Ionization threshold of crystalline LiF

Hiroshi Tatewaki

Computation Center and Institute of Natural Sciences, Nagoya City University, Nagoya, Aichi 467-8501, Japan (Received 14 October 1998; revised manuscript received 26 January 1999)

The ionization threshold for crystalline LiF is calculated using a cluster embedded model. The experimental ionization threshold is 9.8 eV; however, previous band and cluster model calculations gave 14–15 eV. These earlier calculations used a crystal having a perfect lattice. In the present work, a crystal with lattice defects is introduced. The calculated surface and bulk ionization thresholds are 8.1 and 8.7 eV, respectively, showing good correspondence with experiment. The electron affinity and other band parameters are also studied. [S0163-1829(99)03730-3]

I. INTRODUCTION

Many experimental¹⁻¹⁰ and theoretical investigations¹¹⁻²⁸ have been performed on crystalline LiF; these are summarized in Table I. Experimental band gaps between the valence and conduction bands are 13.6 eV (Refs. 4 and 5) and 14.2 eV.⁶ There are two types of theoretical calculation: a band calculation and a cluster model calculation in which a large cluster is embedded in an ionic cage. The band calculation, with correction for electron correlation, gives the band gap as 13.9 eV (Ref. 24) and 14.0 eV,²⁵ while the cluster model gives 13.9 eV.²⁸ Agreement between these theoretical calculations and experiment is almost perfect. Pong and Inouye (quoted in Ref. 24) observed exciton photoemission at \sim 12.6 eV relative to the ground state level (the top of the valence band), while Gallon⁹ observed the exciton at \sim 13.5 eV using electron-energy-loss spectroscopy (EELS). The bulk exciton states calculated by the band theory and the cluster model with the electron correlation correction are located at 11.7 eV (Ref. 24), and 13.4 eV (Ref. 28) above the ground state, so that the result of the cluster model accords well with the EELS result. The surface exciton has also been observed by EELS;⁹ the excitation energy is 3 eV less than that of the bulk exciton, and is accurately predicted by the cluster model. All the observations mentioned so far are well

explained by theoretical calculations, and especially by the embedded cluster model. Exceptions are the ionization threshold (I_t) and the total bandwidth of the fluorine ion band.

We first discuss the ionization threshold I_t . Poole and co-workers^{4,5} undertook ultraviolet-photoelectron-spectroscopy (UPS) observation. They obtained I_t as

$$I_t = E_b^{\exp}(\mathbf{F}^-) - 0.5E_{tw}(\mathbf{F}^-), \qquad (1)$$

where $E_b^{\exp}(\mathbf{F}^-)$ is the arithmetic midpoint of the valence fluorine ion band, and $E_{tw}(F^-)$ is the total width of this band; the values found for these are 12.85 and 6.1 eV, so that I_t $=9.8 \text{ eV}.^{4,5}$ Poole and co-workers stated that "Taylor and Hartman¹ tentatively placed the valence band of LiF 13 eV below the vacuum level on the basis of the edge in the photoelectric yield curve. However, their yield curve continues to fall rapidly at lower energies, and this may be interpreted as a threshold of approximately 10 eV, which compares favorably with present estimates of 9.8 eV for this quantity." The calculated I_t values corrected for electron correlation are up to 14.3-14.6 eV irrespective of the calculational method, and are far from experimental values.⁴ Furthermore, if we

TABLE I	. Summary	of	previous	results	for	band	structure	of	LiF	(all	in	eV	').
---------	-----------	----	----------	---------	-----	------	-----------	----	-----	------	----	----	-----

	Ionization	Band	Band	Ex	citon
Method	threshold	Gap	width F 2p	Bulk	Surface
Band theory					
LDF ^a	11.7	10.5	2.8		
LDF with correlation (periodic cluster Δ SCF) ^a	14.3	13.9	2.8	11.7	
LDF with correlation ^b		14.0	2.0		
Embedded cluster (surface and bulk) ^c					
Δ SCF	12.5-13.1	11.8	2.7	11.3	9.4
Δ SCF with correlation correction	14.6-15.2	13.9	2.7	13.4	11.5
Expt.	$9.8^{d} - 13^{e}$	13.6 ^d	6.1	13.5 ^g	10.3 ^g
		14.2^{f}		12.6 ^h	
See Ref. 24.	^e See Ret	fs. 1 and 2	2.		
^b See Ref. 25.	^f See Ret	f. 6.			
See Ref. 28.	^g See Re	f. 9.			
^d See Refs. 4 and 5.	^h W. Poin	ng and C.	S. Inouye, as	quoted in	Ref. 24.

3777

use the UPS spectra given by Poole and co-workers (Fig. 2),⁴ we obtain a smaller I_t of ~7.5 eV. This is only one half of the calculated result.

We now discuss the total bandwidth of the fluorine ion band, $E_{tw}(F^-)$. Poole and co-workers ⁴ experimentally found this to be 6.1 eV, while the band theory 2.0 eV (Ref. 25)–2.8 eV,²⁴ and the cluster model 2.7 eV,²⁸ respectively. The value of $E_{tw}(F^-)$ given by Poole and co-workers is directly related to I_t through Eq. (1). Therefore, if we can discern why the experimental I_t is small, we can also understand why $E_{tw}(F^-)$ is so large.

For the perfect lattice, the ionization threshold (I_t) should fall between 14 and 15 eV and the total bandwidth of the fluorine ion should be less than 6.1 eV, since the calculated energetics agree well with experiment except for these two quantities. The onset of the ionization threshold is very low $(\sim 7.5 \text{ eV})$.⁴ If a lattice defect is assumed to be at the position of the Li cation, we expect that the neighboring F⁻ is considerably destabilized, reducing I_t . This paper investigates the effect of lattice defect(s) on I_t and on the total bandwidth of the fluorine ion $E_{tw}(F^-)$. In Sec. II the method of calculation is set out. The band structure of LiF, including I_t , is given in Sec. III, and the results are discussed and conclusions set out in Sec. IV.

