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Konstantin A. Shakhnovi¢hand Paul M. Goldbalt
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, lllinois 61801-3080
(Received 19 January 1999

Under sufficient permanent random covalent bonding, a fluid of atoms or small molecules is transformed
into an amorphous solid network. Being amorphous, local structural properties in such networks vary across
the sample. A natural order parameter, resulting from a statistical-mechanical approach, captures information
concerning this heterogeneity via a certain joint probability distribution. This joint probability distribution
describes the variations in the positional and orientational localization of the particles, reflecting the random
environments experienced by them, as well as further information characterizing the thermal motion of par-
ticles. A complete solution, valid in the vicinity of the amorphous solidification transition, is constructed
essentially analytically for the amorphous solid order parameter, in the context of the random network model
and approach introduced by Goldbart and Zippe|Esrophys. Lett27, 599(1994]. Knowledge of this order
parameter allows us to draw certain conclusions about the stucture and heterogeneity of randomly covalently
bonded atomic or molecular network solids in the vicinity of the amorphous solidification transitienalia,
the positional aspects of particle localization are established to have precisely the structure obtained previously
in the context of vulcanized media, and results are found for the analog of the spin glass order parameter
describing the orientational freezing of the bonds between part{@€4.63-182@09)12229-X]

I. INTRODUCTION AND OVERVIEW be accounting for the bond geometry associated with the

so-called bridging oxygen atoms between the silicon atoms.

The purpose of this paper is to address the statisticdn the model, both types of Si orbitals, those connected to

structure of the amorphous solid state via a simple model dfiydroxyl groups and those connected to bridging oxygen at-
a three-dimensional vitreous medium consisting of co-0ms, will simply be referred to as “orbitals.” A second ex-

valently bonded atoms (or low-molecular-weight ample of the type of media we have in mind is provided by
molecules.! We shall do so essentially analytically by mak- amorphous silicon networksgspecially those in which hy-

ing use of techniques drawn from the field of the statistica/drogen passivates bonds unconnected to other silicon atoms.

mechanics of systems having quenched randontnate The structural characterization of the vitreous state that
model of vitreous media on which we shall focus is thatVe shall construct will be statistical in nature, reflecting the

introduced by Goldbart and Zippelidsyhich takes as ingre- intrinsic heterogeneity of the environments that the constitu-
dients a thermodynamically large number of particles be-

ent particles in vitreous media inhabit. It will take the form
tween which some larae number of permanent random cov of ajoint probability distributioncharacterizing the fraction
) 9 P &t particles that are localized in the vitreous state, and will
lent bonds are introduced. The quenched randomness

; . ! L . ) fescribe the spatial extent of the thermal fluctuations in their
encoded in the information describing which pairs of par-

. _ o positions, the degree and character of the thermal fluctua-
ticles are covalently bonded; the remainit@nnealeti de-  iong in the orientations of the orbitals that are capable of

grees of freedom correspond to the unconstrained positiong,ticipating in covalent bonds, and the strength and nature
of the particles and the orientations of the orbitals. Thispf the correlations between the thermal fluctuations in the
model exhibits a continuous equilibrium phase transitionparticle positions and the orbital orientations. Moreover,
from the liquid state to the amorphous solid state when thgather than dealing with media having a specific architecture
density of introduced bonds exceeds a certain critical valugi.e., a specific realization of introduced bohdsve shall
It is on the structure and heterogeneity of this state that weonsider an ensemble of architectures, all characterized by a
hope to shed some light. common parameter governing the probability that a perma-
As an example of the type of medium we have in mind,nent chemical bond was formed between any pair of nearby
consider networks formed by the polycondensation oforbitals.
Si(OH), molecules, during which §O is eliminated be- A statistical description of an amorphous solid state has
tween pairs of hydroxy(OH) groups on certain randomly previously been developed and explored in the context of
selected pairs of Si(OH)molecules so as to form Si-O-Si vulcanized(i.e., randomly permanently crosslinkeghacro-
bonds. The amorphous solidification of such media has beemolecular media®>® This description, which addresses the
studied in many experiments; we cite as an example those dafistribution of spatial extents of thermal position fluctuations
Gauthier-Manuekt al* As it is our intention to develop a (i.e., localization lengthshas been confirmed by computer
rather general model of random networks, and to focus osimulations’ and rather general, model-nonspecific argu-
universal properties, it is not necessary for us to incorporatenents in favor of the broad applicability of the description
the specific details of the medium. For example, we shall nohave also been presenteor any particular version of ran-
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dom media(e.g., the macromolecular media of Refs. 5,6 orvicinity of random preferred spatial positions, about which
the vitreous media considered in the present papenat their positions will undergo thermal fluctuations extending
determines the specific content of the statistical descriptionly over a limited spatial regimg@vhich will vary randomly
of the amorphous solid state is the form of the random conin magnitude from particle to particle, reflecting the random
straints that the permanent covalent bonding imposes, aratchitecture of the netwoykand these particles will confer a
the resultant form taken by the amorphous solid order paranrigidity on the entire system, so that the equilibrium state of
eter. In the present context of vitreous media, the constraintshe system will no longer be fluid and will, instead, be solid.
as we shall see below, are more intricate than they are in thigloreover, the orbitals attached to localized particles will ex-
macromolecular vulcanization context and, accordingly, théhibit most probable orientations, about which they will fluc-
order parameter is more intricate and the statistical conteritiate thermally, the extent and nature of these fluctuations
more elaborate: it accounts not only for the heterogeneityalso varying randomly from orbital to orbital. In addition, the
(i.e., the distribution over the samplef positional localiza- thermal fluctuations in the positions of the particles and the
tion lengths but also for the distribution of orbital-orientation orientations of the bonds connecting them will be correlated,
thermal fluctuations, the strengths of the position-angle therto an extent that varies randomly from particle to particle.
mal fluctuation correlations, and the statistical correlationsthe unconventional nature of this the amorphous solid state
between these physical characteristics. is worth emphasizing(i) only a fraction of the particles will

In Ref. 3, in addition to introducing the model of random pe |ocalizedyii) the mean positions of the localized particles
network forming media considered here, and formulating thyi;| pe random, as will be(iii) the spatial extent of the po-

question of the phase transition tand structure ofthe  jiona) fluctuations of the particlegiv) the orientational
amorphous solid state via statistical-mechanical technique uctuations of the orbitals, an@) the correlations between

Goldbart and Zippelius made a simple _variat?onal mean_-fiel hese fluctuationghese parameters being characterized by a
theory for the amorphous solid state in which all particles. int probability distribution: and (vi) there will be no hint

o . 0
shared a common localization length and all orbitals shared & L .
common extent of their angular localization. The positionalOf crystallinity beyond the shortest of lengthscales., the

and angular localization parameters were then solved fopond length, beyor!d these Ie_n gth scales the ;ymmetnes of
the amorphous solid state being those of the liquid state.

self-consistently, and it was found that, at a certain critical e : o
value of the density of formed bonds, a continuous transition Our principal aims are to construct a statistical character-

to an amorphous solid state occurs, beyond which the inverdgation of the structure and heterogeneity of the amorphous
of the positional localization parameter grows continuouslysolid state exhibited by a model of permanently randomly
from zero. It was also found that, in response to the onset d?onded vitreous media in the V|C|n|ty of the solidification
positional localization, orientational localization of the orbit- transition, and to provide a physical interpretation of this
als sets in. Owing to the restricted form of the variationalCharacterization. We shall do this by constructing the self-
hypothesis for the order parameter adopted in Ref. 3, speciftonsistency equation for the amorphous solid order param-
cally that it did not allow for the possibility that only a frac- eter, valid in the vicinity of the solidification transition, and
tion of the particles would become localized at the transitionpbtaining an exact solution of this self-consistent equation.
the critical bond density was overestimated in Ref(The This paper is organized as follows. In Secs. Il and Il we
correct critical density was, however, known from the linearshall proceed kinematically, describing the model that we
stability analysis of the fluid stadeLater work by Theissen shall be considering, and analyzing a suitable order param-
et al. Y in addition to allowing for networks comprising par- eter defined in terms of the positions of the constituent par-
ticles of various valencies, cured the difficulty of the critical ticles and the orientations of their orbitals. Continuing kine-
bond density, by broadening the variational hypothesis tonatically, we shall explore the structure of this order
allow for a localized fractior(although it still only allowed parameter, and elucidate the physical information that it en-
for a single value for the positional and orientation localiza-codes. Then, in Secs. IV and V, we shall address the model,
tion parameters, and did not account for correlations betweeregarding the formed bonds as quenched random variables
the thermal fluctuations of positions and orientatjons that vary from realization to realization. By using equilib-
What, then, is the nature of the amorphous solid state? Ifium statistical mechanics, invoking the replica technique to
the number of permanent random covalent bonds introducedeal with the quenched randomness, and making a mean-
between particles is smaller than a certain critical value thefield hypothesis, we shall develop a self-consistent equation
the effect of these bonds is to bind at least some of thdor the order parameter. By making a natural physical hy-
particles into random permanent molecules of a variety opothesis for the form of the solution we shall, in Sec. VI,
types(varying in size and architecturesach of which, given solve exactly for this order parameter in the regime in which
sufficient time, will wander ergodically through the volume the thermal fluctuations of the particle positions and orbital
of the container, i.e., the equilibrium state of the system irientations are stron@.e., near the solidification transitign
fluid. If, however, the number of bonds introduced is greaterFinally, in Sec. VII we shall extract from our solution a wide
than the critical value then their effect is to bind a nonzeroarray of physical diagnostics characterizing the amorphous
fraction of the particles into anacroscopically large disor- solid state and, in Sec. VIII we shall make some concluding
dered moleculahat extends throughout the container, theremarks. We emphasize that throughout this work we shall
remaining fraction of particles remaining disconnected frombe proceeding analytically, except that we shall make use of
the macroscopic molecule and capable of wandering acroghe numerically-obtained scaling functid¢of a single vari-
the container, given sufficient time. By contrast, the particlesable central to the characterization of vulcanized macromo-
that constitute the extensive molecule will be localized in thdecular matter described in Refs. 5,6.
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a simple symmetry-dictated form for it can readily be con-
structed, by making use of Wigner j3technology, if one
wishes to compute explicitly components of the order param-
eter that depend on it.

