagnet is _concerned, the spontaneous (W(R)|7T(IZ’))=(277)3&G(IZ— K, 7.1
magnetization is easily accessible as well—the two low-
energy couplingS and F, occurring in the leading order
effective LagrangiarC Zﬁ, are thus fixed. For the antiferro-
magnet, which does not develop such a vacuum expectation
value, the sitpgtion is more delicate. So far, we have merelys=<w(|23)w(lz4)ouq w(@w@)in)
been determining the ratio=F,/F;.

Here comes the appropriate place, where we may_pause:(zw)ﬁ{(ﬁ(ﬁl_ﬁs) 83(Ky—Kg) + 8%(ky—Ky) 53(kp—Kg)}
for a moment and deviate into the field of the strong inter-
action. The point is that a close resemblance between the +i(27)*8(w;+wy— wz— w,) 83(Ky+Ky—kz—k,)T.
leading order effective Lagrangian of an antiferromagnet and 72
the one describing QCD is observed. Since we know that the :
low-energy sector of the strong interaction is successfully i ) )
described within chiral perturbation theory, it might prove toAS far as the evaluation of th&matrix element is con-
be instructive to have a look at the specific way the low-cerned, we will lean on the canonical approach, since the
energy couplings are determined there. Maybe, reasoning i§@lculation is more readily done by means of field operators,
analogy, we will then be able to unravel the individual valuesather than by making use of the external field technique.
of F, andF,. Within the latter framework, where one uses the equation of

At leading order, the effective QCD Lagrangian for two Motion to evaluate appropriate four-point functions, the

massless flavoréup- and down-quark mass equal to 2ero analysis of ferromagnetic spin-wave scattering, although
involves a single coupling constaft, (see, e.g., Ref. 16 straightforward, turns out to be tedious. The point is that, due

to contributions proportional t63U? appearing in the effec-
L3P P=3F249,U 94U, (6.1)  tive Lagrangian, a second order iteration of the Landau-
whereas the effective Lagrangian of an antiferromagnet inl-' 'fSh'.tZ gquathn IS requwed—accordlngly, careful poqk—
volves two such guantities kgeplng is advised. Nonetheless, the final resu]t coincides
with the one to be obtained below: of course, it does not
AF_1p2 [ i_1p2 [ [ depend on the specific procedure used. Let us now briefl

Leit=2F1d0U 9V —2F3 U7, U .2 pr(?vide ourselveg with E[)he tools needed in the canonica>I/
As it is commonly done with the velocity of light in relativ- formalism—we start with the ferromagnet and construct the
istic theories, we may put the spin-wave velocity corresponding magnon field operators in the interaction pic-
=F,/F4toone. In this ‘A=v=1" system the two coupling ture.
constants coincide: F;=F,=F,. Also, the two The Lagrangian is split up into two parts,
Lagrangians above are then the same, except for the number
of fields U' and the actual values of the couplings and
Far - In this framework, where only one low-energy constant
F A €xists, neutron scattering experiments again, of course,
do not shed any light on its value—they merely fix the fun-Making use of the effective expression for ferromagnets
damental scale of the spin-wave velocityin the respective L& L5 (5.1), the charge densities are identified as
crystal, analogous to a determination of the velocity of light,
which is then put to one. o :

Now, in the standard model of elementary particle phys- (I)er=2U" (7.9

ics, F , is related to the electroweak interaction: the constant
shows up in the description of pion-decay processes and caecalling the transition matrix eleme(#.5) relating to it,
be determined by measuring the lifetime of charged pions—
F . is therefore referred to as pion decay constant. This neat
way of fixing F ., offered by nature, has to be regarded as a _ . 1 i
present from heaven, which, unfortunately, does not repeat (0133(x)| (k) =ea\Ze ™, Sazﬁ(lv_')'
itself in an analogous manner for the antiferromagnet. Later
on, in connection with spin-wave scattering, we will take up

the question of how to phenomenologically determifg ~ We finally arrive at the representation of the magnon field
anew. operatorsJ? in the interaction picture,

the S'matrix relating to it is given by

L=Ll¢_o+ I+ 0O(F2). (7.3

VIl. LOW-ENERGY THEOREM FOR FERROMAGNETS

3
_ o ik * o oy T aik
Let us now turn to our original intention, namely, to study V()= \/gf (Zw)g{saa(k)e it ezalk) e,

the low-energy behavior of spin-wave scattering within the (7.5
effective description. To begin with, consider an elastic scat-

tering process between two identical particles

. . . . [a(k),a(k’)]=(2m)%8%k—K"), |m(k))=a(k)'|0).
m(ky) +m(ky) — m(ks) +(Ky).

In a nonrelativistic normalization of the one-magnon states The magnon field operators to be used below, read
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> ok . . tations, violates Lorentz symmetry—a peculiarity, that can
u(x)= \/%f —sa(k)e*'kx, only occur if the ground state of the theory is Lorentz non-
(2m) invariant.
. Whereas the above expression only reflectsigwtropio
u(x)t= \EJ’ d°k a(K)yteikx (7.6 Swave part of the scattering cross section, Dyson worked
) (2m)3 ' ' out all terms to the order considered. In particular, the an-

isotropy of the lattice manifests itself in the scattering reac-
Note that, on the classical level, these operators corresponghn: for each one of the three types of cubic crystals, he gets,
to the following linear combinations of the components of;, aqdition to the tern(7.13, D-wave contributions. In the
the magnon field): u=U'+iU? andu*=U*—iU?, respec- framework of the effective expansion, these terms only show
tively. up at next-to-leading order. Even with these additional con-
Next, we determine those terms in the effective Lagrangiributions, the resulting scattering amplitude would not be
ian, which are relevant to the scattering process in questionthe whole story: since all these expressions are real, the scat-
Turning off the external fieldst'u(x) in the original expres- tering amplitude does not satisfy the requirements imposed
sion ceFﬁ (5.1) altogether, we find by unitarity. If we had included loop corrections to our tree
level calculation, imaginary contributions in the scattering
. _ ) amplitude would then have shown up.
Cgfflf:o=—38abUan— 3F29,U' 9, U', An analogous feature arises in quantum chromodynamics,
1+U where the next-to-leading order effective Lagrangian has
been worked out already some time &g@hile with the

€ab= ~®bar €127 1. (7.7) leading order effective QCD Lagrangian a concise rederiva-

Expanding the fieldJ3, tion_ of low-energy theorems concerning the .pions may be
achieved, the next-to-leading order Lagrangian as well as

