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Even-odd and super-even effects in the attractive Hubbard model
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Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2J1
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The canonical BCS wave function is tested for the attractive Hubbard model. Results are presented for one
dimension, and are compared with the exact solutions by the Bethe ansatz and the results from the conventional
grand canonical BCS approximation, for various chain lengths, electron densities, and coupling strengths.
While the exact ground state energies are reproduced very well both by the canonical and grand canonical BCS
approximations, the canonical method significantly improves the energy gaps for small systems and weak
coupling. The ‘‘parity’’ effect emerges naturally in our canonical results, as a positive gap for an even number
of electrons and a negative ‘‘gap’’ for an odd number of electrons. Furthermore, we find a ‘‘super-even’’
effect: the energy gap oscillates as a function of even electron number, depending on whether the number of
electrons is 4m or 4m12 (m integer!. Such oscillations as a function of electron number should be observ-
able with tunneling measurements in ultrasmall metallic grains.@S0163-1829~99!08229-6#
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I. INTRODUCTION

The possibility of fabricating1 tunnel junctions containing
nanoscale particles has opened up new areas of explora
Experiments can now probe the energy spectrum in th
particles and study changes as a function of temperature
magnetic field.2,3 In this way one can observe changes in t
spectrum that are expected to occur in the bulk due to ph
transitions, and determine to what extent these concepts
relevant for small systems.4 The unprecedented control ove
experimental conditions — changes due to a single tunne
electron can be observed — allows one to ask and add
questions which, until now, have been academic only.

In this study we follow the experiments of Tinkham an
co-workers1–3 and address the issues concerning superc
ductivity in small systems. Specifically they studied sm
superconducting Al particles~diameter of order 10 nm! and
probed, through tunneling experiments, the excitation sp
trum as a function of temperature and magnetic field. In
tempting to treat small electronic systems, there are m
concerns related to possible surface and impurity effe
both of which could lead to localization, for example. For t
present we ignore these potential complications, and ins
focus on a question which arises in the application of
Bardeen-Cooper-Schrieffer5 ~BCS! theory of superconduc
tivity: to what extent is the grand canonical ensemble use
~which in the thermodynamic limit, is equivalent to the c
nonical one! for systems with a small number of electrons

We propose to tackle this question in a systematic w
using the attractive Hubbard model. The choice of this mo
is motivated by several factors. It has long served as a p
digm for s-wave superconductivity, and serves as the ‘‘mi
mal’’ model that best describes superconductivity. All t
energy scales are very well defined in the problem, so tha
high frequency~and ill-defined! cutoffs are required.6 Exact
solutions are available in one dimension via Bethe ans
techniques,7 and the grand canonical BCS solutions have
cently been evaluated for large system sizes.8 In fact in that
work some preliminary canonical solutions were also exa
ined, but only for very small system sizes. In this work w
reformulate the canonical solution, in such a way that lar
PRB 600163-1829/99/60~5!/3508~19!/$15.00
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systems up to three dimensions can be tackled. We antici
that the canonical treatment will improve the grand canon
BCS results for sufficiently small systems. We note that a
this work was completed, a paper appeared9 in which the
canonical BCS equations were formulated and solved fo
model system with uniformly spaced level spacing
Complementary exact numerical results~for finite systems!
were presented for the same model in Ref. 10. We will co
ment on the similarities and differences with our own wo
in the course of our discussion below.

The outline of the paper is as follows. In the next secti
we formulate the problem. We mention the work of Falic
and Proetto,11 who applied a canonical BCS method to th
problem of electrons on a tetrahedron~a ‘‘small’’ fcc lattice!.
We have generalized this method for larger systems,
solved the ensuing equations numerically. However, mem
requirements become very demanding, and therefore, bey
a certain lattice size, we had to abandon this approach.
include it in the Appendix, nonetheless, because the va
tional wave function in this method is more general than
BCS canonical wave function, and the variational equatio
linear. In practice, however, as will be shown, this wa
function only marginally improves the ground state energ

We then formulate the canonical variational proble
strictly in terms of theg(k)’s familiar from the grand ca-
nonical solution.12 The resulting equations are tedious, a
can be cast in a more enlightening form by following t
pioneering work of Dietrich, Mang, and Pradal,13 who solved
the canonical BCS problem for nuclei. This ‘‘method of res
dues’’ is based on representing expectation values in
BCS canonical ensemble through contour integrals of
BCS grand canonical ensemble expectation values: the l
seems to have started with a paper by Bayman.14 This is also
the methodology adopted by Braun and von Delft,9 who nu-
merically evaluated residue integrals by fast Fourier tra
form. As will be explained, however, we chose to evalua
the required integrals analytically~which requires numerica
summations!. A concise summary of the residue method a
further references are available in Ref. 15. See also Ref
for an alternative approach.

Finally, we provide a review of the grand canonical fo
3508 ©1999 The American Physical Society
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PRB 60 3509EVEN-ODD AND SUPER-EVEN EFFECTS IN THE . . .
mulation and the Bethe ansatz solutions in o
dimension,7,17,8 for purposes of comparison. We have al
performed some numerical diagonalizations, although th
are limited to small systems and~in one dimension! serve
only to verify the Bethe ansatz solutions. In both the gra
canonical and canonical BCS formulations we have p
formed the variation strictly in terms of the single set
parametersg(k). This departs from more conventional trea
ments where two sets of parametersu(k) andv(k) are used,
with an auxiliary relation between them. Our formulation
conceptually clearer, but slightly more cumbersome, so so
details are provided.

The following section is devoted to numerical results. A
the computational results presented in this paper will be
one dimension. This is because the exact results for ‘‘larg
systems are only available in one-dimension~1D!, and there-
fore it is presently only in this case that one can study the
crossover from the bulk limit to small systems. Because
attractive Hubbard model is a very local model, many of
features of the variational solution will remain in higher d
mension; in fact we expect the agreement of the canon
BCS results with the exact ones to improve, but we have
way at present to check this. In addition, many of the f
tures of the solutions in higher dimensions~such as long
range order! will not be present in one dimension. A mor
systematic study of the canonical BCS solution in two a
three dimensions will be presented elsewhere~unfortunately
without exact checks, except for very small systems!.

The so-called ‘‘parity effect,’’18,19 i.e., the dependence o
the energy gap on whether the superconducting particle
tains an even or odd number of electrons, has been un
stood mostly in a parity-conserved grand canonical B
formulation.20 The result was that the pair-breaking gap
slightly smaller for odd number parity systems than for ev
number parity systems. In the canonical scheme, even e
tron number grains have a gap, whereas odd electron num
grains can be said to have anegative‘‘gap’’ towards chang-
ing the electron number by one. This is just a statement
in a tunneling experiment into an even number grain th
will be a positive energy required in addition to the chargi
energy, whereas into an odd number grain there will b
negative energy with respect to the charging energy. This
already been observed in tunneling experiments on Al~see,
e.g., Fig. 2 in Ref. 2!, and emerges most naturally in ou
canonical formulation, as will be demonstrated below. In
dition we have found an interesting 4m vs 4m12 effect,
wherem is an integer. In our case we have observed osc
tions as a function of electron number. Therefore we h
variations in the gap between odd, even andsuper-even~i.e.,
multiples of 4! electrons. Hints of such behavior, noted as
function of lattice size, were first discussed by Fyeet al.21

The concluding section summarizes our results. In
Appendix we outline the formulation of the linearized c
nonical variation.