Having described the issue of a single particle and its
orbitals, we now turn to the issue of the permanent random
covalent bonds between pairs of particles, and how we are to
describe them. We regard such bonding as introducing con-
straints on the relative location and relative orientation of the
particles and orbitals participating in the bond. Specifically,
(© we model the situation in which particleandj’ are bonded
via orbitalsa anda’ by the constraints

FIG. 1. Particle structure, bond, and network formati@.A
single particle with the near-tetrahedral equilibrium structure of its 1 1
orbitals. In this example the number of orbitals per atans 4 (as Cit+5Sa=Ct+5Sa, (2.2a
would be the case, e.g., for networks of Si atdrfis) Formation of Pone 2
a covalent bond between two particl¢ise participating orbitals are
slightly separated, for clarijy (c) A collection of three particles S.a= S a’ (2.2b
bonded together, forming the beginnings of a random network.
as shown in Fig. (). We denote by the numbéd and the
Il. ELEMENTS OF THE MODEL collection {je,jé;ae,aé}g"zl a specific realization of\M

The model of vitreous media which we shall focus on isbo?)dfsél(')i'r’sz st%(zc'f:rgéfeh;t?nc?gg fluid interact with one an-
that introduced in Ref. 3, which takes as its ingredients a : P

. . . other, regardless of whether or not bonds have been intro-
thermodynamically large numbét of particles, moving in a Lo : .
. . . . duced. We shall assume that pairwise interactions, depending
large three-dimensional cube of volurdgon which we im-

pose periodic boundary conditignst least some of which on the relative separation and orientation of the orbitals, exist

particles are permanently randomly bonded together to fornQetween al 'partlcle_s. The cruugl consequence't.hat we as-

a random network. At the kinematic level, the particfizs sume these interactions to have is that they stabilize the sys-

beled bvi=1 .N) are characterized b thgir osition tem with respect to the formation of macroscopically inho-

vectors{)é-J}N ' .ailé,ng with theN A unit vector)é{s- 1A pN mogeneous or anisotropic states, such as regular crystalline,
=1 j,afa=1j=1

o . ) ) ; - liquid crystalline, molecular crystalline, or globular states.
describing the spatial orientations of tAeorbitals that radi- g y 4 g
ate from each of the particlgs Note that we shall be mea-

suring lengths in units such that orbitals have length unity. !l AMORPHOUS SOLID ORDER PARAMETER:
Figure 1 illustrates the structure of the particles and the for- RANDOM POSITIONAL AND ORIENTATIONAL
mation of a continuous random network out of them. LOCALIZATION

The orbitals radiating from_ a given particle tend to repel Following the ideas of Ref. 3, which represent an elabo-
one another. For example, in the absence of any extern@hiion of ideas discussed in Ref. 12, we adopt as the order

perturbing forces, all things being equal, the orbitals of ay5rameter characterizing the amorphous solid state the entity
four-orbital particle would point towards the vertices of a

regular tetrahedron, as shown in Figa)l Rather than give a
detailed specification of the interactions that embody this
orbital-orbital repulsion, we shall encode the effects of such

interactions into a sequence of parameters that characterize

the correlations between the orientations of the orbitals of §/here the angle bracketith no subscripts indicate a
single particle. For example, we shall find ourselves needingt@tistical-mechanical ensemble average over configurations
the correlator of the orientations of twaistinct orbitals @, f the particles, subject to a given collection of permanent

: ol . b random constraint§.e., bond$, and the square brackets in-
anda,) of a single particldin the fluid statg, say thejth: dicate an average over realizations of the bonds. This order
parameter, which involves products of replicas of a single
(Yiim, (81 Y1,my(S,0,))1.0= 7 — 81, 1,0m, m,Cr» ensemble average, depends on the collections of wave vec-
(2.1 tors{k*}5_; and angular momentum indicgs”,m*};_; .
Let us examine this order parameter, first, in order to ascer-

which we have parametrized in terms of the real numberg,i, the nature of the physical states that it is capable of

{Ci}iZo (with Co=1) that reflect the extent to which the giagnosing, and then to understand the type of statistical in-
orbitals interact’ The angle bracket$- - -);,, which we  formation that it encodes.

discuss below in Sec. IV A, denote thermal averaging with
respect to a the single-particle Hamiltonian, which incorpo-
rates the intra particle interactions. The form of this cor-
relator follows from the isotropy of the distribution of the

orbital orientations in the fluid state. We shall not find our-  Consider the order parameter given by E31), and sup-
selves making explicit use of the correlator of the orienta-pose that we elect to s€t=0 (for a=1, ... n). Then the
tions of threedistinct orbitals of a single particle. However, order parameter becomes, up to irrelevant factorsof 4

1 N 1 A n
N2 a2 e Vs @

A. Detection of random positional and orientational
localization
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P N Such components measure the statistical correlations be-

— E H (exp(—ik*-cj))|. (3.2  tween the strengths of positional and angular localization

N =1 a1 across the samplénter alia, such components address the
As discussed in detail, e.g., in Ref. 6, and also below in seduestion: jf a certain particle is strqngly localized position-
VI D, these components of the order parameter are capab_@'y' ho_w I|ke_ly are the attached orbitals to be strongly local-
of detecting the spontaneous random freezing of particle pd?€d orientationally. _ , ,
sitions (without regard to the behavior of the orbital orienta-  N€Xt, consider the general case in which some replicas
tions. More specifically, via the wave vector dependence@ve nonzero values for bokf and|®. Such components
these order parameter components yield information abod@rovide information on the extent to which positional and
the fraction of particles that are positionally localized, asorientational thermal fluctuations are correlated. For ex-
well as the statistical distribution of their positional localiza- @MPI€, as is discussed in more detail below, by setifig

tion lengths. =0 in all replicasa except replicas 1 and 2, and by also
Suppose, instead, that we $&t=0 (for =1, ... n) in  settingl’=1?=1m'=m?=0, andl“=m*=0 in the remain-
Eg. (3.1). Then the order parameter becomes ing replicasa, we would obtain access to the disorder aver-
age of the quantity
1 N 1 A n
N ]_Zl K agl 01_:[1 <Y|*ama(sj,a)> . (3-3) <(Cj_<cj>)(sj,a_<sj,a>)z> : <(Cj_<cj>)(sj,a_<sj,a>)z>!
(3.6

As discussed, e.g., in Refs. 3,10, and also below in Seeyhich is a direct measure of the extent of the above-
VI E 2, this component of the order parameter is capable ofnentioned position-angle fluctuation correlations.

detecting the spontaneous random freezing of orbital orien- | et us pause to emphasize the three levels of randomness
tations (without regard to the behavior of the particle posi- presented by random network forming media. Therthés-
tions). More specifically, via its dependence on the angulaimal randomness, by which we mean the familiar thermal
indices{l*,m*};,_,, this order parameter yields information motion of the particles and orbitals. Then theraaishitec-
about the extent and character of the orientational localizatural randomness, resulting from the random manner in
tion of the orbitals. It is via this component of the order which covalent bonds are formed. Finally, theremscro-
parameter that the most direct contact is made with thetructural randomness, i.e., the heterogeneity of the emer-
Edwards-Anderson order parameter for Heisenberg spigent solid state. This last level of randomness we capture
glasses, which detects the random orientational freezing ditatistically in a joint probability distribution that character-
magnetic moments. For example, choosifig, ... "}  izes the nature of the thermal motions.

={1,1,0...,0, and contracting appropriately am® and

2 .
m® we obtain B. Isolating the fraction of positionally localized particles

1

E (_1)m16m1+m2,0{

ml,mzz—l

The most basic piece of information describing the amor-
> (Yim(sa) phous solid state concerns the value of the fracjofitheN
=1 particles that are localized positionally, regardless of the
A value of their localization lengths and the angular localiza-
E (Sa)(Sa) tion of the orbitals attached to them. As shown in Refs. 3,6,
a=1 ' ’ this fractionqg can be accessed via the order paramel)
(3.4 in the following way: set “=m*=0 for «=1, ... n, and

_ N then pass to the limik—0 via a sequence for which
thus recovering the familiar Edwards-Anderson form. Moresn _ k*=0. The resulting quantityis the fractiong. The

a

generally, the _order parameter for rangjom networks exhibitsaason for this is that whereas the valugefp(—ik-c)) at

the unconventional features that the indexan be greater | _qjg strictly unity, the limiting value ofexp(—ik-c;)) (as
than unity(so that higher multipole moments of the distribu- ) is unity for positionally localized particles, but zero
tion of orientations can be accesseds well as that a full ¢, gelocalized particles. For the sake of convenience, we

characterization of the orientational freezing requires inforp,| refer to the localized fractiapas the solid fraction, and
mation from components with more than the familiar pair ofiha gelocalized fraction 4q as the liquid fraction.

thermal expectation values.

The third category of information results from examining
the components of the order parameter corresponding to non-
zero values of botfk*}" _; and{l“}"_, . First, consider the

j=1

>

=1

QD

Z| -
M =z
>| -

Z| -
>| -

. 3
X<Y1m2(sj,a)>} :E[

C. Distribution of positional
and angular localization characteristics

subcase for which in every replica at most one of* and To further elucidate the physical information regarding
k< is nonzero. An example of such an order parameter conthe positional and orientational localization of the particles
ponent is and orbitals contained in the order parameter, we now con-

struct a physically motivated form for the order parameter
A (3.1 in terms of certainlocalizational characteristics-
E (exp(—ik* G)) quantities that describe the positional and orientational local-
a=t ization of particles and orbitals. We begin by considering the
contribution from a single particle and a single orbitabh
X (exp( —ik? )Y ana(S ) (Yiema(S 2)) |- (3.5  attached to it, i.e., the expectation value

>+

1N
53

=1
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--— { —> N . . .
FIG. 4. Orientational-positional thermal fluctuation correlations.

FIG. 2. Positional localization of particles. The characteristicImagine that the particle is connected to a rather immobile particle
extent of the thermal fluctuations of the position of the particle isby the top left orbital. As the particle moves to the shaded position
represented by the gray circle and measured by the localizatioits orbitals reorient accordingly.
length &.

orientional localization of the orbitgkee Fig. 3. If we ap-
<efik-cjyl*m(% D) (3.7  proximate the first factor in the connected piece by making

_ o o . o use of the standard cumulant expansion, by Iettir&é 8e-
This function is thecharacteristic functiorof the joint ther-  npote the (finite) mean square fluctuation&(c;—(c;)) - (¢
mal probability distribution describing the equilibrium local- —(c;))) in the position of the particle, and by following this

the orientation of the orbital, as well as correlations between

the thermal fluctuations between this position and orienta- (exp(—ik~(cj—yj))>~exp(—k2§j2/2). (3.9
tion. First, we consider the ()N particles in the delocal-
ized fraction. For such particles we hage ' Y} (s 1))
=(4m) Y28, 48 00mo. For the remaininggN localized
particles we first extract from the expectation valB8€’) the

As for the connected.e., the seconderm on the right-hand
side of EQ.(3.8), it describes correlations between the fluc-
tuations in the particle position and the orbital orientation

hase factor associated with the mean posifige(c) of (see Fig. 4. In the same way that we have introduced the

fh iicle. to obtaine K/ ,ik,(cj,ﬂj)g{* BOR-{C; d diagnostic¢ to characterize positional localization, we now
€ particie, fo obtaine (e L 'm(sﬁ'a)_>' an introduce two further diagnostics:

then express the resulting quantity in terms of disconnected

and connected pieces: Sim:j.a=(Yim(sa), (3.10a9
(e Y I(s,2)) =€ W Af(e G M)) (Yih(s;.0)) e KPG2r s (k)= (e (G m)— (e 1k (G )y

+ <(e_ik'(cj_ﬂj) X(Yl*m(sj,a)_<Yl*m(§,a)>)>- (3-1Ob

—(e“k'(ci‘ﬂj)»(Yl*m(sj'a) Thg collection of c.omplex-vallueq numbe{r$|m;j,a} ch.ara.c—

terizes the orientational localization of orbitabn particlej;

—(Yin(s, 2} (3.8  the collection of complex-valued function§ly:j a(k)}

haracterizes the correlations between the thermal fluctua-
ons in the position of particleand the orientation of orbital

a attached to it. For example, considEfg; 1(k). By ex-
panding the exponential to first ordéas we shall establish
later, typical values ok are small near the transitipnand
recalling, that up to numerical factol$,o(9) is s,, we see,
that

3
e_lklzfiz/zrlo;j,a(k): —i gk — ) = (e— )

X((5.2)—{(5.2)2)) +O(k?), (3.1

which does indeed measure correlations between the posi-
tional and orientational thermal fluctuations, in accordance
with the discussion of this component of the order-
parameter, given at the end of Sec. Il A.

