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We examine how the properties of a single-channel Kondo lattice model are modified by additional screen-
ing channels. Contrary to current wisdom, additional screening channels appear to constitute a relevant per-
turbation which destabilizes the Fermi liquid. This instability involves two stages. When a heavy Fermi surface
develops, it generates zero modes for Kondo singlets to fluctuate between screening channels of different
symmetry, producing a divergent composite pair susceptibility. Additional screening channels couple to these
divergent fluctuations, promoting an instability into a superconducting state with long-range composite order.
We discuss possible implications for heavy fermion superconducti\8163-18209)04629-9

I INTRODUCTION As(¥) = (W] th1 (X) 2 () ST (X)[Wy), ()

One of the remarkable properties of localized magneti¢Vhere 1 and 2 refer to two conduction electron channels.
moments is their ability to transform the electronic properties>Uch composite order parameters were originally considered
of their host. These effects are dramatic in heavy fermiorin the context of odd-frequency pairitid but more recent
compounds:? Since the mid 1970’s, several hundred heavywork has emphasized that composite order may coexist with
fermion compounds have been discovered, characterized BCS pairing in cases where the spin plays a central role in
a dense lattice of magnetic rare-earth or actinide ions imthe condensation proce$s.Unfortunately, we know very
mersed in a conducting host. These materials bypass the ndittle about how such composite pairing might come to pass.
mal development of ordered antiferromagnetism to form &A divergent composite singlet susceptibility is known to oc-
new kind of electron fluid® The resulting metallic state con- cur in the symmetric two-channel Kondo impurity model,
tains quasiparticles with effective masses up to a thousan@nd more recent studies suggest that a large composite sus-
times greater than a bare electron. For example, in geCueeptibility may persist into the two-channel Kondo lattice.
(Ref. 3 the presence of only 14% Cerium in the copper host In this paper we introduce a model for heavy fermion
increases the effective mass of the electrons by a factor dfehavior where the local moments couple iregleconduc-
1600. tion band via two orthogonal scattering channels. We find

In a small handful of heavy fermion compounds, thethat when two scattering channels of the same parity share a
heavy electron fluid becomes superconductingcal mo-  common Fermi surfaceconstructiveinterference develops
ments, usually harmful to superconductivity actually partici-between the channels. The scattering of electrons in the
pate in this superconducting condensation process and a si§ondo effect is described by an §&) matrix Vi (I'=1,2)
nificant fraction of the local moment entropy is quenched agissociated with each channel. A key result of our paper re-
part of the condensation process. In YRefor example, the lates the composite order to the gauge invariant interference
spin-condensation entropy is aboutky 2 per spirf: One  term between these two matrices
of the great challenges is to understand how microscopic

order parameter in these systems involves the spin operators VoY, = — ﬂ F A 3)
of the local moments. 271 2 | —-AT FTp
The concept of “composite pairing,” where a Cooper
pair and local moment form a bound-state combination thaVhere
collectively condenses may provide a way to address this ot
problem®1° A composite “triplet” involves a bound-state F=y 1092 S,
between a spin and singlet Cooper pair, A=a(io)) oS, @

ACO=(Fn-2[ 1,00 91 () S| W), @ represent the singlet composite order in the particle-hole, and
but a composite singlet involves a triplet and a spin-flip  particle-particle channels, respectively, ahd and J, de-
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phase, the BCS order parameter is very small, and actually
vanishes along a line in the phase diagram.
At half filling, a Kondo lattice generally forms a Kondo

172}
8 insulating phasé? With the addition of a second-channel
~ Gapless coupling, we find that at a critical ratio of coupling constants,
n & there is a second-order transition from the Kondo insulating
C

phase into a pure condensate of superconducting pairs. This
K.I leads to a phase diagram, where a first order line representing

C . the Kondo insulator terminates at a superconducting-
0mp081te+ . . . . . .

Cooper Pairs. insulating transition, as illustrated in Fig. 1.

A brief description of our work in this area has already
been published® This paper is intended to provide a detailed
account and discussion of the co-operative two-channel
Kondo effect.

=

Composite +
Cooper Pairs.

0 2 1,171, 4
II. MULTICHANNEL SCATTERING EFFECTS
FIG. 1. Mean-field phase diagram for a two-dimensional two- IN INTERACTING KONDO LATTICES

channel Kondo lattice with agwave andd-wave interaction chan- The ¢l ical htoh f . hVSICS | |
nel. n; denotes the filling of the conduction barig./J; is the ratio € classical approach to heavy fermion physics invoives

of coupling constants in the two channels. The phase diagram walgcal momem,s which couple exclusively to qonductlon glec—
computed for a tight-binding model, keeping max(J,) = 4t, the tror] states with the same_lodai;ymm_etry. This assumption
bandwidth. KI denotes Kondo insulator phases, that exist at halffill-derives from the observation that spin-exchange between the
ing, but which undergo a superconductor-insulator transition at &onduction electrons and the local moments occurs predomi-
critical value ofJ,/J;. The lightly shaded region is dominated by nantly via hybridization in thé channel.
composite pairing, and there is a gap for quasiparticle excitations. However, more careful considerations sugtfest that
Along the dotted lines, the conduction electrons are entirely un€lectron-electron interactions can cause new spin-exchange
paired, and a pure composite pair condensate is formed. In thehannels to open up between a local moment and the con-
darkly shaded regime, Cooper and composite pairs coexist, and duction sea. There are several mechanisms by which these
gapless anisotropic superconductor is formed. new spin exchange channels can open up, including the vi-
cinity to a quantum critical point’ interactions in the con-
scribe the Kondo COUp”ng constants in the two channels. |quction Seé,&lg and intra-atomic Hunds interactioﬁ%_
a single impurity, the Kondo effect in the stronger channel, The first mechanism, identified long ago in a little-known
suppresses any Kondo effect in weaker chantfef$A key  paper by Larkin and Melnikd¥ may be particularly impor-
feature of our lattice mechanism, is that channel interferencgant for heavy fermion systems which lie at the brink of
co-operatively enhances the Kondo effect in the weakemagnetism. Larkin and Melnikov studied the single impurity
channel, driving the development of composite pairing forkondo effect in the vicinity of a magnetic quantum phase
arbitrarily weak second-channel coupling. transition, where the local moment polarizes electrons at in-
The development of phase coherence between the tWgreasingly greater distances. The critical magnetic order
channels is signaled by the condensation of composite sithereby induces the spin to scatter electrons in a large num-

glet pairs at a new temperature scale ber of angular momentum channels up to a maximum value
lo~kg&, where ¢ is the spin correlation length. The large
Te~VTkiTk2 ) screening cloud causes the matrix element for spin exchange
to become

where Ty, and Tk, are the Kondo temperatures of the pri-
mary and secondary channels, respectively. The underlying )
gap symmetry of the quasiparticles in this new superconduct- I=Ji e =Ix(k=k’), )
ing phase reflects the interference phenomena and is is given
by a product of the form factor®,, and ®,, from each wherey is the strongly momentum dependent susceptibility
channel: of the magnetic host. When decomposed into partial wave
states, they found that this led to a Kondo coupling to elec-
Ay=AoD 1 Doy . (6)  trons in all channels with angular momentuirsalo=Kg¢.
More recent work has made it clear that new spin ex-

In the typical composite paired state, composite pairs cochange channel_s open up vyhenever charge fluctuations are
exist with Cooper pairs, as envisaged in the works of Bonc&UPPressed by interactions in the conduction'8é&Con-

and Balatsky and also Poilblafi@.One of the novel features S|der t.he S|tu_at|on shown In F|g_ 2, where a local mo.ment
of this mechanism, is that it permits both gaplass gapfull hybridizes with nearby orbitals in d—(_:hannel. The spin-
anisotropic superconductivity. In the region where the Cou_exchange between the local moment is written

pling constantsl; andJ,, for the two channels, are of com-

parable strength, the nodes in the excitation spectrum gravi- Hi=3(S ¥ 4,05V ap), (8)
tate to the center of the unit cell, where they mutually

annihilate to produce a gapped ph&Ba. 1, Fig. 7. In this  where
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‘ J1 : s-channel J2 : d ;-channel

FIG. 2. Magnetic moment in an interacting environment. Local-  FIG. 3. lllustrating spin coupled to electrons via anand a
ized electron at center of plaquet hybridizes in thgchannel with  d,2_2 channel.
nearby atoms. The on-site interaction at each atomid.kits taken

to be far larger than the electron bandwidth off a localized orbital tend to exchange spin, while preserv-
ing their orbital quantum numbers. In a tetragonal crystal for
.1 + + i example where the low lying state of th&ion is a magnetic
Vao=5(C1s™ C20+ €3 Cao) © " non-Kramers doubl@t?*

creates an electron in theé channel. Notice that the spin |=)=a| = 1)+ 8|7 3), (14)
exchange involves processes where the electrons “hop and

flip” between neighboring orbitals. If large repulsive inter- spin fluctuations within this doublet involve the exchange of
actions are present in the conduction sea, then an electr@pin with conduction electrons in two different “shape”
can no longer “hop and flip” onto a site that is already channels, with equal Kondo coupling constants.