II. FORMULATION

A. Model

The attractive Hubbard Hamiltonian is given by

H52(
i ,d
s

td~ai 1d,s
† ais1H.c.!2uUu(

i
ni↑ni↓ ~1a!
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ekaks
† aks2

uUu
N (

kk8q
ak↑

† a2k1q↓
† a2k81q↓ak8↑ ,

~1b!

whereais
† (ais) creates~annihilates! an electron with spins

at sitei andnis is the number operator for an electron wi
spin s at site i ( i is the index for the primitive vectorRi).
The td is the hopping rate of electrons from one site to
neighbouring siteRd away~often nearest neighbors only ar
included!, anduUu is the coupling strength between electro
on the same site; here the fact that it is attractive is explic
included from the beginning. In Eq.~1b!, we have Fourier
transformed the Hamiltonian with periodic boundary con
tions in each dimension forN sites. Theaks

† andaks are the
creation and annihilation operators in the reciprocal spa
and the kinetic energy is given by

ek522(
d

td cosk•Rd , ~2!

whereRd is the coordinate vector connecting sitesi to i 1d.
We perform variational calculations using the compon

of the BCS wave function that has a given number of pairn
and thus conserves the number of electronsNe52n. The
BCS wave function is a superposition of pair states with
the possible numbers of pairs$n%:

uBCS&GC5)
k

~uk1vkak↑
† a2k↓

† !u0&[ (
n50

`

uC2n&, ~3!

where u0& denotes the vacuum state, anduC0&[u0&. The
n-pair componentuC2n& can be obtained by rearrangin
uBCS&GC into a power series of the pair creation opera
ak↑

† a2k↓
† and can be written as

uC2n&5(
k1,

(
k2,

•••(
,kn

)
i 51

n

~g~k i !aki↑
† a2ki↓

† !u0& ~4!

5
1

n! )i 51

n S (
ki

g~k i ! aki↑
† a2ki↓

† D u0&

~k iÞk j , for all iÞ j !. ~48!

Here we have definedg(k i)5()kuk)
1/nvki

/uki
. The condi-

tion k1,k2,•••,kn for the$k i% sums in Eq.~4! means that
all the k i ’s should be different and ordered so that all t
different combinations of$k i% are counted once each: th
latter condition is removed for the sums in Eq.~48! and the
division by n! compensates for the multiple counting. In
finite system withN sites, the wave number can takeN val-
ues, and hence then sums overk’s in Eq. ~4! result in
NCn5N!/n! (N2n)! terms.

B. Grand canonical variation

We begin by reviewing the grand canonical formulati
of BCS theory. We have opted, contrary to convention,
formulate the minimization problem in terms of only th
variational parametersgk[g(k) ~and not theuk’s andvk’s!.
This was originally motivated by the loss of clear meani
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3510 PRB 60K. TANAKA AND F. MARSIGLIO
for the uk’s and vk’s in the canonical ensemble, though
fact one can proceed also with these.13,9 One therefore sim-
ply writes

uBCS&GC5c)
k

~11gkak↑
† a2k↓

† !u0&, ~5!

where the coefficientc properly normalizes the wave func
tion. One then calculates the expectation value of the gr
canonical Hamiltonian

K5
^CuH2mN̂euC&

^CuC&
, ~6!

where, in this case, the wave function is the BCS grand
nonical one given in Eq.~5!. For example, the expectatio
value of the kinetic energy operatorT̂2mN̂e is

^CuT̂2mN̂euC&52ucu2)
p

~11gp
2!(

k
~ek2m!

gk
2

11gk
2

.

~7!

Note that normally the product and the denominator are
sent because these factors are usually defined to be unity
to normalization. Also note that thegk’s are generally com-
plex, but can be chosen to be real; this is presumed in
~7!, and will be implicit in what follows. Careful evaluatio
of the potential energy terms yields the following result:

K52(
k

~ek2m!
gk

2

11gk
2

2
uUu
N (

k

gk
2

11gk
2

2
uUu
N (

kÞk8

gk

11gk
2

gk8

11gk8
2 2

uUu
N (

kÞk8

gk
2

11gk
2

gk8
2

11gk8
2

~8!

with m the chemical potential; it plays the mathematical ro
of the Lagrange multiplier for the condition that the avera
electron numberGĈ BCSuN̂euBCS&GC5Ne . We have written
the total energy term by term in the following sequence:
first term is the kinetic energy, the following two come fro
Cooper pair scattering (q50), and the fourth term is the
Hartree term (qÞ0). When displayed this way it is appare
that the last term excludes the spurious Hartree term whe
an electron interacts with itself~a ‘‘1/N effect’’!. It is also
apparent that thereducedBCS Hamiltonian (q50 scattering
only! will exclude this last term, and in doing so omits th
Hartree term~since it is often deemed to merely represen
shift in energies!. At the same time Eq.~8! appears to have
terms of order 1/N smaller than the dominant terms. In fact
does not, and we can rewrite this equation in the follow
form:

K52(
k

~ek2m!
gk

2

11gk
2

2
uUu
N (

k,k8
F gk

11gk
2

gk8

11gk8
2

1
gk

2

11gk
2

gk8
2

11gk8
2 G , ~9!
d

a-

b-
ue

q.

e

e

by

a

g

where now the summations are unrestricted. The entire
pression is now clearly extensive, as it should be, though
this formpairing terms of order 1/N have been mixed in with
the Hartree term.

The next step is to carry out the variation with respect
the gk’s; this can be done straightforwardly to yield

2~ek2m̃ !gk5DBCS@12gk
2#, ~10!

where

m̃[m1
uUu
N (

k

gk
2

11gk
2

~11!

and

DBCS[
uUu
N (

k

gk

11gk
2

. ~12!

The solution is

gk5
Ek2~ek2m̃ !

DBCS
, ~13!

where Ek[A(ek2m̃)21DBCS
2 is the quasiparticle energy

This solution is only implicit, sinceDBCS depends on the
gk’s through Eq.~12!, and must be determined by numeric
iteration. The number equation is also required to determ
the chemical potential as a function of coupling strength
is12

n[
^Ne&

N
512

1

N(
k

~ek2m̃ !

Ek
. ~14!

The gap is then defined to be

D05min~Ek!. ~15!

If we define the minimum band energy,emin[2D/2, with D

the bandwidth, then it follows thatD05A(emin2m̃)21DBCS
2

when m̃,emin . This definition implies that the gap depend
on a certain momentum, determined by the wave vectork at
which the minimum energy occurs. The total energyEGC
also follows readily from these expressions. It is

EGC[^H&5K1m^N̂e&,

EGC

N
5

1

N(
k

ekS 12
ek2m̃

Ek
D 2uUuS n

2D 2

2
DBCS

2

uUu
, ~16!

where we have used the fact that

n5
2

N (
k

gk
2

11gk
2

.

The BCS grand canonical results in the remainder of
paper have been obtained through the solution of these e
tions on finite lattices.
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C. Canonical variation

1. BCS

Rather than adopt the wave function given by Eq.~5!,
which spans all~even! number sectors, one can work direct
with the wave functionuC2n& given by Eq.~4! with fixed
electron numberNe52n. A ‘‘simplification’’ occurs if we
try to linearize the problem, by defining a variational para
eter C(k1 ,k2 , . . . ,kn)[g(k1)g(k2)•••g(kn) for this wave
function, following Refs. 11 and 8 for the two-pair cas
Thus one can rewrite Eq.~4! as

uC2n&5(
k1,

(
k2,

•••(
,kn

C~k1 ,k2 , . . . ,kn!)
i 51

n

aki↑
† a2ki↓

† u0&.

~17!

As discussed in Ref. 11, theC’s defined as above are subje
to constraints; for example, forn52 and for a given set o
four k values (q1 ,q2 ,q3 ,q4) which satisfyq1,q2,q3,q4,

C~q1 ,q2! C~q3 ,q4!5C~q1 ,q3! C~q2 ,q4!

5C~q1 ,q4! C~q2 ,q3!. ~18!

If these constraints are ignored and theC’s in Eq. ~17! are
treated asNCn independent parameters, the minimization
the energy

E2n5
^C2nuHuC2n&

^C2nuC2n&
~19!

with respect to$C% reduces to a linear problem.11 We initially
adopted this method of canonical variation, which actua
allows more variational freedom than using thegk’s. How-
ever, as one can readily appreciate, the number of variati
parameters grows very quickly with increasing lattice si
and therefore in practice, this method has limited usa
Where it was practical, however, we carried out these ca
lations and compared them with the canonical BCS result
be described below. The gain in accuracy for the grou
state energy was fairly small. Our formulation and results
this case are summarized in the Appendix.