By rewriting Eq.(3.8) in terms of these diagnostics, and

_ _ o ) _ _ making use of the approximatidB.9), we arrive at the form
FIG. 3. Orientational localization of orbitals. The orientation of

—ik-c ik —|K|2£2
the orbital fluctuates thermally about its most probable vée- (e kg Y|*m(Sj,a)>%e k- p @~ kI /2{2|m;j,a+ Flm;j,a(k)}-
ken line, the characteristic scale of these fluctuations being repre-
sented by the gray cone. (3.12

On the right hand side of this expression, the disconnecteﬁ
(i.e., the first piece contains two factorsi) (exd —ik-(c;
—m;)1), which describes the positional localization of the
particle (see Fig. 2and (i) (Y},(s;,2)), which describes the
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By inserting this form, appropriate for particlgghat com-  averaging over any macroscopic subvolume of the system
prise the localized fraction, into E¢3.1), and incorporating exhibits any orientational preference. As for MT], it amounts
the contribution from the delocalized fraction, we arrive atto the hypothesesgi) that the disorder-averaged distribution
the form P exhibits no correlation between the mean location of a
particle and its other statistical characteristics; a@indthat
114 " Kook the distribution is translationally invariarite., is indepen-
N 2 A > aﬂl (€7 Y ama(S a)) dent of w).
Although MRI also imposes conditions on the joint prob-
1 A ability distributionP we do not need to impose these condi-
N E A 2 2 H tions explicitly. The reason for that is that MRI for the com-
Hoe. 7 a=1 a= ponent Q(k;0,0) is assured by the fact thaqo; . and
. - I'o0,j,a are constantgin fact, one is zerp and the assump-
xe K e KPS o ot F,ama;j,a(k“)}] tion that the localization clouds of the particles are spherical
and, accordingly, described by the single rms value of the
(3.13  fluctuation in the particle’s positione;-:’%. MRI for the aniso-
tropic components of)(k;1,m) is a consequence of the fact
that they, as we shall see below, are perturbed away from
:(1_Q)£1 a0 their zero values by MRI-satisfying couplings to the
Q(k;0,0) component. Thus MRI is assured by the theory

=

~(1- q)H S0t

3 itself, and does not need to be explicitly incorporated into the
+qf d*p f d7d{Z} DI} P(p, 7 {21 AT) proposed form of the order parameter.
n L0 By making use of the MTI hypotheses we arrive at the
xXexp—im: X, k¥exp— o > |k form
a=1 a=1
P(r{Z}{TH
P(p, 7, {2} {T}H = — Vv (3.1

n
X Hl {Elam“;j,a+FIam“;j,a(ka)}v (3-14)
“ which, when inserted into E¢3.14), leads to the expression

where we have made the definitior= 1/¢2. The integration
measuresi{3} and D{T'}, respectively denote the multiple (4)™2 Q(K;T,M)|x0—q10-moo
measureIl,,d3,,, and the multiple functional measure
I1,,,0I',,, - We have also introduced the joint probability dis-
tribution P, central to our characterization of the localized
particles in amorphous solid state, defined via

n

== 1 808140 0me0

+q5§n: ke,0 :de d{=} D{I'} P(7,{Z}.{T'})
P([.L,T,{E},{F})— a=1

2 AE o m—p) S(7=§%)

1 & n
% XeXp_ - E |ka|2 H {2|"m"‘;j,a+I‘Il’mu;j’a(ka)},
]-_-[ ]._.[ (Xm— 2ImJ a) 27 a=0 a=0

N (3.19
5 D(Flm_rlm;j,a)}: (3.15 wh?ria o we have introduced the notation
Q(k;1,m)|ko-0 0-mo—o to denote the order paramet&.1),

in which the final f D(-) is a f ional delta f . and where hats indicaten(-1)-fold replicated versions of
n V1\fh'c the final facto ()isa uncnofna Eta. u“ctlon.. guantities. By extending the result of this approach to in-
e next step in our construction of a physically moti- ;4o the dependence on the zero-replica variables

vated fo_rr_n for the orc_Jer parameter |n\_/o_lves the identificatio k1°,m°) in a permutation-symmetry—dictated way we ar-
of specific symmetries that we anticipate the amorphou ive at the form

solid state to possess, viz., macroscopic translational invari-
ance (MTI) and macroscopic rotational invarian¢eIRI). 4 (D20 (kT B
MTI reflects the notion that although in the amorphous solid (4m) (k;1.m)

state translational invariance is spontaneously broken at the n

microscopic levelin any particular realization of the disor- =(1-q) H Ske,0 O1a,00ma o

den, this invariance is restored at the macroscopic level, in a=0

the sense that no quantity computed by averaging over any "

macroscopic subvolume of the system exhibits any depen- +q5E’0f de d{2} DI} p(7,{2},{T'})
dence on the particular subvolume chosen. Similarly, MRI 0

reflects the notion that although rotational invariance is spon- n

taneously broken at the microscopic level, it is restored at the Xe—ﬁzlzTH (S 1eme:i at Diame a(k®)}. (3.18
macroscopic level in the sense that no quantity computed by = mhl.a mha
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As we shall see below, for our solution we shall need an
assumption for the form of the order-parameter component 5% (c;—cy) =86 (c,—c))=

Q(k;0,0). To motivate this assumption, we det m=0 in

expik-c;

W

Eqg.(3.18. As is easy to see from the definitiof& 104 and expik-c,\ *
(3.10D, Sgp;.2= 147 andlgg; ,=0, leaving us with the x| —— = (4.29
form \/V
n o0 |
(4m " DE0(k:0,0)=(1-a) [1 dcwg A (s, 9) =AP sy, 8)= 3 2 Yim(S1) Yinn(sp),
a= =0 m=-
@ (4.2b
—K22r
+q 5T<,of0 drp(7) e ", where (corresponding to the periodic boundary conditions

imposed on the systenthe sum overk is taken over the
(3.19  cartesian components,=2=n,/VY3 with n, being inte-
gers(both positive and negatiyeand theY,,, are the usual
spherical harmonic functions, the arguments of which are
unit vectors.

Strictly speaking, the partition functiof is correct only
up to the appropriate Gibbs factorial factor, and would not,
IO(T)EJ d{Z} D{T'} P(1{Z}{T}). (3.20  as it stands, give rise to an extensive free energy hence the
tilde. As we shall be focusing on the order-parameter self-
We note that, up to trivial factors of %, the expression consistency equation, in whidlas is well known the Gibbs
(3.19 is identical to the ansatz used in Refs. 6,5 in the confactor plays no role it can be safely omitted here. For a

where p(7) is a reduced form of the full joint probability
distributionP(7,{%},{T'}), and describes only the positional
localization of the particles:

text of vulcanized macromolecular media. detailed discussion of this issue, see Sec. 2.4 of Ref. 6.
IV. DISORDER-AVERAGING; REPLICA STATISTICAL B. Deam-Edwards distribution
MECHANICS At this stage, we introduce a statistical distribution char-

Having described the relevant “kinematics,” i.e., the de- acterizing the realization of the random bonds, following the

grees of freedom and the constraints that characterize tHe€92nt strategy of Deam and Edwatdae take for the
model of randomly covalently bonded particles, we now for_probabmty density that the collection of bondsis formed
mulate the statistical mechanics of the system, paying pafne auantity
ticular attention to the quenchede., nonequilibrating na-

2 2\M
ture of the random constraints. At this stage we shall be pM(C)Mw"Z(C), 4.3
following the method sketched in Ref. 3 which itself builds M!
;Jrggﬂctgg i?]eg(eafrallgpproach to macromolecular networks In\7vhich is analogous to the probability density chosen by

Deam and Edwards for the case of vulcanized macromolecu-
N . lar networks"® Instead of working with a fixed number of
A. Partition function bonds, we allow their number to vary in a quasi-Poissonian
The partition function of the system, subject to the con-way, and control the mean number of bonds by the control
straints{je.j.:a..a,}% ; , which we collectively denote by Parameteru®. For a given value oM, the Deam-Edwards
C, relative to the partition function of the unconstrained sys-distribution is proportional to the probability density for
tem, is given by finding the set of pairs of orbital§ ,j};am.amm_; to be
overlapping. The factor?™ represents the probability that a
1 1 bond is formed between each of thddeoverlapping pairs.
) Thus, the Deam-Edwards distribution provides a statistical
characterization of a process of forming permanent bonds in
which constraints are instantaneously introduced into the lig-
><A(2)(sj ats a,)> ) (4.1 uid state at equilibrium. As such, it is an idealization of the
RS S VY random-network-forming process, which generally takes
place on a time scale during which at least some relaxation
The angle brackets denote equilibrium averaging with reof the structure can occur. To handle the complication of
spect to a Hamiltonian that incorporates interactions betweerelaxation would require the introduction of kinetics into the
distinct particles, as well as between the orbitals of a singlelescription, rather than purely equilibrium notions. Said an-
particle. The subscript indicates that this average is takeother way, one can view the Deam-Edwards distribution as a
over one copy of a system of particles, and anticipates the strategy for freezing in liquid-state correlations, as process
introduction of replicas that we shall make shortly. The twothat is regarded as happening spontaneously in glass-forming
types of delta functions® andA(?), serve to eliminate con- systems, but here is introduced externally. The distribution
figurations that fail to satisfy the constraints, and are approencodes the physically attractive feature that the networks it
priately defined in the following way: gives appreciable weight to exhibit the macroscopic symme-

M
2(C)=< 1:[1 5

Gt 50,7 G, 55,2,
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tries of the liquid state, inasmuch as the bond collections t@lso possesses the symmetry of the permutation ofnthe
which it gives appreciable weight correspond to likely con-+1 replicas, which remains intact in the amorphous solid
figurations of the liquid state. With this distribution of bonds state.

some of the correlations of the liquid state ggenched in For the sake of convenience, we introduce the replicated
to a degree controlled by the mean number of bonds formedielta functions, defined by

C. Replica representation of the disorder-averaged free energy "

sc—c)=11 6®(cs—c9), 4.7
We now set about constructing the disorder-averaged free (&= c2) cgo (2= %) @79
energy per particlérelative to that of the system prior to
random covalent bondingd, which is defined via o n
) Ame=11 a1 s), (4.7b
NBf=[InZ(C)], (4.9 -
where B(=1/ksT) measures the inverse temperature. Aswhere ¢ denotes {c’c, ... "} and s denotes
mentioned in the previous subsection, the Gibbs factor ha§0 s',... s, and also the replicated spherical harmonics

been omitted, but this will have no consequences for theY, deflned by
order-parameter self-consistent equation. By making use of

the replica techniquésee, e.g., Ref.)2f can be obtained via - n
Yia(9= 11 Yieme(s"), 4.8
f=1Iim f,, (4.59 “
"o where I and m, respectively, denotdl®I?, ... "} and
- mo,m?, ... m".
—nANf=[Z"]-1=(Z2,:1-2)/2;, (45D { '
2 V. MEAN-FIELD APPROXIMATION
27V 3)
Zne1=| €XQ a2 2 2 H (¢’ + A. Self-consistency condition for the order parameter
jj'=1aa =1 a=0
We now develop a mean-field approximation for the rep-
1 o @) o lica partition function, Eq(4.59. To do this, we rewrite the
=28 ) AA(S 08 o) : (450 partition function as follows:
N,n+1
Here, Z,.1 is thg replicated partition function, arising from Z = ex 27-rNV,u2f d&f déi
the averaging oZ" over the Deam-Edwards—type distribu-

tion (4.3, and the denominataz, arises from the normal-
ization of the Deam-Edwards distributidqsee Ref. 10 for

X
M =z
M
@))

1
(G +3S,0) — C)A(SJa,) NA

detailg. Notice the striking occurence of a theory involving =1 4=t

n+ 1, rather than the usual replicas, a feature, arising from

the presence in the partition function in the Deam-Edwards NS
distribution. (The extra replica “computes” the distribution X E PR CHCIES ETIN)

of quenched random bongisThe angle brackets: - - )1
indicate an O+ 1)-fold replicated normalized average over .

the positions of the particles and the orientations of the or- XA(S,—%/,af)) > (5.1a
bitals, weighted suitably by a Hamiltonian that does not N

couple the replicas.