occupied. This restriction means that creation operators must

be replaced by Hubbard operators ll. TWO-CHANNEL KONDO LATTICE MODEL

Cjo—Cjo(1—nj_,)=Xj,. (10 This discussion motivates us to examine how additional

in exchange channels might modify the physics of a
ondo lattice. To this end, we shall consider a Kondo lattice
model where two orthogonal scattering channels dominate
1 (j=1), the spin exchange process:

“a-x =y,

where x is the concentration of carriers per site. This ap-

proximation correctly describes the complete suppression of
- : P, tn this  where ¢l = (gl ¢l ) (I'=1, 2) is a two component

hop and flip processes in the limit whexe=1. With this ! Tj rjts ¥y ' p

replacement the transformed Kondo interaction develop§PINor

three new scattering channels

. . . S
To see how this modifies the spin-exchange processes of
can use a Gutzwiller approximation

XTJ'O'X|—>CTJ'O'C|
H=2 ekacfkocmFEj Ieptrovr-S, (15

+ _N—1/2 1 —ik-R;
Hi= 1SV 4o W) + 3,800 oW, Vo= N2 @l R, (19

W oW, + VT, oV ), (120 that creates an electron at sjtén one of two orthogonal
_ _ Wannier states, with form-facteb, . HereNg is the num-
whereJ, = (1-3x/4)J, Jo=(x/4)J, ber of sites. We shall show that channelsinterference be-
1 comes strong when two channels have the same spatial par-
\If;‘(,zz(c}(ﬁ ch,+cl +ch,) s channel, ity.
A simple example of our model is a two-dimensional
tight-binding lattice of conduction electrons, where
! :_(C;Ir_ _C;, )! — _
Py g e e €= — 2t(cosk,+ cosk,) — u, (17
1 and u is the chemical potential, interacting with a local mo-
\ngg=ﬁ(c;a—clg) p channel (13)  ment at each site in anand ad channel, so that
create electrons in the secondary channels. Electrons in the
secondary channels are able to exchange spin with the local (18
moment even though they do not hybridize with it.

In more complex Uranium heavy fermion systems, intra-
atomic interactions play a vital role in opening up second-as shown in Fig. 3. A slightly more appropriate example
channel couplingé’ In uranium atoms, the Hunds interac- would be a three-dimensional lattice, where
tions have the effect of suppressing fluctuations in the
“shape” of the localized orbital, so that electrons scattering €= — 2t(cosk,+ cosk,+cosk,) — u, (19

®=1 (s channel,

® = (cosk,—cosk,) (dy2_,2 channel,
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J,: p. - channel 1
2 " _ t t
|\Ps1>—ﬁ[¢ wl D =¢' I,

1
|‘I’sz>:E[*//TZHU_WZHDL (24

represent Kondo singlets in channels one and two respec-
tively. The action of the single site composite operatdr
=iy oo,y’,-Sis as follows:

AWy=2y" ¢ Pe),
FIG. 4. lllustrating spin coupled to electrons via a prim§

and a secondarp, cr?anﬁel. P PrmaY: AP oy=2¢" 545 | Pey), (25
showing that the composite operatdf transfers a Kondo

with a local moment at the center of each cube of atomsinglet between channels, leaving an electron pair behind in

interacting in a primaryf,,, channel and a secondag;, the channel formerly occupied by a Kondo singlet.

channel We now show how channel interference in the one band
model causes the susceptibility of this composite operator to

®,:= /8 sink, sink, sink, (f,y, channe), develop a BCS-like divergence in the Fermi liquid ground
(20 state. Suppose tha,=0 andJ, is sufficiently large for a
Kondo effect to develop in channel one. In the corresponding
® o= 2 sink, (p, channe), Fermi liquid ground stat¢d), the composite pair suscepti-

as shown in Fig. 4. bility is given by

Unlike earlier treatments of two-channel Kondo prob- (DATINY(N|A|D)
lems, our model involves single conduction electron band, XAZE {( E _E )+(A¢AT)]. (26)
and there is no globally conserved “channel quantum num- A e =

ber.” In a heavy fermion system, the orbital channels arerg gyaluate the matrix elements appearing in this expression,
locally well defined, but an el_ectror) scattering in one channelye need to decompose the composite operator in terms of
at one site, can then scatter in a different channel at a secopf,asiparticle operators. The essence of the Kondo effect is
site. This is important, for it can lead to interference .effectsthe development of Fermionic bound states between the local
between the Kondo effect in different channels which aryoments, and the conduction electrons. At low energies, the

completely absent in models with an artificial channel quangperator §- o,4) 15 then behaves as a single bound-state
tum number conservation. To illustrate this important point,sarmion represented by the contraction

we shall contrast the properties of our model with the chan-
nel symmetric “control model” I

(S 0ap) 1) =2f . 27)

HC=Y, echrkUcrngrE JFCTFJ-WUCFJ--Q, (21 yvhere?is the amplitude for bound-state formation. By mak-
kT'e T ing this contraction, we imply that in all matrix elements

where now between low-lying excitationka) and|b) of the Fermi lig-
uid, (§-o,p) 15 can be replaced by a Fermi operator as
_ follows:
C'rjo= N{l/ZEkD crye R (22

al(s;- j)|by=2z(alf,,/b. 28
(I'=1, 2. In the control, electrons in different channels do (@l k Tap)¥151)|D) =2(alol o ( )
not interfere, and we shall show that this prevents the devell is the contraction of the exchange term which gives rise to

opment of composite pairing. a resonant hybridization betweémnd conduction electrons
—
IV. COMPOSITE PAIRING INSTABILITY Il ¢' (S o) gy +H. cl=d12[¢'yf+H. c] (29

OF THE ONE-CHANNEL KONDO LATTICE so that at low energies, the Kondo Hamiltonian can be re-

To examine the effect of second-channel couplings, weplaced by an effective Anderson model.

introduce the composite operator The low energy eigenstates of the one channel Kondo

lattice model are then an admixture of electron and compos-
) ite fermion a,,=co0s§cCy,+Sin&fy,, with Hamiltonian
AT:; “ﬂlj 00—2¢T21 5. 23 =3 ,Ex@k,ak, - The volume of the Fermi surface now

counts both the conduction and composidectrons>—24In

This operator transfers singlets between channels by addirthe one band model, the conduction and compdstectron

a triplet and flipping the local moment. To see how thisshare a single Fermi surface and they may be decomposed as

works, consider a single site, where follows:
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Cko=COSO st - -,

fro=siNd ay,+---, 30
ko keko (30 Alq)>: AE = 2E,
where the high-energy components that do not affect the
low-energy matrix elements have been omitted . Near the

Fermi surface the scattering is resonant éde~ /2. More-

over, the small conduction electron admixture at the Fermi ch. 2

surface must reflect the symmetry of the screening channel, ' (2

SO \';\r;at cosiFocd)lkF. . A | (I)> _ AE =g +
e can now apply the contraction procedure to evaluate

the matrix elements of the composite operator. Let us begin

with the control model. Applying the contraction procedure

we obtain ch. 1.
1

FIG. 5. The action of the composite operator on heavy Fermi
(AT D)=~ E (N|Sj- (cTyjo0o,c)|P liquid creategi) a pair of heavy fermion&hannel interferengend
! (i) a heavy and light electrofchannel conservation
=22, (Moch,tT o P). (3D
k.o that there are now a large number of zero modes for the
In the control model¢}, andf’,~a',, respectively, create transfer of singlets between channels.
light and heavy electrons on completely different Fermi sur- It follows that the composite pair susceptibiligy, now
faces. The mismatch between the volume and the dispersiarontains a singular term. Substituting the above results into
of the Fermi surfaces for channel one and two assures th#ite general expression for the composite pair susceptibility,
the excitation energ¥, —Eq = €+ E, is always finite: we find

- (D3 Py)°
<)\|AT|(D>COCKEU o <)\|CT2k(raT*k*rr|q)>! XAM; ];TKZK_’OO; (35)
(32) I - : N
which diverges logarithmically in the thermodynamic limit.
Ex—Egp=et+E>0. We see that once channel symmetry is broken, the composite

The channel susceptibility, is consequentl§inite. We con- pair susceptibilityy , is directly proportional to the BCS pair

clude that with perfect channel symmetry, a small secondSusceptibility of th‘_a he_avy quasiparticles, where the symme-
channel coupling isrrelevant try of the channel is given by theroductof the two screen-

Now let us remove the channel symmetry and return td"9 channel;. . -
the physical model. Now we have This has immediate consequences for the effect of a finite

— J, on the Fermi liquid ground state. Once channel symmetry

is broken, the susceptibility to transfer singlets by creating
(NAT@)Y=i> (M| (¢T1 500,47 5)| D) composite pairs diverges. Any finitd, will polarize the
: transfer of singlets into channel two, thereby couplizgo

=zk2 Dy (N och,fT_ | D). (33 this divergent susceptibility. Thus the loss of channel sym-

metry causes a coupling to a second channel to become a
Unlike the previous case, this pair creation operator can bgelevant perturbation. This will forcd, to scale to strong
decomposed in terms of quasiparticles on a single heavoupling. A similar conclusion will hold whed, is large
Fermi surface. Transforming to quasiparticle operators USinﬁndJl is small. The 5imp|est way to connect up the renor-
Eq. (30) introduces a factor cogi()sin(&)~ Py, into the  malization flows in the vicinity of the strong-coupling Fermi

sum, so that liquid fixed points with the flow away from the weak cou-
pling fixed point is by hypothesizing the presence of a new
<)\|]\T|¢>Mz o O Dy(r|al,al_ P, attractive Kondo lattice fixed point that is common to both
Ko channelqFig. 6).

