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Co-operative Kondo effect in the two-channel Kondo lattice
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We examine how the properties of a single-channel Kondo lattice model are modified by additional screen-
ing channels. Contrary to current wisdom, additional screening channels appear to constitute a relevant per-
turbation which destabilizes the Fermi liquid. This instability involves two stages. When a heavy Fermi surface
develops, it generates zero modes for Kondo singlets to fluctuate between screening channels of different
symmetry, producing a divergent composite pair susceptibility. Additional screening channels couple to these
divergent fluctuations, promoting an instability into a superconducting state with long-range composite order.
We discuss possible implications for heavy fermion superconductivity.@S0163-1829~99!04629-9#
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I. INTRODUCTION

One of the remarkable properties of localized magne
moments is their ability to transform the electronic propert
of their host. These effects are dramatic in heavy ferm
compounds.1,2 Since the mid 1970’s, several hundred hea
fermion compounds have been discovered, characterize
a dense lattice of magnetic rare-earth or actinide ions
mersed in a conducting host. These materials bypass the
mal development of ordered antiferromagnetism to form
new kind of electron fluid.16 The resulting metallic state con
tains quasiparticles with effective masses up to a thous
times greater than a bare electron. For example, in Ce6
~Ref. 3! the presence of only 14% Cerium in the copper h
increases the effective mass of the electrons by a facto
1600.

In a small handful of heavy fermion compounds, t
heavy electron fluid becomes superconducting.1 Local mo-
ments, usually harmful to superconductivity actually parti
pate in this superconducting condensation process and a
nificant fraction of the local moment entropy is quenched
part of the condensation process. In UBe13, for example, the
spin-condensation entropy is about 0.2kB ln 2 per spin.4 One
of the great challenges is to understand how microsco
order parameter in these systems involves the spin oper
of the local moments.

The concept of ‘‘composite pairing,’’ where a Coop
pair and local moment form a bound-state combination t
collectively condenses may provide a way to address
problem.5–10 A composite ‘‘triplet’’ involves a bound-state
between a spin and singlet Cooper pair,

Lt~x!5^CN22uc↓~x!c↑~x!S~x!uCN&, ~1!

but a composite singlet involves a triplet and a spin-flip
PRB 600163-1829/99/60~5!/3608~21!/$15.00
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Ls~x!5^CN22uc1↓~x!c2↓~x!S1~x!uCN&, ~2!

where 1 and 2 refer to two conduction electron chann
Such composite order parameters were originally conside
in the context of odd-frequency pairing5–7 but more recent
work has emphasized that composite order may coexist w
BCS pairing in cases where the spin plays a central role
the condensation process.8,9 Unfortunately, we know very
little about how such composite pairing might come to pa
A divergent composite singlet susceptibility is known to o
cur in the symmetric two-channel Kondo impurity mode5

and more recent studies suggest that a large composite
ceptibility may persist into the two-channel Kondo lattice11

In this paper we introduce a model for heavy fermi
behavior where the local moments couple to asingleconduc-
tion band via two orthogonal scattering channels. We fi
that when two scattering channels of the same parity sha
common Fermi surface,constructiveinterference develops
between the channels. The scattering of electrons in
Kondo effect is described by an SU~2! matrix VG (G51,2)
associated with each channel. A key result of our paper
lates the composite order to the gauge invariant interfere
term between these two matrices

V†
2V152

J1J2

2 F F L

2L† F†G , ~3!

where

F5c†
1sc2•S,

L5c1~ isy!sc2•S, ~4!

represent the singlet composite order in the particle-hole,
particle-particle channels, respectively, andJ1 and J2 de-
3608 ©1999 The American Physical Society



.
e

nc
ke
fo

tw
si

ri-
yin
uc
iv

co
nc
s

ou
-
a
lly

ally

o
el
ts,
ing
This
ting

ng-

dy
d
nel

ves
c-

the
mi-

nge
con-
ese
vi-

n

of
ity
se
in-
der
um-
lue
e
nge

lity
ave
ec-

x-
are

nt

o

w

ffil
t
y

on
un
t

nd
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scribe the Kondo coupling constants in the two channels
a single impurity, the Kondo effect in the stronger chann
suppresses any Kondo effect in weaker channels.12,13 A key
feature of our lattice mechanism, is that channel interfere
co-operatively enhances the Kondo effect in the wea
channel, driving the development of composite pairing
arbitrarily weak second-channel coupling.

The development of phase coherence between the
channels is signaled by the condensation of composite
glet pairs at a new temperature scale

Tc;ATK1TK2, ~5!

whereTK1 and TK2 are the Kondo temperatures of the p
mary and secondary channels, respectively. The underl
gap symmetry of the quasiparticles in this new supercond
ing phase reflects the interference phenomena and is is g
by a product of the form factorsF1k and F2k from each
channel:

Dk5D0F1kF2k . ~6!

In the typical composite paired state, composite pairs
exist with Cooper pairs, as envisaged in the works of Bo
and Balatsky and also Poilblanc.8,9 One of the novel feature
of this mechanism, is that it permits both gaplessandgapfull
anisotropic superconductivity. In the region where the c
pling constantsJ1 andJ2, for the two channels, are of com
parable strength, the nodes in the excitation spectrum gr
tate to the center of the unit cell, where they mutua
annihilate to produce a gapped phase~Fig. 1, Fig. 7!. In this

FIG. 1. Mean-field phase diagram for a two-dimensional tw
channel Kondo lattice with ans-wave andd-wave interaction chan-
nel. nc denotes the filling of the conduction band.J2 /J1 is the ratio
of coupling constants in the two channels. The phase diagram
computed for a tight-binding model, keeping max(J1 ,J2)54t, the
bandwidth. KI denotes Kondo insulator phases, that exist at hal
ing, but which undergo a superconductor-insulator transition a
critical value ofJ2 /J1. The lightly shaded region is dominated b
composite pairing, and there is a gap for quasiparticle excitati
Along the dotted lines, the conduction electrons are entirely
paired, and a pure composite pair condensate is formed. In
darkly shaded regime, Cooper and composite pairs coexist, a
gapless anisotropic superconductor is formed.
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phase, the BCS order parameter is very small, and actu
vanishes along a line in the phase diagram.

At half filling, a Kondo lattice generally forms a Kond
insulating phase.14 With the addition of a second-chann
coupling, we find that at a critical ratio of coupling constan
there is a second-order transition from the Kondo insulat
phase into a pure condensate of superconducting pairs.
leads to a phase diagram, where a first order line represen
the Kondo insulator terminates at a superconducti
insulating transition, as illustrated in Fig. 1.

A brief description of our work in this area has alrea
been published.15 This paper is intended to provide a detaile
account and discussion of the co-operative two-chan
Kondo effect.

II. MULTICHANNEL SCATTERING EFFECTS
IN INTERACTING KONDO LATTICES

The classical approach to heavy fermion physics invol
local moments which couple exclusively to conduction ele
tron states with the same localf symmetry. This assumption
derives from the observation that spin-exchange between
conduction electrons and the local moments occurs predo
nantly via hybridization in thef channel.

However, more careful considerations suggest16–19 that
electron-electron interactions can cause new spin-excha
channels to open up between a local moment and the
duction sea. There are several mechanisms by which th
new spin exchange channels can open up, including the
cinity to a quantum critical point,17 interactions in the con-
duction sea,18,19 and intra-atomic Hunds interactions.20

The first mechanism, identified long ago in a little-know
paper by Larkin and Melnikov17 may be particularly impor-
tant for heavy fermion systems which lie at the brink
magnetism. Larkin and Melnikov studied the single impur
Kondo effect in the vicinity of a magnetic quantum pha
transition, where the local moment polarizes electrons at
creasingly greater distances. The critical magnetic or
thereby induces the spin to scatter electrons in a large n
ber of angular momentum channels up to a maximum va
l 0;kFj, where j is the spin correlation length. The larg
screening cloud causes the matrix element for spin excha
to become

J˜Jk,k85Jx~k2k8!, ~7!

wherex is the strongly momentum dependent susceptibi
of the magnetic host. When decomposed into partial w
states, they found that this led to a Kondo coupling to el
trons in all channels with angular momentuml< l 05kFj.

More recent work has made it clear that new spin e
change channels open up whenever charge fluctuations
suppressed by interactions in the conduction sea.18,19 Con-
sider the situation shown in Fig 2, where a local mome
hybridizes with nearby orbitals in ad-channel. The spin-
exchange between the local moment is written

HI5J~S•C†
dasabCdb!, ~8!

where

-
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Cds
† 5

1

2
~c1s

† 2c2s
† 1c3s

† 2c4s
† ! ~9!

creates an electron in thed channel. Notice that the spi
exchange involves processes where the electrons ‘‘hop
flip’’ between neighboring orbitals. If large repulsive inte
actions are present in the conduction sea, then an elec
can no longer ‘‘hop and flip’’ onto a site that is alread
occupied. This restriction means that creation operators m
be replaced by Hubbard operators

cj s˜cj s~12nj 2s!5X j s . ~10!

To see how this modifies the spin-exchange processes
can use a Gutzwiller approximation

X†
jsX l˜c†

jscl3H 1 ~ j 5 l !,

~12x! ~ j Þ l !,
~11!

where x is the concentration of carriers per site. This a
proximation correctly describes the complete suppressio
hop and flip processes in the limit wherex51. With this
replacement the transformed Kondo interaction devel
three new scattering channels

HI5J1S~C†
dsCd!1J2S~C†

ssCs

1C†
px

sCpx
1C†

py
sCpy

!, ~12!

whereJ15(123x/4)J, J25(x/4)J,

Css
† 5

1

2
~c1s

† 1c2s
† 1c3s

† 1c4s
† ! s channel,

Cpys
† 5

1

A2
~c1s

† 2c3s
† !,

Cpxs
† 5

1

A2
~c2s

† 2c4s
† ! p channel ~13!

create electrons in the secondary channels. Electrons in
secondary channels are able to exchange spin with the
moment even though they do not hybridize with it.