As one can see from the exponent in E4.50, the rep- R 1
licated theory possesses the symmetries of independent ={ ex 27-rNV,usz

translations and rotations of the replicas, i.e., s NA
N A
a a_ a+ o X A A ~ ~ A A A
CioRE-ci+ar, (4.69 szl ;::1 o(c—(¢+35.2)A(SS )
RS, (4.6b LA
where{a®} aren+ 1 independent arbitrary translation three- “NA z ,2 o€ (G +3a))
vectors, and{R “} are n+1 independent arbitrary 3-by-3 Potad
rotation matrices. As we shall see, the transition to the amor- o
phous solid state is marked by the spontaneous breaking of XA(=SSra) , (5.1b
the symmetries of the relative translations and rotations of Non+1

the replicas; the common translations and rotations remain as .

residual symmetries. These residual symmetries corresporwhere Jydc denotes IT)_,fvdc, and [sds denotes
to the macroscopic translational and rotational symmetry of1_,f sd2s%, and where, to obtain the last form, we have
the amorphous solid state discussed in Sec. Il C. The theonysed the symmetry properties of the delta functions.
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Next, we introduce théreal-space version of themor-
phous solid order parameter,

1 N A
Q(c9)= m;l 2 6[c—(cj+%sj,a)]A(s,sj,a)>.
(5.2
Then, upon setting
1 N A
_AZ 2 36 (ej""%%a))ﬁ(’\sx%a)
=Q(c;9) + 8Q(C;9), (5.3

i.e., the order parametél(c;s) plus the fluctuatiorsQ(c;s),
expanding the exponent in powers &f(c;s), and omitting
terms quadratic i5Q(c;s), we obtain

zn+l~ex;{—2wNvM2J d&fd”sﬂ(&;é)ﬂ(&;—é)
\% S

“ ~ ~ 1
+Nln<exp<4wv,u2f dcf dsQ(c;—s)—
v Js A

A
SR CHCREUHEH]) ] 54
1n+1

where the resulting expectation value involves only the po-

sition and orbital-orientations of a single patrticle.
The reader will have observed that the mean-field a

proximation strategy has yielded a one-particle problem, Eq.
(5.4), as desired. However, there is a subtlety associated wit

KONSTANTIN A. SHAKHNOVICH AND PAUL M. GOLDBART
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liquid state; on the other hand, the inter-replica coupling
originates in the random constraints. As discussed in detail in
Sec. 5.1 of Ref. 6, it is useful to transfer the so-called one-
replica sector contribution to the inter-replica coupling to the
intrareplica couplingwhich is thereby renormalized(The
intrareplica and inter-replica couplings both contain trivial
contributions in the zero-replica sector, as does the order
parameter; we ignore these contributionghe subtlety is
that the structure of the theory in the one-replica sector is
quite different from that in the higher-replica sectors:
whereas the constraints tend to destabibiflesectors, this
tendency is counteracted in only the one-replica sector by the
original intrareplica interactions. Consequently, at the amor-
phous solidification transition the one-replica sector compo-
nent of the order parameter remains zero, whilst the higher-
replica sector components become nonzero. Indeed, the
competition between these two processes can be regarded as
a form of frustration, which resolves itself by the formation
of a state possessing MTI and MRdee Sec. Il ¢

On a technical level, this discussion amounts to the fol-
lowing dictum: in all subsequent equations, e.g., Egs.
(5.4),(5.95,(5.7), the component of the order parameter lying
in the one-replica sector is to be set to zero. Accordingly, the
self-consistent equations that follow pertain to all secexs
ceptthe zero and one replica sectors. This notion is straight-
forward when the order parameter is expressed if(plene
and sphericalharmonic representatidmas it is, e.g., in EQ.
(5.7)]. In this representation, setting the one-replica sector
contrlbutlon to zero refers to settmg to zero the contribution
in which nonzero entries n{]k ) m} appear in precisely one
Hephca (By the zero-replica sector we mean the sector with

the manner in which the various interactions present in Eqk—I =m=0.)
(5.1 are treated, which we now address. The angle brackets We now return to the task of obtaining a self-consistent

in Eq. (5.1b denote averaging over+ 1 (coupled replicas

equation for the order parameter. By making the partition

of the N (coupled particle system. The intrareplica coupling function (5.4) stationary with respect t6(c;s) we arrive at
originates in the interactions between particles present in theelf-consistent equatiof8CE for the order-parameter:

< R CANCRECILIEN sla>exp<4wvu jdcjdsﬂ(c—s)—E 3e- <c1+2sla>}A<ssla>)>

1n+1

0 (Co;%0)=

<exp( AV jvde Ld%&)(é;—%)%zl 36— (&t URL1AGBSL)

> 1n+1

(5.5

The presence ol -function factors provides the option of replacing the dynamical variép;ein the argument of thes
functions by the parametric variabdewhich replacement we sometimes make.

The transformation of the order parameter to a representation in terms of the plane wave and spherical harmonic coordi-
nates, and the inverse transformation, are effected as follows:

Q(k;T,m)= fdsY - (S) exp(3ik- s)f dcexp(—ik-c) Q(c;s),

Q(f:;%):% % exp(iR-&)exp(—%i&.é)iZ Yin(s) Q(k;T,m).

(5.6

(5.6b

This choice of transformation has the effect of keeping the physical interpretation of the order pa@(ﬁeiafn) free of any

complicating factors of exg{k-s), leaving the full factor expk-s) in the fluctuating variable to which the order parameter
couples. Via this transformation, one arrives at a transformed self-consistent equation for the order parameter:
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Ym(—éa)l>
1n+1

A
<exp[(47m2)/v” Sk, m) ekc(ua) Zl e‘ﬁ-%?m(—ga)b
1n+1

A A
(1/A) 21 e kocyr . (éa)ex;{mmz/v“) > kT, m) ekeun) El eik
a= oMo Q. a=

3>

Q(Ro;fofno):

k.1, m

(5.7)

We shall often refer to the tr|p|d26,io ’|:no) as the “external the loss of the(llneaD Stablllty of the fluid, and the concomi-
variables.” tant acquisition of a nonzero value of the order parameter. As

usual, the linear instability of one state does not sharply
specify the nature of the stable state that replaces it, although
) ) ~ the directions of instability do provide hints. In the present
We now demonstrate that upon increasing the density odetting, the residual stability of the one-replica sector sug-
formed bondS the f|UId state iS rendered ”nearly Unstable. T@ests that the primary Characteristic Of the new state is mac-
do this we follow Ref. 10, and expand the replica free enyoscopic translational and rotational invariance, which is the
ergy, ngNf, in Eq. (4.5b), to second order in the order pa- mechanism by which the induction of energetically costly

B. Instability of the fluid state

rameter(}, thus obtaining order in the one-replica sector is avoided. Thus, it is reason-
able to anticipate that the state that replaces the fluid state
nANf(Q)~27u?NVY, > > upon the formation of a sufficiently large density of bonds is
k Tqp.my 1p,mp the amorphous solid state. Furthermore, as the coeffidi&nts
o o R are smaller than unity for=1, and become progressively
XQ(k;11,my) Q(=k;12,mp) My 5 7,5, (K) smaller with increasing, we may conclude that all aniso-
- tropic sectors remain stable, at least for bond densities in the
(4T M S kT, m)2(- 1)7 vicinity of the amorphous solidification transition. Thus, it is
A | 2vh S (K3l ( reasonable to anticipate that anisotropic ordefirey, orien-
o tational localizatioh will arise only as aresponseto posi-
N [ 0a, .0, (1= 84, a,)Cia tional ordering, via nonlinear coupling between isotropic and
Xagz }_:[0 4o ., (5.8 anisotropic order-parameter components. Thus, as will be

borne out below, we should anticipate that the form and ex-
where, as discussed in Sec. I, the coefficigDtsepresent tent of the anisotropic ordering will be computable algorith-
the effects of the interactions between the orbitals of a singlenically, as a perturbative correction to the nonperturbative
particle(and are all less than 1 foe1), and the kerneMl is  result for the ordering in the isotropic sectfr.

given by

Mi s i (k)= J' ds¥; - (9 Yi.n(—Sexp(ik-9). VI. SOLUTION OF THE ORDER-PARAMETER
1o s rT o SELF-CONSISTENT EQUATION
(5.9

We remind the reader that this linear stability analysis ap-
plies only to the higher replica sectors of the order param- ’
eter, as per the discussion in Sec. V A. The correspondin§!€ order parameter, E¢5.7), we now turn to the issue of

analysis applied to the one-replica sector reveals the factC!Vind it. We shall begin by extracting from the full SCE a

anticipated in Sec. V A, that the one-relica sector rem(,]lin%ranscendental self-consistency equation for the fraction of

stable at the transition, owing to the stabilizing effect of the!0¢@lized particles| by considering the SCE at external vari-

interparticle interactions. ablesly=my=0 and taking the limitk,—0. Solving this
We expect the liquid state to become unstable first forequation in the vicinity of the amorphous solidification tran-

long wavelengths, corresponding fo0. In this limit sition (i.e., for small excess crosslink densitiege will find
R, o Tim o ' thatq tends to O near the transition, allowing us to expand
M|1m1,|2m2(k)—>5|1,|25m1,m2(—1) . By examining the

1! . ' ~ 7 the SCE for the order-parameter in powergjafnd truncate
coefficients of the quadratic terms in E&.8), and specifi-  the expansion, retaining terms of ord.

cally their signs, we see that far’<uc=1 the coefficients We will then solve the SCE for individual order param-
are positive for all components of the order paramgiter,  eter components, starting with the only component with an
for all values of ((,' ,m)] and, therefore, that the free energy unstable band, the isotropic Componéhﬂz;(),f)) (the un-

has a local minimum a€=0. Thus, foru?<u? the fluid  stable band being those long wavelength modes for which
state is(at least locally thermodynamically stable. On the k2<2€), which we shall obtain by utilizing the form of the
other hand, foru®>puZ, certain coefficients become nega- sojution. due to Refs. 5,6, and discussed in Sec. Il C. The
tive, starting with the longest length scaland isotropic,  remaining(anisotropi¢ components are linearly stable and
corresponding td =0) modes. This sign change indicates thus we can solve for their leading-order values perturba-

A. General strategy

Having obtained the self-consistency equati&CE for
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tively, by considering their couplings ﬁ(R;@,@). We shall = _£2_>
obtain these anisotropic components by first solving for the ‘5’_%

. - - o8 mmm—-—-- —_—
leading-order contribution to the two .Iowest angylar—_ 2 unstable T stable
momentum components, and then obtaining the solution in 28  band 2€ band

the general case by induction. The structure of the order
parameter is illustrated in Fig. 5, showing the different com-
ponents and bands.