Ud=(1-vaud)¥e=1-1yaya-..., (7.8 loop graphs, originating from the leading order contribution,

o . . . . permit to systematically correct these theorems. In particular,
the terms quartic ilJ#, which describe the spin-wave inter- imaginary terms resulting from loop graphs play a decisive

action, can be read off, role in the pion-pion scattering amplitude, which has been
_— b et 120t a oAb ) worked out to even higher ordet5As it is characteristic of
Lin=52e2pU%U°(UUS) — zF(U%9,U%)(U° g, U"). the effective Lagrangian method, new effective coupling

(7.9 constants appear, if one exteng®T to higher orders of
momentum. As far as QCD is concern&édwo such new
couplings show up in the next-to-leading order effective La-
grangian, which are left undetermined by chiral or Lorentz
/ji';t=ﬁiE(uTuTu'u—uuuTUT)—%Fzﬁr(uTu)ar(uTu). symmetry, and hgnce have to be fixeo! phenom_enologically.
(7.10 In fact, the analyss of pion-pion scattering experiments quds
to a determination of these fundamental constants of chiral
With the representatiof¥.6) of the field operators, the evalu- perturbation theory.
ation of theT-matrix element is readily done, resulting in Unfortunately, we are not in an equally satisfactory posi-
tion as far as magnetic systems are concerned: in order to
experimentally detect spin-wave interactions, scattering pro-
cesses are not the suitable tool—the corresponding cross sec-
(7.1  tion turns out to be very smalkee, e.g., Ref. 26As far as

_ . ) ) _1 know, no experiments making this quantity directly acces-
For the corresponding differential cross section, we obtainjnie have ever been performed. Having this experimental

Written in terms of the field operatotsandu’, the relevant
expression is given by

F " C N PR " 2y, -
T :<7T(k3)7T(k4)|£lnt|7T(kl)7T(k2)>:§klk2

(see Appendix B situation in mind, it would certainly not be a very clever idea
. to work out the effective Lagrangian of a ferromagnet to

di: 1 (Ky-Ky)2 (7.12 next-to-leading order, with the only intention to elaborate the

dQ gog2y2 ' analysis of spin-wave scattering further—an experimental

determination of these additional effective couplings, appear-

The evaluation of the total cross section is trivial, becauseng at higher orders of momentum, clearly cannot come from
the T-matrix element7.11), remarkably, does not depend on this sector. Rather, the access to some of these low-energy

any angles associated with the outgoing particles. For ferroconstants will be made available by another field: applica-
magnetic spin-wave scattering, the low-energy theorem fofions of the method to thermodynamic quantities, such as the

the total cross section thus amounts to variation of the magnetization with temperature, may be of

considerable help to carry through this program.

oF — (K, K)? (7.13 In any case, at Iea_ding order of the derivative expansion,

g 52 12/ - ' the effective Lagrangian method reproduces the low-energy

theorem found by Dyson. Once the machinery is developed,

This result is the same as the one Dyson derived in his mipredictions for quantities of physical interest are obtained in
croscopic theory of spin waves a long time dgclearly, a concise and straightforward manner. In particular, for the
the expression obtained, although invariant under space radetal cross section to exhibit the above Lorentz-noninvariant
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structure, it is essential that the effective Lagrangian of a TAF:<7TC(|23)7Td(|Z4)|LAF| ,ﬂa(El)ﬂ.b(Ez»
ferromagnet contains a contribution, proportional to the nt

spontaneous magnetization, which is not invariant under the 1 v? oo
symmetry groupG=0(3)—from a methodical point of —_— —2{5abb‘°d(|kl||k2| —Kq-Ky)
view, this is the main conclusion to be drawn from this sec- 2\ w1ww304 F3
tion. L. L
— 82°6"([Ky| [K3| — Ky -k3)
VIIl. LOW-ENERGY THEOREM — 5ad5bc(| |Z1| | |Z4| — |21. |Z4)}. (8.6)

FOR ANTIFERROMAGNETS .
As far as actual measurements of the corresponding scatter-

Turning now to an'tiferromagnetip spin-wave scattering,ing cross section are concerned, we are in an equally unsat-
we are faced with a minor complication arising from the factisfactory position as that of the ferromagnet before. This ex-
that there exist two independent polarization states. Accordserimental dead end is indeed highly unwelcome, since we
ingly, the interaction in question may generally be formu-have not yet been able to determine the individual values of

lated as the two low-energy constants; and F,, occurring in the
. . . . leading order effective Lagrangian of the antiferromagnet.
w3(ky) + 72(ky)— mo(kg) + mi(k,), a,...,d=1,2. From the dispersion law we merely know their ratio

Anal o th di h ing t =F,/F;. Note that the constari, shows up separately in
nalogous 1o the preceding paragraph, we areé going 10 US€g, ., ;5 (8.6). In principle then, a measurement of the corre-

nonrelativistic normalization of the one-magnon states sponding cross section would offer the possibility to fix this

YA 3cab 3/ O constant and hence allow us to extract the other cougling
(oK) 7°(k')) = (2m)6%°6%(k—K), ®.D  from experimental data.

and the evaluation of th&matrix element will be based on Turning now to the theoretical side, the literature on an-

the canonical approach. tiferromagnetic spin-wave scattering appears to be rather
So again, the Lagrangian is split up into two parts, scarce. Unlike for the ferromagnet, _Wh_ere, after Dysqn‘s
monumental work, a whole lot of publications on the subject
L=L]i_o+ fLJ]H+ O(f2). showed up(some of them trying to simplify his calculations

and rederive his results, see, e.g., Rel), ®ly a few refer-
With the effective expression for antiferromagnets> £4f  ences dealing with the analogous problem in antiferromag-

(5.3), the currents are identified as nets seem to be available. References 35-37 rely on a mi-
) A croscopic description of the antiferromagnet, while Ref. 38
(I)er= — Faeijca,U'UX. (8.2  approaches the subject on the basis of a phenomenological

theory. However, these authors rather direct their attention to

other aspects of the spin-wave interaction. Moreover, the pa-

; by b ik per of Brooks Harri&’ appears to be the only one which is in
(0[50 72(K)) =1 63K v F 2™ 20, agreement with the energy-momentum dependence of the

the magnon field operators, associated with the two polariza3c{tering amplitudes.6) obtained above. _

tion states. read From a methodical point of view, it is instructive to com-

' pare the result regarding antiferromagnetic spin-wave scat-

Considering the transition matrix elemgst8) relating to it,

v d3k tering with what is known about the analogous item in QCD:
U3(x)= _f T{af*l(|2)e—i'<><+ aa(E)TeikX}, pion-pion scattering. There, at leading order of the effective
Fal (27)3\20 expansion, theT-matrix element in question takes the