II. METHOD OF CALCULATION

A. Cluster model embedded in ionic cage

As before,²⁸ we use a cluster model embedded in the ionic cage composed of point charges in which Li⁺ and F⁻ ions are modeled by +1 and -1 point charges. To calculate the Madelung potential, Evjen's method²⁹ was used. It was confirmed that an ionic cage constituting of 3375 point charges gives an accurate Madelung potential of 0.460 37 a.u. In our previous work²⁸ we replaced the 27 central ions with the cluster $\text{Li}^+_{14}\text{F}^-_{13}$ (see Fig. 1) in order to treat the electronic band structure of the bulk material. A similar approximation is made in studying the surface band. The electronic structure of the cluster of these 27 ions is solved by the open-shell self-consistent field (SCF) method proposed by Roothaan and Bagus,³⁰ in which multicenter Coulomb and exchange integrals, and also the interaction integrals between cluster electrons and cage ions, are calculated exactly within the accuracy of the basis sets.

B. Basis sets

Tatewaki and Huzinaga^{31–33} have developed minimaltype basis sets (MINL-i) with contracted Gaussian-type functions (CGTF's) where the exponents and the expansion coefficients of the CGTF's are determined so as to give the optimum total energy. Although the size of the sets is small, they describe the valence orbitals well. A large number of these basis sets are calculated and collected in Ref. 33. Since the sets are minimal type, the valence orbitals should be split in molecular applications. In this paper, part of the set for F⁻ is split; the set is the double-zeta-type of MIDI-4 (421/31) (Refs. 31 and 32) in which the *s* and *p* SCF orbitals are expanded as three and two contracted Gaussian-type functions, and the respective CGTF's are described by 4, 2, 1, 3, and 1 primitive GTF's. Here, two diffuse *s*-type primitives

FIG. 1. Geometrical structure of $\text{Li}_{14}^+ \text{F}_{13}^-$. (a) With the perfect lattice, this cluster is embedded in the ionic cage. (b) With an imperfect lattice, the cluster with a defect at Li_{11} (denoted Def_{11}) is embedded in the ionic cage.

were added for consistency with our previous work,²⁸ in which such functions were added to describe transitions corresponding to $F2p \rightarrow F3s$. The total set for $F^$ is (42111/31). For Li⁺, we assembled (421) from (43) and added one *p*-type polarization function, and completed the basis set for Li^+ as (421/1). These are given in the top half of Table II. Total energies of gaseous (free) ions and of ions with other surrounding ions are given in the lower half of Table II. The surrounding point charges destabilize Li⁺ by 0.46 a.u. per electron and stabilize F^- by -0.46 a.u. per electron; these values are almost equal to the Madelung potentials for the respective atoms. In the next section it will be shown that the sets for Li^+ and F^- are well suited. We observe that the atomic charge distributions (F⁻) with and without the surrounding ions are almost the same as indicated from the coefficients given in Table II. Although we have not shown the results, the same is true for Li⁺.

C. Energetics

We employ Δ SCF calculations, where ionization potentials (IP's), electron affinities (EA's), and excitation energies (EX's) for the excitons are calculated as differences of the total energies of the respective states:

$$IP(\Delta SCF) = TE_{SCF}(cluster^+: ground state) - TE_{SCF}(cluster: ground state), (2)$$

 $EA(\Delta SCF) = TE_{SCF}(cluster: ground state)$

$$-TE_{SCF}$$
(cluster⁻: ground state), (3)

and

TABLE II. Basis set for calculating Li^+mF^-n with surrounding ions. (Number of surounding ions is 3374. Madelung potentials per electron for Li^+ and F^- are 0.460 37 and -0.460 37 a.u., respectively.)

		Exponents and e	xpansion o	coefficients		
	Li ⁺	coef		F^{-}	coef	
	exp.			exp.		
1s-CGTF	104.726 13	0.026 110		1040.662 5	0.019 234	
	15.662 25	0.137 521		156.684 33	0.133 321	
	3.399 55	0.457 142		35.119 88	0.460 998	
	0.850 39	0.534 692		9.293 25	0.526 665	
2s-CGTF1	0.757 53	-0.091659		13.989 20	-0.079747	
	0.065 90	0.647 001		1.162 29	0.583 900	
2s-CGTF2	0.025 29	1.0		0.323 18	1.0	
3s-CGTF1				0.068 31	1.0	
3s-CGTF2				0.025 55	1.0	
2 <i>p</i> -CGTF1	0.076	1.0		19.106 17	0.052 356	
				4.146 32	0.258 527	
				1.072 09	0.508 261	
2 <i>p</i> -CGTF2				0.239 85	1.0	
		Total energies and	orbital er	nergies (a.u.)		
	Free Li ^{+ a}	with surrounding ions		Free F ^{-b}	with surrounding ion	
Total energy	-7.223 86	-6.303 17		-99.294 35	-103.89552	
$2\varepsilon_{1s}$	-2.78773	-2.32750		-25.77497	-26.23266	
ε_{2s}				-1.05191	-1.51111	
ε_{2p}				-0.15714	-0.61613	
Coefficients of	SCF orbitals	for F ⁻				
	Free F ⁻			F^- with	surrounding ions	
	1 <i>s</i>	2s	2p	1 <i>s</i>	2 <i>s</i>	2p
C1s-CGTF	0.993 42	-0.24299		0.993 41	-0.24300	
C2s-CGTF1	0.316 38	0.574 50		0.031 64	0.574 02	
C2s-CGTF2	-0.01138	0.506 38		-0.01137	0.507 54	
C3s-CGTF1	0.005 28	0.018 42		0.005 26	0.018 26	
C3s-CGTF2	$-0.002\ 31$	0.000 33		-0.00230	-0.00156	
C2p-CGTF1			0.710 02			0.710 31
C2p-CGTE2			0.462 65			0.462 30

^aTotal energy for the free (gaseous) Li atom calculated with this set is -7.41994 a.u., giving IP of 5.335 eV. ^bTotal energy for the free (gaseous) F atom calculated with this set is -99.24594 a.u., giving EA of 1.317 eV.