In more complex Uranium heavy fermion systems, int
atomic interactions play a vital role in opening up secon
channel couplings.20 In uranium atoms, the Hunds intera
tions have the effect of suppressing fluctuations in
‘‘shape’’ of the localized orbital, so that electrons scatteri

FIG. 2. Magnetic moment in an interacting environment. Loc
ized electron at center of plaquet hybridizes in thedxy channel with
nearby atoms. The on-site interaction at each atomic siteUc is taken
to be far larger than the electron bandwidtht.
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off a localized orbital tend to exchange spin, while prese
ing their orbital quantum numbers. In a tetragonal crystal
example where the low lying state of thef 2 ion is a magnetic
non-Kramers doublet20,21

u6&5au61&1bu73&, ~14!

spin fluctuations within this doublet involve the exchange
spin with conduction electrons in two different ‘‘shape
channels, with equal Kondo coupling constants.

III. TWO-CHANNEL KONDO LATTICE MODEL

This discussion motivates us to examine how additio
spin exchange channels might modify the physics o
Kondo lattice. To this end, we shall consider a Kondo latt
model where two orthogonal scattering channels domin
the spin exchange process:

H5( eksc†
kscks1(

G j
JGc†

G jscG j•Sj , ~15!

where cG j
† 5(cG j↑

† , cG j↓
† ) (G51, 2! is a two component

spinor

c†
G j s5Ns

21/2(
k

FGkc
†

kse2 ik•Rj , ~16!

that creates an electron at sitej in one of two orthogonal
Wannier states, with form-factorFGk . HereNs is the num-
ber of sites. We shall show that channel interference
comes strong when two channels have the same spatial
ity.

A simple example of our model is a two-dimension
tight-binding lattice of conduction electrons, where

ek522t~coskx1cosky!2m, ~17!

andm is the chemical potential, interacting with a local m
ment at each site in ans and ad channel, so that

F1k51 ~s channel!,

~18!

F2k5~coskx2cosky! ~dx22y2 channel!,

as shown in Fig. 3. A slightly more appropriate examp
would be a three-dimensional lattice, where

ek522t~coskx1cosky1coskz!2m, ~19!

- FIG. 3. Illustrating spin coupled to electrons via ans, and a
dx22y2 channel.
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with a local moment at the center of each cube of ato
interacting in a primaryf xyz channel and a secondarypz
channel

F1k5A8 sinkx sinky sinkz ~ f xyz channel!,

~20!

F2k5A2 sinkz ~pz channel!,

as shown in Fig. 4.
Unlike earlier treatments of two-channel Kondo pro

lems, our model involves asingleconduction electron band
and there is no globally conserved ‘‘channel quantum nu
ber.’’ In a heavy fermion system, the orbital channels
locally well defined, but an electron scattering in one chan
at one site, can then scatter in a different channel at a se
site. This is important, for it can lead to interference effe
between the Kondo effect in different channels which
completely absent in models with an artificial channel qu
tum number conservation. To illustrate this important po
we shall contrast the properties of our model with the ch
nel symmetric ‘‘control model’’

HC5(
kGs

ekc
†

GkscGks1(
G j

JGc†
G jWscG j•Sj , ~21!

where now

c†
G j s5Ns

21/2(
k

c†
Gkse2 ik•Rj ~22!

(G51, 2!. In the control, electrons in different channels
not interfere, and we shall show that this prevents the de
opment of composite pairing.

IV. COMPOSITE PAIRING INSTABILITY
OF THE ONE-CHANNEL KONDO LATTICE

To examine the effect of second-channel couplings,
introduce the composite operator

L†5(
j

ic†
1 jss2c†

2 j•Sj . ~23!

This operator transfers singlets between channels by ad
a triplet and flipping the local moment. To see how th
works, consider a single site, where

FIG. 4. Illustrating spin coupled to electrons via a primaryf xyz

and a secondarypz channel.
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uCs1&5
1

A2
@c†

1↑u↓&2c†
1↓u↑&],

uCs2&5
1

A2
@c†

2↑u↓&2c†
2↓u↑&], ~24!

represent Kondo singlets in channels one and two res
tively. The action of the single site composite operatorL†

5 ic†
1ss2c†

2•S is as follows:

L†uCs1&52c†
1↓c†

1↑uCs2&,

L†uCs2&52c†
2↑c†

2↓uCs1&, ~25!

showing that the composite operatorL† transfers a Kondo
singlet between channels, leaving an electron pair behin
the channel formerly occupied by a Kondo singlet.

We now show how channel interference in the one ba
model causes the susceptibility of this composite operato
develop a BCS-like divergence in the Fermi liquid grou
state. Suppose thatJ250 andJ1 is sufficiently large for a
Kondo effect to develop in channel one. In the correspond
Fermi liquid ground stateuF&, the composite pair suscept
bility is given by

xL5(
l

H S ^FuL†ul&^luLuF&
EF2El

D1~L
L†!J . ~26!

To evaluate the matrix elements appearing in this express
we need to decompose the composite operator in term
quasiparticle operators. The essence of the Kondo effec
the development of Fermionic bound states between the l
moments, and the conduction electrons. At low energies,
operator (Sj•sab)c1b then behaves as a single bound-st
fermion, represented by the contraction

~Sj•sab!c1b~ j !5 z̄f j a . ~27!

wherez̄ is the amplitude for bound-state formation. By ma
ing this contraction, we imply that in all matrix elemen
between low-lying excitationsua& and ub& of the Fermi liq-
uid, (Sj•sab)c1b can be replaced by a Fermi operator
follows:

^au~Sj•sab!c1b~ j !ub&5z^̄au f j aub. ~28!

It is the contraction of the exchange term which gives rise
a resonant hybridization betweenf and conduction electron

J1@c†
1 j~Sj•s!c1 j1H. c.#5J1z̄@c†

1 j f j1H. c.# ~29!

so that at low energies, the Kondo Hamiltonian can be
placed by an effective Anderson model.

The low energy eigenstates of the one channel Kon
lattice model are then an admixture of electron and comp
ite fermion aks5cosdkcks1sindk f ks , with Hamiltonian
H* 5(ksEka

†
ksaks . The volume of the Fermi surface now

counts both the conduction and compositef electrons.22–24In
the one band model, the conduction and compositef electron
share a single Fermi surface and they may be decompose
follows:
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cks5cosdkF
aks1•••,

f ks5sindkF
aks1•••, ~30!

where the high-energy components that do not affect
low-energy matrix elements have been omitted . Near
Fermi surface the scattering is resonant anddkF

;p/2. More-
over, the small conduction electron admixture at the Fe
surface must reflect the symmetry of the screening chan
so that cosdkF

}F1kF
.

We can now apply the contraction procedure to evalu
the matrix elements of the composite operator. Let us be
with the control model. Applying the contraction procedu
we obtain

^luL†uF&C52 i(
j

^luSj•~c†
1 jss2c2 j

† !uF

5z(
k,s

^lusc2ks
† f †

2k2suF&. ~31!

In the control model,c2k
† and f 2k

† ;a2k
† , respectively, create

light and heavy electrons on completely different Fermi s
faces. The mismatch between the volume and the disper
of the Fermi surfaces for channel one and two assures
the excitation energyEl2EF5ek1Ek is always finite:

^luL̂†uF&C}(
k,s

s ^luc†
2ksa†

2k2suF&,

~32!

El2EF5ek1Ek.0.

The channel susceptibilityxL is consequentlyfinite. We con-
clude that with perfect channel symmetry, a small seco
channel coupling isirrelevant.

Now let us remove the channel symmetry and return
the physical model. Now we have

^luL†uF&5 i(
j

^luSj•~c†
1 jss2c†

2 j !uF&

5z(
k,s

F2k^luscks
† f †

2k2suF&. ~33!

Unlike the previous case, this pair creation operator can
decomposed in terms of quasiparticles on a single he
Fermi surface. Transforming to quasiparticle operators us
Eq. ~30! introduces a factor cos (dk)sin(dk);F1k into the
sum, so that

^luL̂†uF&}(
k,s

s F12kF2k^lua†
ksa†

2k2suF&,

~34!

El2EF52Ek .

This relation describes the decomposition of the compo
pair operator in terms of the low-lying quasiparticles~see
Fig. 5!. Notice that the matrix element is proportional
F12kF2k , showing that this amplitude involves an interfe
ence between the two channels. Furthermore, the two f
factors must must have the same parity, or the compo
operator vanishes on the Fermi surface. Since the excita
energy, 2Ek vanishes on the heavy Fermi surface, it follow
e
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that there are now a large number of zero modes for
transfer of singlets between channels.

It follows that the composite pair susceptibilityxL now
contains a singular term. Substituting the above results
the general expression for the composite pair susceptibi
we find

xL}(
k

~F1kF2k!2

2Ek
˜`, ~35!

which diverges logarithmically in the thermodynamic lim
We see that once channel symmetry is broken, the compo
pair susceptibilityxL is directly proportional to the BCS pai
susceptibility of the heavy quasiparticles, where the symm
try of the channel is given by theproductof the two screen-
ing channels.

This has immediate consequences for the effect of a fi
J2 on the Fermi liquid ground state. Once channel symme
is broken, the susceptibility to transfer singlets by creat
composite pairs diverges. Any finiteJ2 will polarize the
transfer of singlets into channel two, thereby couplingJ2 to
this divergent susceptibility. Thus the loss of channel sy
metry causes a coupling to a second channel to becom
relevant perturbation. This will forceJ2 to scale to strong
coupling. A similar conclusion will hold whenJ2 is large
and J1 is small. The simplest way to connect up the ren
malization flows in the vicinity of the strong-coupling Ferm
liquid fixed points with the flow away from the weak cou
pling fixed point is by hypothesizing the presence of a n
attractive Kondo lattice fixed point that is common to bo
channels~Fig. 6!.