(8.3  Lorentz-invariant form¥ (see, e.g., Ref.)5

a?(k),aP(k") 1= (27)35%083%(k—k'), 1

[ ( ) ( ) ] ( 77) ( ) TQCD=F—2{5ab(50dS+ 5ac5bdt+ 5ad5bcu}' (87)
m2(K)) = £.,,a"(k)T|0). i

(k)= 2apa”(k)0) wheres,t,u denote the Mandelstam variables
In order to determine the relevant interaction terms in the

effective LagrangianC4f (5.3, we put the external fields s=(k;tkp)? t=(ki—ks)? u=(k;—ks)> (8.9

f.(x) to zero, The indicesa, . . . d in Eq.(8.7), labeling the three different
isospin states, are analogous to the ones needed to denote the
two independent polarization states of antiferromagnetic
magnons in Eq(8.6). Comparing these two amplitudes, we
see that the energy-momentum dependence is the same: the

AF_ 12/ a ay (b by_ 12/ a ay(1b b respective terms in Eq8.6) may be viewed as scalar prod-
Lin=2F1(U7 90U (U7 50U7) = 2F2(U%4,UH (U (9*’82__)-) ucts of momentum four vectors. As a matter of fact, the

' analogy between the two expressions is even more pro-

We then obtain the following low-energy theorem for the nounced. If, just for the moment, a relativistic normalization
T-matrix element describing antiferromagnetic spin-waveof the one-magnon states is used and the spin-wave velocity
scattering: visputto 1, “i=v=1"—F;=F,=F,r, then they for-

LEfli—0=3FF U aU' - 3F30,U' 9, U, (8.4

expand the variabl&)®, and extract the terms quartic W,
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mally coincide: apart from the number of independent Gold-work out the effect of an external magnetic field on the low-

stone states and the actual values of the consfantand  energy behavior of ferromagnets and antiferromagnets. On a

Far, the two formulas are identical. microscopic level, the interaction between a constant mag-
Clearly, this finding does not come about unexpectedlynetic field H and the spin degrees of freedom is taken into

The similarity between the effective Lagrangian of an anti-account through the Zeeman term. In the corresponding ex-
ferromagnet and the one of QCD is transferred to the scatension of the Heisenberg modfel

tering amplitudes: they exhibit analogous low-energy repre-
sentations. In fact, the above example may serve as a nice

illustration of a characteristic feature of the effective La- H:HO_M; Sh-H, 9.1
grangian technique—universality. Let us close this paragraph
with some remarks on the subject. the magnetic field is coupled to the vector of the total spin.

In the construction of the effective Lagrangian, the spe-WhereasH, is invariant under a simultaneous rotation of the
cific properties of the underlying theory do not matter: theyspin variables, the second term explicitly breaks the symme-
merely affect the numerical values of the coupling constantsry G=0(3). In the effective Lagrangian framework, the
appearing inC.+. The only relevant information is the struc- interaction with a magnetic field corresponds to the term

ture of the two groups3 and H, associated with the exact [q3xfi3°: the operator of the total spiB,,S, is to be iden-
symmetry of the underlying theory—the low-energy descrip-

tion turns out to be universal. Now, QCD with two massles:stified with [d®J°, while t_he magnetic ﬁeld'l’ playing the_

flavors displays an exact SU() SU(2), symmetry which role of a symmetry breglgng parameteri, is related to the time

is spontaneously broken to SU(2) these two groups are components of the auxiliary fielth=.H'. -

locally isomorphic toG=0(4) andH =0O(3), respectively. Independently of wheth.er the effective description refers_

Hence, the analogy to thEO(3)—O(2)} antiferromagnet, toa ferromagnet or an antiferromagnet, an gxternal magnetic

considered in this paper, is almost perfect: except for thdi€!d is taken into account through the quantitigéx). Apart

magnitude of the constan®,e andF ., the two effective from the |dent|f|c_at|onf{)=_,uH', nothing further has to be

Lagrangians also differ in the number of Goldstone particlesdone—the effective machinery developed earlier applies as it
Since ferromagnets and antiferromagnets' in our apstands. HOWeVer, in order to obtain the Change in the low-

proach, are undistinguishable from the point of view of con-energy structure induced by the magnetic field, the effective

tinuous symmetries, these two nonrelativistic systems shoul@Xpansion is to be performed around the nonzero, constant

actually provide us with a perfect illustration of the univer- value of uH' appearing in the underlying theory, i.e., in the

sality concept. It so happens, however, that, for the lattefXtended Heisenberg modél.1).

system, one of the |0W_energy constants, the Spontaneou§ As far as the ferromagnet is ConcernEd, the magnetic field

magnetization, turns out to ®era As a consequence, the H=(0,0H), H>0, couples to the order parameter: it enters

corresponding effective Lagrangians are apparently differenthe leading order effective Lagrangi#.1) through a term

although, in either case, their construction is based on thproportional to the spontaneous magnetization,

symmetry groupsG=0(3) andH=0(2) inherent in the

Heisenberg model. Note that, nonetheless, the concept of _ . £apdoUAUP . oo

universality applies—the specific properties of an antiferro-  Lef(H)=% —————+3uH'U'=3F?4,U' §,U".

magnet, however, manifest themselves in a rather drastic 1+U

way. ExpandingU®= (1—U2U? %2 in powers of the two compo-
This Striking difference in the structure of these two nentsua, a=1,2, the term in question gives rise to the fol-

Lagrangians on the effective level is quite remarkable, betowing contributions:

cause, in the underlying theory, the respective Hamiltonians

only differ in the sign of the exchange integhl A contra- SuHU'=3 uH(1-2udud-tuauaubub-. . .).

gredient behavior, now really illuminating the concept of 9.2

universality, concerns the antiferromagnet and the strong in- . . . . .

teraction: although the underlying theories, the Heisenbe?é_gge“g?a;fed equation of m_otpn shows that, n the pres-

external magnetic field, the dispersion law of

model and .QCD’ regpectlvely, are completely different, theTerromagnetic spin waves keeps its quadratic structure, the
corresponding effective Lagrangians are almost the same. corresponding coefficieng being unchanged. The energy of
the single spin-wave branch=U+iU?, is merely shifted