Throughout the entire calculation we shall only be con-
cerned with finding the leading-order contributions to the
components of). This will generally imply (i) truncating FIG. 5. Component and band structure of the order parameter
the expansion in powers of (typically at second order(ii) (see text for explanation
ignoring the coupling of the components of the order param-
eter to higher angular-momentum components, @ndtrun-

amsotroplc
components
——
o000
Y Y

cating expansions in powers kf(typically at linear order, " S0 Bie o S o
~ A A A a @ me, A A oA
as we expect typical values & to be of ordere. Many Qk;l,m=(1-q) H (— +qgW(k;l,m),
technical details of the calculations have been relegated to a=0 Vam
the appendixes. (6.1
B. Fraction of positionally localized particles whereq W(R;T,ﬁ1) is the part of the order parameter describ-

The first step in our solution of the order-parameter SCEingAthAeAIocaIized particles and is analytic at the origin, with
is to determine the fraction of localized particigsFollow- ~ W(0;0,0)=1/y47 The delocalized contribution cancels
ing the discussion in Sec. Ill B, we first separate the delocalfrom the numerator and denominator of the SCE, so we may

ized and localized fractions in the full order paramdteby  rewrite Eq.(5.7), replacingQ(k;T,m) with qW(k;T,m) in
writing both the numerator and the denominator, obtaining

k,i,m

A A
<<1/A>2 e—‘%'&”vfogno(éaexp[<4m2/vn> aW(k:T,m) e ¢ (1) 3 eiﬁ'éa”via«—”sd)b
a=1 1 a=1
1n+1

Q(ko;To,mg) = . A
<ex;{<4w2/vr‘>2 aW(k;T,m) e'c(1/A) X eik'%m(—éa>l>

k.I.m a= nt
o (6.2

Following the ideas of Refs. 6,5, to obtain a SCE &pwe consider the SCE6.2) for the order-parameter component
0(ky:0,0) in the limit ky—0. We start with the SCE fof)(k,;0,0):

sl Amp? | .
Q(ko:0,0)=e“2q<e'ko'c\/ﬁ”“exl{ V'rlf > g W(k;T,m) ek X > e'k‘SaYm(—sa))> : 6.3
1n+1

Note that the denominator of the right-hand side of &) has been replaced by exgf) (see Appendix A for detailsWe
now consider the limik— 0 via a sequence for whick=0. The left-hand side, as can be easily seen from(&4), becomes
q/\4m. To evaluate the right-hand side we follow the procedure used in Appendix A to obtain the denominator of the
right-hand side of the SCE.

We expand the exponential in a power seriegjiand consider the-th order term, and pass to the replica limi-0:

1 . ) .
SAmu?)at > > Wikailmy) Wkl my) et gl
rt kalamg Kelpmy
1 iki-sy ikp-sy
Xar, & e Y (s Yim (-5) ) (64
Loowe o r

11

By MTI of W(k;T,m) we know thatk; =0, which means thak;=0. Also, using MRI ofW(k;T,m) we see that ik=0 then

Eq. (A3) can only be nonzero if=0 also. Knowing thaw/(0;0,0) = 1/\/4, for therth order contributiowith r =1) we get
(1) (#?)'q". Forr=0, however, we get 0, because the limit(@xp(—iky-c)) ask,—0 is zero. Resumming the power
series we finally obtain
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o [amp? PP R
<e'k0'°ex;< TS aWkiT ek er 3 el i)

kim

> 2 <M2>qu—exrm q)—1. (6.5
1n+1

We thus find the following self-consistency equation for the fraction of localized atoms:

1-qg=exp(—uq). (6.6

This self-consistency condition is precisely that obtained in the case of vulcanized macromotéanesgarlier, in the
context of random graph theory, by Esland Rayi (see Ref. &

We will find it convenient to exchanging the control parametérfor e, defined viau?=1+ €/3, so thate vanishes as the
transition is approached. The self-consistent equation fertranscendental, but it is easy to analyze it graphically. Then, for
€< 0 we find that there is only one solutigr= 0, corresponding to the liquid state of the syst@m localized particles and
for e>0 we find that fore smallqis small also, indicating that the fractignof particles comprising the amorphous solid state
tends to zero in the vicinity of the amorphous solidification transition. We can thus expand the exponential on the right-hand
side of Eq.(6.6) obtaining the fractiory to first order ine:

0~ 2e. 67

C. Perturbation expansion for the self-consistency equation

Having found the fractiong of localized particles to be small in the vicinity of the transition, we may expand the
self-consistency equation for the order parameter,(E®), in powers ofq, to second order, obtaining

P " [ Ska 0810 Omaro
qW(ko;To,me)+(1—q) [] | ———
a0 Jan

A 2
1 oo “ ~ A
~a#q( —ikg-c{*x | -1q —Ikoc * SR
© <A3021e Ylomo(%0)>1n+1+e < a021e |m(5a0) vh
A
X 2 qW(k1|1m1>e'k1° > e V(- %>>
by dymy Aot 1n+1
_ 2 A 2
e #a ] _ ~ dmu
<K 2 tko-c5y ?r‘n(sao) Vi 2 qW(ky;T,,mye 'klc 2 eIleaY| (— Sa)
= Ky lq,mg Aa=1
4’7T,LL2 PN A A
U 2. AW(RyiTp, ) eeer 2 o Vin(-&,) ) - (6.8
kz:12:m; A d=1 1n+1

Cancelling the liquid contribution t@ on the left-hand side with the 0 th order contribution on the right-hand side, rearranging
terms, and replacing eXﬁ(uzq) with 1—q we arrive at the form of the SCE that we shall focus on

e 13 —ikg-c< iky-C kg Sy mnf &
0 WikoiTo ) ~(1- ) "o T S Wkl 2 D (e RtV (5 efitelhn Vin(—5 )i
Ky lg.mg ag,ay=1 oMo

1-q(4mu PN PN

"‘T( VA ) q° E i E W(ky;l1,m) W(Kz;15,my)
kq,l1.mq ko, lp,my

1 A S

R alEaZ 1<e_"‘°° VF (8 € ee %Ki (=5, ) €2 e e % i~ §, ) et (6.9
|
D. Self-consistency equation: Isotropic sector of Wis the long-wavelength band of the isotropic component

Having obtained the localized fractianand verified the ~ W(K) [i.e., W(k;l,m)[j- -5 having sufficiently smallrep-
consistency of the expansion of the SCE, we now turn to théicated wave vectors, specificallk?<2¢]. Thus, the basic
issue of solving the SCE for individual components of theprocess occurring at the transition is the acquisition of a non-
order-parameter. As discussed in Sec. V B, near to the amorero value by the unstable components of the order param-
phous solidification transition the only linearly unstable bandeter, which in turn perturb the stable components away from
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their zero values. The stable components include both the 0% dr 0
band of the isotropic component f&>2e and the aniso- T )m(6)— JO do’ mw(6') m(6—6"),

tropic components for all values & As our aim is to cal- (6.19
culate the leading contributions to each of the components of

Wat small positivee, W? may, as a f|r§t step, prgceed by together with the normalization conditiofiydd w(6)=1.
computing the self-consistent value bi(k), neglecting the  The resulting scaled distribution(§) can be obtained nu-
feedback on its value coming from the nonzero values that Itnerically, and the result is given in Refs. 5@he predic-
induces in  the (stabl anisotropic componentli.e., o for this universal scaling function is compared with re-
W(k;T,m)li.o]. Although thek?>2e band of the isotropic  sults from numerical simulations in Ref))8. Thus we have
componentV(Kk) is linearly stable, it is necessary to treat it obtained the isotropic componeW(R) of the order param-

self-consistently together with the unstable band, owing tcéterW(IZ;T,r%) in the vicinity of the transition. As we have

the fact that they constitute a continuuisee Fig. 5 and  giscyssed in Sec. Il A, we are thus in possession of statisti-
therefore the stable band includes elements with an arbsg| jnformation concerning the spatial localization of par-

trarily large “susceptibility” to perturbations caused by their yjcjag. regardless of the angular localization of the orbitals.
couplings to the elements of the linearly unstable bared,

W(k) for k2<2¢]. _ _ _ _

We therefore consider the SCE W(IQ;IA,rAn), Eq. (6.9), E. Self-consistency equation: Anisotropic sectors
for isotropic external argumentse., | =m=0), and ignore We now turn to the task of calculating the Ieafiipg:order
the effects of all anisotropic components on the right handontributions to theanisotropic components ofW(k;I,m)

side. We thus arrive at the closed, nonlinear SCEigk,): [i.e., W(R;T,rﬁ)h;&@]. We remind the reader that the aniso-
tropic components are all linearly stable near the transition,

R k2 R € \Jam and not merely infinitesimally s@.e., linear stability analy-
W(kg)=| 1— 375 W(kop) + 3 7 sis indicates that none of these anisotropic components even

become marginally stable at the transijioNote the contrast

. A with the stable band of the isotropic compongw(k) for

X %: W(ky)W(ko—ky). (6.10 k?>2¢], which, though stable, do include marginally stable
. componentdi.e., components of arbitrarily small “masg”

Precisely this equation emerges in the context of randomiyNlike the stable band of the isotropic component taiso
stablg anisotropic components are separated by a “gap

crosslinked macromolecular networks, from both semi- . ,
microscopic and Landau-type approachi&sn that context, from the unstable cqmponents, owing to the discreteness of
the order parameter has only isotropic components, in corthe external variablé, the components of which take on
trast with the present context. To solve E6.10 we invoke integer values only, in contrast with the componentskpf

the hypothesis fo(k,) discussed in Sec. Ill C, viz., a pa- Which are continuouéin the thermodynamic limijt It is this
rametrization in terms of the normalized probability distribu- “gap” that allows us to obtain the stable anisotropic com-
tion of localization lengthg(7), along with thedy , factor, ~ Ponents by means of perturbation theory, which we could not

enforcing MTI of the solution use to solve for the stable band of the isotropic component
(see Fig. .
O 5120 * —K22r
W(ko)=——=| drp(7)e . (6.11 1. Anisotropic sector: Angular momentum 1
V40 in one replica channel
As is shown in Ref. 6, this leads to the following nonlinear ~ Rather than begin with generalities, we first consider the
integrodifferential SCE fop(7): lowest angular momentum sectpV(k;l,m)}i2_, [i.e., the
, collection of order-parameter componemék;i,m) such

Tdp (e €7 thati?=3_1%(1*+1)=2]. In this casd is some permutation

el B ——| d+ / -7, a . P

2 dr (2 T) p(7) Zfo TP plr=T) of the form (0,1,0,0. ..,0). Wetherefore consider the SCE

(6.12  for Wfrlnl(lz), i.e., Eq.(6.9) for the anisotropic external argu-
i.e., precisely the equation found in Refs. 5,6. By making theént

rescalings
= replica 0 1 - @; a;+1 -+ n
T—0=21]€, (6.133 : 0. 0, ..., 1 N 0
. m 000 ..., m, O -, 0,
p(r)—m(6)=5p(7), (6.13b
(6.19

as in Refs. 5,6, we determine that the universal scaling func- .
tion () satisfies the nonlinear integrodifferential equationand arbitraryk, which, as we establish in Appendix C, reads
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i ever, for certain other components it turns out to be neces-
wit (k)=c© -w;t (k) + —=W(k,) kr‘;l* sary to retain the first-order term, for reasons that we shall
1 1 1

\/§ explain below.
As we have discussed in Sec. Il A, the result that we
\Vamr ) have just obtained about the value of the order-parameter

Z W(k—ky) erjﬁl(kl) component\N‘l";ql(R) yields statistical information concern-

Vn
. ing the variations, across the system, of the strength of the
(6.16  correlations between the thermal fluctuations of the positions
of the localized particles and the thermal fluctuations of the
orientations of their orbitals. We will discuss this informa-
tion in more detail in Sec. VII C

The symbolk;* denotes the complex conjugate of tm¢h
spherical tensor component of the veckdr spherical com-
ponent of the vectok® and is defined via

ype 2. Anisotropic sector: Angular momentum 1
K=/ 3 K Yim(k/K). (6.17 in two replica channels
Having obtained the leading-order contributions to the