The cost of working with thegk’s is that the problem
remains a very nonlinear one. Nonetheless the gain in c
putational ease more than compensates for this, in that
N variational parameters are required, whereN is the number
of lattice sites. As we shall see, this allows us to easily st
the limit from small systems to those that are well describ
by the grand canonical ensemble. The formulation of t
problem using the expression foruC2n& given in Eq.~4! is
straightforward but tedious. We therefore follow th
‘‘method of residues’’13 ~see also Ref. 15 and more recen
Ref. 9! originally developed for the nuclear pairing problem
An advantage of this method is that matrix elements
more easily evaluated~they remain as simple as the ones
the grand canonical formulation!. Moreover the energy and
the resulting variational equation can be written in a comp
way which parallels the grand canonical BCS equations.
starting point is to write Eq.~4! in the general form as a
particle-number projection of the grand canonical BC
state.14 In more general terms, this is the projection that
stores the symmetry of the Hamiltonian~i.e., conserved par
ticle number in this case! in the wave function.15,22
-
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For an even number of electrons then-pair wave function
in the projected form is

uC2n&5
1

2p i R dj j2n21)
k

~11jgkak↑
† a2k↓

† !u0&,

~20!

where the contour is any counterclockwise path that enclo
the origin. If we perform the residue integral above, we
cover the desired wave function Eq.~4!.

As written above the wave function is not normalized,
expectation values of observables will include a factor giv
by ^CnuCn& in the denominator. A straightforward evalua
tion of this factor giveŝ CnuCn&5R0

0, whereRn
m is defined

by the residue integral13

Rn
m~k1 ,k2 , . . . ,km!5

1

2p i R djj2(n2n)21

3 )
kÞk1 ,k2 , . . . ,km

~11jgk
2! ~21!

5(
p1,

(
p2,

••• (
,pn2n

gp1

2 gp2

2
•••gpn2n

2 , ~22!

where

piÞk1 ,k2 , . . . ,km ~ i 51, . . . ,n2n!.

The integral in Eq.~21! has sharp oscillations as a functio
of j ~or u defined by the coordinate transformationj5eiu)
whose severity increases with increasing system size.
therefore evaluated the integral using the analytical result
~22!. This was accomplished efficiently with an algorith
that took advantage of the polynomial structure of the ori
nal integrand in Eq.~21!, and led to a considerable speed
in the integral evaluations.

These residue integrals are useful not only because
matrix elements can be easily evaluated, but also beca
they satisfy various recursion and sum formulas. For
ample, Dietrichet al.13 found the following recursion rela
tion:

Rn
m~k1 ,k2 , . . . ,km!5Rn

m11~k1 ,k2 , . . . ,km ,k!

1gk
2Rn11

m11~k1 ,k2 , . . . ,km ,k!.

~23!

This result follows straightforwardly from the definition. An
other useful relation involves the derivative required in t
variational principle:

]Rn
m~k1 ,k2 , . . . ,km!

]gk
52gkRn11

m11~k1 ,k2 , . . . ,km ,k!.

~24!

In addition, we have also found and exploited the followi
sum rule:

(
kÞk1 ,k2 , . . . ,km

gk
2Rn11

m11~k1 ,k2 , . . . ,km ,k!

5~n2n!Rn
m~k1 ,k2 , . . . ,km! ~n.n!. ~25!
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3512 PRB 60K. TANAKA AND F. MARSIGLIO
All these relations follow in a very straightforward fashio
from the definition. For completeness we include the c
where the residue with two or more equal indices is requir
it is then useful to rewrite the definition of the residue, E
~21!, as

Rn
m~k1 ,k2 , . . . ,km!

5
1

2p i R djj2(n2n)21

)
k

~11jgk
2!

)
k5k1 ,k2 , . . . ,km

~11jgk
2!

. ~26!

The advantage of this definition over Eq.~21! is that there is
no ambiguity when one or more momentum index is us
more than once. With this definition these residues still s
isfy the recursion relation~23!. This fact is useful for sim-
plifying the expressions that involve restricted double m
mentum sums, which arise in the canonical formulation.

Omitting details, the ground state energy can be written
a form reminiscent of the grand canonical BCS formulat
@see Eq.~9!#:

E2n5(
k

2ek

gk
2

11gk
2

r 1
1~k!

2
uUu
N (

k,k8
F gk

11gk
2

gk8

11gk8
2 r 1

2~k,k8!

1
gk

2

11gk
2

gk8
2

11gk8
2 r 2

2~k,k8!G , ~27!

where we have now defined normalized residues

r n
m~k1 , . . . ,km![

Rn
m~k1 , . . . ,km!

R0
0 )

k85k1 , . . . ,km

~11gk8
2

!.

~28!

This definition is clearly motivated by the fact that in th
bulk limit, the canonical results converge to the grand
nonical ones.

A straightforward but tedious variation of Eq.~27! yields
the following variational equation:

~2ẽk1Lk!gk5Dk@12gk
2#, ~29!

where

ẽk[ekr 1
1~k!2

uUu
N (

k8

gk8
2

11gk8
2 r 2

2~k8,k!, ~30!

Dk[
uUu
N (

k8

gk8

11gk8
2 r 1

2~k8,k!, ~31!
e
;

.

d
t-

-

n

-

Lk[2ekgk
2r 1

1~k!@12r 1
1~k!#1

uUu
N

$r 1
1~k!~12gk

2!2r 1
2~k,k!%

1~11gk
2! (

k8Þk
2ek8

gk8
2

11gk8
2 @r 2

2~k8,k!2r 1
1~k!r 1

1~k8!#

22
uUu
N

gk (
k8Þk

gk8

11gk8
2 @r 1

2~k8,k!1gk8gkr 2
2~k8,k!#

2
uUu
N

~11gk
2! (

p,p8Þk

gp

11gp
2

gp8

11gp8
2 @r 2

3~p,p8,k!

1gpgp8r 3
3~p,p8,k!#

1
uUu
N

~11gk
2!r 1

1~k!(
p,p8

gp

11gp
2

gp8

11gp8
2 @r 1

2~p,p8!

1gpgp8r 2
2~p,p8!#. ~32!

A solution to Eq.~29! is obtained by numerical iteration
Note that Eq.~29! resembles the analogous equation in t
grand canonical ensemble, Eq.~10!. The factorLk appears
here in addition; all terms in Eq.~32! are of order 1/N, and
therefore vanish in the thermodynamic limit. Moreover, bo
the single-particle energy Eq.~30! and the pairing potentia
Eq. ~31! are modified by the normalized residue integrals.
practice, instead of Eqs.~29!–~32!, we used the simpler-
looking expression

gk52
uUu
N

(
pÞk

R1
2~k,p!

denom
,

where

denom5S E2n22ek1
uUu
N DR1

1~k!

2 (
pÞk

S 2ep23
uUu
N Dgp

2R2
2~k,p!

1
uUu
N (

pÞk
(

p8Þk,p8Þp
@gpgp8R2

3~k,p,p8!

1gp
2gp8

2 R3
3~k,p,p8!#. ~33!

Although this equation does not resemble the grand can
cal equations, it is homogeneous in$gk% and has far fewer
terms.

In the case of an odd electron numberNe52n11, we
define the fixedNe wave function in terms of a residue inte
gral as

uC2n11&5
1

2p i R djj2n21aqs
† )

kÞq
~11jgkak↑

† a2k↓
† !u0&.

~34!

This wave function carries a momentum labelq which gives
the momentum of the unpaired electron~and hence of the
total state!. The normalization factor is now
^C2n11uC2n11&5R0

1(q), and the total energy is given by
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E2n115eq1 (
kÞq

S 2ek2
uUu
N D gk

2

11gk
2

r 1
2~k,q!

r 0
1~q!

2
uUu
N (

kÞq
(

k8Þq
F gk

11gk
2

gk8

11gk8
2

r 1
3~k,k8,q!

r 0
1~q!