IX. EXTERNAL MAGNETIC FIELD by a constant amount, proportional to the symmetry breaking
) parameter
Up to now, the analysis of spontaneous symmetry break-
ing was related t@xactsymmetries: it was assumed that the 0= ylzz + uH. 9.3

underlying theory is invariant with respect to an internal
symmetry grougG. In what follows in the remaining part of Much like an approximate chiral symmetry provides the
this presentation, we will let aside this idealization and directpions with a mass, an approximate symmetry concerning in-
our attention toapproximatesymmetries. The low-energy ternal rotationsG=0(3), causes an energy gap in the spin-
phenomena considered so far will be studied in this extendedave spectrum of a ferromagné&tw=uH. Note that the
framework and their modification, imposed by explicit sym- spontaneous magnetization drops out in this expression: the
metry breaking, will be discusséfl. energy gap is determined by the measurexflicit symme-

As a first example of explicit symmetry breaking, let ustry breaking alone.
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Due to the term quartic in the magnon variables in EqQ. —aF, 3\ _/ g\ .+ AF| 4N (F
(9.2, the scattering amplitude of ferromagnetic spin waves THH) =" (k) 7" (ko) Lin| 7" (k)7 (k)

seems to experience a modification by the magnetic field as 1 02 o

well. However, the resulting extra term in tifematrix ele- =———— —{(01t w3)*—v2(ky +k3)?}.
ment is canceled by the contribution originating from the 4Jwwawzwg F

unperturbed Lagrangiaf7.10), evaluated with the dispersion 9.7)
relation(9.3—hence, to the order considered, the interaction

in question is not affected by a magnetic field. The magnetic field drops out in the su@y+ wz—it only

As far as the antiferromagnet is concerned, an externappears in the denominator of the scattering amplitude,
magnetic field does not manifest itself in an analogous manghich exhibits the dispersion relatidg.5).
ner in the low-energy expansion: terms involving the spon-
taneous magnetization do not occur in the effective Lagrang-
ian (5.3). Rather, the magnetic field appears in the time X. ANISOTROPY FIELD

component of the covariant derivative Of, While the preceding section was devoted to a single sym-

metry breaking parameter, an external magnetic field, we

would now like to discuss the question of explicit symmetry

breaking from a general point of view. In the case of an

approximate symmetry, the Lagrangian of the underlying
DoU'=doU" + & wHIUX. theory contains contributions, which explicitly break the in-

ternal symmetry associated with the gro@p
Concentrating on those contributions which involve the mag-
netic field, the expansion yields L=Ly+m,0“ (10.9

LA (H)=3F3DoUIDU - $F39,U1 g,U',

F2uH{— &,,00U3U°P+ : uHUAU?}. (9.4  Whereas the first term represents the invariant part, the op-
eratorsO¢ transform nontrivially under the symmetry group
The linearized equation of motion leads to the dispersiorf>- The constantsn,, for their part, play the role of symme-
relation try breaking parameters.
In this perspective, the interaction of an external magnetic
- field with the spin degrees of freedom represents a special
w-=vlk|=uH. (9.5  case: the operatoi®“ are to be identified with the charge
densities)?, and are thus related to the genera@rof the

In the presence dfl, the dispersion law of antiferromagnetic group G. Hence, in the effective description, the symmetry
spin waves keeps its linear structure—as for a ferromagnedireaking parametens), of the underlying theory are to be
before, it is merely shifted by a constant amount, proporiaken into account through the time components of the ex-
tional to the symmetry breaking field. Note that the two in-ternal field fy(x)—in connection with explicit symmetry
dependent spin-wave branchas=U'+iU? and u*=U? breaking, these auxiliary fields, as we have seen before, ac-
—iU?, respectively, are affected in distinct ways: the mag-quire physical significance.
netic field lifts their degeneracy by splitting them up sym- If the operatorD“ are not related to the generators of the
metrically. Remarkably, the magnetic field does not give risggroup G, then the effective Lagrangian has to be enlarged,
to a “mass term:” in the case of a relativistic dispersion including additional contributions which take into account
relation, as we see it here with the antiferromagnet, such the approximate character of the spontaneously broken sym-
term would show up under a square root metry. It is convenient to extend the effective machinery
accordingly, treating the corresponding symmetry breaking
_ \/ﬁ parameteran, also as external fieldm,(x) on the same
w= oK+ v Mgg. 96 footing as the vector fieldﬁ'ﬂ(x) associated with the currents

and charge densities. The generating functional then contains

Finally, let us consider the effect of an external magnetictWO argumentsT'=T'{f,m}. Correlation functions of the
field on antiferromagnetic spin-wave scattering. Remarkablynove| operator©® may, be obtained the same way as those

the expan.siom9.4) doe§ not contain any terms quartic in the involving the currents and charge densities. The only modi-
magnon f|e_lds. Now, in order to evalua_te thematrix ele- fication brought about by the fields,(x) is that the low-
ment referring to the unperturbed effective Lagrandizub) energy expansion of the functioria{f,m} now amounts to a

i e deprsn roton 5 we e o hse e S0 S ' iparon 1 powes B e o

: i ) o
|7) (/7)) cortespons to the spin-wave branarUt -~ (BrR a O8 BEC R 0 S8 TR O e
+iU2 (u*=U=iU?), which experiences a positifeega- AN P '

- a prototype of this more general way of symmetry breaking,
tive) shift by H. The calculation shows that the respectiveWe mention the quark mass teEqu of the QCD Lagrang-
T-matri>§ el_ements do not receive additional terms from thelan: if the quark masses, playing the role of symmetry break-
magnetic field. R . ing parameters, are taken at their physical, nonzero values,

Take, for example, the reactionm™(ky)+ 7 (kz)  chiral symmetry is explicitly broken. An application in con-
— o (Kg)+ 7 (ky), which yields nection with nonrelativistic systems will be given below.
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From a methodical point of view, the following observa- tive Lagrangian of the ferromagnet considered in this paper:
tion related to order parameters is of interest. Concerning thim the case of identical spins at each lattice site, we have
nature of these quantities, nonrelativistic kinematics, as w& ,=0. However, for antiferromagnets, it is the staggered
have seen, is less restrictive: in the case of a Lorentzmagnetization which is nonzero. Much like the auxiliary
noninvariant ground state, the time components of conservefield f;(x) acquires physical significance through a magnetic

currents may develop such nonzero vacuum expectation Vaffeld ﬁ the quantityh! in Eq. (10.3 is related to a so-called

ues. Now, this type of order paramet@d|J’|0) already . e . .
shows up in the effective theory, if the underlying theory is%r:'es’rztéggzsﬁiﬁgs'el%:Qgriri?;nmggEzt'g:gs,:ﬁ;n’r;gecrhe §;(I?rt1e
symmetrie—the ferromagnet represents such a system, wherg ; . ption y . _
o : . ... ISotropic Heisenberg Hamiltonian. One of these is magnetic
the spontaneous magnetization embodies this possibility:

g . nisotropy, which either originates from dipole-dipole-
Similarly, the vacuum expectation values of the more genera . )
o . Interactions between the spins or may be caused by the cou-
operatorsO“, which are not related to the generators of the