(34)
E,—Eg=2E. V. SU(2) FORMALISM

This relation describes the decomposition of the composite The_ _key to th_e development of a f'.eld theory for compos-
pair operator in terms of the low-lying quasiparticlesee ite pairing, _Iles in the use of the Abrikosov pseudofermion
Fig. 5. Notice that the matrix element is proportional to representation for the local moments

O, P, , showing that this amplitude involves an interfer- o

ence between the two channels. Furthermore, the two form Sj:ija(_) fig,

factors must must have the same parity, or the composite 2 B

operator vanishes on the Fermi surface. Since the excitation (36)
energy, E, vanishes on the heavy Fermi surface, it follows ne(j)=1.
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FREE MOMENT projection for ond-spin per site. Following earlier work, we
rewrite the Gutzwiller projection as an integral over the
Jl 12 SU(2) group
(nj;—nj >2=fd[w] gj, (41)
Jl= 00 \ J2= ) iT il J J
whereéjj—e'f Wifi is the SU2) operator,W,=6;n;- =, (6
€[0,27]) and d[W]=sir?6dedn(47?) is the Haar
measur®® over the SW2) group. Introducing this into the
A£0 partition function permits us to write it as a path integral
)., J,=00
1% ZJ DLf.c,W]eEer+ar 42)

FIG. 6. Conjectured renormalization group flows for the co-
operative two-channel Kondo effect. The Fermi liquid formed in where
channel one or two is unstable to common a two-channel state with
composite order. )
L£,=2 cfioce+ 2 (0, —iW)f; (43
Sincef-charge fluctuations have been removed, the Kondo k .
lattice model(KLM) is defined within the subspace con- is the Berry phase.
strained by th¢Gutzwiller) requirement;=1 at each site. The antiferromagnetic interaction between the localized
The absence dfcharge fluctuations is manifested as a localmoments and the conduction electrons can be decoupled in
SU(2) gauge invariance of the Heisenberg spin operatothe particle-hole channel as follows:

25

Sj 1

J
gt I op-S—=|=—{al ar}, (44)
fT. lo (37) 2 2
177 cosof T jotsgno sindf;_.
where
To illustrate this feature, consider the spin raising operation
S, . This process can proceed by first annihilating a down a :2 t (45)
electron, then creating an up electron, writ@h=f";,f; . b o

Alternatively, it can proceed by first creating an up electron
forming then;=2 state, then annihilating a down electron,
written Sj+= - foT” . In fact, one can accomplish the spin
raising operation by an arbitrary linear combination of the

The SU2) gauge symmetry guarantees that there is in fact, a
" continuous family of ways to decouple the interaction. Thus,
by making the transformatioh —>crf,(,, we can decouple

the interaction in the Cooper channel as follows:

above:
. . 1 J
S =(cosof’;; +sinof; ) (cosof; —singf';;). (39 Ip| oy S— E}:_?F{b;,br}, (46)
In other words, there is no distinction between a particle or a A
hole when all charge fluctuations are remoged. ere
The SU2) symmetry implies that the constraini=1 is
actually component of a triplet of local “Gutzwiller con- br=z of _gibr, - (47)
straints” o
fTof g fT We now decouple the interaction simultaneously in both
I ITT TH I channels, by first writing
it =0, (39 |
S f r
Fifis Hi=—" [{al .ar}+{bf br}], (49)

which can be written in the compact form .
then decoupling each term as follows:

ijTijO, (40 P o 2
- — — +H.c]+—V'* ,
where T',=(f";,,f;)) is a Nambu spinor, andr g (arar=larVi+Hel JFV v
=(1q,7,73) represents the triplet of Pauli matrices. The
first two constraints are particularly important in any consid-
eration of a paired state, providing the main driving force for
anisotropic pairing.
The partition function for our model is given by It is convenient at this point, to introduce a Nambu spinor
=Ti[Pge "], wherePg=1I;(nf,—n/)? is the Gutzwiller ~ representation for the conduction electrons

J 2
- Zr{b} bri=[blAT+H.c]+ EAF*AF. (49)
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Ci wherev,(j) is real andh; is an SU2) matrix. To fix the
Ck= ct . (50) gauge we absorty; into a redeflnltlon of the fields by setting
—kl =h', j(7) and makmg the gauge transformati@®). In the
The corresponding spinor for the localized electron Wann|efadla| gauge
states is .
Vij(7)=ivqj(7)1,
b »=( ‘//FT):Z ® ( . )eik-Rj (51) | -

Tj ‘ﬁTl“l —~ Prk pCTfkl ; W;j(7)=h";(r)(W;+id,)h;(7), (58

so the formerly static fieldV; is elevated to the status of a
dynamic fieldW;(7). The measure for the bosonic fields in-
side the path mtegral is now

where p is the parity of the form-fact@b=p®Pr_. The
decoupled interaction can now be written in the symmetric
form (Appendix A).

d[W,V]=(vq)3dvd[ V,]d3W, (59)

—_~ o~ 1
. t Lyt
I (S o) = [T Vg + H'C']+JF TViVel, 52 4t each site and time slice.

whereVr is directly proportional to an S(@2) matrix gr VIL. LINK BETWEEN COMPOSITE ORDER

r AND CHANNEL INTERFERENCE

vV A
=iVoor. (53)

VF: A*  —\*

Under the local S(2) gauge transformatioﬁj—>gj"fj,
Eq. (56), the two amplitudes’;; andV,; which describe the
Kondo effect at site j transform in precisely the same way.
The only gauge invariant term we can form from a single
channel is trivially proportional to the unit matﬂxr Vrj>

Repeating this decoupling procedure at each site in the r1m But in a two-channel Kondo problem, the mterference

path integral, enables us to write

The integration measure foi- is

Vo Vi (60)

=f Df,c;W,V]e /oLt 7, _ .
is also gauge invariant, since/' 2,V11—>V 1;9 JgJVZI

=) 2jV1j and for this reason, is expected to have a simple
physical significance. To identify the meaning of the inter-
ference term we introduce a source term into the Hamil-

H=2> ec’irscitHy,
k K .
tonian that couples to it

e~ 1
H':; {[f*ivnwri+H.c.]+J—Tr[VTnvn] . (55
i r

H—H+2> TV Vija;+H.cl, (61)
J

VI. GAUGE FIXING wherea;= ad9+iaj -7 iS a unitary matrix, with four real co-
o efficients (", @) at each site . If we now reverse the Hub-
Our model now has the following time dependent(3U  pard Stratonovich transformation, by integrating over the

gauge mvariance: fields Vi (Appendix B the Hamiltonian acquires the addi-
~ - tional term
H—H+Tr{M/a;+H.cl, (62)
a0 Vrs
JUREIOE where now
W—g;(W;+id,)g";, (56) T W, F A
associated with the absence fetharge fluctuations. When Mij=— T{_AT FT} (63)
we develop a saddle-point expansion for the functional inte- !
gral, we need to deal with the local zero modes associateghd
with this gauge invariance. Following standard gauge theory
practice, this means that we need to fix the gauge. We choose Fi= =y 10U S,
the “radial gauge,” where the Kondo matriX is propor-
tional to a unit matrix in the channel with the largest Kondo Aj=injioyopy;-S, (64)

coupling constant. This is the $2) analog of the radial
gauge used by Read and Newns in thdit)dreatment of the represents the composite order in the particle-hole and
single channél"?8 Kondo lattice. Suppose that particle-particle channels, respectively. By comparing Egs.
(61) and (62), we obtain a special relationship between the
Vi(j)=ivi(j)hy, (57 inter-channel interference and the composite order,
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VTZI'V]_]' =

JJ,[ F A
2 [-At F

(65) HMF=; (ETkv?Tk) ‘

j
Notice incidentally that the off-diagonal terms are odd undefyhere now
interchange of the channel index.

We thus learn thaif the Kondo effect develops coherently Ve=V1b, +V?%D,, . (72
in two channels, composite order develophis enables us

to understand why composite order develops critical correlaStHictly Speaking, here we should have written the form fac-
tions in the symmetric two-channel Kondo modéh a lat-  tOrS @®ry,, to take account of the possibility of an odd-

tice, true long-range order becomes possible. parity scattering channel. However, provided both channels
Let us briefly consider the possible phases that might dehave the same parity, we can always chgtin the above

velop. If V- develops a finite amplitude in both channels thenform. For even parity channelsbry, =®ry directly. For

the composite order in the ground state will have the form odd-parity Channe|51’rk73=¢’rk73, but in this case they

can be absorbed by a gauge transformafies 75f; .

F A
(Wi |f> (v le =_ (i) VL, V. (66) To examine uniform pairing, we shall take
—(AT) (WIFTw), 133 AT

. X Vl: iVll,

Suppose the amplitudes df are constant, then in the “ra- —

dial gauge Vy=von- 7.