V. SU„2… FORMALISM

The key to the development of a field theory for compo
ite pairing, lies in the use of the Abrikosov pseudofermi
representation for the local moments

Sj5 f †
j aS s

2 D
ab

f j b ,

~36!
nf~ j !51.

FIG. 5. The action of the composite operator on heavy Fe
liquid creates~i! a pair of heavy fermions~channel interference! and
~ii ! a heavy and light electron~channel conservation!.
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Since f-charge fluctuations have been removed, the Kon
lattice model ~KLM ! is defined within the subspace co
strained by the~Gutzwiller! requirementnf51 at each site.
The absence off-charge fluctuations is manifested as a lo
SU~2! gauge invariance of the Heisenberg spin opera
Sj ,25

f †
j s˜H eif f †

j s ,

cosu f †
j s1sgns sinu f j 2s .

~37!

To illustrate this feature, consider the spin raising operat
S1 . This process can proceed by first annihilating a do
electron, then creating an up electron, writtenSj

15 f †
j↑ f j↓ .

Alternatively, it can proceed by first creating an up electr
forming thenf52 state, then annihilating a down electro
written Sj

152 f j↓ f †
j↑ . In fact, one can accomplish the sp

raising operation by an arbitrary linear combination of t
above:

Sj
15~cosu f †

j↑1sinu f j↓!~cosu f j↓2sinu f †
j↑!. ~38!

In other words, there is no distinction between a particle o
hole when all charge fluctuations are removed.25

The SU~2! symmetry implies that the constraintnf51 is
actually component of a triplet of local ‘‘Gutzwiller con
straints’’

f †
j↑ f j↑2 f j↓ f †

j↓
f †

j↑ f †
j↓

f j↓ f j↑
J 50, ~39!

which can be written in the compact form

f̃ †
jt f̃ j50, ~40!

where f̃ †
j5( f †

j↑ , f j↓) is a Nambu spinor, andt
[(t1 ,t2 ,t3) represents the triplet of Pauli matrices. T
first two constraints are particularly important in any cons
eration of a paired state, providing the main driving force
anisotropic pairing.

The partition function for our model is given byZ
5Tr@PGe2bH#, wherePG5) j (nj↑

f 2nj↓
f )2 is the Gutzwiller

FIG. 6. Conjectured renormalization group flows for the c
operative two-channel Kondo effect. The Fermi liquid formed
channel one or two is unstable to common a two-channel state
composite order.
o

l
r

n
n

,

a

-
r

projection for onef-spin per site. Following earlier work, we
rewrite the Gutzwiller projection as an integral over t
SU~2! group

~nj↑
f 2nj↓

f !25E d@Wj # ĝ j , ~41!

where ĝ j5ei f †
jWj f j is the SU~2! operator,Wj5u j n̂j•t, (u j

P@0,2p#) and d@W#5sin2 ududn̂/(4p2) is the Haar
measure26 over the SU~2! group. Introducing this into the
partition function permits us to write it as a path integral

Z5E D@ f ,c,W#e2*0
b(L11H)dt, ~42!

where

L15(
kW

c†
kW]tckW1(

j
f †

j~]t2 iWj ! f j ~43!

is the Berry phase.
The antiferromagnetic interaction between the localiz

moments and the conduction electrons can be decouple
the particle-hole channel as follows:

JGFsG•S2
1

2G52
JG

2
$aG

† ,aG%, ~44!

where

aG5(
s

f †
scGs . ~45!

The SU~2! gauge symmetry guarantees that there is in fac
continuous family of ways to decouple the interaction. Th
by making the transformationf s˜s f 2s

† , we can decouple
the interaction in the Cooper channel as follows:

JGFsG•S2
1

2G52
JG

2
$bG

† ,bG%, ~46!

where

bG5(
s

s f 2scGs . ~47!

We now decouple the interaction simultaneously in bo
channels, by first writing

HI52
JG

4
@$aG

† ,aG%1$bG
† ,bG%#, ~48!

then decoupling each term as follows:

2
JG

4
$aG

† ,aG%˜@aG
†VG1H.c.#1

2

JG
VG* VG,

2
JG

4
$bG

† ,bG%˜@bG
†DG1H.c.#1

2

JG
DG* DG. ~49!

It is convenient at this point, to introduce a Nambu spin
representation for the conduction electrons

-
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ck5S ck↑
c†

2k↓
D . ~50!

The corresponding spinor for the localized electron Wann
states is

c̃G j5S cG↑
c†

G↓
D 5(

k
FGkS ck↑

pc†
2k↓

D eik•Rj , ~51!

where p is the parity of the form-factorFGk5pFG2k . The
decoupled interaction can now be written in the symme
form ~Appendix A!.

JG~S•sG!˜@ f̃ †VGc̃G1H.c.#1
1

JG
Tr@V†

GVG#, ~52!

whereVG is directly proportional to an SU~2! matrix gG

VG5F V D

D* 2V* GG

5 iV0
GgG . ~53!

The integration measure forVG is

d@VG#5dVGdVG* dDGdDG* . ~54!

Repeating this decoupling procedure at each site in
path integral, enables us to write

Z5E D@ f ,c;W,V#e2*0
b(L11H)dt,

H5(
kW

ekWc
†

kWt3ckW1HI ,

HI5(
G i

H @ f̃ †
iVG iC̃G i

1H.c.#1
1

JG
Tr@V†

G iVG i #J . ~55!

VI. GAUGE FIXING

Our model now has the following time dependent SU~2!
gauge invariance:

f̃ j˜gj f̃ j ,

VG j˜gjVG j ,

Wj˜gj~Wj1 i ]t!g
†

j , ~56!

associated with the absence off-charge fluctuations. When
we develop a saddle-point expansion for the functional in
gral, we need to deal with the local zero modes associa
with this gauge invariance. Following standard gauge the
practice, this means that we need to fix the gauge. We ch
the ‘‘radial gauge,’’ where the Kondo matrixV is propor-
tional to a unit matrix in the channel with the largest Kon
coupling constant. This is the SU~2! analog of the radial
gauge used by Read and Newns in their U~1! treatment of the
single channel27,28 Kondo lattice. Suppose that

V1~ j !5 iv1~ j !hj , ~57!
r

c

e

-
ed
ry
se

where v1( j ) is real andhj is an SU~2! matrix. To fix the
gauge, we absorbhj into a redefinition of the fields by settin
gj5h†

j (t) and making the gauge transformation~56!. In the
radial gauge,

V1 j~t!5 iv1 j~t!1,

Wj~t!5h†
j~t!~Wj1 i ]t!hj~t!, ~58!

so the formerly static fieldWj is elevated to the status of
dynamic fieldWj (t). The measure for the bosonic fields in
side the path integral is now

d@W,V#5~v1!3dv1d@V2#d3W, ~59!

at each site and time slice.

VII. LINK BETWEEN COMPOSITE ORDER
AND CHANNEL INTERFERENCE

Under the local SU~2! gauge transformationf̃ j˜gj f̃ j ,
Eq. ~56!, the two amplitudesV1 j andV2 j which describe the
Kondo effect at site j transform in precisely the same w
The only gauge invariant term we can form from a sing
channel is trivially proportional to the unit matrixV G j

† VG j}
51. But in a two-channel Kondo problem, the interferen
term

V†
2 jV1 j ~60!

is also gauge invariant, sinceV†
2 jV1 j˜V†

1 jg
†

jgjV2 j
5V†

2 jV1 j and for this reason, is expected to have a sim
physical significance. To identify the meaning of the inte
ference term we introduce a source term into the Ham
tonian that couples to it

H˜H1(
j

Tr@V 2 j
† V1 ja j1H.c.#, ~61!

wherea j5a j
01 i aj•t is a unitary matrix, with four real co-

efficients (a0,a) at each site . If we now reverse the Hu
bard Stratonovich transformation, by integrating over t
fields VG ~Appendix B! the Hamiltonian acquires the add
tional term

H˜H1Tr@M j
†a j1H.c.#, ~62!

where now

M†
j52

J1J2

2 F F L

2L† F†G
j

~63!

and

F j5c†
1 jsc2 j•Sj ,

L j5c1 j isysc2 j•Sj ~64!

represents the composite order in the particle-hole
particle-particle channels, respectively. By comparing E
~61! and ~62!, we obtain a special relationship between t
inter-channel interference and the composite order,
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V†
2 jV1 j52

J1J2

2 F F L

2L† F†G
j

. ~65!

Notice incidentally that the off-diagonal terms are odd un
interchange of the channel index.

We thus learn thatif the Kondo effect develops coheren
in two channels, composite order develops. This enables us
to understand why composite order develops critical corr
tions in the symmetric two-channel Kondo model.5 In a lat-
tice, true long-range order becomes possible.

Let us briefly consider the possible phases that might
velop. IfVG develops a finite amplitude in both channels th
the composite order in the ground state will have the for

F ^cuFuc& ^cuLuc&

2^cuL†uc& ^cuF†uc&
G

j

52S 2

J1J2
DV†

2 jV1 j . ~66!

Suppose the amplitudes ofVG are constant, then in the ‘‘ra
dial gauge’’

V1 j5 iv11,

V2 j5 iv2e2 if jnj •t, ~67!

where the vectornj develops a vacuum expectation valu
The composite order matrix is then

F ^cuFuc& ^cuLuc&

2^cuL†uc& ^cuF†uc&
G

j

5M0eif jnj •t, ~68!

whereM052v1v2 /(J1J2). Two kinds of phase are possibl
Composite magnetism, wherenj5 ẑ. In this phase, the or

der parameter matrix is diagonal and

^cuc†
1 jsc2 j•Sj uc&5M0eif j . ~69!

This phase breaks time-reversal symmetry, forming an
bital magnet where the spin becomes correlated with e
trons in two orbitals.

Composite singlet pairing, where f j5p/2. If n̂(x)
5cosu(x)x̂1sinu(x)ŷ, whereupon

Ls~xj !5 i ^cuc1 jsysc2 j•Sj uc&5 iM 0e2 iu j . ~70!