; .lpling of the electron orbits to the crystal fiftlin order to
group G, also represent order parameters, which, for thei ; . : ; .
take these interactions into account on a microscopic level,

part, may occur both in Lorentz-invariant theories and in the introd he artifi f frect isot field

nonrelativistic domain. However, this type of order param-en? may mtro. uce t e_arl 'Ce_ 0 a_m eniective anlsg ropy e

eter only shows up in the effective theory, if the symmetry of'a into the microscopic Hamiltonian. For the antiferromag-

the underlying theory iapproximate—on the effective level, N€t, which is then referred to as uniaxial, one obtases,

the quantities0]O®|0) then appear in association with the €-9- Refs. 26,43

fields m,(x). As an illustration, referring to the relativistic L

domain, we quote QCD, where the quark condensate HAF=—3> S-S~ (§a+ Sﬁb)H

(0|qq|0) represents the order parameter in question. Like- - Naflp

wise, the staggered magnetizatidg of an antiferromagnet

may serve as an example of an order parameter relevant to _,U«E (Sﬁa— ﬁb)hA- (10.4

condensed matter physics, which belongs to this more gen- Mafl

eral class. In this model, which represents a special case of the Hamil-
In what follows, we are going to consider a further exten-tonian(10.2), the antiferromagnet is considered as composed

sion of the Heisenberg model of two sublatticesa andb, wherea andb spins are of equal

magnitude. The arrangement is such that all nearest neigh-

bors of ana spin areb spins and vice versa. In an idealized

picture of the ground state,spins point up ant spins point

down. Note that, unlike for the external magnetic field be-

which illustrates the concept of explicit symmetry breakingfore, we are now dealing with a hypothetical field, which

exposed above. The two field$ andh are assumed to be changes its direction over atomic distandes:points along
weak, such that the respective interaction terms involving theénhe positive third axis a4 sites, but along the negative third
spin degrees of freedom, may be considered as a perturbatiexis atb sites.

of the isotropic Heisenberg Hamiltonidt,. In the Zeeman As far as ferromagnets are concerned, magnetic anisotro-
term, the sum over the spin operators is associated with theies manifest themselves in a different manner in the micro-

spontaneous magnetizatiorfoc<0|2n§n|0>, while the scopic description: againL they may be taken into account
vacuum expectation value of the second sum is related to th@arough an effective fieldd,, which locally points in the
staggered magnetizatitiEM(O|En(— 1)"§|0). same direction as every single spin vector; but here, they all

The field in Eq. (10.2 corresponds to those symmetry point 9a|ong one and the same direction. Accordingly, this
breaking parametens,, which are not associated with the field Ha, which is also referred to as anisotropy fi¢kee,

generators of the group. Since the quantityi, much like a  ©9- Refs. 43-46 enters the microscopic Hamiltonian
magnetic field, transforms with the vector representation ofhrough the term- u>,S,-H,, i.e., it couples to the vector

G=0(3), thecorresponding additional contribution in the of the total spin, much like a magnetic fietti Therefore, on
leading order effective Lagrangian exhibits the same structhe effective level, it is also to be incorporated into the quan-
ture as the effective representation of the Zeeman (08, jties f1(x), fi(x)< uH'y , such that the qualitative effects of

R - an external magnetic and an anisotropy field, respectively,
Leg(h)=Zguh'U'. (10.3  are the same.

The staggered magnetizatidn enters the leading order La- For the antlferrorna_gne} on the other hand, _anlsotropy
grangian in the form of a new coupling constant, whosefield hy and magnetic fieldd are not to be treated in analo-
value has yet to be determined. gous ways, since the quantity, does not couple to the vec-
As we have seen earlier, a term proportional to the spontor of the total spin. It is instructive to discuss this novel
taneous magnetization does not appear in the effective Lanteraction in our effective framework and confront the re-
grangian of the antiferromagnet. For ferromagnets, howevesulting modification of our previous findings with what is
the contribution(9.2) is essential: it describes the modifica- known in condensed matter physics.
tion of the low-energy structure imposed by a magnetic field. Let us first examine the spin-wave dispersion relation.
On the other hand, the terd0.3, which is proportional to  According to the preceding section, a magnetic field lifts the
the staggered magnetization, does not show up in the effeclegeneracy of the two polarization states observed in an an-

H=Ho= 2 én-ﬁ—@ (-1)"S,-h,  (10.2
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tiferromagnet, but does not provide the magnons with deading order effective Lagrangian of an antiferromagnet
“mass’—an anisotropy fie|d‘_])A, however’ does the JOb In Closely resembles the one describing QCD Now, if the ef-

the corresponding effective expansion fective framework is extended to approximate symmetries,
o including an anisotropy field and quark masses, respectively,
SouhpU'=3 uha(1—3UBUR— FUBURUPUP—. . ), then the corresponding analogy in the low-energy structure

(10.5 of the two theories is maintained.

the term quadratic in the magnon variables leads to the rela-
tivistic scenario referred to in E9.6): in the presence of an Xl. SYMMETRY BREAKING PARAMETERS

anisotropy fieldna=(0,0h,), as well as of an external mag-  We have to recall that the entire analysis in the last two
netic ﬁe|d,H:(0,0,H), the dispersion law of antiferromag- sections, concerning approximate symmetries, relies on an

netic spin waves takes the fotf essential assumption: the respective contributions, which ex-
plicitly break the symmetry of the underlying theory, are to
w.= \/v2|22+25MhA/|:§4_r’uH_ (10.p  be regarded agerturbations—the analysis in terms of effec-
] ) ] tive fields is useful only, if the corresponding symmetry
Accordingly, the following relation holds: breaking parameters are sufficiently small. Let us now focus

2 on this important requirement and discuss the various sym-
Fl(sz ce)’=2sha, (10.9 metry breaking parameters encountered so far from this point
showing that the square of the “magnon mass” is propor-of view. We start with the anisotropy field.