Vi=ival, W=\rs, (73)

Vaj=ivae in T, (67)  wheren=cos#@y—sinéx describes the phase of the compos-

where the vecton; develops a vacuum expectation value. It€ pairing. For convenience we shall take-y, so that

The composite order matrix is then .
P Vk:|V1k+V2k7-2! (74)

(WIF[¢) (Wl Al) — Mgl in T 689) where we have introduced the notatiep,=v Py .
—( ATy (YIFTy) J_ 0 ’ Ostensibly, our mean-field theory is that of a BCS super-

conductor, with the Hamiltonian described by
whereM,=2v,v,/(J;1J,). Two kinds of phase are possible.

- i
Composite magnetisrwheren;=z. In this phase, the or- H(K) = €T3 Vi 75
der parameter matrix is diagonal and Ve Wer
(Y4 oy Sy =Moe' %1, (69)  However, there is one important distinction: here the pairing

takes place between charged conduction electrons and the

This phase breaks time-reversal symmetry, forming an orbeutralf spins, and is merely a manifestation of the forma-

bital magnet where the spin becomes correlated with eledion of composite pairs. For this reason, it is actually not
trons in two orbitals. possible to say whether the pairing is channel one or in chan-

nel two. In the gauge we have chosen, the scattering in chan-
nel one is “normal” and pairing takes place in channel two.
But suppose we make the gauge transformati®® with
gj=—iry, then

Composite singlet pairing where ¢;=m/2. If n(x)
= cos#(x)x+ sin A(X)y, whereupon

As(X) =il ipjoyoipy;- Sl =iMee % (70)
. N B

The second possibility is particularly interesting, because V= Vact Vama = T U= Vi = 1Va,
the composite pair susceptibility diverges in the Fermi liquid _ : i oN—
phase. This is the main topic of the of the paper. W=h7g = imW(—im) ==\, (76

which transforms the Hamiltonian to one which is now pair-
VIII. MEAN FIELD THEORY OF THE COMPOSITE ing in channelone and “normal” in channel two. We are
PAIRED STATE forced to recognize the superconductivity can not be identi-
fied with either channel, but instead derives from a coherence
We now develop a mean-field theory for the uniform penyeen the two channels.
composite paired state. With this theory, we show that the gyppose we now integrate out thelectrons: now we find

two strong-coupling Fermi liquid phases of our two-channelihat the conduction electron Green function has the form
Kondo model share a common instability into a phase with

uniform composite order. _ G(k) 1= w—em3—3(k), (77
We seek a uniform solution, where all mean-field param-
eters have no dependence on position. In this case the mea#here k=(k,») and where the self-energy term

field Hamiltonian is most compactly represented in momen- " .
tum space as (k) =V (0—N\73)" W (78)
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describes the resonant scattering off the quenchec_j local mo- Y= \/()\fk—Vﬁ_)2+(2V1szk)2- (89)
ments. If we expand the self-energy, we see that it contains _ _
both normal and anomalous components The eigenvalues of{(k) are thus given by

3(1) =2 (K) + Zp(K). (79 wys = Vo (= v) 2 (90)

Notice that although this self-energy contains off-diagonal@nd the mean-field free energy is
terms, it is invariant under the local $2) gauge transforma-

2
tions. The normal components are channel diagonal F=— E 2 In[2 costi Bw,/2)]+2 2 (vr)
Ns & 7 r=iz Jr
2 2
v Y, 91
SN(K) =~ (80) o | oY
w—\NT3 ®tAT3 By minimizing the Free energy with respecttov,, andv,,

but the anomalous terms depend on channel interference we can now determine the mean-field phase diagram.

2)\V1kv2k IX. PHASE DIAGRAM

w?—\?

SalK)=~ 1 (81)

We now discuss the mean-field phase diagram. There are
) ) ) three types of stable mean-field solutions.
and are directly proportional to the composite order param- Normal phasev, or v,#0, v,v,=0. At high tempera-
eter A. For A#0, composite order induces conventionalyres, eithew, or v, is finite finite, signaling a Kondo effect
pairing amongst the conduction electrons. We shall later seg, the stronger channel. There are thu® types of normal
that the.|n.depen.dent EXIS.tence of the CompOSIte order mea%ase with different Fermi surface geometry, depending on
that a finite Meissner stiffness developsen wher\=0,  \yhich channel is the strongest. Suppese-0, then the nor-

and conventional pairing is absent - . mal state spectrurt®0) attains the simpler form
The mean-field free energy per site can be written as fol-

lows: 1 5 >
wkn—>Ek:=§[(fk+ N EN(eg— N +4vi,

V2
F=—TINg> Trin[iw,—H(k)]+2> J—F (82 corresponding to a band formed by an admixture between the
Kiwn rr conduction electrons, and the compoditdectrons in chan-

The eigenvalues of the mean-field Hamiltonikigk) occur ~ Nnel one. This phase describes a heavy fermion metal.
in two pairs (- wy,,wy,), where n=*, corresponding to Gapless composite paired statev,#0. In the generic
two bands of quasiparticle excitations. We may rewrite thecomposite paired ground state, the quasiparticle excitation
characteristic determinant &f(k), Def w—H(k)], in terms  contains nodes. The condition for gapless excitations is
of the G(«)

¥2=0, (92)
De{w—H(k)]=De(G(x) (w’=A%). (83  which implies that
To evaluate the determinant, we wrid )~ in the follow- 2\
. ) (Nex—vi_)=0,
ing form:
G(k) '=(A-Brg+Crp)(0?~\2)"L, (84 Vakva=0. (93
where The first condition defines the locus of points on the under-
lying Fermi surface, while the second condition defines the
A= w(wz—)\z—vﬁ), nodes of the order parameter. Gapless quasiparticles form at
the intersection of the order parameter nodes with the Fermi
B= e (@2~ \2)+\V2 surface. This occurs when one or the other channel is domi-
k k= nant and in this case, the conduction propagét@y can be
C=2\Vyvak, (85 \written
vi=vi +vi., andvi_=vi +v3, . The eigenvalue equa- G(k) *=Z [o—Efm3—Aymi], (94)
tion Def{w—"H(k)]=0 then becomes where the gap symmetry is determined by treduct of
(A2—B2—C2)(w2—\2) 1=0. 86) form factors
Inserting the resulé85) into Eq. (86), we obtain Ay=A0P 1 Pk (95
and
Def w—H(k)]=0*— 20+ 7E, (87
2
_ Vi
where Z, =1+ ~ (96)
a=Vi+i(e2+\?) (88)

is a mass-renormalization constant, anéy =Z,(e
and —vﬁ_/)\), Ao=2Z,v1v,\ "t describe the kinetic and pair-
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+ s A o

Py FIG. 7. Evolution of the gap node&pen
o / A circles and the underlying Fermi surface in the
- L - composite superconductor, as the rafieJ,/J;

Tr

evolves from zero to infinity. In the intermediate
region, where (,<J,/3,<{,, the underlying
Fermi surface collapses around the zone center,
and the nodes annihilate one another to produce a
gapped state.
_M_
0 ¢ g g, )
ing contributions to the quasiparticle energy. The heavy elec- Wy N
trons in this state are paired, and thus correspond to an an- 4 tanl‘( T 7
isotropic  BCS  superconductor a  spectrumwy — —X Cka t A
_ [[E\2 2 Ns iz 2wk, (ag— v
=V(EO?+ (802 L o

Gapped composite paired state;v,#0. The gapped
composite paired phase occurs whenJ,/J, lies between
two critical values

Il
N

$1<32131<{5. (97 il

If the weaker coupling constants is increased to the point ak?\—ék(ﬁk)\—vﬁ_)
where it is comparable with the stronger channel, the under- 1

lying Fermi surface collapses around the zone center, caus- (et )\)Zqﬁik
ing the the nodes to mutually annihilatet A a still larger A= 2

coupling constant, the nodes reappear at the zone corners o2
(Fig. 7). This phenomenon is perhaps easiest to visualize 7 (&= NPy
when the conduction sea is half filled. In this case, the nor-

mal state is a Kondo insulator with no Fermi surfit@he  Suppose channel one is dominant, then in the normal state
mean-field theory predicts that whel3 exceeds a critical V2=0, which yields two equations for the normal state
value, composite pairing can take place forming a pure com-

(100

posite paired state. Although the quasiparticle spectrum is 2 tanl‘(BEk”) _ ek A ~0
gapped, as in a Kondo insulator k7= = 2 Exy—Ek—y '
2 (T) (101
1 J_:XK )
e =5 [Vetavit ad, (99) L
where
i - is fini 1 BEq,|  ®L
the composite order parametdr=2vqv,/(J1J,) is finite _ = n
. _ \ xk(T) > tan . (102
and there is a superconducting response. When this gapped Ns k7= =+ 2 JEx,— B,

state is doped, it preserves its gap.
In the paired phase, the mean-field equations are given
the three conditions

y settingv,=07 in the full set of mean-field equations, we
ind that the transition temperature into the composite paired
state is given by