 $EX(\Delta SCF) = TE_{SCF}(cluster: excited state)$

 $-TE_{SCF}$ (cluster: ground state), (4)

where TE_{SCF} is the SCF total energy. Next we discuss the dimension of the Fock matrices. As an example we used a symmetry C_1 for the imperfect lattice model calculations. The dimension of the Fock matrices in C_1 for Li⁺_mF⁻_n is the total number of CGTF's and is given by $(1 \times 3 + 3) \times m + (1 \times 5 + 3 \times 2) \times n$: the dimension of the Fock matrices is 221 for all the states in Li₁₃⁺ F₁₃⁻. The convergence thresholds for the SCF calculations are 5×10^{-6} a.u. and 5×10^{-4} for the total energy and density matrix, respectively; these thresholds are used throughout. The calculation time for a single SCF cycle was about 20 min on an IBM RS6000 3 AT, and up to 200 cycles were required for some states.

III. ELECTRONIC BAND STRUCTURE OF LiF

A. Perfect lattice model

The symmetry D_{4h} was used to treat bulk solid and C_{4v} for the surface states. The cluster $\text{Li}^+_{14} \text{F}^-_{13}$ (see Fig. 1) was embedded in the ionic cage²⁸ in order to treat the bulk states. The total number of CGTF's is 227, and the formal dimension of the Fock matrices is also 227, but these are separated into small matrices of the elements of a_{1g} , a_{2g} , b_{1g} , b_{2g} , $e_g(x), e_g(y), a_{1u}, a_{2u}, b_{1u}, b_{2u}, e_u(x)$, and $e_u(y)$ in D_{4h} and $a_1, a_2, b_1, b_2, e(x)$, and e(y) in C_{4y} . The dimensions of these matrices are 34, 6, 16, 15, 21, 21, 3, 23, 9, 11, 34, and 34 in D_{4h} and 57, 9, 27, 24, 55, and 55 in C_{4v} . As seen in Table I, the cluster model embedded in the ionic cage²⁸ provides almost perfect agreement with experiment except for the total bandwidth of the fluorine ion $E_{tw}(F^{-})$ and the ionization threshold I_t . In those calculations a perfect, defect-free lattice was assumed. Here, we pick out and summarize the exciton band. The wave functions of these states are expressed as

FIG. 2. Shape of the hole in the bulk solid: difference in charge density between ${}^{2}A_{2u}$ and ${}^{1}A_{1g}$. (a) On the second layer. (b) On the first (third) layer.

$$\phi = C_A |\phi_{\text{Li}}(A'B'C'\cdots)\phi_{\text{F}}(A^{-1}BC\cdots)\phi_{\text{exc,F}3s(A)+\text{Li}2s}| + C_B |\phi_{\text{Li}}(A'B'C'\cdots)\phi_{\text{F}}(AB^{-1}C\cdots)\phi_{\text{exc,F}3s(B)+\text{Li}2s}| + C_C |\phi_{\text{Li}}(A'B'C'\cdots)\phi_{\text{F}}(ABC^{-1}\cdots)\phi_{\text{exc,F}3s(C)+\text{Li}2s}| +\cdots,$$
(5)

where ϕ_{Li} and ϕ_{F} symbolically represent all the Li and F electrons in the solid. The first line implies that the *p* electron at the fluorine ion F_{A^-} is excited into the exciton band orbital $\phi_{\text{exc},\text{F}3s(A)+\text{Li}2s}$, which is constructed mainly from the F3s of F_{A^-} and six adjacent Li 2s orbitals. Other components of Eq. (5) have similar meanings. Only the first term in Eq. (5) is considered here, assuming H_{ii} $(i \neq j)$ is small. The excitation energy calculated by Δ SCF [see Eq. (3)] is 11.3 eV, while the correlation correction, described at the end of this subsection, yields 13.4 eV, which is close to the EELS value of 13.5 eV. In Figs. 2 and 3 we show the hole that is given as the difference in the total densities between the ionic state with configuration $\phi_{Li}\phi_F(A^{-1}BC\cdots)$ and the ground state with $\phi_{Li}\phi_F(ABC\cdots)$, and the particle that is the difference between $\phi_{\text{Li}}\phi_{\text{F}}(A^{-1}BC\cdots)$ $\phi_{\text{exc,F}3s(A)+\text{Li}2s}$ and the ionic state with $\phi_{Li}\phi_P(A^{-1}BC\cdots)$. We see that the hole [Fig. 2(a)] is covered by the particle [Fig. 3(a)]. Band theory with correlation corrections gives 11.7 eV (Ref. 24) for this excitation, which is a little less than the EELS value of 13.5 eV. The band theory²⁴ also employed the locally excited state,

FIG. 3. Shape of the particle in the bulk solid: difference in charge density between ${}^{3}A_{2u}$ and ${}^{2}A_{2u}$. (a) On the second layer. (b) On the first (third) layer.