The second possibility is particularly interesting, becau
the composite pair susceptibility diverges in the Fermi liqu
phase. This is the main topic of the of the paper.

VIII. MEAN FIELD THEORY OF THE COMPOSITE
PAIRED STATE

We now develop a mean-field theory for the unifor
composite paired state. With this theory, we show that
two strong-coupling Fermi liquid phases of our two-chan
Kondo model share a common instability into a phase w
uniform composite order.

We seek a uniform solution, where all mean-field para
eters have no dependence on position. In this case the m
field Hamiltonian is most compactly represented in mom
tum space as
r

-

e-

.

r-
c-

e

e
l
h

-
an-
-

HMF5(
k

~ c̃†
k , f̃ †

k!F ekt3 V†
k

Vk W•t
G S c̃k

f̃ k
D , ~71!

where now

Vk5V 1F1k1V 2F2k . ~72!

Strictly speaking, here we should have written the form fa
tors asFGkt3

, to take account of the possibility of an odd
parity scattering channel. However, provided both chann
have the same parity, we can always castVk in the above
form. For even parity channels,FGkt3

5FGk directly. For

odd-parity channels,FGkt3
5FGkt3, but in this case thet3

can be absorbed by a gauge transformationf̃ j˜t3 f̃ j .
To examine uniform pairing, we shall take

V15 iv11,

V25v2n•t,

W5lt3 , ~73!

wheren5cosuŷ2sinux̂ describes the phase of the compo
ite pairing. For convenience we shall taken̂5 ŷ, so that

Vk5 iv1k1v2kt2 , ~74!

where we have introduced the notationvGk5vGFGk .
Ostensibly, our mean-field theory is that of a BCS sup

conductor, with the Hamiltonian described by

H~k!5F ekt3 V†
k

Vk W•t
G . ~75!

However, there is one important distinction: here the pair
takes place between charged conduction electrons and
neutral f spins, and is merely a manifestation of the form
tion of composite pairs. For this reason, it is actually n
possible to say whether the pairing is channel one or in ch
nel two. In the gauge we have chosen, the scattering in ch
nel one is ‘‘normal’’ and pairing takes place in channel tw
But suppose we make the gauge transformation~56! with
gj52 i t2, then

Vk5 iv1k1v2kt2 ˜ i t2Vk5v1kt22 iv2k ,

W5lt3 ˜ i t2W~2 i t2!52lt3 , ~76!

which transforms the Hamiltonian to one which is now pa
ing in channelone, and ‘‘normal’’ in channel two. We are
forced to recognize the superconductivity can not be ide
fied with either channel, but instead derives from a cohere
between the two channels.

Suppose we now integrate out thef electrons: now we find
that the conduction electron Green function has the form

G~k!215v2ekt32S~k!, ~77!

wherek[(k,v) and where the self-energy term

S~k!5V†
k~v2lt3!21Vk ~78!
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describes the resonant scattering off the quenched local
ments. If we expand the self-energy, we see that it cont
both normal and anomalous components

S~k!5SN~k!1SA~k!. ~79!

Notice that although this self-energy contains off-diago
terms, it is invariant under the local SU~2! gauge transforma
tions. The normal components are channel diagonal

SN~k!5
v1k

2

v2lt3
1

v2k
2

v1lt3
~80!

but the anomalous terms depend on channel interferenc

SA~k!52
2lv1kv2k

v22l2
t1 , ~81!

and are directly proportional to the composite order para
eter L. For lÞ0, composite order induces convention
pairing amongst the conduction electrons. We shall later
that the independent existence of the composite order m
that a finite Meissner stiffness developseven whenl50,
and conventional pairing is absent.

The mean-field free energy per site can be written as
lows:

F52T/Ns(
kıvn

Tr ln@ ivn2H~k!#12(
G

vG
2

JG
. ~82!

The eigenvalues of the mean-field HamiltonianH(k) occur
in two pairs (2vkh ,vkh), whereh56, corresponding to
two bands of quasiparticle excitations. We may rewrite
characteristic determinant ofH(k), Det@v2H(k)#, in terms
of the G(k)

Det@v2H~k!#5Det@G~k!21#~v22l2!. ~83!

To evaluate the determinant, we writeG(k)21 in the follow-
ing form:

G~k!215~A2Bt31Ct1!~v22l2!21, ~84!

where

A5v~v22l22vk
2!,

B5ek~v22l2!1lvk2
2 ,

C52lv1kv2k , ~85!

vk
25v1k

2 1v2k
2 , and vk2

2 5v1k
2 6v2k

2 . The eigenvalue equa
tion Det@v2H(k)#50 then becomes

~A22B22C2!~v22l2!2150. ~86!

Inserting the resuls~85! into Eq. ~86!, we obtain

Det@v2H~k!#5v422v2ak1gk
2 , ~87!

where

ak5vk
21 1

2 ~ek
21l2! ~88!

and
o-
s

l

-
l
ee
ns

l-

e

gk5A~lek2vk2
2 !21~2v1kv2k!2. ~89!

The eigenvalues ofH(k) are thus given by

vk65Aak6~ak
22gk

2!1/2, ~90!

and the mean-field free energy is

F52
2T

Ns
(
k,h

ln@2 cosh~bvkh/2!#12 (
G51,2

~vG!2

JG
.

~91!

By minimizing the Free energy with respect tol, v1, andv2,
we can now determine the mean-field phase diagram.

IX. PHASE DIAGRAM

We now discuss the mean-field phase diagram. There
three types of stable mean-field solutions.

Normal phase, v1 or v2Þ0, v1v250. At high tempera-
tures, eitherv2 or v1 is finite finite, signaling a Kondo effec
in the stronger channel. There are thustwo types of normal
phase with different Fermi surface geometry, depending
which channel is the strongest. Supposev250, then the nor-
mal state spectrum~90! attains the simpler form

vkh˜Ek65
1

2
@~ek1l!6A~ek2l!214v1k

2 #,

corresponding to a band formed by an admixture between
conduction electrons, and the compositef electrons in chan-
nel one. This phase describes a heavy fermion metal.

Gapless composite paired state, v1v2Þ0. In the generic
composite paired ground state, the quasiparticle excita
contains nodes. The condition for gapless excitations is

gk
250, ~92!

which implies that

~lek2vk2
2 !50,

v1kv2k50. ~93!

The first condition defines the locus of points on the und
lying Fermi surface, while the second condition defines
nodes of the order parameter. Gapless quasiparticles for
the intersection of the order parameter nodes with the Fe
surface. This occurs when one or the other channel is do
nant and in this case, the conduction propagator~77! can be
written

G~k!215Zk
21@v2Ek* t32Dkt1#, ~94!

where the gap symmetry is determined by theproduct of
form factors

Dk5D0F1kF2k ~95!

and

Zk
21511

vk
2

l
~96!

is a mass-renormalization constant, andEk* 5Zk(ek

2vk2
2 /l), D052Zkv1v2l21 describe the kinetic and pair
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FIG. 7. Evolution of the gap nodes~open
circles! and the underlying Fermi surface in th
composite superconductor, as the ratioz5J2 /J1

evolves from zero to infinity. In the intermediat
region, where z1,J2 /J1,z2, the underlying
Fermi surface collapses around the zone cen
and the nodes annihilate one another to produc
gapped state.
le
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e
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f t
e

tate

e
ired
ing contributions to the quasiparticle energy. The heavy e
trons in this state are paired, and thus correspond to an
isotropic BCS superconductor a spectrumvk

5A(Ek* )21(Dk)
2.

Gapped composite paired state, v1v2Þ0. The gapped
composite paired phase occurs whenz5J2 /J1 lies between
two critical values

z1,J2 /J1,z2 . ~97!

If the weaker coupling constants is increased to the p
where it is comparable with the stronger channel, the und
lying Fermi surface collapses around the zone center, c
ing the the nodes to mutually annihilate. At a a still larger
coupling constant, the nodes reappear at the zone cor
~Fig. 7!. This phenomenon is perhaps easiest to visua
when the conduction sea is half filled. In this case, the n
mal state is a Kondo insulator with no Fermi surface.14 The
mean-field theory predicts that whenJ2 exceeds a critica
value, composite pairing can take place forming a pure co
posite paired state. Although the quasiparticle spectrum
gapped, as in a Kondo insulator

vk65
1

2
@Aek

214v1k
2 6ek#, ~98!

the composite order parameterL52v1v2 /(J1J2) is finite
and there is a superconducting response. When this ga
state is doped, it preserves its gap.

In the paired phase, the mean-field equations are give
the three conditions

]F

]l
,

]F

]v1
,

]F

]v2
50. ~99!

The first of these equations imposes the constraintf̃ t3f 50,
whereas the second and third determine the magnitude o
Kondo effect in the two channels. Written out explicitly, th
mean-field equations are
c-
n-

t
r-
s-

ers
e
r-

-
is

ed

by

he

1

Ns
(
kh

tanhS vkh

2T D
2vkh

3H S l

F1k
2

F2k
2
D 1

h

~ak
22gk

2!1/2
AJ

5S 0

2

J1

2

J2

D ,

A5S akl2ek~ekl2vk2
2 !

1

2
~ek1l!2F1k

2

1

2
~ek2l!2F2k

2
D . ~100!

Suppose channel one is dominant, then in the normal s
v250, which yields two equations for the normal state

(
k,h56

tanhS bEkh

2 D F12
ek2l

Ekh2Ek2h
G50,

2

J1
5xK~T!, ~101!

where

xK~T!5
1

Ns
(

k,h56
tanhS bEkh

2 D F1k
2

Ekh2Ek2h
. ~102!