2
JF JF dF — =
-2 I xc(Te), (103
N’ ovy’ &vz_o' (99 J2
where
The first of these equations imposes the constriigf =0, 1 BEk, AE,,
whereas the second and third determine the magnitude of the Xc(T):N—S ) ;+ > |2E,, (104

Kondo effect in the two channels. Written out explicitly, the
mean-field equations are and
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(e —\)? But since the composite order parameter is givenddy
A2 = _F - (105) =2v,0v,/(J1J,), it follows that the composite pair suscep-
7 E2_—EZ, tibility is given by
is identified as the matrix element vy\|? Xc
AZ,~|(keT,— kel |A|®)|? associated with the action of the Xa=[(OASA™)—(SASA*), —ol/T= 3 =)
composite pair operator on the Fermi liquid ground state
. 2 (112
|@). In all the above expressions, we have simplified the _ L ) _ o
algebra using the identities The denominator in this expression vanishes gtexplicitly
confirming that the composite pair susceptibility diverges at
Exy—Ex-— = 7V(ex—N)Z+(2vy)?, the mean-field transition between the normal, and the paired
state.
Eiyt Ex— p= €t \. (106) To gain some insight into the composite pair instability

described by Eq9103) and(104), we divide the bare com-
We now discuss the detailed phase diagram that results frorﬁbsite Susceptibi”tyXC into a “high” and a “low” energy

the mean-field equations. component

A. Instability of the heavy electron metal

Xc= ; + ; {-t=xntx, @113
We have argued that the presence of a heavy fermi sur- Eyl>Tka Byl <Tia

face leads to new zero modes for the transfer of singletghere the former describes the local Kondo effect in the
between different screening channels, so that when a secofgkaker channel, the latter, the channel interference taking

channel develops a finite coupling, a composite pair instabilplace on the heavy Fermi surface. At energl&(,,|>
ity immediately results. We now describe in detail, how this>T,, |

result emerges naturally from our mean-field theory.

Let us begin by setting the scale of the Kondo temperature BEx, Aﬁn 1,
within this mean-field theory. In mean-field theory, the > tan > |3 _’mqDZk- (114
crossover into the Fermi-liquid regime is crudely delineated K k7 X
by a mean-field phase transition. We use this temperature a&3uppose the heavy Fermi surface lies in the lower band, on
a definition of the single site Kondo temperature. At thethe Fermi surface,
“transition temperature,’v,=0", so

V%k
1 € 1 D ke T T\
X(T)=3 2 tanr(%)@ike—wN(ox@ioln(T—). -
s k k K
(107 Ef _—Ef .=—(\+vi) (115

where we have replaced the momentum sum by an integralo that
over energy, so thati(0) is the density of states at the Fermi

surface, anc((b%k> denotes a Fermi surface average of the 5 4>\2vf(¢>1kF<I>2kF)2
Form factor. With this definition the mean-field Kondo tem- Aien= NIRRT (119
perature takes the form ( VlkF)

AN R When we replace the momentum sums by energy integrals,
Tg1~De =1 K7, (108 we must remember that the density of quasiparticle states is

This quantity sets the characteristic size of the mean-ﬁel&nh"’mcecj by a factor

parameters in the normal state ()\2+V§.k)

£ (0)=N(0)

dEk
A~ (V1)2N(0)~Ty;. (109 dBe-fioy,
The composite pair instability of the normal state is di- The energy scale separating the two regimes is the Kondo
rectly related to a divergence in the fluctuations associatetemperature for channel origc,. With these results, ap-
with the Kondo effect in channel two. To see this, we expandProximate expressions for the high and low energy contribu-
the mean-field expression for the Free energy to GaussidiPns to the composite susceptibility are

order inV, =V, 7+ V,y 7y, Which gives
Xh _ J'D de CI)2
2N(0) - - < 2k>!

2 €
F=Fq+]|v,|? 3. Xcls (110 K
2
. L . TdE [ (vi® 1 Poy)? TkaidE
wherev,=v,,+ivy, and ¢ is given above. From this re- Al =2f K1—<(121—k22k)> mzf K1—<<I>§k>.
sult, we can read off the fluctuations in the order parameter 2N(0) T E (N+Vvi) T E

(118

(111 The expression fory, was simplified by noting that the

(OVooV3 )= 57— . 110 .
210, xc dominant contribution to the second term occurs in the re-
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gions far from the node in the order parameter, wheye ’ ! ’ ! ) L
>\. The sum of the two expressions then yields

| D Tk1
" Ter T
The Gaussian coefficient of, in the Free energy is thus
given by osk

Yc~2N(0) +2In

1
(@30). (119 |
E'O

2 B > 1 ( D ) (TK1>
3, ~Xe=2N(ON(®39| - —In| | —2ln| /|, b
(120

FL 2 1

where g2=N(O)J2<CI>§k) is the dimensionless Kondo cou- 0.5 1
pling constant for channel two. The first logarithm in this e /4,
expression describes the renormalization of the coupling

constant in channel two down to the energy scale:

1.5

FIG. 8. Phase diagram for a two channel Kondo lattice with
and d-wave screening channels. Temperature is given in units of
1 1 ( D ) Tk=max(Tk,,Tk2). In the shaded region, a co-operative Kondo

n ;

(122 effect in both channels gives rise to composite pairing and a quasi-

Tk1 particle gap withsx d=d-wave symmetry.

=——]
92(Tk1) 92
t_he second logarithm describes the subsequent renormahzgé shown in Fig. 3. As expected, the composite pair instabil-
tion of g, at temperatures belowWy,. In a two-channel

single impurity model, the second logarithm would be en_|ty occurs at the highest temperature when the two channels

tirely absent because the Kondo effect in channel one cufd'® most evenly matched.

off any further renormalization in channel two. Here we see _ o o _

that the constructive interference between the two channels ~B:- Composite pair instability of the Kondo insulator

in the lattice actually over-compensates for the Kondo effect Since composite pairing is an intrinsically local process,
in channel one, producing a logarithmic renormalization athe presence of a heavy Fermi surface is not a necessary
low temperatures which is twice as large as at high temperaequirement for the formation of the paired state, but in its
tures. The co-operative Kondo effect thus develops at a temabsence, the instability requires the second-channel coupling
perature which is higher than the Kondo temperature for agonstant to exceeds a critical value. This is precisely what
isolated channel two. We may rewrite the Gaussian coeffihappens where the conduction band is half filled, for in this

cient as case, the normal state of the Kondo lattice is a “Kondo in-
sulator,” with no Fermi surface and a gap to charge excita-
2 2 Tk1 2 tions. The Kondo insulator is particle-hole symmetric, so in
3, Xc=3,~2N(0)In{ 3| +In T”@)z“) the mean-field theoryy =0, so that the excitation spectrum
simplifies to the following form:
Tk2 Tk1 2
=—2N(0) In T +1In 7 <(I)2k> E €
/[ € k
. Wy+= E +V2i5. (126)
=4N(0)(®3,)In \/?) (1220 By minimizing the mean-field Free-energy with respect to
K1TK2 variations inv; andv,, and settingT=0, we obtain two
where we have used the definition mean-field equations for the ground state
Typ=De VINOIAPZ)], (123 1 J d¥ D7,
J d [eZ1 2y )2’
to absorb the coupling constady. In this rough approxima- ! (2m)" Ve + (2vi)
tion, the composite pairing instability occurs at a temperature 1 4 ®2
k2
—= (127
Te~VTkaTke- (124 J2 f(27r)d Vel+(2vy)?

WhenJ,/J; <1, this same scale sets the size\gf Figure 8  (whered is the dimensionality This composite paired phase
illustrates the phase diagram calculated numerically for il only be stable within a range aof,, J5<J,<J3* . By

two channel Kondo lattice witts and d-wave screening  settingy,=0", we obtain two parametric equations for the
channels second-order phase boundary between the Kondo insulator

and the composite paired state:
® =1 (s channel,

(129 1_ f d’ Pl

(2m) 9 Ve 2+ (2v, @)%

3 (128
® = (cosk,—cosky) (dy2_y2 channel, 1
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the composite paired state is stable, is negligible for sfall
and J,, but grows substantially as both, becomes large
compared witht.