using the small-periodic-cluster (SPC) model in which a large crystallographic unit cell with a locally excited state at its center is set up, and the associated Bloch Hamiltonian problem with periodicity imposed via this large super cell is solved. The cluster calculation involves the unrealistic assumption that the hole is perfectly screened by the surrounding electrons of the nearest 26 ions, while the band calculations require that the locally excited state repeats periodically. The difference between the two results is unlikely to be due to working differences in the environment, since the band gaps calculated by the two methods are almost the same; the band calculations give 13.9 (Ref. 24) and 14.0 eV (Ref. 25) while the cluster calculation gives 13.9 eV. The experimental result is 14.2 eV. The difference between the methods for the exciton states may arise from differences in the calculations for the exchange integral, for which the band calculations assume local potentials while the cluster method calculates them exactly. The local potential approximation may be inadequate for interband transition where the excited electron is localized.

Calculations for the negative ion are performed to treat the electron affinity. The subgroup D_{4h} of O_h is used as stated before and the lattice is taken as perfect, with no defects. The total numbers of electrons are 158 for the ground state and 159 for the two affinity states. The ground state ${}^{1}A_{1g}$ has electron configuration TABLE III. Electron affinity of bulk LiF calculated with the perfect lattice model.

Cluster embedded	Li ⁺ ₁₄ F ⁻ ₁₃		
Number of cage ions	3348		
Number of CGTF's	227		
Symmetry	D_{4h}		
Number (n) of electrons and total energy (te) (a.u.)			
	Ground state	First affinity state	Second affinity state
n	158	159	159
te	-1384.36206	-1384.32916	-1384.315 77
Electron configuration	$\cdots (12a_{1g}^2) \cdots (8a_{2u}^2) \cdots (12e_u^4)$	(ground state) + $(13a_g^1)$	(ground state) + $(9a_{2u}^1)$
Electron affinity without correlation correction (eV)		-0.90	-1.26
Electron affinity with correlation correction (eV)		-0.8	-1.2

Madelung potential and gross atomic orbital population (GAOP)

	Madelung	GAOP	GAOP of the added electron			
Atom	(a.u.)	Ground state	First affinity state	Second affinity state		
First layers (and third layer)						
Li 2(19)	-0.4604	1.92	-0.32	0.38		
Li 3(20)	-0.4604	1.95	0.34	0.41		
Li 4(21)	-0.4604	1.95	0.34	0.41		
Li 5(22)	-0.4604	1.95	0.34	0.41		
Li 6(23)	-0.4604	1.95	0.34	0.41		
F 7(24)	0.4604	10.11	0.09	-0.38		
F 8(25)	0.4604	10.11	0.09	-0.38		
F 9(26)	0.4604	10.11	0.09	-0.38		
F 10(27)	0.4604	10.11	0.09	-0.38		
Second layer						
Li 11	-0.4604	1.92	-0.33	-0.00		
Li 12	-0.4604	1.92	-0.33	-0.00		
Li 13	-0.4604	1.92	-0.33	-0.00		
Li 14	-0.4604	1.92	-0.33	-0.00		
F 1	0.4604	9.62	-0.83	-0.00		
F 15	0.4604	10.11	0.09	0.00		
F 16	0.4604	10.11	0.09	0.00		
F 17	0.4604	10.11	0.09	0.00		
F 18	0.4604	10.11	0.09	0.00		

$$(\dots 12a_{1g}^{2})(\dots 2a_{2g}^{2})(\dots 6b_{1g}^{2})(\dots 5b_{2g}^{2})(\dots 7e_{g}^{4})(1a_{1u}^{2})$$
$$\times (\dots 8a_{2u}^{2})(\dots 3b_{1u}^{2})(\dots 4b_{2u}^{2})(\dots 12e_{u}^{4}). \tag{6}$$

Calculated total energies, electron affinities by Δ SCF [see Eq. (3)] and gross atomic orbital populations³⁴ (GAOP's) are shown in Table III. The electron configuration for the two affinity states is of the form (ground-state configuration+affinity orbital). Since GAOP's for the ground configurations are almost the same for the ground state and two affinity states, GAOP's are shown for the ground state, and for the affinity orbitals for negatively ionized states. The first affinity state is ${}^{2}A_{1g}$, with one electron in $13a_{1g}$. By Δ SCF calculations, the electron affinity is -0.9 eV.

Turn now to the characteristics of the $13a_{1g}$ orbital, using the GAOP's in Table III. All corner Li atoms placed in the

regular hexahedron have large positive GAOP's, indicating large electron densities on these atoms. On the other hand, six Li's that constitute an octahedron, and F_1 at the center of the octahedron, have large negative GAOP's. This results from large overlaps between the orbitals of the octahedron atoms and those of the corner Li atoms. The electron distributions at the eight hexahedron corners therefore penetrate into the intermediate region spanned by the Li octahedron and the central F_1 atom. Although an added electron is distributed among the whole cluster, larger densities are found around the corner Li 2*s* orbitals.

Since the added electron mainly occupies Li corner 2s orbitals, we infer that the electron correlation between the added electron and F^- electrons is negligible. The electron correlation between the Li⁺ cores and this added electron therefore stands. Since the added electron is distributed around the entire cluster, and since the Li⁺ cores in the cluster.

10.8

TABLE IV. Ionization threshold of bulk LiF calculated with lattice defect model. With no lattice defects, the Madelung potentials at F and Li are +0.4604 and -0.4604 a.u. The numbers in parentheses are gross atomic orbital populations without lattice defects.