By settingv2501 in the full set of mean-field equations, w
find that the transition temperature into the composite pa
state is given by

2

J2
5xC~Tc!, ~103!

where

xC~T!5
1

Ns
(

k,h56
tanhS bEkh

2 D Lkh
2

2Ekh
~104!

and
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Lkh
2 5F2k

2 F11
~ekF

2l!2

Ek2
2 2Ek1

2 G ~105!

is identified as the matrix elemen
Lkh

2 ;u^kF↑,2kF↓uLuF&u2 associated with the action of th
composite pair operator on the Fermi liquid ground st
uF&. In all the above expressions, we have simplified
algebra using the identities

Ekh2Ek2h5hA~ek2l!21~2v1k!2,

Ekh1Ek2h5ek1l. ~106!

We now discuss the detailed phase diagram that results
the mean-field equations.

A. Instability of the heavy electron metal

We have argued that the presence of a heavy fermi
face leads to new zero modes for the transfer of sing
between different screening channels, so that when a se
channel develops a finite coupling, a composite pair insta
ity immediately results. We now describe in detail, how th
result emerges naturally from our mean-field theory.

Let us begin by setting the scale of the Kondo tempera
within this mean-field theory. In mean-field theory, th
crossover into the Fermi-liquid regime is crudely delinea
by a mean-field phase transition. We use this temperatur
a definition of the single site Kondo temperature. At t
‘‘transition temperature,’’v1501, so

xK~TK!5
1

Ns
(

k
tanhS bek

2 DF1k
2 1

ek
'2N~0!^F1k

2 & lnS D

TK
D ,

~107!

where we have replaced the momentum sum by an inte
over energy, so thatN(0) is the density of states at the Ferm
surface, and̂ F1k

2 & denotes a Fermi surface average of t
Form factor. With this definition the mean-field Kondo tem
perature takes the form

TK1;De21/J1N(0)^F1k
2 &. ~108!

This quantity sets the characteristic size of the mean-fi
parameters in the normal state

l;~V1!2N~0!;TK1 . ~109!

The composite pair instability of the normal state is
rectly related to a divergence in the fluctuations associa
with the Kondo effect in channel two. To see this, we expa
the mean-field expression for the Free energy to Gaus
order inV25v2xtx1v2yty , which gives

F5F01uv2u2F 2

J2
2xCG , ~110!

wherev25v2x1 iv2y and xC is given above. From this re
sult, we can read off the fluctuations in the order parame

^dv2dv2* &5
T

2/J22xC
. ~111!
e
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But since the composite order parameter is given bydL
52v1dv2 /(J1J2), it follows that the composite pair suscep
tibility is given by

xL5@^dLdL* &2^dLdL* &xC50#/T5S v1

J1
D 2 xC

12~J2xC/2!
.

~112!

The denominator in this expression vanishes atTc , explicitly
confirming that the composite pair susceptibility diverges
the mean-field transition between the normal, and the pa
state.

To gain some insight into the composite pair instabil
described by Eqs.~103! and ~104!, we divide the bare com-
posite susceptibility,xC into a ‘‘high’’ and a ‘‘low’’ energy
component

xC5 (
uEkhu.TK1

1 (
uEkhu,TK1

$•••%5xh1x l , ~113!

where the former describes the local Kondo effect in
weaker channel, the latter, the channel interference tak
place on the heavy Fermi surface. At energiesuEkhu.
.TK1,

(
h

tanhS bEkh

2 D Lkh
2

2Ekh
˜

1

ueku
F2k

2 . ~114!

Suppose the heavy Fermi surface lies in the lower band
the Fermi surface,

ekF
5

v1k
2

l
,

EkF2
2 2EkF1

2 52~l21v1k
2 !/l ~115!

so that

LkFh
2 5

4l2v1
2~F1kF

F2kF
!2

~l21v1kF

2 !2
. ~116!

When we replace the momentum sums by energy integr
we must remember that the density of quasiparticle state
enhanced by a factor

NkF
* ~0!5N~0!

dek

dEk2
U

k5kF

5
~l21v1k

2 !

l2
N~0!. ~117!

The energy scale separating the two regimes is the Ko
temperature for channel oneTK1. With these results, ap
proximate expressions for the high and low energy contri
tions to the composite susceptibility are

xh

2N~0!
5E

TK1

D de

e
^F2k

2 &,

x l

2N~0!
52E

T

TK1dE

E K ~v1F1kF2k!2

~l21v1k
2 !

L '2E
T

TK1dE

E
^F2k

2 &.

~118!

The expression forx l was simplified by noting that the
dominant contribution to the second term occurs in the
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gions far from the node in the order parameter, wherev1k
@l. The sum of the two expressions then yields

xC'2N~0!F lnS D

TK1
D12lnS TK1

T D G^F2k
2 &. ~119!

The Gaussian coefficient ofv2 in the Free energy is thu
given by

2

J2
2xC52N~0!^F2k

2 &F 1

g2
2 lnS D

TK1
D22lnS TK1

T D G ,
~120!

where g25N(0)J2^F2k
2 & is the dimensionless Kondo cou

pling constant for channel two. The first logarithm in th
expression describes the renormalization of the coup
constant in channel two down to the energy scaleTK1:

1

g2~TK1!
5

1

g2
2 lnS D

TK1
D ; ~121!

the second logarithm describes the subsequent renorma
tion of g2 at temperatures belowTK1. In a two-channel
single impurity model, the second logarithm would be e
tirely absent because the Kondo effect in channel one
off any further renormalization in channel two. Here we s
that the constructive interference between the two chan
in the lattice actually over-compensates for the Kondo eff
in channel one, producing a logarithmic renormalization
low temperatures which is twice as large as at high temp
tures. The co-operative Kondo effect thus develops at a t
perature which is higher than the Kondo temperature for
isolated channel two. We may rewrite the Gaussian coe
cient as

2

J2
2xC5

2

J2
22N~0!F lnS D

T D1 lnS TK1

T D G^F2k
2 &

522N~0!F lnS TK2

T D1 lnS TK1

T D G^F2k
2 &

54N~0!^F2k
2 & lnS T

ATK1TK2
D , ~122!

where we have used the definition

TK25De21/[N(0)J2^F2k
2 &] , ~123!

to absorb the coupling constantJ2. In this rough approxima-
tion, the composite pairing instability occurs at a temperat

Tc;ATK1TK2. ~124!

WhenJ2 /J1!1, this same scale sets the size ofD0. Figure 8
illustrates the phase diagram calculated numerically fo
two channel Kondo lattice withs and d-wave screening
channels

F1k51 ~s channel!,

~125!

F2k5~coskx2cosky! ~dx22y2 channel!,
g

za-

-
ts
e
ls
t
t
a-

-
n
-

e

a

as shown in Fig. 3. As expected, the composite pair insta
ity occurs at the highest temperature when the two chan
are most evenly matched.

B. Composite pair instability of the Kondo insulator

Since composite pairing is an intrinsically local proce
the presence of a heavy Fermi surface is not a neces
requirement for the formation of the paired state, but in
absence, the instability requires the second-channel coup
constant to exceeds a critical value. This is precisely w
happens where the conduction band is half filled, for in t
case, the normal state of the Kondo lattice is a ‘‘Kondo
sulator,’’ with no Fermi surface and a gap to charge exc
tions. The Kondo insulator is particle-hole symmetric, so
the mean-field theory,l50, so that the excitation spectrum
simplifies to the following form:

vk65AS ek

2 D1vk
26

ek

2
. ~126!

By minimizing the mean-field Free-energy with respect
variations inv1 and v2, and settingT50, we obtain two
mean-field equations for the ground state

1

J1
5E ddk

~2p!d

Fk1
2

Aek
21~2vk!2

,

1

J2
5E ddk

~2p!d

Fk2
2

Aek
21~2vk!2

~127!

~whered is the dimensionality!. This composite paired phas
will only be stable within a range ofJ2 , J2* ,J2,J2** . By
settingv2501, we obtain two parametric equations for th
second-order phase boundary between the Kondo insu
and the composite paired state:

1

J1
5E ddk

~2p!d

Fk1
2

Aek
21~2v1F1k!2

, ~128!

FIG. 8. Phase diagram for a two channel Kondo lattice withs
and d-wave screening channels. Temperature is given in units
TK5max(TK1 ,TK2). In the shaded region, a co-operative Kon
effect in both channels gives rise to composite pairing and a qu
particle gap withs3d5d-wave symmetry.
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1

J2*
5E ddk

~2p!d

Fk2
2

Aek
21~2v1F1k!2

.

Beyond the critical valueJ2** , the Kondo effect is no longe
operative in channel two. By settingv1501, we obtain two
parametric equations for the second phase boundary:

1

J1
5E ddk

~2p!d

Fk1
2

Aek
21~2v2F2k!2

,

1

J2**
5E ddk

~2p!d

Fk2
2

Aek
21~2v2F2k!2

. ~129!

We have calculated the phase diagram for a two-dimensi
Kondo insulator in two dimensions, with dispersionek5
22t(cx1cy) and a Kondo coupling in thes andd channels,
as shown in Eq.~125!. WhenJ2,J2* , the Kondo effect in
the s channel leads to Kondo insulator. By contrast, wh
J1!J2, a ‘‘nodal semimetal’’ forms in channel two, with
gap which vanishes along thed-wave nodes of the form
factorF2k . Figure 9 shows the phase diagram obtained fr
Eqs.~128! and~129!. Notice that the range ofJ2 over which

FIG. 9. ~a! Phase diagram for two-channel Kondo insulator.
denotes the Kondo insulating phases. In the intermediate gap
phase both channels participate coherently in the composite pa
process.~b! Showing phase stiffness in the composite paired ph
for the caseJ1/4t51.
al

n

the composite paired state is stable, is negligible for smalJ1
and J2, but grows substantially as bothJ1 becomes large
compared witht.

This composite paired state is interesting, for its quasip
ticle spectrum is essentially identical to the Kondo insulat
and furthermore, sincel50, there is no anomalous compo
nent to the conduction electron self energy: there are
paired conduction electrons in the ground state. Yet des
these similarities, the presence of composite order

L~x!5
2

J1J2
v1v2e2 if(x), ~130!

means that this state is a superconductor, with a finite cha
susceptibility. The calculation of the charge susceptibil
needs to be carried out subject to the constraint. Expand
the free energy energy to quadratic order in changes inl and
the chemical potential,m we have

F5F02
1

2
@xmm~dm!212xmldmdl1xll~dl!2#.