This composite paired state is interesting, for its quasipar-
ticle spectrum is essentially identical to the Kondo insulator,
and furthermore, since=0, there is no anomalous compo-
nent to the conduction electron self energy: there are no
paired conduction electrons in the ground state. Yet despite
these similarities, the presence of composite order

2
RNE

A(X) vyvee ¢ (130
means that this state is a superconductor, with a finite charge
susceptibility. The calculation of the charge susceptibility
needs to be carried out subject to the constraint. Expanding
the free energy energy to quadratic order in changasand

the chemical potentiajy we have

0.2} = 1 2 2
F=Fo= 5[Xuu( 1)+ 2x, 31 N+ X3\ (ON)].
(131
The constrainbF/d\ =0 implies that
01 1.7 z 3 X i)
/Y, h=—""su, (132
XN\
LK1 A0 kI so that we may write
L J* J** !
2 2 Xc )
F=Fo— 5 (5w)°, (133
FIG. 9. (a) Phase diagram for two-channel Kondo insulator. Ki
denotes the Kondo insulating phases. In the intermediate gaplegghere
phase both channels participate coherently in the composite pairing
process(b) Showing phase stiffness in the composite paired phase X2>\
for the casel,/4t=1. XC=Xpuu~ —£ (134
XN\
d 2 A rather laborious calculatiofAppendix Q gives
1 f dk Dy,
i) @em Jal+(2v @ )? - 42
X,u.,u_; [(E )2+4V2]3/2’
Beyond the critical valug%* , the Kondo effect is no longer k k
operative in channel two. By setting=0", we obtain two a2
parametric equations for the second phase boundary: X x:E V-
TR (a0 avi]P?
1 d% P2
J_:f om0 Je2 2kl<I> Vi Xo0= Xun™ Xo. (139
1 +(2v
(2m)" Ve "+ (2voPay) where
2 2
1 d% P2, 5 2V 1KV ok €k
T:f d 2 2 (129 Xo= 2 2 21312 2 St
J3 (2m)° Ve "+ (2v,0y) kK [(e)+4vi] Vi Vi (136
136

We have calculated the phase diagram for a two-dimension&jce

Kondo insulator in two dimensions, with dispersiep=  pothy, andv, are finite. In the next section we also confirm

—2t(c,+cy) and a Kondo coupling in theandd channels,  that the composite paired state has a finite superfluid phase
as shown in Eq(125. WhenJ,<J3 , the Kondo effect in  stiffness, given by

the s channel leads to Kondo insulator. By contrast, when
J1<<J,, a “nodal semimetal” forms in channel two, with a 1 (V1V2)2 (D VDo — P VD4, )?
gap which vanishes along thtwave nodes of the form- Ps=4 2 2 291/2

: . - © Vi [e2+(2vi)?]
factor®,, . Figure 9 shows the phase diagram obtained from
Eqgs.(128 and(129. Notice that the range af, over which  in the ground-state.

| X =<Xup @nd X3n= X, Xc IS positive, provided

, (137
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C. Gapped composite paired state V/k\: iqu)lk—eA73+V272q)2k—eA73- (144)
In our simple two dimensional example, is never zero,

so the condition(@3) for gapless behavior become The appearance of the vector potential in the form factor

reflects the fact that the hop and flip motion of electrons
ka around a local moment leads to current flow. In the London
A= —, gauge ¥V-A=0) we may calculate by compute the second-

€k derivative of the Free energy at fixed valuesvgf v,, and
\,% so the the only important part of the Free energy is the

vak=0. (138 electronic component

The modulug(v2,/€,)| is smallest at the band-edges, where

le ] =W. =4t u. So if Fe=—T2, Trinfio,—Ha(k)]. (145
2 2
LS r< Vik ' (139  To second order in the vector potential, we may write
W_ W,
1

the paired state becomes gapless. Although a small residual HA(k)=H(k)—JaAa+§AaAbV§bH(k)+O(A3),
Cooper pair density is present, the state is essentially a pure (146)
condensate of composite pairs. To understand what happens
at the critical values of, it is instructive to examine the so expanding the Free energy to second ordeX,inve ob-
underlying Fermi surface, defined by the locus of points  tain

ViV F=Fo+3QapAsAs
§G=—"—"" (140
A
ab_ a b 2
As one approaches the critical valge ¢, this Fermi sur- Q _Tz,:‘ (TG TG T TG VapHell, (147
face collapses around the zone center, forcing the nodes to
mutally annihilate. In going from the regiah/J;<1 to the ~ Where
region J,/J;>1, N\ changes sign, and so that the system G G
must always pass through this region of gapless composite QK=[iwn—H(k)]lE[ Cf} (148
pairing. In the center of this region, whexe=0, the state is Gte Gt
a pure composite paired state. Oricexceeds the valué,, is the matrix propagator and
the nodes are reborn at the zone corners and the Fermi-
surface reappears along the zone boundgiy. 7). View 7V VN
To illustrate these conclusions, we have used the mean- J=—VaHa(k)=¢e V.U 0
field equations to calculate numerically the two lines where kVkT3
the gap vanishes. In Fig. 1, we summarize the results of thege the current operator. The first and second terms in Eq.
calculations, in a diagram where we have kept ndax,) (147 correspond to the paramagnetic and diamagnetic com-

} (149

=4t, and varied the ratid,/J;. ponents of the stiffness, as in a conventional superconductor.
Notice, however, that the current contains anomalous off-

X. SUPERFLUID DENSITY diagonal contributions that do not commute with the charge

OF THE COMPOSITE PAIRED STATE operator 73. Unlike a pure BCS superconductor, here the

) . . ) presence of composite pairs affects the current operator.
To confirm that the composite paired state is supercon- The dgiamagnetic contribution t@2° can integrated by
ducting, we need to compute the superfluid densityln the parts, to obtain

London gaugév - A=0, the supercurrent is given by
js=—QA, (141) > TG Vi, ]=—2 TGy, (150

where where

P°F

— a2 -
Qav=eLrslan=52 oA, (142 l=eViH(k)=e

Viers ViV
, (151

ViV 0

In t.he presence of an eIectromagneUc field, the electron k'éo that the full expression for the superfluid stiffness tensor
netic energyand form factors acquire a dependence on theis

vector potential. Using a Nambu notation, we may write

€= €k—enry Quv=T2 TG TG T ]~ T1Gd:Gd,1}- (152

Dry—Pry—ear, (143  To gain some insight into this equation, it is instructive to
evaluate the stiffness for the case of pure composite pairing
so that the hybridization acquires the form at half-filling. In this case, the conduction electron propaga-
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tor commutes with the charge operatar so contributions to ) C e?
the stiffness which involve the conduction electron compo- €°ps ~d
nent of G identically vanish. For example, the cross term

betweenV e, andVVis

2(P 1 VDo~ P VD)2

[2+(2v)?]Y2

Vi1Vao

k

Vi+
(163

This result is quite fascinating, because it confirms that the
T GecVa€GeiVp V73— GeoVaeT3sGeVpV1=0. (153  composite pair condensate has a phase stiffness, even in the
absence of an underlying Fermi surface. In a conventional
“superconductor, the scale of the stiffness is determined by
the Fermi energge?p~eer/a2. Here the size of the stiff-
ness

The only surviving terms represent the composite pair stiff
ness, which can be written in the form

.
Qeb=5TH[GeVaV.m3][GeVpVima] +H. ¢ . (159 y
V2

2
e2p§~e2N(0)<( >~e2TC/a2 (164

From the Dyson equation, Vi+

is determined by the condensation energy. This is a classic
example of “local pair” condensation.
Go(k), (159 Away from half filling, the superfluid stiffness contains
contributions associated with both the paired conduction
whereg is the propagator in the absence of any hybridiza-electrons, and the composite pairs. To make a clean division
tion, it follows that of the stiffness into two components, one needs to worry
about the various cross terms that appear in the stiffness such
as Eq.(153), which do not obviously vanish away from half

VT

0
G(k)=Golk) +G(K)| ),

— T

Cei(K) =GV w—N\T3’ (156 filling. However, a key observation is that these terms are

- odd functions of\, so they are guaranteed guaranteed to
so that at half filling § =0) vanish provided that the physics is particle-hole symmetric

aboutA =0. With this proviso, we can divide the superfluid
1 stiffness into two terms
Gei(k)= ﬁw, (157)
w(w EkT3) Vi Q:QBCS_I_(QC7 (165)
and hence where
1 t Bes_ | ; 2
[GeiVV 13]=———————[V'VV73]. (158 Qab =§E VaeVpe TG (), 73]°],
o(w— €T3) Vi P

Evaluating the commutator ¢ T
Qap=5TM[CciVaV, 73][GerVpVi 73] +H. C] (166
V'YV, m3]1=2(vi Vo=V Vv 7y, (159
_ are the BCS and composite pair contributions to the stiffness.

we may then write

42T , , XI. DISCUSSION
4 2 (VikVVak=VakVva) ” TG (x)%], In this discussion, we should like to address the results of
(160  this paper on two fronts: Alternative theoretical approaches
to test and confirm the presence of a co-operative Kondo
where for convenience, we have assumed an isotropic stifieffect and applications to experiments and the theory of real
nesngsz%ab. Taking the zero-temperature limit, re- heavy fermion systems.
placingi w,—i® and

C

A. Alternative theoretical approaches
>dw
T E - | —

Twp 002

(161 The main effort of this paper has been to establish the link
between co-operative channel interference in the Kondo lat-
tice and composite pairing. Although our key result, the re-
lation between the gauge invariant interference term and
composite order

then yields

8e?
32.05027 Ek: (VlkVV2k_V2kVV1k)2

I 33, FTA
g Viah=——F— AT ET (167
f e ! 162
x 27T (w2+vﬁ)2+w2€ﬁ' (162 does not depend on approximations, the notion that this in-

terference term can develop long-range order relies on vari-
Carrying out the final frequency integral yields the following ous mean-field approximations. There are, however, reasons
expression for the composite stiffness to be confident in the mean-field solution. First, there are no
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obvious competing instabilities, such as magnetism. By turnTo see this, note that whex is nonzero, the band splits into
ing on aJ,, one does not drive the system closer to thetwo components with energies
antiferromagnetic instability, but rather, simply activates an-
other source of Kondo screening. This should be contrasted
with the situation in the alternative model of spin-fluctuation
mediated pairing. Here, to attain a transition temperature that
is comparable with the heavy fermion bandwidth places th&/here
model close to an antiferromagnetic instability, where the
compgting effec_ts of magnetism make the mean-field theory Ho+H' =2 (Exsa'ioare+Ex_bliobry),
potentially unreliable. ko

Nevertheless, the use of mean-field methods inevitably
raises questions about our work which motivates us to seek
alternative methods to verify the key results. It may be pos- aka:T(Ckngf DoiCr20) s
sible to precisely verify our results in both finite size calcu-
lations, and in the exactly solvable limit of infinite dimen-
sions. Finite size studies on our model may be facilitated by
treating the model as a ladder compound and by using the
strong-coupling limit so as to completely eliminate the pos-
sibility of antiferromagnetic instabilities. At large A, one can project out all terms involving the upper

To formulate our model in a form that is tractable to anband by rewriting the Hamiltonian in terms of tiaeand b
exact infinite dimensional study, rather than using explicitcreation operators, and then dropping all terms involving the
form factors in the Kondo interaction, it is better to start with creation or annihilation operators for the upper bamg, or
a channel conserving two-channel Kondo lattice, to which &'k When we do this, the interaction becomes
term which destroys channel conservation is then added to

Ece=€r2A| > (—1) cosk], 173
1=13,...