Cluster embedded	Li ⁺ ₁₃ F ⁻ ₁₃		
Number of cage ions	3348		
Number of CGTF's	221		
Symmetry	C_1		
Number (n) of electrons and total (te) (a.u.)			
	Ground state	First ionized state	Second ionized state
n	156	155	155
te	-1377.109 96	-1376.869 17	-1376.79066
Electron configuration	$\cdots(78_{a}^{2})$	$\cdots(52_{a}^{1})\cdots(78_{a}^{2})$	\cdots (52 ¹ _a) \cdots (78 ² _a)
Ionization potential without correlation correction (eV)		6.55	8.69

Ionization potential with correlation correction (eV)

Madelung potential and total gross atomic orbital population (GAOP)

	Madelung	GAOP	GAOP relativ	e to ground state
Atom	(a.u.)	Ground state	First ion	Second ion
First layer (and third layer)				
Li 2(19)	-0.6467	1.94(1.92)	0.03	-0.01
Li 3(20)	-0.6467	1.96(1.95)	-0.01	0.01
Li 4(21)	-0.6467	1.96(1.95)	-0.01	0.01
Li 5(22)	-0.5679	1.96(1.95)	0.00	-0.01
Li 6(23)	-0.5679	1.96(1.95)	0.00	-0.01
F 7(24)	0.1969	10.03(10.11)	0.00	-0.23
F 8(25)	0.3426	10.10(10.11)	-0.02	0.00
F 9(26)	0.3083	10.08(10.11)	-0.01	0.00
F 10(27)	0.3083	10.08(10.11)	-0.01	0.00
Second layer				
Def. 11	-0.4604	(1.92)		
Li 12	-0.5921	1.93(1.92)	0.04	-0.01
Li 13	-0.6467	1.94(1.92)	0.03	-0.01
Li 14	-0.6467	1.94(1.92)	0.03	-0.01
F 1	0.1969	9.82(9.62)	-1.00	-0.03
F 15	0.1969	10.03(10.11)	0.00	-0.23
F 16	0.1969	10.03(10.11)	0.00	-0.23
F 17	0.3426	10.10(10.11)	-0.02	0.00
F 18	0.3426	10.10(10.11)	-0.02	0.00

ters are very close to an atomic (gaseous) Li⁺, the correlation energy between one Li⁺ core and the added electron would be about 1/n of the atomic 1s-2s correlation energy $[E_{corr}(1s-2s:Li)]$, where *n* is the number of corner Li⁺ ions in the crystal. It follows that the correlation correction for the affinity state is approximately $E_{corr}(1s-2s:Li)$. This can be estimated from the present Δ SCF (5.34 eV) and the experimental³⁵ (5.39 eV) ionization potentials (IP) of the gaseous (free) Li (see footnote b in Table II).

Consider now the relation between $E_{\rm corr}(1s-2s:Li)$ and the experimental and SCF IP's. The experimental atomic total energy (TE_{expt}) is expressed as the sum of the SCF total energy (TE_{SCF}), the correlation energy ($E_{\rm corr}$), and the relativistic energy ($E_{\rm rel}$). Therefore, the experimental ionization potential (IP_{expt}) for the atomic Li is given by

$$IP_{expt}(Li) = TE_{expt}(Li^{+}) - TE_{expt}(Li)$$

$$= TE_{SCF}(Li^{+}) + E_{corr}(Li^{+}) + E_{rel}(Li^{+})$$

$$- \{TE_{SCF}(Li) + E_{corr}(Li) + E_{rel}(Li)\}$$

$$= IP(\Delta SCF Li) + \Delta E_{corr}(Li^{+}-Li) + \Delta E_{rel}(Li^{+}-Li)$$

$$\approx IP(\Delta SCF:Li) + \Delta E_{corr}(Li^{+}-Li)$$

$$\approx IP(\Delta SCF:Li) - E_{corr}(1s - 2s:Li).$$
(7)

8.7

We ignore the relativistic term, because the relativistic energies for Li and Li⁺ are small and almost equal. In reaching the last line of Eq. (7), it has been assumed that the 1sintrashell correlation energies in Li and Li⁺ are the same. Using numerical Hartree-Fock (HF) calculations and perturbation theory, Koga and co-workers³⁶ found that IP(Δ SCF)'s with and without relativistic effects are, respectively, 5.34192 and 5.34181 eV. The present IP(Δ SCF) is very close to that of the accurate calculation, and the correlation correction, $E_{corr}(1s-2s:Li)$, estimated here is quite reasonable; its value is calculated to be -0.05 eV. In Table III, however, 0.1 eV is added instead of 0.05 eV because the present cluster calculations do not have an accuracy of 0.01 eV. The affinity state may be observed as a resonance state in the continuum. The calculated second affinity state with correlation correction lies 1.2 eV above the ground state.

We now consider the ionization threshold I_t . Poole and co-workers estimated I_t to be 9.8 eV.^{4,5} Here two distinct I_t values are discussed, from the surface and in the bulk material, which are, respectively, calculated as 12.5 and 13.1 eV by the Δ SCF method using the perfect lattice approximation. The C_{4v} symmetry is used in calculating I_t 's for the surface. The wave function for the ionized states is expressed as

$$\phi = C_A |\phi_{Li}(A'B'C'...)\phi_F(A^{-1}BCD...)| + C_B |\phi_{Li}(A'B'C'...)\phi_F(AB^{-1}CD...)| + C_C |\phi_{Li}(A'B'C'...)\phi_F(ABC^{-1}D...)| + \cdots, \quad (8)$$

where X^{-1} implies that a *p* electron at the ion F_X^- is ionized. Since the atomic ionization process $(F^- \rightarrow F + e)$ dominates, the atomic correlation correction, which is discussed below, is needed in discussing the ionization threshold qualitatively.