The parameteiC(®) encodes physical information arising order-parameter componen®(k) and Wi’;1 (k) [i.e., the
1

from orbital-orbital correlations of a single particle and is isotropic (larges and anisotropic(next largest compo-
defined in Appendix B. Specifically¢(®) depends on thé P 9 b 9 P

=1 value of the free-particle two-orbital orientation cor- nentg, we now address the component\fcorresponding

relator (Y}.(S2) Yirmr(Sar))11- The permutation symmetry
among theA orbitals and rotational invariance of the joint

replica o o
probability distribution of their orientations restrict this cor- A P 8 é lal gl+l 8
relator to have the form |A o T ' ' T
m 0o, 0, ..., my, O, s, 0)7
1
(Yim(S2) Yirm (S2))14= 5= 6117 S (6.20
X (8g,ar (1= 33a1) C)), which we denote bwf;l‘ﬁqz(lz). The motivation for exam-

(6.18 ining this component is that, in contrast to the components

characterized by the parametei€,}”, (with Co=1, by W(k) anderlnl(k), the limit k— 0 of this component pro-
normalization, introduced in Sec. Il. As for the issue of what Vvides information purely about the orientational localization
terms have been omitted in arriving at E6.16, we are ©f the orbitals, independent of the positional localization
concerned only with the leading-order values of the compoproperties, as we shall discuss in more detail in Sec. VII C.
nents of W, and therefore, here and elsewhere, shall omit As shown in Appendix D, the retention of all terms that
terms that do not alter leading-order values. In particular, irgive rise to leading-order contributions\mﬁ;1 ”fm (k) leads
arriving at Eq.(6.16 from Eg. (6.9 we have neglected all e

. to the following SCE for this component:
components ofVV having12=2. Such terms are sufficiently

small that feedback from them would not alter the leading- . o1 ~
Wi 1m,(K) =COWEE T (k)= 30kt ke ™ Wik)

order value oNVf;h(IZ). We shall verify the internal consis- im;1m im, 1m

tency of this assumption below. In addition, we have only e

kept terms carrying sufficiently few powers of components +qc® m 2 W(k—ky) W 2 (k,)
© - G i . AV U 1m, 1m0 "1

of k. As the characteristic value is of ordere, higher Ky

powers render terms subdominant. The steps leading from e
Eq. (6.9 to Eq.(6.16 are explained in detail in Appendix C. +qc@ am Z Wzlyrlnl(lz_lzl) Wiyrznz(ﬁl)'
k1

To solve Eq.(6.16) we rewrite it in the form of dtype |l V"
inhomogeneoysintegral equation by moving the first term
on the right hand side to the left, regarding the second term (6.21)

as a known inhomogeneity, and the third term as a perturb:%here the parametec&? andC® depend o andC; (see

tion. We then solve this equation iteratively, thus obtaining Appendix B. On the basis of the transformation properties
i of this equation under common rotations of the repli@as
Wiq (k) =—C®W(K) k2 * | (6.19 begring in mind the coupling between positional and qrien-
My 3 M1 tational degrees of freedomwe propose that the solution
has the form
where the parametél™) depends o andC, (see Appen-

dix B). In fact, for this particular component & our pro- WOL %2 (R)y=(=1)™ &, ;. oW (k)

cedure merely amounts to truncating the Born series after the imy 1m, Mty

zerothorder (i.e., effectively ignoring the perturbation alto- 1RO K2 W@)(R2) 6.22
gethej, and solving the resulting algebraic equation. How- m m ' '
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parametrized in terms of the two as-yet unknown functions

w® andw(®, which each depend only di?. By inserting
this proposed form into Eq6.21), contracting(on the indi-
cesm; andm,), first with (—1)™ Om, +m,0 and then with

kgll* kﬁf* and considering the limk® —k“2—>0 (with k?

fixed and arbitrary, and retaining only terms that contribute

to the leading-order value ONfﬁqlﬁqz(R)' we arrive at the

pair of coupled(type Il inhomogeneoysntegral equations

X 1¢®
CH W (k2)=— 3 C—mW(k), (6.233
. qvam A A A
CHwD(k?)= V" —ky) wh(k)
1
N N
+a-yn- > Wi n (k=ko) Wi2 (ky)
k
o
+q V i 2 kal* aZ*W(Z)(kZ)
v k
><W(|2—|21)J : (6.23b
é

where the paramete&t(*) depends o andC; (see Appen-
dix B). The symbol{- - -} denotes the result of extracting
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3. Self-consistency equation: General case

Having obtained the isotropic componentWf as well as
the two lowest angular momentum anisotropic components,
we now address the task of establishing the general form of
W, along with an algorithm for obtaining the leading-order
contributions tow for arbitrary values of its arguments. We
begin by proposing the following structure for the general

form of the leading-order contribution #/(k;1,m):

W(k;T,m)=7P; (k) W(k)

l+(l/2)|T f d(9’7T (0)9 k/e(;J

(6.25

Hereﬂvr}](lz) is a certain homogeneous polynomialki&h) in
which all terms are of ordek in k. [We remind the reader
that k() stands for\/(2I+1)/47 k' Y,n(k/K), and is thus of
orderl in k.] In addition, 7 5, is a certain rotationally invari-
ant tensor depending only dnand m, and i ;(6) is a
distribution. All the unknown ingredien[ﬂ,r}(ﬁ),ﬁh, and

77 m(8)] will be obtained below.

To illustrate these notions with a concrete example we

note thatw:: %2 (R), constructed in Sec. VI E 2 has such a

from the quantity inside the braces the coefficient of the term

proportional to the isotropic rank-2 spherical
(—1)m15m1+m2,0. [To extract this part, we take the limit

k' =Ko’ 0 with k2 fixed and arbitrary, and contract with
(—1)™8m, + m,0/3.] To find the leading contributions to("
andw® we first read off the value of the latter from Eq.
(6.233. We then use this result to eliminatg? from Eq.

(6.23h, observing that we can omit the first term on the right

hand side of Eq(6.23h, and perform the remaining summa-
tions to arrive at the results

1 1 (= i
w(k?)=— -6 — f d6 m(6) e <,
3 Jamglo
(6.249
(6) ¢2

W(l)(QZ):_ _
4 4

do k(0) e ¥<0  (6.24h
0

where

0K( 0)5 fowdal 7T( 01) d02 ’7T( 02) 01025[ 0— ( 01+ 02)]

={(07(6))* (6 w(6)}(6),

where the symbol * represents Laplace convolution. Not

(6.249

obtaining the anisotropic components, the results vi

tensor

1m; Im
form, with
P 1 (5) a1 * a2 %
7)I,ﬁ1(k)|f:(0,...,0,1,1,0,...,0)___§C kml I(mz ’
(6.26a
Timli=....0110.... 07 (—1) ™8 +m,0, (6.26D
c®)
ma(Oli=0,. . 0110 ...0° k(0), (6.260
" N
whereT=(0,...,0,1,1,0...,0) indicates thai “1=|2=1
with  1*=0 in all other replicas. Note that
Pi (k) i=(0,... 0110,... ofs Of orderl =2 in components of
k.

To show that the leading-order contribution to the general
componentW(k;T,m) in the vicinity of the amorphous so-
lidification transition does indeed have the fott25), for
all values off, m, andk, we proceed by full mathematical
induction on the multi-index*°. We note thatV(k) has this
form with P@@(R) =1 andmj 3(6) =0, thus establishing the

$aseof induction. To establish thetepof induction we as-
that, as can be anticipated from our perturbative approach to

sume thatw(k;T,m) has the form(6.25 for all valuesi

andw(® are constructed from the universal scaling function<lo (by which we meari“<I§ for all a, andl“<I for at

().

least onex). We then examine the SCE foV(Kq;1o,mp):



PRB 60 STATISTICAL MECHANICS OF PERMANENT RANDOM. .. 3877
A
PO 4’ P | e -
Wikoifo.mo)=(1—a)—r— X WikiTim) 5 2 (e 0¥ L (5
Ky lq.my ap,a1=1 oo
. 1[4mp?\? PO |
xe'k1'°e'kr3alvfm—sa>>1n+1+—(—ff) A4S S Wkely iy Wk, i)
1M 17/ 21 vV N A
kqy,l1.mq ko,lo,my
A ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
X (e L (5) et g (-5 ) etet e Y g (-8 )i (6.27)
ag,a;,a=1 0o

As we are are only concerned with leading-order contributorresponding td =1,,m=m, over to the left-hand side

tions to W, we truncate thd sums in Eq.(6.27 so as to
include only terms witHsTO. We now examine the contri-

butions toW(Kg,1o,m,) coming from linear couplings to
lower-angular momentum components\Wf[i.e., the terms
in the right-hand side of Eq6.27) that are linear inW].

Consider the coupling tw(k,T,m). By the translational in-
variance of the correlator, performing tieeaverage in Eq.

(6.27) we establish that=Kk,. The remaining correlator fac-
torizes on the replica index, becoming

n
]';'[o <Yl*gm3(5§o) Ylamﬂ(_sgl) ei kg.sgl>l,n+1- (6-2&

adding all remaining terms, and making the definition

a

g1
,I”]\’]O;’I\,l:]\’](ko)mgima 7)I,m(k0)a
6.30

we see that, to leading order kg, the linear contribution to
W(ko;To,mo) is indeed of the forn(6.25), with i (ko)
being of the correct order iky. As, due to the fact thai is
small near the transition, the linear contribution is of lower

order ine than the quadratic terms for valuesidf of order
e, we have thus also established a recursive algorithm for

determining?i“,oy,;qo(lzo). lllustrations of its use can be found

Piomko=2 2 | I cff

I<lp m \&=

By introducing the Rayleigh plane-wave expansion for thein Appendixes C and D.

factor expkg - %‘;l in terms of spherical Bessel functions and

We now examine the quadratic contribution to

harmonicd® we see that this correlator is nonzero only for W(Ke;1o,mo) in Eq. (6.25. This term is only the dominant
the terms of ordet’“ in the Rayleigh expansion for which one fork3<e and, hence, we need only obtain it in the limit
the angular momentd .15, andl“ can sum to angular mo- {2_,0 which is equivalent to extracting from it the leading-
mentum 0. As we are only interested in the leading-ordegyger contribution to the part proportional to theigdepen-
contributions toW, and thel’* term in the Rayleigh expan- ggpj rotationally invariant tensoffj . As we are only

on i N ) ) . Mo ™
sion is of order k5)' , we need only keep the lowest jnterested in the leading-order behavioldf in the summa-

angular-momentum tertii.e., |’ “=1g—1%). Thus, from each
-9

—me’

replica we shall pick up the factor&g) :}:ﬂ provided, of
0

course, thafmg—m®|<I§—1*. Together from all replicas,
these factors will give a factor, depending on {hk&)}, that
will be of orderT,—T in k. To leading order, the term that
corresponds to the coupling &(Kky,15,mg) to W(k,T,m)
will thus become

a
—|«

.