tional to the product of order parametEr and symmetry Assuming that this field is weak, the predictions of the
breaking parametgrh, . This formula may be viewed as the effective Lagrangian method, given in the previous section,
antiferromagnetic analog of the well-known Gell-Mann— can be trusted. For ferromagnets, as we have seen, magnetic
Oakes—Renner relation encountered in QD, anisotropies may be taken into account through an effective

o — field ﬁA: the dispersion law experiences an overall sliift
FZMZ=(0luu|0)[(m,+my). (10.8  earin the perturbation

The two equations are indeed in one-to-one correspondence: e
the square of the pion mass is determined by the product of =7k + pHa. 113

the order parameter, the quark condeng@fau|0), withthe  For antiferromagnets, the perturbation shows up under a

symmetry breaking parameter, the sum of the quark massesgjuare roofthe corresponding coefficient being proportional

m,+my. While the first factor is a measure spontaneous to the staggered magnetization

symmetry breaking, the second one is a measumxplficit

symmetry breaking. w=\o2k2+ S ouha/F2, (11.2
Finally, let us consider how the scattering amplitude of . .

antiferromagnetic spin waves is affected by the anisotropylence, if the anisotropy fieldd , andh,, respectively, are

field. From the expansiofi10.5, we derive the following of the same order of magnitude and weak, the dispersion

low-energy theorem: relation of antiferromagnetic spin waves exhibits a larger en-
ergy gap.
AR v? Indeed, this striking difference concerning the signifi-
T (ha)= 4\/:5 cance of anisotropy effects in ferromagnets and antiferro-
1020304 T2 magnets is well known in condensed matter physics. In fer-

in antiferromagnets they are much more pronounced: as a
microscopic analysis, relying on some rough approxima-
tions, indicategsee, e.g., Ref. 49the spin-wave spectrum

2 o romagnets, these interactions only play a minor role, whereas
X §ab60d _2(1)1(,02_2k1'k2+25/.bhA/F§

v

+ 5a05bd( 2K, - |23_ %w1w3+EsMhA/F§) of an antiferromagnet exhibits a characteristic energy gap,
Aw=pu\Vha(2hythy, k—0,H—0. (113
L. 2
+ 6"“’5“( 2Kk, - k4——2w1w4+25,uhA/F§) ] hy is the so-called Weiss field, which turns out to be very
v large compared to the anisotropy fielgy/hy~10°, such

(10.9 that the second term can be neglected. Accordingly, the
. ) ) ) above combination of anisotropy field and Weiss field, which
where » represents the modified dispersion relatien  goes not show up in the analysis of ferromagnets, may lead
= \v?Kk?+3uha/F2. Again, the formula(10.9 has its to a substantial energy gap in the spin-wave spectrum of an
counterpart in QCD, if the pion-pion scattering amplitude isantiferromagnet.
evaluated around nonzero quark mass. In particular, the formula for the energy gdpl.3 is

In summary, the anisotropy field, is on the same foot- consistent with the dispersion lavl1.2: the contribution
ing as the quark masses—both quantities belong to thoggvolving the Weiss fielchy, corresponds to the term involv-
symmetry breaking parametars, , which are not related to ing the staggered magnetizatiorr—one identifies
the generators of the symmetry groBpAs we have pointed hw<S¢/2uFZ. The other term appearing under the square
out in the analysis of symmetric underlying theories, theroot in Eq.(11.3), ,uzhf\, is not reproduced by the effective
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theory: in our counting scheme, this expression correspondsty, different low-energy constants will show up. Their val-
to a contribution of subleading order. Generally, our book-ues may be unraveled by fitting the calculated curves to ex-
keeping is based on a systematic counting of powers of mgperimental data, which, furthermore, are already available in
mentum, such that the respective terms of a given order neegpndensed matter physics. In particular, at higher orders of
not be correlated one-to-one with those obtained from a mithe low-energy expansion, where the number of effective
croscopic investigation of condensed matter. coupling constants turns out to be large, this procedure may
In the case of very strong anisotropy effects, antiferro-2€ of considerable help.
magnetic spin waves no longer follow the dispersion relation

(11.2; rather, they obey a quadratic 1w = a+,8|22—the XIl. SUMMARY AND OUTLOOK
effective description no longer applies. Chiral perturbation
theory, which is based on the assumption that the energy The present work deals with the low-energy analysis of
gap, associated with the Goldstone bosons, is small, nowonrelativistic systems which exhibit collective magnetic be-
breaks down_ The fact that the eﬁ’ective machinery on|yhaVi0r. The Corresponding eXCitationS near the ground State,
makes sense if the anisotropy field is weak, thus restricts th€ spin waves or magnons, are regarded as Goldstone
range of application of the method. However, as far as conPosons, resulting from a spontaneously broken internal sym-
densed matter systems are concerned, one has the freedon8try O(3)—0O(2). Their properties may be analyzed in the
choose appropriate objects of investigation—one may easilffamework of the effective Lagrangian method, which tack-
find another antiferromagnetic body, displaying a weaker anles the phenomenon of spontaneous symmetry breaking from
isotropy field, and hence a smaller energy gap, such that th@ unified point of view. The method exploits the symmetry
effective method now perfectly applies. properties of the underlying theory and formulates the dy-
Note the difference with the description of the strong in-namics in terms of Goldstone fields.
teraction: QCD is a universal theory—the symmetry break- At large wavelengths, the microscopic structure of con-
ing parameters, the quark masses, are fixed once and for &¢nsed matter systems does not play a significant role: in the
at their physical values. Up and down quarks are light, sucl§orresponding leading order effective Lagrangians, the spe-
that these quantities can be treated as perturbations. Nekific properties of the system only manifest themselves in the
comes the strange quark, whose mass is considerably largélumerical values of a few low-energy couplings. Rather, our
but nonetheless can be regarded as a perturbation, as weaftention is devoted to the consequences of spontaneous
The mass of the charmed quark, on the other hand, is mucfymmetry breaking—it is the hidden symmetry which mani-
too large so as to be treated in an analogous manner. TH@sts itself at small momenta, dictating the explicit appear-
three lightest quarks, however, may be viewed as perturb&@nce of the respective low-energy phenomenon.
tions of the symmetric Lagrangian of massless QCD, If the ground state of the system fails to be Lorentz in-
which is invariant under chiral transformationss  Variant, charge densities may pick up nonzero vacuum ex-
=SU(3)xXSU(3), . pectation values. In the case of a ferromagnet, the spontane-
This so-called chiral limitm,,my,ms—0 represents a ©OUS ma_gnetization embodies '_[his possibilifty, givin_g ri;e to a
purely theoretical abstraction—chiral symmeisyexplicitly ~ topological term in the effective Lagrangian, which is not
broken in nature. Likewise, a zero anisotropy field in an aninvariant under the internal symmetry(%. Ferromagnetic
tiferromagnet is to be regarded as an idealized situation, todha@gnons are nonrelativistic particles, which possess only
As far as the third symmetry breaking parameter of interestone polarization state and obey a quadratic dispersion rela-
the external magnetic field, is concerned, the situation is diffion. The low-energy theorem concerning spin-wave scatter-
ferent, because this quantity representesernalfield. Ina  ing indeed displays a structure, which would not be permit-
laboratory we can organize a world of our own, for we haveted in the reIatI|V|st|c domain: the corresponding expres_sions
the possibility to tune the strength 6 In particular, the for the scattering amplitude and total cross section violate