In the (gaseous) atomic case, the electron affinity $[TE_{SCF}(F)-TE_{SCF}(F^-)]$ calculated with the present basis is 1.32 eV (see footnote c in Table II), while the experimental value is 3.40 eV.³⁷ If relativistic differences between F and F⁻ are ignored, an error of 2.08 eV [the correlation correction $\Delta E_{corr}(F-F^-)$] results from the larger electronic correlation in the gaseous negative ion:

$$\begin{aligned} \mathbf{E}\mathbf{A}_{\text{expt}}(\mathbf{F}) &= \mathbf{T}\mathbf{E}_{\text{expt}}(\mathbf{F}) - \mathbf{T}\mathbf{E}_{\text{expt}}(\mathbf{F}^{-}) \\ &= \mathbf{T}\mathbf{E}_{\text{SCF}}(\mathbf{F}) + E_{\text{corr}}(\mathbf{F}) - \{\mathbf{T}\mathbf{E}_{\text{SCF}}(\mathbf{F}^{-}) + E_{\text{corr}}(\mathbf{F}^{-})\} \\ &= \mathbf{E}\mathbf{A}(\Delta\mathbf{SCF};\mathbf{F}) + \Delta E_{\text{corr}}(\mathbf{F}-\mathbf{F}^{-}). \end{aligned}$$
(9)

Using numerical HF calculations, Koga and co-workers³⁶ found that EA(Δ SCF:F)'s with and without the relativistic effects are 1.36 and 1.33 eV. The present value of 1.32 eV is close to the accurate EA(Δ SCF:F) of 1.36 eV, showing that the set for F⁻ is well suited.

Since electrons in the ionic crystal are well localized at each ionic site in the ground state, and the ionization described by Eq. (8) is essentially a local process, the correlation effect for the present ionization process (neutralization of the F^- ion) in the cluster should be similar to that for the electron affinity mentioned above. Therefore the value of 2.1 eV is used as the correlation correction for the ionization process with a localized hole in the cluster. The correlationcorrected surface and bulk I_t values are, therefore 14.6 and 15.2 eV, and are far from the experimental value given by Poole and co-workers.⁴ Recall that the band calculation²⁴ also gives 14.3 eV for I_t . Provided that LiF has a perfect lattice structure, the bulk I_t should lie between 14 and 15 eV.

FIG. 4. Geometrical structure of $\text{Li}_{13}^+\text{F}_{14}^-$. (a) With the perfect lattice, this cluster is placed at the surface of the ionic cage. (b) With an imperfect lattice, the cluster with a defect at Li_6 (denoted Def_6) is placed at the surface of the ionic cage.

B. Imperfect lattice model

Since Li⁺ ions provide the positive field that stabilizes electrons at F^- , and since the experimental value of I_t is much smaller than the calculated values, it is natural to suppose that there exist lattice defects at Li⁺ sites that should be taken into account. In the present work a lattice defect is introduced at the position of Li_{11} (see Fig. 1), and this cluster $(Li^{+}_{13}F^{-}_{13})$ is embedded in the same ionic cage as in the perfect lattice model. The molecular symmetry is C_s , but C_1 is now employed. The number of CGTF's is 221 and is equal to the dimension of the Fock matrix. The number of electrons for the ground state is 156, instead of 158 in the perfect lattice. SCF calculations were performed for the neutral and ionized states. The total energies, the ionization threshold (I_t) , and the electronic configurations for the ground state and two ionized states are listed in Table IV, together with the GAOP's. The calculated value of I_t is now 6.6 eV by Δ SCF, and 8.7 eV after correlation correction, which is close to the experimental estimate of 9.8 eV and the onset I_t of \sim 7.5 eV. In this state the electron on the central F is removed. The state is not described by a hopping model as in Eq. (8), but is approximately given by the first term of Eq. (8). If another defect exists in a sphere of radius ≤ 25 a.u., this may lead to a smaller value of I_t (≤ 7.5 eV). The second ionized state lies 10.8 eV above the ground state. The electronic hole of this state is spread through the solid, as is suggested by the GAOP's.

To discuss lattice defects on the surface, a cluster with a defect at Li_6 of $\text{Li}_{13}^+\text{F}_{14}^-$ (see Fig. 4) is placed at the center of the surface of a perfect ionic cage consisting of 2025 point charges; 27 point charges of the 2025 are replaced by the cations, anions, and a lattice defect. The molecular symmetry is C_1 , the number of CGTF's is 226, and the number of

HIROSHI TATEWAKI

3784

TABLE V. Ionization threshold of surface LiF calculated with lattice defect model. With no lattice defects, the Madelung potentials at F and Li of the first layer are +0.4429 and -0.4430 au. Madelung potentials of the second and third layers are almost the same as the those of bulk values of ± 0.4604 ; the difference is at most ± 0.0002 a.u. The numbers in parentheses are gross atomic orbital population without lattice defect. The ground GAOP's for the third layer are not listed where GAOP's for the ground state and the affinity states are almost the same. The difference was at most -0.02.