1
gk

2

11gk
2

gk8
2

11gk8
2

r 2
3~k,k8,q!

r 0
1~q!

G . ~35!

This expression for the ground state energy has the s
form as Eq.~27! except that the kinetic energy of the u
paired electron is singled out and the momentum sums
plicitly prohibit the singly occupied momentum state. As
the even case a lengthy variational equation for thegk’s is
obtained and must be solved numerically. The end resu
that we have the ground state energy for any fixed numbe
electrons.

Thus one can construct the gap by

2DNe
[ENe2122ENe

1ENe11 . ~36!

Various definitions of a gap or binding energy exist in t
literature.8,21,23,24The basic idea is the same — one wants
compare the difference in energies between two systems
in which 2Ne electrons are distributed equally over two su
systems containingNe electrons each, and the other in whic
the subsystems containNe11 andNe21 electrons, respec
tively. If Ne is even, the former has lower energy since pa
ing is fully utilized; this is reflected in a positive gap. IfNe is
odd the latter has lower energy and therefore the gap is n
tive. This is the origin of the positive and negative gaps w
respect to the charging energy for even and odd elec
number particles, respectively, as observed by Tinkham
co-workers.1–3,18For evaluating the gapDNe

in Eq. ~36!, we
choose the momentum that yields the lowest energy fo
given odd number of electrons and for a given coupl
strength. This means that forNe even, the gapDNe

depends

on two momenta, one for theNe11 system and one for th
Ne21 system. On the other hand, forNe odd, DNe

depends

only on one momentum for the oddNe system. This is im-
portant for properly recovering the grand canonical limits
certain regimes, i.e., strong coupling and/or low elect
density.

In the grand canonical BCS formulation, there is a dir
correspondence between the variational parameters an
occupation probabilitynk[(s^aks

† aks&. It is determined
through thegk’s as

nk52
gk

2

11gk
2

512
ek2m̃

Ek
, ~37!

where the various functions are defined in Sec. II B. Util
ing the uk’s and vk’s instead of thegk’s makes the corre-
spondence even more transparent, for we havenk52vk

2 in
that case. In the canonical formulation, for an even num
of electrons, for example, we construct the matrix eleme

nks5^c2nuaks
† aksuc2n& ~38!

and obtain
e

x-

is
of

ne
-

-

a-

n
d

a

n

t
the

-

r

nk5(
s

nks52
gk

2

11gk
2

r 1
1~k!. ~39!

2. Exact solutions

The formalism developed so far is applicable in any
mension. The results to be discussed later in this paper fo
on one dimension only. One reason is that the model is v
local, so that for the properties we will discuss here, dim
sionality is not too important. The second reason is that co
parisons can be made with exact results, which are rea
available only in one dimension.

Ground state energies can be obtained both by exac
agonalization~on small system sizes! and by Bethe ansatz
techniques.7,17,8We have already outlined in some detail8 the
numerical procedure used to obtain ground state energie
the attractive Hubbard model, and the reader is referred
those references for further details.

III. RESULTS

A. Ground state energy

We present results in one dimension and with only
nearest neighbors included for the electron hopping (td[t).
It has been shown in Ref. 8 that for large systems, the gr
canonical BCS approximation yields the exact energy in
strong- and weak-coupling limits, and in the dilute limit fo
all coupling strengths. Thus deviations from the exact res
are largest for weak to intermediate coupling strengths
for larger electron densityn[^Ne&/N. Because of the
particle-hole symmetry,7,8 we need to study only up to hal
filling, n51 ~i.e., the number of pairs is half the number
sites!. Note that for the exact and canonical calculations,
density is defined simply byn5Ne /N for a given number of
electronsNe . In the results shown below, for changing th
density, we vary the electron number for a fixed system s
as is the case in the experiments.

In Fig. 1, we show the ground state energy per site~ab-
solute value! as a function of the electron density for~a!
uUu/t510 and 4 andN516, and for ~b! uUu/t52 and N
54, 8, and 32. The exact and canonical results are plo
with symbols and the grand canonical ones are shown w
curves. In Fig. 1~a!, for the exact and canonical cases, t
energies with even and odd numbers of electrons are sh
in different symbols. The conventional grand canonical B
wave function contains only the components with even nu
bers of electrons. Strictly speaking, the exact and canon
results for odd numbers of electrons should be compa
with the grand canonical ones in the parity-conserv
scheme20,25 with the odd number parity.

In Fig. 1~a!, we first note the difference between the e
ergies with even and odd numbers of electrons, as cle
seen foruUu/t510. The difference becomes more appare
for larger coupling strengths, giving rise to the even-odd
cillations in the energy as a function of the electron dens
For uUu/t510, we note another difference between the ev
and odd electron numbers; the canonical energies are m
closer to the exact ones for the even numbers. It can als
seen for this strong coupling case that the canonical res
~for evenNe) are converged to the grand canonical ones
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FIG. 1. ~a! Ground state energy as a function of the electron densityn5Ne /N for 16 sites. The points are the canonical and exact res
~different symbols for even and oddNe), while the grand canonical ones are shown with curves. The difference between the energie
even and oddNe can be seen clearly foruUu/t510. The canonical BCS results for evenNe are better than those for oddNe , and converge
to the grand canonical energies for strong coupling.~b! Same as~a!, but for uUu/t52 and forN54,8 ~upper frame! and 32~lower frame!,
and here the even and odd points are not distinguished. The improvement by the canonical scheme is more apparent for weak co
small system size, as can be seen forN54 and 8. ForN532, the canonical and grand canonical results are more or less converged
densities.
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almost all density values, and both results are in very g
agreement with the exact solutions for smaller density.
the coupling strength becomes smaller, for a fixed sys
size, the canonical energy deviates more from the grand
nonical one and, for an even number of electrons, impro
slightly the agreement with the exact energy for larger d
sity. This can be seen foruUu/t54 in Fig. 1~a!, while the
even-odd difference is now smaller.

For smaller system size and coupling strength, we
more improvements due to the use of the canonical form
tion. In the upper part of Fig. 1~b!, we show the results fo
uUu/t52 and forN54 and 8. Note that the energy range
magnified compared with Fig. 1~a!, and that for the exact an
canonical results, the even and odd energies are not di
guished by different symbols. ForN54 the agreement be
tween the canonical and exact energies is excellent for
values ofn, and it is still very good forN58. In the latter
case, the grand canonical curve happens to be very clos
the exact results for odd numbers of electrons for larger d
sity. As explained above, however, the grand canonical
sults shown here must be compared for the even num
only. In fact, the grand canonical energy for an even num
of electrons differs most from the exact and canonical en
gies for larger density. On the other hand, the canonical
ergy converges to the grand canonical one as the system
becomes larger, as can be seen in Fig. 1~b! for N532. The
even-odd difference is negligible for this weak coupling a
large system size.

In Fig. 2, the ground state energy is plotted as a funct
of the coupling strength forN58 and 64, for various densi
d
s
m
a-
s
-

e
a-

in-

ll

to
n-
e-
rs
r

r-
n-
ize

n

ties with ~a! even and~b! odd numbers of electrons. Fo
small systems, the canonical results improve the grand
nonical ones, especially for intermediate coupling streng
while the former converge to the latter as the coupli
strength is increased. This can be seen forN58 in Fig. 2~a!.
In fact for n50.25, the exact~solid! and canonical~dashed!
lines are indistinguishable, though the grand canonical
deviates from them only slightly. The three results conve
as the coupling goes to zero, and also in the strong-coup
limit. For N564, the size is large enough that the canoni
and grand canonical results are converged in the given s
for all densities and coupling strengths.

In Fig. 2~b!, the canonical and exact energies are co
pared for odd electron numbers. ForN58, compared with
Fig. 2~a!, the exact energy is reproduced rather poorly by
canonical BCS approximation, especially for larger coupli
strengths. Moreover, unlike the even number case, the
nonical BCS results do not converge to the exact ones as
coupling strength is increased further. This difference
tween the errors in the energy by the even- and odd-Ne ca-
nonical BCS approximation turns out to be smaller as
system size becomes larger. ForN564, the difference be-
tween the even and odd cases has diminished significa
from theN58 case.