~131!

The constraint]F/]l50 implies that

dl52
xml

xll
dm, ~132!

so that we may write

F5F02
xC

2
~dm!2, ~133!

where

xC5xmm2
xml

2

xll
. ~134!

A rather laborious calculation~Appendix C! gives

xmm5(
k

4vk
2

@~ek!214vk
2#3/2

,

xml5(
k

4vk2
2

@~ek!214vk
2#3/2

,

xll5xmm1xb , ~135!

where

xb5(
k

ek
2

@~ek!214vk
2#3/2S 2v1kv2k

vk
2 D 2S 51

ek
2

vk
2D .

~136!

Since uxmlu<xmm and xll>xmm , xC is positive, provided
bothv1 andv2 are finite. In the next section we also confir
that the composite paired state has a finite superfluid ph
stiffness, given by

rs5
1

d (
k

~v1v2!2

vk
2

~F1k“F2k2F2k“F1k!2

@ek
21~2vk1!2#1/2

, ~137!

in the ground-state.

ss
ng
e
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C. Gapped composite paired state

In our simple two dimensional example,v1k is never zero,
so the condition~93! for gapless behavior become

l5
v1k

2

ek
,

v2k50. ~138!

The modulusu(v1k
2 /ek)u is smallest at the band-edges, whe

ueku5W654t7m. So if

2S v1k
2

W2
D ,l,S v1k

2

W1
D , ~139!

the paired state becomes gapless. Although a small res
Cooper pair density is present, the state is essentially a
condensate of composite pairs. To understand what hap
at the critical values ofz, it is instructive to examine the
underlying Fermi surface, defined by the locus of points

ek5
v1k

2 2v2k
2

l
. ~140!

As one approaches the critical valuez5z1, this Fermi sur-
face collapses around the zone center, forcing the node
mutally annihilate. In going from the regionJ2 /J1!1 to the
region J2 /J1@1, l changes sign, and so that the syste
must always pass through this region of gapless compo
pairing. In the center of this region, wherel50, the state is
a pure composite paired state. Oncez exceeds the valuez2,
the nodes are reborn at the zone corners and the Fe
surface reappears along the zone boundary~Fig. 7!.

To illustrate these conclusions, we have used the me
field equations to calculate numerically the two lines wh
the gap vanishes. In Fig. 1, we summarize the results of th
calculations, in a diagram where we have kept max(J1 ,J2)
54t, and varied the ratioJ2 /J1.

X. SUPERFLUID DENSITY
OF THE COMPOSITE PAIRED STATE

To confirm that the composite paired state is superc
ducting, we need to compute the superfluid densityrs . In the
London gauge¹•A50, the supercurrent is given by

j s52QA, ~141!

where

Qab5e2@rs#ab5
]2F

]Aa]Ab
. ~142!

In the presence of an electromagnetic field, the electron
netic energyand form factors acquire a dependence on t
vector potential. Using a Nambu notation, we may write

ek˜ek2eAt3
,

FGk˜FGk2eAt3
, ~143!

so that the hybridization acquires the form
ual
re
ns

to

ite

i-

n-
e
se

-

i-

Vk
A5 iv1F1k2eAt3

1v2t2F2k2eAt3
. ~144!

The appearance of the vector potential in the form fac
reflects the fact that the hop and flip motion of electro
around a local moment leads to current flow. In the Lond
gauge (¹•A50) we may calculate by compute the secon
derivative of the Free energy at fixed values ofv1 , v2, and
l,29 so the the only important part of the Free energy is
electronic component

Fe52T(
k

Tr ln@ ivn2HA~k!#. ~145!

To second order in the vector potential, we may write

HA~k!5H~k!2J aAa1
1

2
AaAb¹ab

2 H~k!1O~A3!,

~146!

so expanding the Free energy to second order inA, we ob-
tain

F5F01 1
2 QabAaAb ,

Qab5T(
k

$Tr@GkJ k
aGkJ k

b#1@G k¹ab
2 Hk#%, ~147!

where

Gk5@ ivn2H~k!#21[F G Gc f

Gf c Gf f
G ~148!

is the matrix propagator and

Jk52¹AHA~k!5eF “kek t3“kV†
k

“kVkt3 0 G ~149!

is the current operator. The first and second terms in
~147! correspond to the paramagnetic and diamagnetic c
ponents of the stiffness, as in a conventional supercondu
Notice, however, that the current contains anomalous
diagonal contributions that do not commute with the cha
operatort3. Unlike a pure BCS superconductor, here t
presence of composite pairs affects the current operator

The diamagnetic contribution toQab can integrated by
parts, to obtain

(
k

Tr@G k¹ab
2 Hk#52(

k
Tr@Gkjk

aGkjk
b#, ~150!

where

jk5e“kH~k!5eF“kekt3 “kV†
k

“kVk 0 G , ~151!

so that the full expression for the superfluid stiffness ten
is

Qab5T(
k

$Tr@GkJ k
aGkJ k

b#2Tr@Gkjk
aGkjk

b#%. ~152!

To gain some insight into this equation, it is instructive
evaluate the stiffness for the case of pure composite pai
at half-filling. In this case, the conduction electron propag
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tor commutes with the charge operatort3, so contributions to
the stiffness which involve the conduction electron comp
nent of G identically vanish. For example, the cross te
between“ek and“V is

Tr@Gcc¹aeGc f¹bVt32Gcc¹aet3Gc f¹bV#50. ~153!

The only surviving terms represent the composite pair s
ness, which can be written in the form

Qab
C 5

T

2
Tr@@Gc f¹aV,t3#@Gc f¹bV,t3#1H. c.#. ~154!

From the Dyson equation,

G~k!5G0~k!1G~k!F0 V†

V 0 GG0~k!, ~155!

whereG0 is the propagator in the absence of any hybridi
tion, it follows that

Gc f~k!5G~k!V†
1

v2lt3
, ~156!

so that at half filling (l50)

Gc f~k!5
1

v~v2ekt3!2vk
2
V†, ~157!

and hence

@Gc f“V,t3#5
1

v~v2ekt3!2vk
2 @V†

“V,t3#. ~158!

Evaluating the commutator

@V†
“V,t3#52~v1k“v2k2v2k“v1k!t1 , ~159!

we may then write

QC5
4e2T

d (
k

~v1k“v2k2v2k“v1k!2 Tr@G~k!2#,

~160!

where for convenience, we have assumed an isotropic s
nessQab

C 5QCdab . Taking the zero-temperature limit, re
placing ivn˜ iv and

T (
ivn

˜ È`dv

2p
~161!

then yields

e2rs
C5

8e2

d (
k

~v1k“v2k2v2k“v1k!2

3E
2`

` dv

2p

1

~v21vk
2!21v2ek

2
. ~162!

Carrying out the final frequency integral yields the followin
expression for the composite stiffness
-

-

-

ff-

e2rs
C5

e2

d (
k

S v1v2

vk1
D 2 ~F1k“F2k2F2k“F1k!2

@ek
21~2vk1!2#1/2

.

~163!

This result is quite fascinating, because it confirms that
composite pair condensate has a phase stiffness, even i
absence of an underlying Fermi surface. In a conventio
superconductor, the scale of the stiffness is determined
the Fermi energye2rs;e2eF /a2. Here the size of the stiff-
ness

e2rs
C;e2N~0!K S v1v2

vk1
D 2L ;e2Tc /a2 ~164!

is determined by the condensation energy. This is a cla
example of ‘‘local pair’’ condensation.

Away from half filling, the superfluid stiffness contain
contributions associated with both the paired conduct
electrons, and the composite pairs. To make a clean divi
of the stiffness into two components, one needs to wo
about the various cross terms that appear in the stiffness
as Eq.~153!, which do not obviously vanish away from ha
filling. However, a key observation is that these terms
odd functions ofl, so they are guaranteed guaranteed
vanish provided that the physics is particle-hole symme
aboutl50. With this proviso, we can divide the superflu
stiffness into two terms

Q5QBCS1QC, ~165!

where

Qab
BCS5

T

2 (
k

¹aek¹bekTr@@ iG~k!,t3#2#,

Qab
C 5

T

2
Tr@@Gc f¹aV,t3#@Gc f¹bV,t3#1H. c.# ~166!

are the BCS and composite pair contributions to the stiffne

XI. DISCUSSION

In this discussion, we should like to address the results
this paper on two fronts: Alternative theoretical approach
to test and confirm the presence of a co-operative Ko
effect and applications to experiments and the theory of
heavy fermion systems.

A. Alternative theoretical approaches

The main effort of this paper has been to establish the
between co-operative channel interference in the Kondo
tice and composite pairing. Although our key result, the
lation between the gauge invariant interference term
composite order

V†
2V152

J1J2

2 F F† L

2L† F†G , ~167!

does not depend on approximations, the notion that this
terference term can develop long-range order relies on v
ous mean-field approximations. There are, however, reas
to be confident in the mean-field solution. First, there are
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obvious competing instabilities, such as magnetism. By tu
ing on a J2, one does not drive the system closer to t
antiferromagnetic instability, but rather, simply activates a
other source of Kondo screening. This should be contra
with the situation in the alternative model of spin-fluctuati
mediated pairing. Here, to attain a transition temperature
is comparable with the heavy fermion bandwidth places
model close to an antiferromagnetic instability, where
competing effects of magnetism make the mean-field the
potentially unreliable.

Nevertheless, the use of mean-field methods inevita
raises questions about our work which motivates us to s
alternative methods to verify the key results. It may be p
sible to precisely verify our results in both finite size calc
lations, and in the exactly solvable limit of infinite dimen
sions. Finite size studies on our model may be facilitated
treating the model as a ladder compound and by using
strong-coupling limit so as to completely eliminate the po
sibility of antiferromagnetic instabilities.