T (k) Cls | Prin ko Wiko), (6.29

0
a_
0

il 7€ constants, for which we cannot in
general provide a closed-form result, but which we can, how
ever, compute, should we decide to construct some comp

where theCf';

Xy ap
for W1ml 1m,’

(1619
As Ha(ko)mgLm

a

is of orderly—T in ko, and asP; ;(ko)

is, according to the inductive assumption, of ortlewe see
that this contribution is of ordel, in k,. Taking the term

tions overl in the quadratic term of Eq6.27) we need only
include the linear contributions tW(IZ;T,ﬁw) [i.e., for the
purposes of computing the quadratic termVitko;1,,mg)
we can setW(k;T,m)="P; 5(k) W(k) for T<ly]. We now
study the quadratic coupling o®(Kky;To,my) to lower
angular-momentum components. In each repliceve have
four sources of angular momentum: twid' @ndl5) coming
from the two components otV [i.e., W(Rl;il,rﬁl) and
W(K,;1,,m,)]; and two (’¢ and1’g), one coming from
each of the Rayleigh expansions of the “shift” factors
exgk;-s, and exjk,-s,,. As we are only interested in the

leading-order behavior oV, we need only consider the case
when I +15+11“+1"5=15. Each source of angular mo-

mentuml brings with it a factor ok'. Hence, multiplying all

o Factors from all replicas together and assembling all terms in
nent of the order parameter explicitly, as we have, e.g., donﬁ.]

e summations we shall obtain

qv " >, (kg k) W(ky) W(k,) O +ky ko Oky 00Ky ,00
Ky ko ;

(6.30
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where the operatior- - -}, denotes the extraction, from B. Encoded information: Isotropic sector

-+, of the part proportional tdfj ., and whereF is a We begin by discussing the statistical information, en-
polynomial function ofk; andk, in which all terms are of coded in the isotropic component of the order parameter

orderT . Provided, that, andm, satisfy conditions for mac- W(k?). In Sec. VI D we have obtained this component in the
roscopic rotational invariancénote, in particular, that MRI  vicinity of the amorphous solidification transition and, con-

requiresTy to be even and, hence, that the quadratic contriS€duently, the reduced distribution @fverse squajelocal-

buti ishes foF; odd ¢ th i ization lengthsp(7) associated with localized particles. The
ution vanishes foro 0dd), we can perlorm e summations, ¢, ., thatp(7) takes on a scaling form, and that the scaling

indeed obtaining the claimed structure for the second—orde‘runction m(6) has a well defined peak with location and
term in Eq.(6.25. Thus, we have established a recursive, ;i noth of order unity, allows us to establish thas e
procedure for ObtalnlnngTOVr}]o(G). Keeping in mind that —0) r scales ag and, accordingly¢ scales as~ Y2 For

typical values oﬂzg are of ordere, that q=2/3¢, and that example, any reasonable choice for a characteristic value of

W(K) is of order unity we verify the scaling of the quadratic & S&Jod7p(7) 7 12 scales ag ' o

term to bee®2+1 thus completing thestep of induction In _the present context, while _the emergent dlstr|b_ut|on
> th d ’d final element of our broof ' p(7) is found to have striking scaling properties, there is the

V'Zint foiift?sr;onagf our discussion of thpe so'lution of the suspicion that changes in the details of the model will lead to

) . changes at least in the details of the scaling functi¢s) or,
order-parameter SCE we note, in passing, that all the agsernaps, in the scaling property itself. However, it has been

sumptions that we have made in Sec. VI A regarding thgoyng in the context of vulcanized macromolecular matter
scaling (with €) of various quantities are verified, poste-  {hat the scaling property, as well as the precise form of the
riori s by the solution that we have Obtained, thus eStab”Shingca"ng function' are robust, universal features of the mean-
the self-consistency of these assumptions. field theory, verified by independent computer simulations.
Moreover, this universality has been found to have its origins
in the symmetries of the appropriate Landau free energy and
VII. PHYSICAL INFORMATION ENCODED the divergencdat the transitioh of the characteristic local-
IN THE ORDER PARAMETER ization length.

Being in possession of the entire distribution of localiza-
tion lengths provides us with a surprisingly rich characteriza-
We have constructed the solution of the order-parameteifon of the positional aspects of the amorphous solid state. It
self-consistency equation in the vicinity of the amorphousis striking that the distribution is universal, not only across
solidification transition, Eq(6.29, and have obtained ex- the macromolecular systems where it was first found, but
plicit solutions for the two lowest angular-momentum com-&lso in the present setting of vitreous media. Although we
ponents of the order parameter, E¢8.19,(6.244,(6.24b. ha_lve obtal_ned the dlstrlb_utlon via anglyss of a §p_eC|f|c semi
We are thus in possession of a range of statistical informaMicroscopic model of vitreous media, we anticipate that,
tion about the amorphous solid state, this information beind!€re 100, the result will have a broader domain of applicabil-

encoded in the order parameter, as discussed in Sec. Il A. ItY" Moreover, given the emerging picture _qf orlentat|or_1a_l
this section we will extract some of this information explic- order as order slaved to the underlying positional order, it is

ity from the two lowest anaular-momentum components of 't surprising—and indeed we shall demonstrate this point
th}:a’ order parameter rovige a strateav for obtaﬁnin Othebelow—that all other statistical descriptors of the amorphous
P » P 9y 9 Solid state are also constructed from the universal function

statistical information about the system from higher angular—w( 0)
momentum components, and discuss the scaling of the order """
parameter withe near the transition, as well as the implica-
tions of this scaling. C. Encoded information: Low angular-momentum
Our statistical diagnosis of the structure of the amorphous anisotropic sectors
solid state in the vicinity of the amorphous solidification
transition is made in terms of the moments of the joint dis-
tribution function P that collects together the localization ~ We now discuss some of the specific physical information
characteristics of all the particles in the sample and theithat can be obtained by examining our explicit solutions for
orbitals, averaged over realizations of the disorder. As wdhe two lowest angular-momentum components of the order
shall see, we are unable to construct the entire distributioRarameter, which we have obtained in Secs. VIE1 and
function, or even to construct a closed-form expression foV! E 2. The first piece of information concerns the angular
arbitrary moments. However, most of the useful informationlocalization of the orbitals, without regard to the positional
about the system can be obtained from low moments of théocalization of the particles. As we recall from Sec. III A,
distribution, resulting from the two lowest angular- such information is accessed via the order parametek for
momentum components of the order parameter, which we-{ and is described by the distribution of the collection of
have _obtalned explicitly. As for the information encoded in characteristic§3,,}. The lowest angular-momentum order-
the h;QhET angular-:non;enttur? conljpglner\l/t\? 0:; thehorder Pgrarameter component that provides access to this informa-
rameter, we do not extract it explicity. We do, however,.. . \vai ap . o
describe the kind of information th%t co)[nd be obtained fromtIon 'S W1m1 1mz(k)’ the solution for which is given by Eq.

them, as well as provide the general procedure for doing sd6.22. Evaluating ak=0 gives

A. Introduction

1. Angular localization
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R c®) &3 A €
9 Win T (O):(_l)m15m1+mz f do x(6). [ 2 A 2 (=) (s.a=(5.a)) |~ ~ EC(D
(7.1 (7.5
Now, recalling the interpretation of the order parameter decharacterizing the anticorrelation of the thermal orientation
veloped in Sec. Il A, we arrive fluctuations of orbitals with the thermal position-fluctuations

of the particles to which the orbitals are attached.
@ [ 4rd(s) D} PO (S 1ATD S, S,

D. Scaling and its indications

1 N A In the previous two subsections we have obtained explicit

=|= 2 — 2 1m1 <Y1m2(sj,a)> physical information about the amorphous solid state in the
Nj=1Aa= vicinity of the solidification transition from the three lowest

) &3 angular-momentum components of the order parameter. We

=(=1)™8, 1 o—— _f do x(6). (7.2 now _address ir_l more generality the_ manner in Which various

vt 4 6 physical quantities reflecting the orientational ordering scale

with €. To do this we examine the scaling of various com-
Notice that this characteristic of the angular localization ofponents of the order parameter, established in Sec. VIE 3.
the orbitals is essentially the order parameter traditionalljHence we have the following scaling for various momé&hts
used to describe the directional localization of magnetic moof the joint probability distributiorP associated with local-
ments in the spin-glass state. In fact, if we recall thej,qq particles T#0):
spherical-tensor decomposition of the scalar product of two
unit vectorss;- =2 m(— 1)™Y11(S1) Y1-m(Sy), then by ap- R -
propriately contracting Eq7.2) overm; andm, we obtain f d7d{X} D{T} P(7,{Z},{T}) 2jn~e 12, (7.69
the familiar characterization of directional localization:

A 300 & J drd{3} D{I'} P(r{3}.{T})
NZZZ o) <51a>:\/—€f0d91<(0)- o
Srhes am 73 i (R)expl —R22m) ~Ki~ 2, (7.6
» _ _ the latter being valid fok?~ e. Note the exponent+1/2 in
2. Angle-position fluctuation correlations Eq. (7.6.

Further specific physical information concerns the degree We now describe a plausible physical scenario that is con-
to which the thermal fluctuations in the orbital orientationssistent with this scaling oP. Near to the transition the net-
are correlated with the thermal fluctuations of the particlework has many long chains consisting of twice-bonded par-
positions. As discussed in Sec. Ill A, to extract this informa-ticles, with only the occasional more highly bonded particles
tion, which is encoded in the distribution of the collection of linking them Most of the Iocalized particles are on ex-
nentwes (K): such segments are Ilkely to be even less localized orienta-

im tionally than orbitals on less mobile segments, such as those
near junctions between chains. Consider, for the sake of il-
I lustration, a dangling chaif.e., one attached to the network
q Mml(k)_q f d7d{2}D{IIP(7. {2}, only at one end The orientational fluctuations of successive
o k2122 orbitals compound the fluctuations of orbitals further away
><1ﬂl,m (k*1)e from the junction, causing them to be successively more de-
localized. This compounding of fluctuations so heavily sup-
KoL presses orientational localization that it causes the scaling
2 E (C e : : ientati i
N SAS (and not just the numerical valuef the orientational local
ization characteristic¥,, to vary according to location in
_<e—ik"1-(c,-—n,~)>) the network. Moreover, because orientational localization is
heavily suppressed for such a large fraction of orbitals, the
leading-order scaling of the momentsXf,, is dominated by
X(YI <Y1m1(sj,a)>)>] contributions from the small fraction of better-localized or-
bitals (e.g., those near chain junctigngnd is blind to the
2¢ ,C(l) " much larger fraction of less well-localized orbitafe.g.,
=— db’ m()e K<, those far from chain junctionsThis partitioning of localized
\/— \/_ orbitals into better and less well fractions yields a picture
(7.4 consistent with our results provided we assume that the bet-
ter localized variety constitute a fraction of orderof the
By considering the derivative with respectk®t, taking the localized orbitals. This fraction manifests itself in the expo-

limit k—0, and contracting, we obtain nent 1+1/2 in Eq. (7.6a as the additional 1. This picture
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allows us to identify the following appealing scaling for the particle position and orbital orientation to have certain char-
localization characteristics of the better localized orbitals: acteristics.
We expect the emerging statistical characterization to be

Sim~e’?, (7,73 valid beyond the context of the model used to determine it.
~ The reason for this is that, apart from certain simple depen-
I(k)~k'~ €7, (7.7 dences on physical parameters describing the particles in the

network, this characterization is in fact a consequence of the
order parameter that we have considered, the symmetries of
the Landau-type free energy associated with this order pa-

the latter being valid fok?~ €. Note, in particular, that this
scaling indicates that for a better localized orbital

(6= (c))- (S a— (5 ) rameter, and a limited number of further assumptions.
(N e A g (7.9 We have constructed an analytical approach to the equi-
\/((cj—<cj>)2><sj 2 librium structure of the amorphous solid state of a class of

. . ) ) . . materials, such as silica gels, formed by the permanent ran-
implying that the orientational-positional thermal fluctuation yom covalent bonding of atoms or small molecules. How-

correlations are strong for all bond densities in the vicinity ofoyer the accuracy and scope of our results is limited in the
the amorphous solidification transition. Whilst we cannot befoIIO\;ving significant ways. We have focused equilibrium

certain that this scenario is a necessary consequence of o4t ctural properties, we have workadarto the amorphous
results, it is both consistent with them and physically plau-ggjigification transition, and we have computed within the

sible. framework of amean-fieldapproximation. It would be inter-
esting to have a better understanding of the implications of
VIll. CONCLUDING REMARKS these limitations, and to be able to obtain results beyond