B. Energy gap

1. Finite size effects

We show the energy gap as a function of the density
~a! uUu/t51, ~b! uUu/t51.5, and~c! uUu/t54; for N54 and
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FIG. 2. ~a! Ground state energy as a function of the coupling strengthuUu/t for N58 ~upper frame! and 64~lower frame! and for various
values ofn5Ne /N. ForN58, the improvement by the canonical method can be seen, and forn50.25, the canonical and exact energies a
indistinguishable. On the other hand, forN564, the canonical energies are converged to the grand canonical ones. Both the canoni
grand canonical results reproduce well the exact solutions for smalln and in the zero- and strong-coupling limit.~b! Same as~a!, but here
we compare the exact and canonical BCS results for an odd number of electronsNe . For N58, the energies with oddNe’s are poorly
reproduced for largeuUu by the canonical BCS approximation, compared with the even-Ne case shown in~a!. As the system size is increase
the difference between the errors in the energy for even and oddNe’s becomes smaller, as can be seen forN564.
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8 ~upper figures! andN516 ~lower figures! in Fig. 3 and for
N532 ~upper! and 64~lower! in Fig. 4. Again, the exact and
canonical results@DNe

defined by Eq.~36!# are plotted with

symbols and the grand canonical results@D0 in Eq. ~15!# are
shown with curves. In the upper parts of Fig. 3, the ex
solutions forN54 and 8 are the circles and squares, resp
tively, and the corresponding canonical results are
crosses and stars. The gaps for odd numbers of electron
negative. As discussed above, the conventional BCS w
function that is used in this work does not contain the oddNe
components, and thus the gap defined by Eq.~15! is the
~positive! pair-breaking gap for an even number of electro
The negative ‘‘gap’’ is obtained only in the canonic
scheme, and then only for an odd number of electrons.
even electron numbers, the canonical BCS method impro
the grand canonical results significantly for weak coupl
and small system size.

In Fig. 3~a! for uUu/t51 andN54, 8, and 16, we can se
the excellent agreement between the exact and cano
BCS results. Furthermore, there is a striking feature in th
figures — the difference between the gaps forNe54m and
Ne54m12, wherem is an integer.~Note that for all the
results shown, the number of sites is a multiple of 4.! The
gaps for Ne54m12 are much larger than those forNe
54m. Moreover, it is clearly seen forN516 that the gaps
for Ne54m12 increase as the density increases. We
these oscillations in the gap as a function of the even-Ne the
super-eveneffect: the system is more stable with 4m12
t
c-
e
are
ve

.

or
es

cal
e

ll

electrons than with 4m electrons. This effect is more pro
nounced when the coupling is weak, and it stems from
quantized and doubly degenerate energy levelsek5e2k of
the unperturbed system. As will be shown later, when
coupling is weak, the occupation probabilities of the unp
turbed states can be approximated by those for zero c
pling. We can thus understand the super-even effect as
lows, in terms of the unperturbed energy levels which
occupied by pairs of electrons up to the Fermi level and
empty above it. To simplify the discussion, we ignore t
energy change due to the blocked states by unpaired e
trons.

In the case of one dimension and withtd5t, the unper-
turbed energy, Eq.~2!, reduces toek522t coskR, whereR
is the lattice constant. From the periodic boundary conditi
kR52p j /N (2N/2, j <N/2), and each energy level is de
generate for6kR except forkR50 andp. Hence each leve
with 0,ukRu,p can accommodate two pairs (k↑,2k↓)
and (2k↑,k↓). Thus when there are 4m12 electrons, in the
ground state, all the levels fromkR50 up tokFR are fully
occupied by the pairs, while with 4m electrons, the Ferm
level has a vacancy for one more pair. Therefore, when th
are 4m electrons, a way to break a pair with the minimu
energy is to flip the spin of an electron of the pair at t
Fermi level. The unpaired electrons then occupy the sta
6kF and there is no extra cost for the kinetic energy. On
other hand, when there are 4m12 electrons, one canno
break either pair at the Fermi level simply by flipping a sp
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FIG. 3. ~a! Energy gap as a function of the electron densityn5Ne /N for N54,8 ~upper frame! and 16~lower frame! and for uUu/t
51. In the upper figure, the circles and crosses are the exact and canonical BCS results forN54, respectively; the squares and stars are
N58. In all casesk andk8 have been determined variationally and used in Eq.~36!. The grand canonical results are shown with curves. T
gap for oddNe is negative, and for evenNe , the super-evenoscillations (Ne54m vs 4m12! can be seen. The canonical results are
excellent agreement with the exact ones, while the grand canonical BCS result completely misses the gaps forNe54m12. ~b! Same as~a!,
but for uUu/t51.5. The symbols used for the exact and canonical gaps forN54 and 8 are the same as in~a!. The canonical results are sti
in good agreement with the exact ones.~c! Same as~a!, but for uUu/t54. ForN516 the canonical gaps are converged to the grand canon
curve for almost all densities. Even forN54 and 8, the canonical results are closer to the grand canonical ones, and the sup
oscillations have disappeared.
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FIG. 4. ~a! Same as Fig. 3~a!, but for larger system size;N532 ~upper frame! andN564 ~lower frame!. The super-even oscillations ca
be seen clearly, whereas the grand canonical BCS misses the 4m12 gaps completely. While forN532 the canonical BCS results still follow
the exact ones closely, forN564 the former are closer to the grand canonical curve for low electron density.~b! Same as~a!, but for
uUu/t51.5. The canonical gaps are converged to the grand canonical ones for smaller density, while the former improve the l
significantly near half filling.~c! Same as~a!, but for uUu/t54. For the large sizes shown, this is strong enough coupling so that the cano
and grand canonical results are converged for all densities, and the super-even oscillations have disappeared.
ab
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hat

st
but an unpaired electron has to move up to the next avail
level, increasing the kinetic energy. This is why the gap
pair breaking is larger for 4m12 electrons than for 4m elec-
trons. The fact that the former gap increases as a functio
le
r

of

Ne is particular to the one-dimensional band structure t
we use: the level spacing becomes maximum aroundkR
5p/2 ~i.e., half filling! and so does the kinetic energy co
for breaking a pair.
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The super-even effect can be recognized more clearl
Fig. 4~a! for N532 and 64. The overall scale of the ga
becomes smaller for larger system size@note the reduced
scale compared to Fig. 3~a!#. For 32 sites, the canonical BC
results still follow the exact solutions closely for almost
density values. For 64 sites, the system is so large that e
for this weak coupling, the canonical gaps are converge
the grand canonical curve in the dilute limit. The canoni
results more or less follow the exact ones forn*0.3, where
the super-even effect is manifest.

It can be seen in Figs. 3~a! and 4~a! that for larger density,
where the 4m and 4m12 gaps are well separated, the gra
canonical BCS completely misses the exact gaps forNe
54m12. On the other hand, the grand canonical cur
appear to follow closely the exact 4m gaps. However, as th
size is made larger than 64 sites, the exact 4m gaps become
smaller than the gap given by the grand canonical curve@see
the bottom graph of Fig. 4~a!# and finally in the bulk limit,
they are quite small compared to the grand canonical val
at n51.0, the exact and grand canonical gaps are ab
0.003 and 0.015, respectively.8 Meanwhile, the canonical 4m
gaps go up towards the grand canonical curve, as they~and
the 4m12 gaps! converge to the grand canonical value
Hence for some particular sizes~larger than 64 sites!, the
canonical results for the 4m gaps will be closer to the exac
ones.