situation which is analogous to the fictitious chiral limit or a Lorentz symmetry. The results obtained are in agreement

zero anisotropy field, can easily be realized: simply switchW'th Dyson’s pioneering microscopic analysis of a cubic fer-

e : romagnet within the Heisenberg model.
off the magnetic field. Then, at zero f!e!d strength, the The antiferromagnet, on the other hand, does not exhibit
ground state of a ferromagnet exhibits spontaneou

magnetization—much like an antiferromagnet displays gpontan_eous magngtization, sugh that a topological term is
o o %bsent in the effective Lagrangian. In contrast to the low-
nonzero staggered magnetization in the lirhi{—0, or  energy excitations in a ferromagnet, antiferromagnetic mag-
mas_sless QCD exhlblts_a nonzero quafk conde_nsate. nons are relativistic particles, which follow a linear disper-
Since the magnetic field can be varied continuously, th&jon jaw and possess two polarization states. Much like in
effective calculation is under control: as long as the fielde relativistic domain, the effective Lagrangian is invariant
strength H| is kept weak, the effective Lagrangian method iswith respect to the hidden symmetry(3), moreover, the
an efficient tool to investigate the low-energy behavior ofexplicit expression for an antiferromagnet closely resembles
magnetic systems. Moreover, the fact that the magnetic fielthe one referring to massless quantum chromodynamics
can be tuned, is a major advantage over QCD, where th€QCD). The T-matrix element, describing antiferromagnetic
quark masses are fixed: it provides us with a new way tspin-wave scattering, unlike for the ferromagnet before, turns
accurately determine some of the low-energy constants of theut to be Lorentz-invariant—its structure is analogous to that
effective theory. Consider, for example, the magnetization obf the leading order pion-pion scattering amplitude in QCD,
a ferromagnet and its variation with respect to temperaturelemonstrating the universal feature of the effective Lagrang-
and magnetic field. In the effective expansion of this quanian technique.
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nigue. Unlike for the strong interaction, scattering processes
in magnetic systems, unfortunately, are not the suitable tool APPENDIX A: SPIN WAVES
':jo experinﬁntaltljy detect interactions among the Goldstone AS COLLECTIVE EXCITATIONS
egrees of freedom. . . . . .

The present work includes approximate symmetries and In this appendix, we develop a semiclassical picture of
discusses the modification of the low-energy structure imSPin waves, which regards these low-energy excitations as
posed by explicit symmetry breaking. Two different pertur-Some Kind _ of distortion of the —microscopic spin
bations of the isotropic Heisenberg model are considered: S{ructure.” Afterwards, we try to illuminate Gold-

constant external magnetic and a constant anisotropy fiel _tone'ts theortemtl?hthe .present .context. Ast ‘? first fsttr?p, we
The former quantity represents a rather special case, sin Ve 1o construct the microscopic representation ot the one-

. . . magnon states.
this symmetry breaking parameter is coupled to the genera- . L. .
Y y gp P 9 Instead of the spin operato8;, introduced in Sec. Il, we

tors of the group @)—in the effective Lagrangian of a fer- o A ]
romagnet the magnetic field is associated with the spontanée—lke the following linear combinations thereof:

ous ma}gnetization, while, for the antiferrqmggnet, it appears St= Sﬁ+ iSﬁ, S = Sﬁ— iSﬁ (A1)
in the time component of a covariant derivative. The anisot-

ropy field, on the other hand, which plays a significant role inand perform a discrete Fourier transformation
connection with the antiferromagnet, belongs to the more

general class of symmetry breaking parameters which are not S*(K)=> exp(ikr)S; . (A2)
coupled to the generators of the hidden symmetry. It leads to n

an additional term in the effective Lagrangian, which is pro-
portional to the staggered magnetization.

The dispersion relations regarding spin waves in the Presy,
ence of an external magnetic and an anisotropy field, respegs
tively, are in agreement with the findings of condensed mat- S . . S
ter physics. Due to a magnetic field, ferromagnetic magnongp?ratorsf(k) yields |(1erlt|cally zero,S*(k)|0)=0. The
experience an overall shift, while the degeneracy of the twePin-lowering operato§™ (k), however, leads to an eigen-
polarization states of antiferromagnetic magnons is liftedState of the Heisenberg Hamiltonian
The anisotropy field provides antiferromagnetic magnons 1
with a “mass,” leading to a formula analogous to the Gell- >\ — SI0\ _
Mann—Oakes—Renner relation in QCD. k)= \/ms ()10}, (Klky=1. (A3)

Remarkably, to the order considered, the scattering pro-
cess concerning ferromagnetic spin waves is not affected b$ is the spin quantum number aitidenotes the total num-

a magnetic field. Also, th@-matrix element, describing the Der of lattice sites. Consider now the expectation value of the
analogous interaction in an antiferromagnet, does not receiv@cal operatorS; in this one-magnon statésee, e.g., Ref.
additional terms from the magnetic field. On the other hand42):

the anisotropy field modifies the low-energy theorem con- ..