The primary result of this Paper is a statistical characterNem-

ization of the structure and heterogeneity of the equilibrium
amorphous solid state that emerges due to the random per-
manent covalent bonding of the constituent particles. This We thank Horacio Castillo, Reimer Kun, Weiqun Peng
statistical characterization takes the form of a joint probabil-and, especially, Annette Zippelius and Max Makeev for use-
ity distribution that ascertains the likelihood of finding a par-ful discussions. This work was supported by the U.S. Na-
ticle: (i) to be localized(ii) to have a certain positional lo- tional Science Foundation through Grants DMR94-24511
calization length(iii ) for a bond connected to this particle to (P.M.G) and GER93-54978K.A.S.), and the Campus Re-
have a certain orientational localization characteristics, andearch Board of the University of lllinois at Urbana-
(iv) for the correlations between the thermal fluctuations inChampaign through Grant No. 1-2-69484.A.S.).
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APPENDIX A: DENOMINATOR FOR THE SELF-CONSISTENT EQUATION

In this appendix we evaluate the denominator of the right-hand side of the SCE(fof,m), Eq. (6.2), namely, the
guantity

A

>| -

klm a=

2 PPN PPN
<ex;{4$—ff > wik;T,m) e’k ) eik'sol\?i,;q(—%)) > . (A1)

1n+1

To do this, we expand the exponential in a power series and considetthharder term

1 Ca A L. A R S T
<r_|(477/L2)rqu_mAZ 2 2 Wk Ty,my) Wiky;To,my) - Wk, 5T, ,m,) efkacelkerc. . glkee
: klllml k2I2m2 krlrmr
1 aa s A R R -
XAT . 2 . e'kl'sale'kZ'Saz. . .e'kr'sarYilr%l(—Sal). . .YTanr(_Sar)> . (A2)
o ' 1n+1
Noticing that the quantityA2) factorizes over the replicas, and passing to the replica im0, we rewrite
1 . ‘ .
<r—,<4mﬂ>'qf 2 2 2 Wkl my)W(k;ilp,mp) - Wikl mypelkarcelke c. . glkre
: 111my kalom; Kelpmy
1 . . .
Xor 2 elfmelosekny g (—s) Y m(—8)) (A3)
A ag, . a, 1M 1 i r 11

By the MTI of W(k;T,m) we know thatk; =0, which means thak; = 0. Also, using MRI ofW(k;T,m) we see that ik=0 then

Eq.(A3) can only be nonzero if=0 also. Knowing thaw(0;0,0) = 1/\/4, we get, for the'th order contribution £2)"q"/r!.
Resumming the power series we obtain, finally
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A’ T . i o o ()’
exp —yn & W(kil.melher X e ¥ia(s) =2, ——exnu’q). (A4)
1n+1

APPENDIX B: DEFINITIONS OF THE C™) CONSTANTS

The ¢ constants are defined as follows:

CO=A"11+(A-1)Cy), (Bla)
cW= ! (B1b)
1+cO
1
c<2>sz(1+(A—1)ci), (Blo
cC=c@_2c@)c) (B1d)
—c?
cw=17¢ (Ble
@
) c®
"= 3™ (B10
c® cMz2
c®= + : (Blg)

120@)c®2 " gc @)

They encode information about the strength of the mutual repulsion of orbitals.

APPENDIX C: ANISOTROPIC SELF-CONSISTENT EQUATION: ANGULAR MOMENTUM ONE
IN ONE REPLICA CHANNEL

In this appendix we study in detail the SCE for M%H(R) component. We start with the full form

u?
(k) (1- Q) Vn q 2 W(k1:|1:m1)A2

ky1,my

ag,a;=1 aFaq

A
X 2 <e R TT (Yool ) Vi (i) e™s € Tl =5,

1n+1

q° E E W(k1v|1:m1) W(k2v|2:m2)

Ky lp.mg kp,lp.mp

1(4mu
S

A
1 o T S
X132 < ETT (Yool SODY i (85111 ek S Via(5, €2 ek =Yy,

ag,ap,ay=1 aFay 1n+1

(CD

We now proceed to study this equation order by order, starting with the linear term. As we are not interested in feedback on
this component from higher angular momentum components we may truncate the angular momentum sums to include only

terms ofl ?><2. Thus we must include couplings to the componwfﬁz(ﬁ) andW(k) only. We study the coupling tav(k)

first (i.e.,1,=m;=0). Clearly then in replica;; we must Rayleigh-expand the shift-factor exit sg‘l) to angular momentum
1 and put this factor equal to unity in all other replicas, obtaining
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477_#2 R 1 A . 1 n 1 (n+1)
1— W(K.)— e7|k~ce|k1~c . * ooty Al (KA
(1-a)—; q% <1>A2%%1< (JE i, )(JE) Ja(kyh)
1
ky 1
X E Yim (S 1)Y1m, F)>
m'=-1 1 1n+1
JNAm o1 A s
= (1= Q) pfi—=W(K) El (0a.0, (1= 0a,0,) COK™Yin | o
i .
= ﬁC(O)W(k)kf]?l . (C2

We now study the linear term corresponding to the couplinwﬁl(ﬁ) to WT;Z(R). Whena, # «, this term, being of order

k2, is subdominant. Thus we need only consider the term in the angular momentum sum ‘Whérefl being 0 in all other
replicas. We examine this term in the sum, making use of the value of the two-orbital correlator, given(bylBq.

A

( (kl) 1 2 e—ilzf:eilzl'z: L " (Sal) L nYl (_Sozl)
®agai-1 vam 1ml VamT o 1n+1
A
_ 20N (e 1 2
W R B Guat (1 5s) C
=—(1-q)cOpPwy (k). €3

We next proceed to examine the second-order term in(Ef). Again, we truncate the angular momentum sums. As we are
only interested in the leading-order contributionsvuﬁ‘rlnl(lz) there are only two cases to considey=1,=0 andi2=2]3

=0. The former case, however, results in a term that is subdominant to(@mWe thus consider the latter case

1 4?2 1
5<1—q>( ) a* > W(kpWyh (ko) 2
kq.ko

A o 1 (n+1) 1 n 1
X E e~ ik caiky-caika-c ( ) YI (Sal) T
ao~511=1< Vam Vam] T\ Vag
Vo u? 1 2

= (- CS qwikow (k- Kz 3 (Gaa,+(1-840)Co)

n
V Ky ag,a;=1

n

Y1m1( - Szll) >

1n+1
Vam ut
=-—(1-9 c<°>—2 A*W(ky) Wi, (k—ky). (C4)

Keeping in mind that due to the symmeliAryHIAZ we must double the terfC4), we now assemble all the terms, dropping
subleading contributions

A N
qWin, (K)=CO| —aqWi (K)+ —=qW(ky) k! ™ —

9 Var
\/§ my Vn |21

k—k)Wis, (ky) |- (C5)
Cancelling a factor ofy leaves us with Eq(6.16).

APPENDIX D: ANISOTROPIC SELF-CONSISTENT EQUATION:
ANGULAR MOMENTUM ONE IN TWO REPLICA CHANNELS

In this appendix we study in detail the SCE for ler; o2 (k) component. We start with the full form:
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AW, T, (K) = (1= o) - q > Wi(kysTy,my)

Ky p.myg

1 & P
X2z 2 <e'k'° I (Yoo $5)) Vi, (1) Yin,(s52)e"s e, Yi5(s, )

ag,a;=1 aFay,ap 1n+1
1 471',u P PN
+_ ) q° E E W(ky;l1,mp)W(ky;l5,my)
kyolpmg ko, lp.mp
A A A ~ ~ ~ ~
S (I v i
0.a1,a2 1,2
m(Asdl)eiﬁzée‘%'%azm(%)> . (DY)
1n+1

As we did before in Appendix C for the SCE fw (k) we proceed to study the linear terms of this equation. Again we
truncate to include only the components\igfof angular momentum smaller than the angular momentuwlqﬂ (k) i.e.

|*=0 for a# ay,a, and|“,|*2<1. Thus we find couplings to ternw(Kk), W (k) W (k) andW<L %2 (k). Raylelgh

1m; Im,
expanding the shift factor exigq - s l) to angular momentum O or 1 as approprlate in each replica, proceeding as {(iICBgs.
and(C2), and, finally, inserting the value fw;’;h(k) that we obtained in Sec. VI E 1, we obtain the linear contributterms
are in the order listed aboye

47T/-L2 n—-1 1

am

(1-q)

5 1 EA: AR e( 1
a2 — e kcglke —
Ky A? ag,a;=1 \/E

n+1
Yfml(sgj)Yi‘mz(ng) X [ W(Rl)( ) (4ri)%j1(K{Hja(ky?)

1
X2 Yam($HYi,

’ r_
my,my=-1

ay

a *
| Yam SV |~

k2a2 1 n

Jan

n

Y1m2( - 3;2)477” 1(kf1)

Yim,

+WiE (kl)(

1
X(=$Hamija(ki?) 2 Yam ()Y | —or

m=-1

1“2 1
kfz 1m2( kl) \/E

klal v 1 n-1
KoL +W1ml 1m2(k1)

Jan

1
X 2 Yam ()Y | —or

Y1m1( - Szll)Ylmz( - Sle)] >

m=-1 1 in+1
1 [ i - -
:qc<z>(_§k;11*k“2* (k)—\/_ ;;2* 1ml(k) \/_ ;:1* f;z(k)+wlgqlliqz(k>)
a Q q a a "
=CEqWE, 7, (k)= ZCOR e WR). 02

We next proceed to study the quadratic ContrlbutIONV(#] (k) from Eq.(D1). Truncating the angular momentum sums

as usual we see that there are the following four cases to coné)déi—lz 0, corresponding to the coupling to

W(k,)W(k»), (ii) I1—0I2 2, corresponding to the coupling W(kl)W (kz) (iii ) I2—I2 2, corresponding to the cou-
pling toW;} (kl)W (k2) and(iv) 1;=0[5=4 corresponding to the couplmg W(kl)Wfrﬁ]l‘?mz(kz). We study these terms
in more deta|I as in Appendlx C, E4C4). Term (i) is clearly subdominant compared with the second term in(B@g).
Writing out the remaining terms

. 4 4
termii): —ﬁﬂ(l q)c<2>—2 qzk”Z*W(kl)w (k ky), (D3)
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_\am pu .
term(lu):T(l—q)C(z)W %: qzwlﬁu(kl)wléz(k_kl)’ (D4)
1
At A
term(lv)E(l qQ) 4c<2> Z a>W( 1)Wﬁql‘12m2(k—k1). (D5)

Term (ii) does not contribute to the leading-order behavio\i\lﬁ'ﬁ1 o2 (I2) as fork? of order e or greater all quadratic terms
are subleading compared to linear terms, andkfeg e it will, because of thek“2 * factor, be subdominant compared to terms

(iii) and (iv). Keeping in mind that because of the symmdtyy-1, we must double the terrfiv), we reassemble the pieces
of the SCE forw( % “2 (k), dropping subleading contributions:

im; Im,

J_

aWys, G () =CcPawiy 92 (k) - —c<3>k“1* kit " aW(k) +°C P~

=

+qzc(2>2\,n2w (k—k)Wi2 (ky), (D6)

Z W(k—kp)WSL 22 (ky)

1m; 1m,

Cancelling a factor ofy leaves us with Eq(6.21).
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