In fact the grand canonical gaps tend to have a disco
nuity atNe54m12, but either value is generally well below
the exact or canonical value. For smaller density where
super-even oscillations are not so prominent, the grand
nonical gaps have cusps atNe54m12, as can be seen, e.g
for N564 andn&0.5 in Fig. 4~a!. Also, as the coupling
strength is made a little larger but still small (uUu/t&2),
these discontinuities at larger density are replaced by cu
This can be seen in Figs. 3~b! and 4~b! for uUu/t51.5. While
for the small sizes shown in Fig. 3~b! there are still discon-
tinuities for n>0.5, for the larger sizes in Fig. 4~b! the
curves are continuous for all densities, with cusps atNe
54m12. It is intriguing that the grand canonical BCS pa
tially reproduces the super-even oscillations in this way. T
grand canonical solutions in the zero-coupling limit will b
discussed further below.

For N54 and 8 in Fig. 3~b!, the agreement between th
canonical and exact gaps is still very good, and the ove
structure of the gaps as a function of the density is the s
as for uUu/t51. For 16 sites, the canonical results devia
slightly but still reproduce the exact gaps well. For sm
density, the canonical even-Ne gaps are closer to the gran
canonical curve, while for larger density the canonicalNe
54m12 gaps significantly improve the grand canonic
curve. As the system becomes larger, the super-even os
tions diminish in amplitudes and also are confined more
wards half filling. Also, as the size increases, for larger d
sity where the~exact and canonical! 4m and 4m12 gaps are
well separated, the grand canonical curve shifts up relativ
them, from near the 4m gaps to above the 4m12 gaps. This
can be seen in Figs. 3~b! and 4~b! in increasing order in size
For 32 sites, the last two cusps in the grand canonical cu
happen to be closer to the exact values than the cano
ones. However, the canonical gaps capture the correct be
ior of the super-even oscillations. Finally for 64 sites, t
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canonical gaps are converged to the grand canonical one
low density, while they are much better for higher densi
especially forNe54m.

As the coupling strength is increased further~for a fixed
size!, the scale of the gap increases as a whole for both e
and oddNe ~thus the even-odd difference becomes large!,
while the 4m vs 4m12 difference decreases. For example
can be seen in Figs. 3~c! and 4~c! that uUu/t54 is strong
enough for most of the sizes shown for the system to re
the ‘‘bulk’’ limit, where the canonical and grand canonic
methods hardly differ from one another. Even forN54 and
8, the super-even structure is gone, and the canonical
are closer to the grand canonical ones.

To see the effect of the coupling strength on the ene
gap, we plot in Fig. 5~a! the gap as a function of the couplin
strength forN58 ~upper! and 64 ~lower!, for quarter (n
50.5) and half filling. Interestingly, forN58 the exact gaps
for quarter and half filling are almost equal over the ent
range ofuUu, whereas forN564 they are somewhat differ
ent. On the contrary, in the BCS picture~both canonical and
grand canonical!, the difference between quarter and ha
filling in the strong-coupling limit is about the same fo
small (N58) and large (N564) sizes and much larger tha
the exact result. As for the difference between the canon
and grand canonical results, we first note thatNe54m for
both cases shown in Fig. 5~a!. For N58, the canonical and
grand canonical results are equally good for weak coup
(uUu/t&2), whereas the canonical gaps improve the gra
canonical ones slightly for stronger coupling. For large s
tems and for very weak coupling, the grand canonical res
are better than the canonical ones. This can be seen foN
564 for uUu/t&1 for half filling, as we have seen in Fig
4~a!. As the coupling becomes stronger, the canonical
converges to the grand canonical one, and this happens f
for larger systems. Indeed for 64 sites, the two curves
uUu/t*2 can barely be distinguished in the given scale b
for quarter and half filling, although half filling is a specia
case where the canonical gap defined by Eq.~36! does not
converge to the conventional BCS gap — this will be d
cussed shortly.

In Fig. 5~b!, we compare the magnitude of the exact a
canonical gaps for even and oddNe for half filling, for 8 and
64 sites. For smaller systems, the magnitude of the gap
even Ne (54m) is a little larger than the one for oddNe
(54m61), as can be seen forN58. This difference is
slightly larger for the exact solutions than the canonical B
results. As the coupling strength or the system size is
creased, this difference between the magnitude of the e
(4m) and odd gaps diminishes. This can be seen in Fig. 5~b!.
Also note that the difference between the BCS gap and
exact gap increases as the system size increases.@This can be
seen in Fig. 5~a! as well#. This is due to the fact that the exa
gap becomes smaller for larger systems, whereas the can
cal gap in the strong-coupling limit hardly changes as
system becomes larger~andN564 is large enough to be th
bulk limit for uUu/t*4). Note that Janko´ et al.20 have found
that the pair-breaking gap is slightly smaller for systems w
odd number parity than with even number parity. It is i
triguing that themagnitudeof the canonical gap, Eq.~36!, is
also smaller for odd electron numbers than for even one
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FIG. 5. ~a! Energy gap as a function of the coupling strengthuUu/t for N58 ~upper frame! and 64~lower frame!, for the densitiesn
50.5 and 1.0. ForN58 ~and forNe54m) the canonical and grand canonical results are equally good for weak coupling, while the f
improve the latter slightly for stronger coupling. ForN564 the canonical and grand canonical results can hardly be distinguished for a
all the coupling strengths shown.~b! Same as~a!, but here the magnitude of the gaps for even and odd electron numbers are compa
the exact and canonical BCS results. The comparison is made at half filling, so that evenNe5N and oddNe5N21. ForN58 the even gaps
are slightly larger in magnitude than the odd ones, while forN564 the difference has diminished.
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2. Grand canonical gap for weak coupling

As mentioned above, for very weak coupling, the gra
canonical gaps have discontinuities forNe54m12 at larger
density. We can understand how these discontinuities a
by looking at the density as a function of the chemical p
tential in the zero-coupling limit. In Fig. 6~a! we show the
density ~top! and the gapD0 ~middle! as a function of the
chemical potentialm, andD0 as a function of the densityn
~bottom!, for zero coupling andN516. WhenuUu50, DBCS

50, m̃5m andEk5uek2mu. There is no gap equation andn
is simply determined by Eq.~14! for a givenm. Thus the
existence of a gap is solely due to the finite system size
can be seen in the top figure that asm changes continuously
the densityn changes as a step function: it is multivalu
whenm is equal to any of the discreteek due to the orbital
and spin degeneracy. Asm moves from one level to the nex
the density stays the same, whereasD05min(Ek) increases
from zero, peaks whenm is precisely between the two level
and falls to zero again. HenceD0 as a function ofn has
d-function-like peaks, as seen in the bottom figure.

When the coupling is nonzero,n andm must satisfy not
only the number equation~14! but the gap equation

1

uUu
5

1

N (
k

1

2Ek
5

1

N (
k

1

2A~ek2m̃ !21DBCS
2

, ~40!

which is obtained by substituting Eq.~13! into Eq. ~12!. It
turns out that when the coupling is weak,m̃ given by Eq.
d

e,
-

It

~11! cannot take certain values in between two levels@corre-
sponding to the plateau regions inn in Fig. 6~a!#, and this
can be understood in the following way.