1
bkazﬁ(cklu_ Do Croy)- (174

activate the channel interference. Suppose one starts out with H, = 1 3. bt i(k—k')-x;

) = b'oby-Se i,
a two-channel Kondo model, with perfect channel conserva- 2N, k% ok KT
tion:

H ik = (J1P 1, Py +IoP ok P i), (179
0
c = + ~ + Q. correspondmg to a two-channel Kondo model with two or-
H” = Z €kC Tko CTko + Z Jre'rjoer; - 5;, thogonal matrix elements.

kTo ¥ The mean-field theory for this mod@Ipredicts that that
(168  as soon ad becomes finite, channel interference will drive
the system into a composite paired state, even when
where >J,. This phenomenon should extend all the way out to
infinite dimensions, where a precise dynamical mean-field
CTFjo: Ns—l/zz ct e KR (169 theory treatment of the model becomes possible.

B. Possible consequences of co-operative Kondo behavior

(F=1,2 and for heavy fermion compounds

We conclude with a brief discussion of the general con-
sequences of co-operative channel interference in heavy fer-
mion systems. Our paper has focussed on the superconduct-
This model has a perfect(l) channel symmetry. Suppose ing aspects of this problem. Here we should like to put the
one now adds a term to the hoppiRig~HC+H’, where problem in a more general perspective.

Assuming it becomes possible to verify the theoretical

o | + + soundness of the co-operative Kondo effect, how could the
H=- 2A| Z‘,d (= 1)'coski(C k1oCkzo T C k2o Cho) theory be tested experimentally? Our model suggests a rather

(171 intimate relation between the local quantum chemistry of the

heavy fermion ion, and the gap symmetry of the order pa-

is a hopping term with td-wave” symmetry that mixes the ameter. In heavy fermion compounds, one of the scattering
different channels, breaking the(l) channel conservation channels is arfi channel. Since the two channels must have
_symmetry. This contains no nc_mlocal mteractlons3 and is th_ug1e same parity, the second channel is in all likelihood an-
ideal for a larged treatment. It is easy to see that in the limit yiherf channel or @ channel.

of large A, it is equivalent to a one band model, with two fsf. Candidates: non-Kramers ion e.g., UBi
orthogonal form factors UBes. ’ ’ ’

¢ fop. Candidates: UBg, UP%, and cerium systems,
close to quantum critical point.
The first possibility will occur if the Kondo effect in-
172 volves a non-Kramer’'s magnetic ion. For example, in the
case of URpSI,, there is strong circumstantial evidence that

€= —2t|_§1:d (cosk)) — . (170

(I)lk:]-!

o= sgr{ El (—1) cosk
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the single-ion physics is dominated by a Kondo effect with a  Ultranarrow gap Kondo insulator€eRhSb and CeNiSn.
non-Kramers magnetic doublet. The form factors for the twoThese Kondo insulators appear to develop gap nodes in their
f channels in a tetragonal crystal field are known, and placéiny hybridization gap. In a recent pap¥nwe have pointed
strong constraints on the symmetry of the putative compositeut that this kind of behavior would arise from the suppres-
order. In the second case, the number of availplabkannels  sion of shape fluctuations, which gives rise to three orbital
is small and the local quantum chemistry will determine thescattering channels in which the Kondo effect can take place.
most likely channel for the cooperative pairing process. FoiThe resulting interference between the three orbital channels
example, in hexagonal URtthe most likely second channel is found to spontaneously generate a crystal field environ-
is the p, orbital, which would explain the presence of the ment that gives rise to a Kondo “insulator” with gap nodes.
node in the basal plane. In principle, cubic YBeould be- These are both areas of active investigation, which lie out-
long to either category, as this system may also have a norside the scope of this paper.

Kramer’'s ground state. If, however, the driving force derives

from ap channel, molecular prbital theory dictgtes that the ACKNOWLEDGMENTS

most likely second channel is gwave state with normal
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may help explain why it has proven so interminably difficult
to carry out Josephson tunneling into these systems. One APPENDIX A
way to enhance the Josephson current may be to introduce
rare earth or actinide spins into the tunnel junction. Joseph- In this section we apply the SB) decoupling scheme
son tunneling between a conventional, and composite paireeriginally developed by Afflecket al. for the Heisenberg
superconductor requires that the addition of a pair is accommodel to the two-channel Kondo problem. This derivation is
panied by a spin-flip. Spin fluctuations of the local momentscloser in spirit to the original work by Affleclet al, and
in the junction may help to catalyse this co-operative prodiffers in detail from the later work by Andrei and Coleman.
cess. This is a possibility currently under investigation. ~ The approach of Afflecket al, is more explicitly SU2) sym-

We should like to end with a short note about the nonsu{mnetric and can be naturally extended to include source terms
perconducting aspects of the composite Kondo effect. In outhat couple to the composite order parameter. There are two
key identity distinct differences between the approaches: The integration

measure over the SP) field is “flat” and Gaussian coeffi-
cient of T{V'[V] is now 10 rather than 1/2, as it was in
' (176 the earlier work by Andrei and Coleman.

The difference in measure leads to differences in the fluc-
we have the possibility of finite diagonal componeRts 0 tuations around the mean-field theory, and the mean-field
due to co-operative interference. Unlike composite pairingexpressions for the Kondo temperature obtained in the 2
such instabilities will requirdd; andJ; to be of comparable methods actually differ by a factor of two in the exponential.
size. There are, to our knowledge two good candidates fopve have chosen the approach of Affleekal. because it
this kind of phenomenon: gives us a much cleaner an symmetric derivation of the final

Orbital magnetism ilJRu,Si,. As mentioned above, this results.
material is a naturally occurring two-channel Kondo lattice, The objective of this section is to show how the interac-
but with strong spin-orbit coupling. One of the long-standingtion between a localized momeft and the electron local
mysteries of this compound, is the appearance of an uniderypin densityo= ¢Tm/, can be decoupled in terms of a fluc-
tified magnetic state at 17 K, with a large order parametetuating SU2) field
which appears to break time-reversal symmetry, but without

producing a large magnetic momént> One possible way L e~ T VIV
to account for this, is to suppose that the two channels in this Ir(S or—z2)—=[fVryr+ H'C']+T' (A1)
compound give rise to a complex order parameter

Vioh=-—-= _At Et

J1Js F A
2

whereVr is directly proportional to an S(@2) matrix gr

F(x)=Foe'®X 177
whereQ is commensurate with the lattice. Just as supercon- Ve iVEqr— v Al A2
ducting composite order coexists with a weak BCS order P=IVodr=| \x (A2)

parameter, orbital composite order will coexist with a weak
orbital moment. Spin-orbit coupling will then generate aFor clarity, all site indice$ are omitted from this derivation,
weak magnetic moment. but are readily restored later.
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Following earlier work, we introduce the following matrix Jr ; N
fermions: Hi=— 2 TlUrUr]=H D V] (A12)
f, f drr Yry and
F= , = . (A3)
[ =0 7" el —efy

By taking the product of these matrix operators with their H [V, V']= —{Tr[Vr F]+Tr[UFVF]}+ Tr[VFVF]
Hermitian conjugates, we find that (A13)
Ty — T
Yr¥r=1+o"-or, A priori, Vis a two by two complex matrix. However, if we
" T divide it up into the sum of a unitary and an antiunitary
F f:EJF 22 S, (A4) matrix, we find that only the former completely decouples.

where o= ¢/ oy is the electron spin density ang’ de- The residual part o¥ is completely antiunitary, and has the

notes the transpose of the Pauli spin matrix. Tran§formationfs(,)rm

acting to the right ofF, 7/— Fh correspond to physical ro-

tations of the local moment. Transformations acting to the Vrz[
left of F, F—g.F correspond to the local SP) transforma-

tion, under which the spin operator is explicitly invariant:

\Y, A

JUR (A14)

r

where there are only two independent complex parameters.