Cluster embedded	$Li^{+}_{12}F^{-}_{14}$			
Number of cage ions	1998			
Number of CGTF's	226			
Symmetry	C1			
Number (n) of electrons and total (e) (a.u.)				
	Ground state	First ionized state	Second ionized state	Third ionized state
n	164	163	163	163
te	-1503.58034	-1503.36063	-1503.35347	-1503.34858
Electron configurations	\cdots (82_a^2)	$\cdots (41^1_a) \cdots (82^2_a)$	$\cdots (41^1_a) \cdots (82^2_a)$	$\cdots (41^1_a) \cdots (82^2_a)$
Ionization potential without correlation correction	on (eV)	5.98	6.17	6.31
Ionization potential with correlation correction ((eV)	8.1	8.3	8.4

Madelung potential and total gross atomic orbital population (GAOP)

Atom	Madelung	GAOP	C	AOP relative to ground st	ate
	(a.u.)	Ground	First ion	Second ion	Third ion
First layer					
F 1	0.1795	10.15(9.24)	-0.86	0.00	0.03
F 2	0.1795	9.99(9.97)	0.00	0.01	0.00
F 3	0.1795	9.99(9.97)	0.00	-0.89	0.00
F 4	0.3251	10.02(9.97)	-0.01	0.00	0.00
F 5	0.3251	10.02(9.97)	-0.01	0.00	0.00
Def. 6	-0.4430	(2.27)			
Li 7	-0.5748	2.00(2.27)	-0.01	-0.02	-0.03
Li 8	-0.6293	2.00(2.27)	0.01	-0.01	-0.02
Li 9	-0.6293	2.00(2.27)	0.01	-0.02	-0.02
Second layer					
F 10	0.1971	10.22(10.22)	0.01	0.00	-0.89
F 11	0.3427	10.25(10.22)	-0.01	0.00	-0.02
F 12	0.384	10.25(10.22)	0.00	0.00	0.01
F 13	0.3084	10.25(10.22)	0.00	0.01	0.01
Li 14	-0.6469	0.76(0.71)	-0.03	-0.01	-0.07
Li 15	-0.6469	1.97(1.99)	-0.02	-0.01	0.02
Li 16	-0.6469	1.97(1.99)	-0.02	-0.02	0.02
Li 17	-0.5682	1.96(1.99)	-0.01	0.00	-0.01
Li 18	-0.5682	1.96(1.99)	-0.01	-0.01	-0.01

electrons for the ground state is 164. The total energies, the ionization threshold (I_t) , and the electronic configurations for the ground state and two ionized states are shown in Table V, together with the GAOP's. The electronic configurations for the ionized states are $\cdots(41a^1)\cdots(82a^2)$. The value of I_t from the surface is 6.0 eV according to Δ SCF, and 8.1 eV with correlation corrections. The correlation-corrected result is very close to the experimental value. It is therefore possible that the observed small I_t arises from lattice defects in the bulk solid and at the surface.

Poole and co-workers^{4,5} used their UPS spectra to obtain the total width of the halide-ion band, $E_{tw}(F^-)$. This prob-

ably includes contributions from the effects discussed above; the calculated $E_{tw}(F^-)$ corresponding to the value of 6.1 eV of Poole and co-workers is 9.8 eV. This is obtained as the difference between the maximum²⁸ IP(Δ SCF:15.8 eV) + correlation correction (2.1 eV) and the surface I_t (8.1 eV). Although the value of 9.8 eV is different from the value (6.1 eV) of Poole and co-workers, it is quite close to the band width of 10.5 eV that can be directly read from their UPS results.⁴ The two band calculations with a perfect lattice give 2.8 eV (Ref. 24) and 2.0 eV,²⁵ and the previous cluster calculation with perfect lattice also gives 2.7 eV for $E_{tw}(F^-)$ (evaluated from Table II in Ref. 28). The calculated and

3785

TABLE VI. Summary of electronic band structure of LiF.

	Ionization Threshold (eV)			Band (eV)			Excition (eV)			
	surface bu	lk	surfac	e bulk	Gap	Band width $(F 2p)$		Bulk	Surface	Affinity
Method/lattice	Imperfect		Perfect		Perfect	Imperfect	Perfect	Perfec		
Band theory										
LDF ^a				11.7	10.5		2.8			
LDF with correlation				14.3	13.9		2.8		11.7	
(Periodic cluster Δ SCF) ^a										
LDF with correlation ^b					14.0		2.0			
Embedded cluster ^c										
ΔSCF	6.0	6.6	12.5	13.1	11.8		2.7	11.3	9.4	-0.9
Δ SCF with correlation correction	8.1	8.7	14.6	15.2	13.9	9.8	2.7	13.4	11.5	-0.8
Expt.	\sim 7.5 (9.8) ^d			13.0 ^e	13.6 ^d 14.2 ^g	$\sim 10.5(6.1)^{d}$	3.5 ^h	13.5 ^h 12.6 ⁱ	10.3 ^f	< 0.0

^aSee Ref. 24.

See Ref. 25.

See Ref. 28.

^dSee Refs. 4 and 5.

^eSee Refs. 1 and 2.

experimental $E_{tw}(F^-)s$ are so different that it would be interesting to remeasure the $E_{tw}(F^-)$ and to discuss $E_{tw}(F^-)$ from the perfect lattice.

IV. DISCUSSION AND CONCLUSION

The results discussed above are collected in Table VI. Four ionization thresholds (I_t 's) are given: the surface and bulk I_t 's are calculated with both imperfect and perfect lattice models. The calculated I_t values with electron correlation corrections from the surface and bulk with a lattice defect are 8.1 and 8.7 eV, respectively, which shows good agreement with the onset of UPS, ~ 7.5 eV. The observed value⁴ (9.8 eV) will include the defect contamination inevitably present in the solids. The value of $I_t = 13.0$ eV given by Taylor and Hartman¹ is close to the theoretical values calculated for the perfect lattice with correlations (14.3 and 15.2 eV), which may be due to limitations of sensitivity in the 1950s instruments used. The theoretical total band widths for ^fSee Ref. 9.

^gSee Ref. 6.

^hSee Ref. 38.

ⁱPong and C. S. Inouye as quoted in Ref. 24.