For weak coupling, we can consider the relation betwe
the density and chemical potential (m̃) roughly in the same
way as for the zero-coupling case: forNe54m,m̃ is very
close to one of the levelsek ~whenuUu50, it is equal toek),
while for Ne54m12 it must be in between two levels
Therefore forNe54m,ek2m̃.0 and thusDBCS must be fi-
nite for n to have a certain value@see Eq.~14!#. For Ne

54m12, however, ifek2m̃ is finite, thenDBCS is driven to
zero so that the right-hand side~RHS! of Eq. ~40! attains a
large enough value for smalluUu. Indeed, for sufficiently
small uUu, even ifDBCS is zero, Eq.~40! cannotbe satisfied
for m̃ near the middle of the range between two levels.
steadm̃ is driven towards either level, so that the RHS of E
~40! increases sufficiently to equal the LHS. The numb
equation~14! is still satisfied, sinceDBCS.0. Thus certain
values ofm̃ are not allowed for small values ofuUu. This
situation is illustrated in Fig. 6~b! for uUu/t51. In the top
part, the abrupt jumps inn seen in Fig. 6~a! have been some
what smoothed, whereas the plateau parts have disappe
Accordingly the gap becomes discontinuous as a function
m̃ as well asn. In the latter case,D0 indeed has two values
for a givenn at each discontinuity shown, corresponding
the two solutions form̃ for coming up from a lower level and
coming down from the next level. In any case, all values
n are possible~in contrast tom̃).
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FIG. 6. ~a! The electron densityn ~top frame! and the gapD0 ~middle frame! as a function of the chemical potentialm, andD0 as a
function of n ~bottom frame!, for N516 and for zero coupling. The fact that the density is a step function ofm and that the gap exists i

because of quantized energy levels due to the finite system size. TheD0 has peaks whenuek2m̃u becomes a maximum.~b! Same as~a!, but

for uUu/t51 and now the ‘‘chemical potential’’ ism̃ given by Eq.~11!. The m̃ cannot take certain values in between unperturbed ene

levels, corresponding to the plateau regions in~a!. ~c! Same as~a!, but for uUu/t52. This coupling strength is large enough so thatm̃ can
take all the values in between levels. On the other hand, the coupling is weak enough so thatDBCS is small andD0 has cusps whenuek

2m̃u becomes a maximum, similarly to the zero-coupling case.
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For smaller density or larger system size, the level sp
ings become smaller, and it becomes possible form̃ to have
all the values in between levels. This also occurs for stron
coupling, as can be seen in Fig. 6~c! for uUu/t52, whereD0
is now continuous and has cusps atNe54m12. These cusps
come about when the coupling is still weak enough so t
DBCS is small, and for the same reason as in the ze
coupling case, that is, whenuek2m̃u becomes a maximum.

It is intriguing that the weak but nonzero coupling pictu
described above does not extrapolate smoothly to the z
coupling case. AsuUu decreases, the slope ofn ~centered
aroundNe54m) as a function ofm̃ seen in Fig. 6~b! ~top
frame! will become sharper, while the corresponding curv
in D0(m̃) will be reduced to points. At exactlyuUu50, n
becomes vertical aroundNe54m for all m. However, all
values of m̃ in between are allowed now, andD0(m̃) be-
comes continuous as in Fig. 6~a! ~middle frame!.

3. Quasiparticle energy

In the conventional BCS theory, there is no distincti
between a particle and a hole excitation in that the ene

Ek5A(ek2m̃)21DBCS
2 is the same for either excitation.12

As defined by Eq.~15!, the gapD0 is the lowest quasi-
particle energyEk . The minimum energy required for break
ing a pair is 2D0 and thus, the momentauku carried by an
electron and a hole are the same. In the canonical B
scheme, for evenNe the minimum pair-breaking energy i
given by 2DNe

in Eq. ~36!, where the lowest energy is cho

sen for each of the systems withNe21, Ne , andNe11 elec-
trons. For the lowestENe11 andENe21, the momentum car-

ried by an unpaired electronk and that by a holek8,
respectively, are not necessarily the same.~This is also the
case for the exact solutions by the Bethe ansatz for a fi
system!. In this section, we evaluate the gapDNe

by taking
the same momentum for an electron and a hole as in
grand canonical picture, i.e.,k5k8, and compare it with the
grand canonical quasiparticle energy. We will denote t
gap asDNe

(k). We should remark that the difference in ga
defined in these two different ways is generally quite sm
but noticeable in certain extreme limits.

In Fig. 7, we plotDNe
(k) obtained by the canonical BC

method as a function of the kinetic energyek . The energy
band in one dimension is from22t to 2t, corresponding to
0<ukRu<p. We show results forN532 and for quarter and
half filling, i.e., Ne516 andNe532, respectively and for~a!
uUu/t51, ~b! uUu/t55, and ~c! uUu/t550. The canonical
results are shown with circles, while the grand canoni

energyEk5A(ek2m̃)21DBCS
2 is plotted with solid curves.

We have seen in Fig. 4~a! that for uUu/t51 andn*0.5,
the grand canonical gap (D0) happens to be very close to th
exact one forNe54m and forN532, also to the canonica
gap~note thatNe54m for both quarter and half filling!. We
also showed in Fig. 4~c! that N532 is large enough for the
canonical gap to converge to the grand canonical BCS
for almost the entire density range, already foruUu/t54. We
find the result that the momentum-dependent canonical
DNe

(k) defined in this section agrees remarkably well w

the quasiparticle energyEk ~defined in the grand canonica
c-

er

t
-

o-

s

y
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te

e

s

l,

l

p

ap

context! for all quasiparticle momenta@i.e., not just at the
minimum in Figs. 7~a!–7~c!#.

In the canonical picture, when the coupling is weak a
there are 4m electrons, the lowest energy for breaking a p
is to create an electron and a hole both at the Fermi le
Thus uku for an electron and a hole is the same, and t
explains the super-even effect. The gap with this configu
tion is the minimum value seen in Fig. 7~a! for both quarter
and half filling. In the grand canonical scheme,DBCS be-
comes very small for this weak coupling and henceEk

.uek2m̃u, wherem̃ turns out to be almost at the Fermi lev
~slightly above! for quarter filling and it is at the Fermi leve

for half filling ( m̃[0).
As the coupling strength increases, the momentum of

unpaired electronk ~or k8 of a hole! that yields the lowest
energy for an oddNe system shifts from the Fermi momen
tum in the zero-coupling limit towards zero momentum —
eventually reaches zero momentum, that is, the bottom of
noninteracting band, in the strong-coupling limit. This ha
pens sooner~i.e., for smalleruUu) for smaller number of
electrons: not only the Fermi momentum for zero coupling
closer to zero than those for largerNe , but also the optimal
momentum starts shifting at weaker coupling. In the case
quarter filling for N532, the optimal momenta forNe515
and 17 are bothukRu5p/4 for zero coupling, while for
uUu/t55, the ground state energiesE15 andE17 have differ-
ent momentum dependence and have a minimum atukRu
53p/16 andp/4, respectively. Yet if we take the same m
mentum for bothNe515 and 17,DNe

(k) agrees very well

with Ek for all the uku ’s, as seen in Fig. 7~b!. TheDNe
(k) has

its minimum whenE151E17 is the smallest; this occurs a
ukRu53p/16 for uUu/t55. For half filling, the optimal mo-
menta for bothNe531 and 33 are stillukRu5p/2 (ek50)
for uUu/t55, as in the zero-coupling case.

The preceding discussion illustrates that to obtain
grand canonical limit, one must in general choose the qu
particle momentum~identical for the particle and hole case!
to minimize the sum of the two odd-electron energies. F
intermediate to strong coupling this will not be given by t
momentum expected from the noninteracting limit~in Ref. 9
this procedure worked because they adopted a particle-
symmetric model — see below!. The last case~next para-
graph! shows this for a very strong coupling example.

For extremely strong coupling such asuUu/t550, the op-
timal momenta forNe515 and 17 are both zero. In such
case, the ground state energy increases almost linearly
function of ek from kR50 to p. This can be seen in the
upper part of Fig. 7~d!, whereE15 and E17 are the squares
~with the left axis! and the crosses~with the right axis!, re-
spectively. Accordingly,DNe

(k) is minimum atkR50 and

increases linearly as a function ofek , as seen in Fig. 7~c!. In
the grand canonical case,m̃ @related tom by Eq. ~11!# for
such strong coupling is a large negative value andEk has a
minimum well below the bottom of the band.