1 Tt 1 Totot This is a significant simplification. Notice tha} is directly
S= ZTr[" F f]_’ZTr[‘T F'9'gF1=S. (A5  proportional to an S(2) matrix

Multiplying the two equationgA4) together, and taking the Vr=iVigr (Vo= V|Vi[2+]AMP). (A15)
trace we obtain
The measure of integration for each time slice is then simply

1
gyl t gt
or: St =g M7 Ayl (A6) D[V V= dVrdVEdA A% | (A16)
Anticommuting the conduction electron operath- to the  As our final step, we now reduce the decoupled interaction to
left through the trace, we then find that a more manageable two-component notation. Writing
J ~
Ir(or-S—3)=—7TUUr], (A7) ff=(f" ),
where TﬂTr: ( lﬂTm r))s (AL7)
—a} by thenH, reduces to the form
Up=FPl=| . (A8)
br ar 1
_FhyT t
is an antiunitary matrix and Hi=[fVrdr+H.cl+ ETr[VFVF]* (A18)
which is the form quoted in the main text.
ar= 2 fTo'lzDFo' ' a
APPENDIX B
br=2> of _,r,. (A9) The purpose of this section is to establish the direct rela-
7 tionship
Notice that if we expand the above interaction, we obtain
J V= Jljz[ i A} (B1)
Hi=— S [alar+aral +blbr+brbf]  (AL0) T2 [-AT R
showing that it has been decoupled simultaneously in th(\a/vhere
article-hole and Cooper channels.
P P F=y'0o,-S,

We now apply a Hubbard-Stratonovich procedure to this
expression. Formally, we first convert each of the fermionic _ ,
operators in the interaction to Grassman variables inside a A=io(—loy)oy,-S (B2)

path integral. On each time slice we write represent the single composite order in the particle-hole, and

particle-particle channels, respectively. In order to establish
e‘ATH'=J D[V, VipJe 2™MDr Vi (A11)  this identity, we introduce a source term into the Lagrangian
which couples to the gauge invariant matrix prodWgy;,
where we have transformed writing
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. 1
H, =; [F"Vrgr+H.c]+ J—Tr[v}vr]
r

+THVIVia+H.cl, (B3)

where the source term= a,+i a-risa unitary matrix, with
four real coefficients.
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This expresses, in a compact form, the relationship between
the interchannel interference and the composite order. To
complete the job, we now expand the right-hand side. We
first write

[Va(o"- 9V ]=—[Vy(o,00,-9VT], (B13

where we have replaced’= —(oyooy). To make the ex-

We shQII now invert the Hu.bbard Stratonovi_ch tra”SfOF'pansion, it it is convenient to write
mation, with the source terms in place. We begin by rewrit-

ing the Gaussian term in the interaction to obtain

H,:; HTVIUR+He]+ T VIVE mp ], (B4)

where
1
J_ o
1
Mppr = 1 (BS)
Py ——
Jz

When we carry out the Gaussian integral oVer, the trans-
formed Hamiltonian now becomes

1 t 1
H|=—ZTr[U rUp (M~ Hporl, (B6)
where
3, L
i 122 2 87)
A-fal?y)| _ 4 1
Ji

When we expand this to linear order inwe obtain

3 3,3
Hi==3 ZTUNU+ =T U Usa+ Hel
(B8)

Inserting F' F=1+ 20" S into this expression, and making

the observation that
Ta¥ ', ¥, +H.c]=0 (B9)

we can rewrite

THUNLUa+H.c]=2T{a¥,(o"- 9P +H.c]
(B10)

so that the final form of the interaction with the source term

IS
Jr
Hi=-> —TrUrUr]
T 4

Jidz T t
+TTr[a‘If2(o- SV +H.cl]. (B11)

Comparing coefficients ao& in Eq. (B3) with Eq. (B11), we
obtain the following identity:

J.J
VT2V1:1_2[\I’T2(0'T' S)WTI]-

5 (B12)

¥
\If2: t o
l/’ 2(' O'y)
Wherez/g is the row spinor formed by taking the transpose of
the column spinowy,, and 3 = (') is the column spinor

formed by taking the transpose gf ;. Multiplying out the
matrices, we obtain

) ’ \PT]_:(!//I ,_iO'yl//]_), (814)

2 [ wroyeo i Yo(—ioye)ys
- EVTZVl: LMoo o) T Yoy, S
[ vev.  nlioyo)y,
aioyer yleyy |
[ F A
=l At FT] (B15)

Substituting Eq(B15) into Eq. (B12) we obtain the quoted
result.

APPENDIX C

The purpose of this section is to evaluate the susceptibili-
ties associated with the expansion of the mean-field Free
energy about the pure composite paired state

1
F=Fo= 5 [Xuu(01)*+ 22X, SN+ o\ (8V)%].
(C)

By integrating over the Gaussian fluctuations\ino impose
the constraint on thécharge, we can use these susceptibili-
ties to compute the physical charge susceptibility

(X,LL)\)Z
X

To compute the susceptibilities we expand the Hamil-
tonian about the half-filled state

5 73 0 0 O o3
=Ho— + )
H=Ho=om o o] ™Mo o, €3
The electronic part of the Free energy is given by
Fe=—T> Trinfiw,—H(K)]. (C4

Expanding this to second-order then gives

7'30 ’7'30
0 0/9] 0 0[%

22

(CH

Xup™ _TE Tr( gK
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T3 0 0 0 Vi Vi (C13)
- ChrSkn= =
Xpn TEK TG 0 0|940 rg] KT mE, T Jetavl
describe the admixture between the conduction fetéc-
0 O 0 o trons. The matrix elements of the charge operators appearing
XMZ—TE Trl G o T3 Gd o T3 inside the susceptibilities are
At half-filling, the elect t be writt e 0
alf-filling, the electron propagator can be written Zoll 0 0l =CinCin s,
wé _inégT

G(k)=

ivigG g(w— €3Gy’

wherev, = \/v21k+v22k,

K

lkn'| O T3 anzsknskn'Tagﬁ

1 =Sk,,Sk,7r(COS¢kT3+ sin ¢kT2),
G(x)= — (o)) (C14
w(w 6'(7-3) A\ 2 2 _ 2 .
where C,=vi _/vi and S,=2v v, /vy . The expressions

and for the susceptibilities can now be written
1 .
g= V—k[V1k—|V2sz]- (C8) Xun="T 2 TG 735G 73],
K, 1,7

The Green functioy has poles at- Ey,, where
X/L)\:T 2 Tr[GﬂTan/T3]Ck,

€k €y 2 2 X
Ekn:§+77 ? +Vk(7]:i). (Cg)

xo=-T 2 TIG,rsG, 75Ci+G,m,G, 7],

w7, 7'

Expanding the electron propagator about its poles, we write

7 where we denot&, =G, («) and vanishing cross terms be-

G(k)= 2, G, (K)5—=T3, tween 73 and 7, have been dropped. We now evaluate the
7= €t avi Matsubara sums in these expressions, and take the zero-
temperature limit. Key results that we use are
G, (k)=——. (C10
K w_Ek7]7-3 -T 2 Tr[GﬂT3G77/T3]C3]Cir
Inserting this into the full propagator, we can write it in the Ko
form 22 fi —fin 2.2 ZCEISEI
= ——CC,— T,
2 CE”G” _iCanknG”ng‘r 7' Ekn_ Ekn’ T EE+4VE
G(r) = 7 |1CkySky,973G, sﬁ,ng,,gT wheref, = 1/(e”Exn+1) denotes the Fermi function. Simi-
larly,
=2 Ly®G (1) Nk, (C1 22
- 7 7 7 2(;77577

T X TrG,75G, 75](c9),(cS), —

2 2’
where 1o, 7' Vet avi

G (C12 TS TG, G, r5]s2s> 208
§ =1. C1 r 73 173]S,S_,— .
k7 1Sk,9k T3 lon 7' re T eg+4vi

is the eigenvector corresponding to the quasiparticle with astly, there is one anomalous term
energyEy, . The quantities

i . . 2.2
c? S ! 14 7t T.w%,,r Tr[G”TZG”'TZJS’?Sv’_’Zn |Excrl
=== —_—, n:7
K By By 2 Ver+4vi
. . 2, 2
Vk+€k
52 _ Ek,,’_ €k _1 1 7 €k VE\/€§+4VE.
kn—E _E o|lT T T 2
" BBy, 2| V€T Avi ] Putting these results together, we obtain

4
Sy
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4v§

K (e2+4avE)3?

Xpp

2
% ZZL
MR avd)

2
4v§ vﬁ,
XM:E (_2
Vi

K (e2+4vd)?
2
2V1kV2k>

v

2 2
Vk+Ek
+>

K vi\ei+4ve

(C19
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We can also rewritey,, in the following form:
X0 Xup T Xbs
2V 1KV 2k ? Eﬁ
> 5+ — |-
Vi Vi
(C16)
Sincex = x ., and|x,\|<x,, . the the final result for the

L) [(ek>2+4vi]3’2<

charge susceptibility is then guaranteed to be positive when

Vv #0:

- —Mww v,#0) (C17)
XC= Xuu Xunt X0 1V2 -
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