 F^- with the perfect lattice lie in the range 2.0–2.8 eV, and compare favorably with the early value (3.5 eV) of O'Bryan and Skinner.³⁸ Modern UPS (Ref. 4) gave a band width of 6.1 or ~10.5 eV, the lower value (6.1 eV) was given by Poole and co-workers⁴ and the larger one is read from their UPS results, and these incorporate contributions from lattice defects in the bulk and the surface because of greater instrumental sensitivity. Other energetics are well explained by the perfect lattice model, implying that contributions from lattice defects are small.

ACKNOWLEDGMENT

The SCF calculations were performed using the JAMOL3 program written by Kashiwagi and co-workers³⁹ modified by Tatewaki and Miyoshi²⁸ to treat the Madelung potential. The present research is supported partly by a Grant-in-Aid from the Ministry of Education, Science, and Culture of Japan and by the Research Foundation for Electrotechnology of Chubu, Japan.

- ¹J. W. Taylor and P. L. Hartman, Phys. Rev. **113**, 1421 (1959).
- ²S. W. Duckett and P. H. Metzger, Phys. Rev. 137, A953 (1965).
- ³M. Roessler and W. C. Walker, J. Phys. Chem. Solids **28**, 1407 (1967).
- ⁴R. T. Poole, J. G. Jenkin, J. Liesegang, and R. C. G. Leckey, Phys. Rev. B **11**, 5179 (1975).
- ⁵R. T. Poole, J. Liesegang, R. C. G. Leckey, and J. G. Jenkin, Phys. Rev. B **11**, 5190 (1975).
- ⁶M. Piacentini, Solid State Commun. **17**, 697 (1975).
- ⁷G. Roy, G. Singh, and T. E. Gallon, Surf. Sci. **152/153**, 1042 (1985).
- ⁸P. A. Cox and A. A. Williams, Surf. Sci. 175, 1782 (1986).
- ⁹T. E. Gallon, Surf. Sci. **206**, 365 (1988).
- ¹⁰P. Wurz, J. Sarnthein, W. Husinsky, G. Betz, P. Nordlander, and

- Y. Wang, Phys. Rev. B 43, 6729 (1991).
- ¹¹D. Ewing and F. Seitz, Phys. Rev. **50**, 760 (1936).
- ¹²T. B. Grimley, Proc. Phys. Soc. London **71**, 749 (1958).
- ¹³A. B. Kunz, T. Miyakawa, and S. Oyama, Phys. Status Solidi 34, 581 (1969).
- ¹⁴L. J. Page and E. H. Hygh, Phys. Rev. B 1, 3472 (1970).
- ¹⁵R. C. Chaney, E. E. Lafon, and C. C. Lin, Phys. Rev. B 4, 2734 (1971).
- ¹⁶G. S. Painter, Int. J. Quantum Chem., Quantum Biol. Symp. 5, 501 (1971).
- ¹⁷D. M. Drost and J. L. Fry, Phys. Rev. B 5, 684 (1972).
- ¹⁸M. R. Hayns, J. Phys. C 5, 15 (1972).
- ¹⁹F. Perrot, Phys. Status Solidi B 52, 163 (1972).
- ²⁰N. E. Brener, Phys. Rev. B 7, 1721 (1973).

- ²¹D. J. Mickish and A. B. Kunz, J. Phys. C 6, 1723 (1973).
- ²²G. E. Laramore and A. C. Switendick, Phys. Rev. B 7, 3615 (1973).
- ²³A. B. Kunz, Phys. Rev. B **12**, 5890 (1975).
- ²⁴A. Zunger and A. J. Freeman, Phys. Rev. B 16, 2901 (1977).
- ²⁵A. B. Kunz, Phys. Rev. B **26**, 2056 (1982).
- ²⁶A. B. Kunz and C. P. Flynn, J. Phys. C 16, 1659 (1983).
- ²⁷V. A. Lobatch, B. E. Kulyabin, V. P. Zhukov, and N. I. Medvedeva, Phys. Status Solidi B **158**, 239 (1990).
- ²⁸H. Tatewaki and E. Miyoshi, Surf. Sci. **327**, 129 (1995).
- ²⁹H. M. Evjen, Phys. Rev. **39**, 675 (1932).
- ³⁰C. C. J. Roothaan and P. S. Bagus, *Methods in Computational Physics* (Academic, New York, 1963), Vol. 2, p. 215.
- ³¹H. Tatewaki and S. Huzinaga, J. Chem. Phys. **71**, 4339 (1979); **72**, 399 (1980).

- ³²H. Tatewaki and S. Huzinaga, J. Comput. Chem. 1, 205 (1980).
- ³³S. Huzinaga, J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai, and H. Tatewaki, *Gaussian Basis Sets for Molecular Calculations* (Elsevier, Amsterdam, 1984).
- ³⁴R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).
- ³⁵C. E. Moore, *Atomic Energy Levels*, Nat. Bur. Stand. U.S., Circ. No. 1 (U.S. GPO, Washington, D.C., 1971).
- ³⁶T. Koga, H. Aoki, J. M. Garcia de la Vega, and H. Tatewaki, Theor. Chem. Acc. **96**, 248 (1997).
- ³⁷ Handbook of Chemistry and Physics, 70th ed. (CRC, Boca Raton, FL, 1989), p. E-67.
- ³⁸H. M. O'Bryan and H. W. B. Skinner, Proc. R. Soc. London, Ser. A **176**, 229 (1940).
- ³⁹H. Kashiwagi, T. Takada, E. Miyoshi, S. Obara, and K. Ohno, Contri. Res. Group Atoms Mol. **12**, 5 (1976).