To formulate our model in a form that is tractable to
exact infinite dimensional study, rather than using expl
form factors in the Kondo interaction, it is better to start w
a channel conserving two-channel Kondo lattice, to whic
term which destroys channel conservation is then adde
activate the channel interference. Suppose one starts out
a two-channel Kondo model, with perfect channel conser
tion:

~168!

where

c†
G j s5Ns

21/2(
k

c†
Gkse2 ik•Rj ~169!

(G51, 2! and

e522t (
l 51,d

~coskl !2m. ~170!

This model has a perfect U~1! channel symmetry. Suppos
one now adds a term to the hoppingH˜HC1H8, where

H8522D (
l 51,d

~21! lcoskl~c†
k1sck2s1c†

k2sck1s!,

~171!

is a hopping term with ‘‘d-wave’’ symmetry that mixes the
different channels, breaking the U~1! channel conservation
symmetry. This contains no nonlocal interactions, and is t
ideal for a larged treatment. It is easy to see that in the lim
of large D, it is equivalent to a one band model, with tw
orthogonal form factors

F1k51,

F2k5sgnF(
l

~21! l coskl G . ~172!
-
e
-
ed

at
e
e
ry

ly
ek
-

-

y
e

-

it

a
to
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s

To see this, note that whenD is nonzero, the band splits int
two components with energies

Ek65ek62DU (
l 51,3, . . .

~21! l cosklU, ~173!

where

H01H85(
ks

~Ek1a†
ksaks1Ek2b†

ksbks!,

aks5
1

A2
~ck1s1F2kck2s!,

bks5
1

A2
~ck1s2F2kck2s!. ~174!

At largeD, one can project out all terms involving the upp
band by rewriting the Hamiltonian in terms of thea and b
creation operators, and then dropping all terms involving
creation or annihilation operators for the upper band,aks or
a†

ks . When we do this, the interaction becomes

HI5
1

2Ns
(
k,k8

Jk,k8b
†

ksbk•Sje
i (k2k8)•xj ,

Jk,k85~J1F1kF1k81J2F2kF2k8!, ~175!

corresponding to a two-channel Kondo model with two o
thogonal matrix elements.

The mean-field theory for this model30 predicts that that
as soon asD becomes finite, channel interference will driv
the system into a composite paired state, even whenJ1.
.J2. This phenomenon should extend all the way out
infinite dimensions, where a precise dynamical mean-fi
theory treatment of the model becomes possible.

B. Possible consequences of co-operative Kondo behavior
for heavy fermion compounds

We conclude with a brief discussion of the general co
sequences of co-operative channel interference in heavy
mion systems. Our paper has focussed on the supercon
ing aspects of this problem. Here we should like to put
problem in a more general perspective.

Assuming it becomes possible to verify the theoreti
soundness of the co-operative Kondo effect, how could
theory be tested experimentally? Our model suggests a ra
intimate relation between the local quantum chemistry of
heavy fermion ion, and the gap symmetry of the order
rameter. In heavy fermion compounds, one of the scatte
channels is anf channel. Since the two channels must ha
the same parity, the second channel is in all likelihood
other f channel or ap channel.

L f ^ f . Candidates: non-Kramers ion, e.g., URu2Si2 ,
UBe13.

L f ^ p. Candidates: UBe13, UPt3, and cerium systems
close to quantum critical point.

The first possibility will occur if the Kondo effect in-
volves a non-Kramer’s magnetic ion. For example, in t
case of URu2Si2, there is strong circumstantial evidence th
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the single-ion physics is dominated by a Kondo effect wit
non-Kramers magnetic doublet. The form factors for the t
f channels in a tetragonal crystal field are known, and pl
strong constraints on the symmetry of the putative compo
order. In the second case, the number of availablep channels
is small and the local quantum chemistry will determine
most likely channel for the cooperative pairing process.
example, in hexagonal UPt3, the most likely second channe
is the pz orbital, which would explain the presence of th
node in the basal plane. In principle, cubic UBe13 could be-
long to either category, as this system may also have a n
Kramer’s ground state. If, however, the driving force deriv
from a p channel, molecular orbital theory dictates that t
most likely second channel is ap-wave state with norma
orientated along the cube diagonals, such as the 111 d
tion. A gap node normal to this direction could be detec
using careful transverse ultrasound measurements.31

One of the paradoxical features of heavy fermion sup
conductors, is that their large entropy of condensation s
gests a large superconducting order parameter. Yet Jos
son tunneling with a conventional superconductor has no
date been achieved. Although composite and normal p
coexist side-by-side in our hypothetical superconductor,
predominantly composite character of the order param
may help explain why it has proven so interminably difficu
to carry out Josephson tunneling into these systems.
way to enhance the Josephson current may be to introd
rare earth or actinide spins into the tunnel junction. Jose
son tunneling between a conventional, and composite pa
superconductor requires that the addition of a pair is acc
panied by a spin-flip. Spin fluctuations of the local mome
in the junction may help to catalyse this co-operative p
cess. This is a possibility currently under investigation.

We should like to end with a short note about the non
perconducting aspects of the composite Kondo effect. In
key identity

V†
2V152

J1J2

2 F F L

2L† F†G , ~176!

we have the possibility of finite diagonal componentsFÞ0
due to co-operative interference. Unlike composite pairi
such instabilities will requireJ1 andJ2 to be of comparable
size. There are, to our knowledge two good candidates
this kind of phenomenon:

Orbital magnetism inURu2Si2. As mentioned above, thi
material is a naturally occurring two-channel Kondo lattic
but with strong spin-orbit coupling. One of the long-standi
mysteries of this compound, is the appearance of an unid
tified magnetic state at 17 K, with a large order parame
which appears to break time-reversal symmetry, but with
producing a large magnetic moment.32,33 One possible way
to account for this, is to suppose that the two channels in
compound give rise to a complex order parameter

F~x!5F0eiQ•x, ~177!

whereQ is commensurate with the lattice. Just as superc
ducting composite order coexists with a weak BCS or
parameter, orbital composite order will coexist with a we
orbital moment. Spin-orbit coupling will then generate
weak magnetic moment.
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Ultranarrow gap Kondo insulatorsCeRhSb and CeNiSn
These Kondo insulators appear to develop gap nodes in
tiny hybridization gap. In a recent paper,34 we have pointed
out that this kind of behavior would arise from the suppre
sion of shape fluctuations, which gives rise to three orb
scattering channels in which the Kondo effect can take pla
The resulting interference between the three orbital chan
is found to spontaneously generate a crystal field envir
ment that gives rise to a Kondo ‘‘insulator’’ with gap node
These are both areas of active investigation, which lie o
side the scope of this paper.
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APPENDIX A

In this section we apply the SU~2! decoupling scheme
originally developed by Afflecket al. for the Heisenberg
model to the two-channel Kondo problem. This derivation
closer in spirit to the original work by Afflecket al., and
differs in detail from the later work by Andrei and Colema
The approach of Afflecket al., is more explicitly SU~2! sym-
metric and can be naturally extended to include source te
that couple to the composite order parameter. There are
distinct differences between the approaches: The integra
measure over the SU~2! field is ‘‘flat’’ and Gaussian coeffi-
cient of Tr@V†

GVG# is now 1/J rather than 1/2J, as it was in
the earlier work by Andrei and Coleman.

The difference in measure leads to differences in the fl
tuations around the mean-field theory, and the mean-fi
expressions for the Kondo temperature obtained in th
methods actually differ by a factor of two in the exponenti
We have chosen the approach of Afflecket al. because it
gives us a much cleaner an symmetric derivation of the fi
results.

The objective of this section is to show how the intera
tion between a localized momentS and the electron loca
spin densitysG5c†sc can be decoupled in terms of a fluc
tuating SU~2! field

JG~S•sG2 1
2 !˜@ f̃ †VGc̃G1H.c.#1

Tr@V G
†VG#

JG
, ~A1!

whereVG is directly proportional to an SU~2! matrix gG

VG5 iV0
GgG5F V D

D* 2V* GG

. ~A2!

For clarity, all site indicesj are omitted from this derivation
but are readily restored later.
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Following earlier work, we introduce the following matri
fermions:

F5F f ↑ f ↓
f ↓

† 2 f ↑
†G , CG5FcG↑ cG↓

cG↓
† 2cG↑

† G . ~A3!

By taking the product of these matrix operators with th
Hermitian conjugates, we find that

CG
†CG511sT

•sG ,

F †F5112sT
•S, ~A4!

wheresG5c†
GscG is the electron spin density andsT de-

notes the transpose of the Pauli spin matrix. Transformat
acting to the right ofF, F˜Fh correspond to physical ro
tations of the local moment. Transformations acting to
left of F, F˜gF correspond to the local SU~2! transforma-
tion, under which the spin operator is explicitly invariant:

S5
1

4
Tr@sTF †F#˜

1

4
Tr@sTF †g†gF#5S. ~A5!

Multiplying the two equations~A4! together, and taking the
trace we obtain

sG•S1 1
2 5

1

4
Tr@F †FCG

†CG#. ~A6!

Anticommuting the conduction electron operatorCG to the
left through the trace, we then find that

JG~sG•S2 1
2 !52

JG

4
Tr@UG

†UG#, ~A7!

where

UG5FCG
†5F2aG

† bG

bG
† aG

G ~A8!

is an antiunitary matrix and

aG5(
s

f †
scGs ,

bG5(
s

s f 2scGs . ~A9!

Notice that if we expand the above interaction, we obtain

HI52
JG

4
@aG

†aG1aGaG
†1bG

†bG1bGbG
† # ~A10!

showing that it has been decoupled simultaneously in
particle-hole and Cooper channels.

We now apply a Hubbard-Stratonovich procedure to t
expression. Formally, we first convert each of the fermio
operators in the interaction to Grassman variables insid
path integral. On each time slice we write

e2DtHI5E D@VG ,V†
G#e2DtHI [VG ,V†

G] , ~A11!

where we have transformed
r

ns

e

e

s
c
a

HI52
JG

4
Tr@UG

†UG#˜HI@VG ,V†
G# ~A12!

and

HI@VG ,V†
G#5

1

2
$Tr@V G

†UG#1Tr@UG
†VG#%1

1

JG
Tr@V G

†VG#.