cerning antiferromagnetic spin-wave scattering, leading to an (k|S¥k)y=S—1N. (Ad)
additional contribution in th&-matrix element, which is on

the same footing as the quark mass term in the pion-pior;rh.iS is quite a remarkable _fi_nding_, 5‘”99 the right hand side
scattering amplitude. is |ndepend€nt of the spe.C|f.|c lattice srtea; well gs of the
The present work demonstrates that the leading order efvave vectork. A spin deviation of one unit, relative to the
fective Lagrangians permit a concise and straightforwardiround state, is thus uniformly distributed over the whole
analysis of the low-energy properties of ferromagnets and@ttice—per sitan, the spin deviation from the totally ordered
antiferromagnets, above all in connection with spin-waveState equals N. In this picture, a spin wave corresponds to
scattering processes. The effective machinery may now b&ome sort of collective ex0|tatLon moving through the lattice,
transferred to more complicated applications, such as the ircharacterized by a wave vector Since the total spin devia-
vestigation of thermodynamic quantities. Indeed, the low-4ion amounts to one unit, these quasiparticles are bosons—so
temperature expansion for the partition function of an antifar so good.
ferromagnet has been calculated to three |68pshile the In accordance with the semiclassical vector model, each
results concerning the temperature dependence of the spolecalized spin which takes part in such a collective mode
taneous magnetization of a ferromagnet will be presented iprecesses around the third axis. The corresponding opening
a forthcoming papett angle is such that the projection of a particular spin vector on

| would like to thank H. Leutwyler for his patient assis-

Note that the operatOISi(IZ) refer to the reciprocal lattice.
Next, we apply these operators to the ground state of a
romagnet. Since, in our convention, all of the spins point
the direction of the positive third axis, the spin-raising
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the third axis is given bys— 1/N. Moreover, there is a con- of the order parameter tends to infinity. Since the summation
stant phase difference between any two adjacent spins of the the Heisenberg exchange Hamiltonian merely extends
collective mode, depending on the magnitude of the wavever nearest neighbors, by definition, no long-range forces
vectork—in particular, at large wavelengthk| —0, all the ~ are present in this model. Therefore, Goldstone excitations

spins precess in phase. do occur.

Now, in order to get an intuitive understanding of Gold-
stone’s theorem in the present context, let us briefly discuss a APPENDIX B: SCATTERING AMPLITUDE
simple model of a ferromagnet.Consider a linear chain of AND CROSS SECTION

N spin4 vectors, bent around into a ring, such that the first
and the N+ 1)th spin are identical. Suppose that there is a
interaction between adjacent spins, tending to align the
parallel. The ground state, in which all the spins point in th
same direction, is degenerate. From the manifold of these

As is well known from relativistic quantum mechanics,
;}]he cross section referring to elastic two-particle scattering is
egiven by

R|2
N+1 lowest lying states let us choose, for definiteness, the g, - T |2 . 2(277)454(k1+ ky—Ka—Ky)
one with maximal spin projectiohl/2 on thez axis. Next, 4\/(k1-k2) —mim5;
construct a one-magnon stdte,
d3kg d3k, B1)
1 . 2 3 3 !
L (2m)°2w; (2m)204
N n with
In)=2(onx—i0onmy)[0), (A5)  5%(Ky+kyo—kg— k)
where the quantitiesr, represent Pauli matrices. Now, for I
k=0, the one-magnon staf&) is energetically degenerate =801+ wy— 03— wg) (K + Ky —k3—ky). (B2

with |0)—these two states differ, however, with respect to
the projection of their total spin on the third axis: ftk

=0), one obtainsN/2—1. In particular, this state may be
regarded as another of the possible ground states, who

“spontaneous magnetization” points in a direction different - \/kk—z—z_z - - B3
from the third axis or, equivalently, with a different value of w109|v]= V(K1 ko) =mim;,  [v[=[v1—vo|. (BY)

the third component of the spin vector along the same direcproceeding this way, we do not specialize to the dispersion
tion. These two configurations are thus related by a symmegw of massive relativistic particles. Note that a relativistic

try transformation: with a suitable rotation, the ground statengrmalization of the one-particle states has been used,
|0) may be transformed inttk= 0).

For collinear collisions, the Lorentz-invariant square root
may be expressed by the relative velodity of the ingoing

Qgrticle§7'58

Reasoning by analogy, we may transfer these statements o &3k . .
to a three-dimensional ferromagnet. In particular, such a ro- (k|k’)=(2w)32wé‘3(k—k’)@f —3|k)(k|.
tation of the system as a whole would not require any en- (2m)°2w
ergy: since the spin structure of the ground state is not dis- (B4)

torted while rotating the rigid spin lattice, there are no|jkewise, in Born approximation, the quanti®y,
restoring forces. As a consequence, there exists at least one

form of elementary excitation, the one corresponding to TR=(K3K4| Ling k1K), (B5)
=0, which gives a rotation of the entire system in spin, . L s .
space, and which must have zero frequency0 % These is theT-matrix element, evaluated in this specific normaliza-
“( IZ=0,w=O) excitations” above the ground state, how-
ever, are just other ground states and the real question rathgr
is, whether there is some sort of excitation with no energy,;

gap in thelimit k—0.2% Under one additional condition, the

Since our analysis of ferromagnets and antiferromagnets
based on a nonrelativistic normalization of the one-particle
ates

absence of long-range forces, there will indeed exist a whole o . Bk .
branch in the spectrum of elementary excitations, whose fre- (klk’>=(27-r)353(k—k’)4:>f 3|k)<k|, (B6)
guency continuously tends to zer@—0, in the limit (2m)

k—0—here we recognize the nonrelativistic version ofthe expressioriB1l) has to be modified accordingly: instead

Goldstone’s theorem. of normalizing to 2v particles in a given volum¥, we shall
Imagine an external field, causing a slight distortion of thenormalize to one particle per volumé Hence, the formula

ordered spin structure, such that the direction of the magneer the scattering cross section now reads

tization slowly varies in space, periodically over some char-

acteristic length\. If the external field is switched off, the | TNR|2 . dk; d3k,

system begins to oscillate with some characteristic frequency do=——=—(2m)*8*(ky+kp—ks—ks)——— 3"

or frequencies. Goldstone’s theorem then deals with the o] (2m)* (27) B7

guestion whether or not such collective modes have an en- (B7)

ergy gap as the characteristic length in the original distortiofThe quantityT\R then represents tHE-matrix element
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TNR= (IZ3I24| Lind |21|22>NR' (BY) represent total gnd_ relati\_/e momentum, respectively. In the
case of quadratic kinematics, conservation of energy and mo-
where the one-particle states as well as the field operatorgyentum leads t¢q|=|q’|. The scattering anglé is chosen
appearing in the interaction Lagrangian, are normalized non;_ 4, angle between the directiongsfrelative to that ofj.

rel'wwstmally. . derive th lici ion for th In these coordinates, the evaluation of the phase space inte-
e are now going to derive the explicit expression for t €gral is readily done, resulting in

differential cross section, assuming that the interacting par-
ticles obey a quadratic dispersion relatior- ylZz. In con- L 3, 43 i -

nection with condensed matter, it is appropriate to consider 8'(ky+ko—ks—ky)dkad k4—>87|q|dQ.

the specific frame of reference, which is given by the solid (B11)
body at rest. Accordingly, the initial particle configuration is With the relative velocity of the ingoing particles
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