~A13!

A priori, V is a two by two complex matrix. However, if we
divide it up into the sum of a unitary and an antiunita
matrix, we find that only the former completely decouple
The residual part ofV is completely antiunitary, and has th
form

VG5F V D

D* 2V* G
G

, ~A14!

where there are only two independent complex paramet
This is a significant simplification. Notice thatVG is directly
proportional to an SU~2! matrix

VG5 iV0
GgG ~V0

G5AuVGu21uDGu2!. ~A15!

The measure of integration for each time slice is then sim

D@VG ,V†
G#5dVGdVG* dDGdDG* . ~A16!

As our final step, we now reduce the decoupled interactio
a more manageable two-component notation. Writing

f̃ †5~ f †↑ , f ↓!,

c̃†
G5~c†

G↑ ,cG↓!, ~A17!

thenHI reduces to the form

HI5@ f̃ †VGc̃G1H.c.#1
1

JG
Tr@V G

†VG#, ~A18!

which is the form quoted in the main text.

APPENDIX B

The purpose of this section is to establish the direct re
tionship

V†
2V152

J1J2

2 F F† L

2L† F†G , ~B1!

where

F5c†
2sc1•S,

L5c2~2 isy!sc1•S ~B2!

represent the single composite order in the particle-hole,
particle-particle channels, respectively. In order to estab
this identity, we introduce a source term into the Lagrang
which couples to the gauge invariant matrix productV2V1,
writing
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HI5(
G

H @ f̃ †VGc̃G1H.c.#1
1

JG
Tr@V G

†VG#J
1Tr@V 2

†V1a1H.c.#, ~B3!

where the source terma5ao1 iaW •t is a unitary matrix, with
four real coefficients.

We shall now invert the Hubbard Stratonovich transf
mation, with the source terms in place. We begin by rew
ing the Gaussian term in the interaction to obtain

HI5(
G

1
2 @Tr@V G

†UG#1H.c.#1Tr@V G
†VG8mG8G#, ~B4!

where

mGG85F 1

J1
a

a† 1

J2

G . ~B5!

When we carry out the Gaussian integral overVG , the trans-
formed Hamiltonian now becomes

HI52
1

4
Tr@U†

GUG8~m21!G8G#, ~B6!

where

m215
J1J2

~12uau2J1J2!F 1

J2
2a

2a† 1

J1

G . ~B7!

When we expand this to linear order ina we obtain

HI52(
G

JG

4
Tr@U†

GUG#1
J1J2

4
Tr@U†

2U1a1H.c.#.

~B8!

InsertingF†F5112sT
•S into this expression, and makin

the observation that

Tr@aC†
2C11H.c.#50 ~B9!

we can rewrite

Tr@U†
2U1a1H.c.#52Tr@aC2~sT

•S!C†
11H.c.#

~B10!

so that the final form of the interaction with the source te
is

HI52(
G

JG

4
Tr@U†

GUG#

1
J1J2

2
Tr@aC2~sT

•S!C†
11H.c.#. ~B11!

Comparing coefficients ofa in Eq. ~B3! with Eq. ~B11!, we
obtain the following identity:

V†2V15
J1J2

2
@C†

2~sT
•S!C†

1#. ~B12!
-
-

This expresses, in a compact form, the relationship betw
the interchannel interference and the composite order.
complete the job, we now expand the right-hand side.
first write

@C2~sT
•S!C†

1#52@C2~syssy•S!C†
1#, ~B13!

where we have replacedsT52(syssy). To make the ex-
pansion, it it is convenient to write

C25S c2
T

c†
2~ isy!

D , C†
15~c1* ,2 isyc1!, ~B14!

wherec2
T is the row spinor formed by taking the transpose

the column spinorc2, andc1* 5(c†
1)T is the column spinor

formed by taking the transpose ofc†
1. Multiplying out the

matrices, we obtain

2
2

J1J2
V†2V15F c2

Tsyssyc1* c2
T~2 isys!c1

c†
2~sisy!c1* c2

†sc1
G•S

5F c1
†sc2 c1~ isys!c2

c†
2~sisy!c1* c2

†sc1
G•S

5F F L

2L† F†G . ~B15!

Substituting Eq.~B15! into Eq. ~B12! we obtain the quoted
result.

APPENDIX C

The purpose of this section is to evaluate the suscepti
ties associated with the expansion of the mean-field F
energy about the pure composite paired state

F5F02
1

2
@xmm~dm!212xmldmdl1xll~dl!2#.

~C1!

By integrating over the Gaussian fluctuations inl to impose
the constraint on thef charge, we can use these susceptib
ties to compute the physical charge susceptibility

xC5xmm2
~xml!2

xll
. ~C2!

To compute the susceptibilities we expand the Ham
tonian about the half-filled state

H5H02dmF t3 0

0 0G1lF0 0

0 t3
G . ~C3!

The electronic part of the Free energy is given by

Fe52T(
k

Tr ln@ ivn2H~k!#. ~C4!

Expanding this to second-order then gives

xmm52T(
k

TrS GkF t3 0

0 0GGkF t3 0

0 0GGkF t3 0

0 0G D ,

~C5!



rit

e

it

ring

-
he
ero-

i-

PRB 60 3627CO-OPERATIVE KONDO EFFECT IN THE TWO- . . .
xml5T(
k

TrS GkF t3 0

0 0GGkF 0 0

0 t3G D ,

xll52T(
k

TrS GkF 0 0

0 t3GGkF 0 0

0 t3G D .

At half-filling, the electron propagator can be written

G~k!5F vG̃ 2 ivkG̃g†

ivkgG̃ g~v2ekt3!G̃g†G
k

, ~C6!

wherevk5Av1k
2 1v2k

2 ,

G̃~k!5
1

v~v2ekt3!2vk
2

, ~C7!

and

g5
1

vk
@v1k2 iv2kt2#. ~C8!

The Green functionG has poles at6Ekh where

Ekh5
ek

2
1hAS ek

2 D 2

1vk
2 ~h56 !. ~C9!

Expanding the electron propagator about its poles, we w

G̃~k!5 (
h56

Gh~k!
h

Aek
214vk

2
t3 ,

Gh~k!5
1

v2Ekht3
. ~C10!

Inserting this into the full propagator, we can write it in th
form

G~k!5(
h

F ckh
2 Gh 2 ickhskhGht3g†

ickhskhgt3Gh skh
2 gGhg† G

k

5(
h

zkh ^ Gh~k!z†
kh , ~C11!

where

zkh5S ckh

iskhgkt3
D ~C12!

is the eigenvector corresponding to the quasiparticle w
energyEkh . The quantities

ckh
2 5

Ekh

Ekh2Ek2h
5

1

2 F11h
ek

Aek
214vk

2G ,

skh
2 5

Ekh2ek

Ekh2Ek2h
5

1

2 F12h
ek

Aek
214vk

2G ,
e

h

ckhskh5
vk

Ekh2Ek2h
5h

vk

Aek
214vk

2
~C13!

describe the admixture between the conduction andf elec-
trons. The matrix elements of the charge operators appea
inside the susceptibilities are

zkh
†F t3 0

0 0G zkh85ckhckh8t3 ,

zkh
†F 0 0

0 t3G zkh5skhskh8t3gk
2

5skhskh8~cosfkt31sinfkt2!,

~C14!

where Ck5vk2
2 /vk

2 and Sk52v1kv2k /vk
2 . The expressions

for the susceptibilities can now be written

xmm52T (
k,h,h8

Tr@Ght3Gh8t3#,

xml5T (
k,h,h8

Tr@Ght3Gh8t3#Ck ,

xll52T (
k,h,h8

Tr@Ght3Gh8t3Ck
21Ght2Gh8t2Sk

2#,

where we denoteGh[Gh(k) and vanishing cross terms be
tweent3 and t2 have been dropped. We now evaluate t
Matsubara sums in these expressions, and take the z
temperature limit. Key results that we use are

2T (
ıvn ,h8

Tr@Ght3Gh8t3#ch
2ch8

2

52(
h8

f kh82 f kh

Ekh2Ekh8

ch
2ch8

2
˜

2ch
2sh

2

Aek
214vk

2
,

where f kh[1/(ebEkh11) denotes the Fermi function. Sim
larly,

T (
ıvn ,h8

Tr@Ght3Gh8t3#~cs!h~cs!h8˜
2ch

2sh
2

Aek
214vk

2
,

T (
ıvn ,h8

Tr@Ght3Gh8t3#sh
2sh8

2
˜

2ch
2sh

2

Aek
214vk

2
.

Lastly, there is one anomalous term

2T (
ıvn ,h,h8

Tr@Ght2Gh8t2#sh
2sh8

2
˜(

h

sh
4

uEkhu

5
vk

21ek
2

vk
2Aek

214vk
2

.

Putting these results together, we obtain
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xmm5(
k

4vk
2

~ek
214vk

2!3/2
,

xml5(
k

4vk2
2

~ek
214vk

2!3/2
,

xll5(
k

4vk
2

~ek
214vk

2!3/2S vk2
2

vk
2 D 2

1(
k

vk
21ek

2

vk
2Aek

214vk
2 S 2v1kv2k

vk
2 D 2

. ~C15!
-
g

fe

J.

s.:

a

We can also rewritexll in the following form:

xll5xmm1xb ,

xb5(
k

ek
2

@~ek!214vk
2#3/2S 2v1kv2k

vk
2 D 2S 51

ek
2

vk
2D .

~C16!

Sincexll>xmm anduxmlu<xmm , the the final result for the
charge susceptibility is then guaranteed to be positive w
v1v2Þ0:

xC5xmm2
~xml!2

xmm1xb
.0 ~v1v2Þ0!. ~C17!
,
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