Half filling is a special case due to the particle-hole sy
metry. In this casem̃ is zero for any coupling strength an
hence the quasiparticle energy is always minimum atukRu
5p/2. By the canonical variation, the ground state ene
for Ne531 ~the largest odd number forn<1) has its mini-
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FIG. 7. ~a! The momentum-dependent canonical gapDNe
(k), for which the sameuku is taken for an electron and a hole~circles!, and the

grand canonical quasiparticle energyEk ~curves!, as a function of the kinetic energyek . The results are forN532 anduUu/t51, and for

quarter~upper frame! and half~lower frame! filling. For this weak coupling,Ek.uek2m̃u. ~b! Same as~a!, but for uUu/t55. ~c! Same as~a!,
but for uUu/t550. ~d! Ground state energy for oddNe as a function of the quasiparticle kinetic energyek , for N532. In the upper figure,
the energies forNe515 and 17 are shown with the squares~with the left axis! and the crosses~with the right axis!, respectively; in the lower
figure, the energies forNe531 and 33 are plotted accordingly.
.

mum at 3p/8. This can be seen in the lower part of Fig. 7~d!
~the squares, with the left axis!, although the differences in
energy for differentuku ’s are rather small. The results forE33
~the crosses, with the right axis! is the mirror image ofE31
about ukRu5p/2 as a function of the momentum~for any
uUu), as follows from the particle-hole symmetry relation7

Interestingly, the optimal momentum forNe531 ~and for
Ne533) is still close top/2 for this coupling strength. In-
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FIG. 8. ~a! Variational parameter$gk% as a function ofk and the coupling strengthuUu/t, for N58 ~upper figure! and 64~lower figure!
and for half filling. The increment inuUu/t has been taken to be finer forN564, while the increment ink is naturally smaller.~b! Occupation
probability $nk% as a function ofk anduUu/t, for N58 ~upper figure! and 64~lower figure! and for half filling. At uUu/t510, nk is roughly
0.7 and 0.3 atk50 andp, respectively~here the lattice constantR[1). In the weak-coupling limit, the distribution for the noninteractin
electron gas is recovered.
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deed, one requires even stronger coupling to haveE31 that
behaves asE15 in Fig. 7~d!, while E33 will decrease in a
symmetric fashion linearly fromkR50 to p.

As the coupling increases, the system of any finite s
approaches the ‘‘bulk’’ limit. We have seen above forn
50.5 that in the strong-coupling limit, the energies for bo
of the odd systems~i.e.,Ne515 and 17! have their minimum
values with the momentumk50. This is true for any finite
size and any density smaller than unity. Thus the canon
DNe

(k) with the lowestENe11 and ENe21 (Ne even! con-

verges toD0, which is, for such strong coupling, given b
A(emin2m̃)21DBCS

2 . This is not the case for half filling, how
ever. The lowestE31 and E33 will have kR50 andp, re-
spectively, while both should havekR5p/2 for the canoni-
cal gap to converge toD0.

For 4m12 electrons, the agreement ofDNe
(k) with Ek is

not as good for all quasiparticle momenta for weak coupli
In the strong-coupling limit, however,DNe

(k) eventually

converges toEk for all the momenta as we have seen abo
for Ne54m. Finally, as explained above for the super-ev
effect, the minimum gap forNe54m12 for weak coupling
has differentuku ’s for theNe11 andNe21 systems. On the
contrary, the grand canonical gap has always the same
mentum for an electron and a hole. This explains why it d
not reproduce the exact gap forNe54m12 for such weak
coupling, while the canonical one does.

C. Occupation probability

To conclude the discussion of our results, we show in F
8~a! the variational parameter$gk% and ~b! the occupation
e

al

.

e

o-
s

.

probability $nk% as a function ofk and the coupling strength
uUu, for N58 and 64 and for half filling. In both figures, th
points at discrete values ofk ~and discrete values ofuUu) are
simply connected by lines. The smallestuUu shown in these
figures is 0.25t, and for N564, the increment inuUu has
been taken finer than forN58 ~while the k increment is
naturally smaller for larger system size!. The results shown
have been obtained by the canonical BCS formalism. Ho
ever, also in the grand canonical scheme, both$gk% and$nk%
have the same overall shape as a function ofk and uUu: the
actual values of$gk% may be different but only slightly, so
that they look the same as those in Fig. 8~a! with the given
scale.

We can see in Fig. 8~a! that in the strong-coupling limit,
$gk% as a function ofk is almost flat~in the given scale! for
a given uUu, and thus all the unperturbed levels are alm
equally mixed.6 On the other hand, in the zero-couplin
limit, $gk% becomes a cosine function ofk. Since the grand
canonical BCS yields the same behavior of$gk%, this can be
understood by the simple expression of Eq.~13!. As uUu
approaches zero,DBCS goes to zero, andEk can be expanded
up to the leading order inDBCS. Then Eq.~13! reduces to

gk5
1

DBCS
F uek2m̃uS 11

DBCS
2

2~ek2m̃ !2D 2~ek2m̃ !G . ~41!

Thus in the limit ofuUu˜0 andDBCS˜0,
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gk.
DBCS

2uek2m̃u
~ek.m̃ ! and gk.

2uek2m̃u
DBCS

~ek,m̃ !.

~42!

Hencegk˜0 for ek.m̃, while for ek,m̃, gk diverges in the
zero-coupling limit, and provides an image ofek ~note that
for half filling, m̃50).

Furthermore, the occupation probability clearly sho
how the distribution over the unperturbed states changes
function of the coupling strength. It can be seen in Fig. 8~b!
that the distribution function for the noninteracting case
recovered for weak coupling;nk51 for ek,m̃ and 0 forek

.m̃, and nk50.5 at the doubly degenerate Fermi level.
Fig. 8~b!, not only the scale is reduced compared to Fig. 8~a!,
but also the relative~average! height of nk at uUu/t510
against the one in the zero-coupling limit is larger. Thusnk
may appear to have more variation as a function ofk in the
strong-coupling limit thangk does. However, the differenc
between the maximum and minimum values atuUu/t510 are
approximately the same for both cases, andnk is about 0.7 at
k50 and about 0.3 at the edges of the band. As the coup
is made stronger, the occupation probability~and gk) be-
comes almost equal for all the states, andnk.0.5 for all k in
the case of half filling.6

IV. SUMMARY AND DISCUSSIONS

We have formulated BCS theory for a canonical e
semble, following earlier work by Dietrichet al.13 and Fali-
cov and Proetto,11 and very recently by Braun and vo
Delft.9 We have also generalized the linear formulation
troduced in Ref. 11 for any system size. However, t
method has proven to be numerically too intensive
‘‘large’’ systems, and provided at best only marginal im
provement over the nonlinear canonical formulation.

In this work we have adopted a very definite model, t
attractive Hubbard model, for various reasons. First,
wanted to have an exact solution with which to monitor t
improvement over the grand canonical scheme. These
available for the Hubbard model in one dimension by
Bethe ansatz technique, and so we have used these
benchmark throughout this work. Second, we wanted
study a system which, by choice of parameters, could ea
span the weak coupling to strong coupling regime, as wel
the low density to high density limits. In this way we hav
observed the crossover from the bulk to quantum limit fo
variety of regimes. The attractive Hubbard model is no do
the ‘‘minimal’’ model that accomplishes this. Finally, w
wanted to use a model which could readily be generalize
a realistic case, so, for example, one could use a par
etrized tight-binding model to fit the band structure for Al
better describe ultrasmall metallic Al grains.

In this work, however, we focused on the first two poin
listed above, with the goal of establishing generic trends.
have emphasized the parity effect, which emerges in our
nonical scheme as a positive gap for even number of e
trons and a negative ‘‘gap’’@see Eq.~36!# for odd number of
electrons. However, in addition to the even-odd effect,
have found asuper-eveneffect, with oscillations in the su
perconducting gap occurring between even electron num
s
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which are multiples of 4 (4m) and nonmultiples of
4 (4m12). The magnitude of the gap variation for eve
numbers of electrons is, in some cases, comparable to
even-odd variation, i.e.,uD4m2D4m11u'uD4m2D4m12u.
Thus, such oscillations should be observable in the sa
kind of tunneling experiments used for seeing the even-
effect. We note, however, a key ingredient for the super-e
effect to occur is the double degeneracy of levels, which
our case comes about from the simple equalityek5e2k . In a
more general case~for example, in higher dimensions! the
degeneracy structure will be more complicated, and there
oscillations will exist but may not be as simply periodic as
function of electron number as is the case here. The su
even effect is also a result of quantized energy levels du
finite system size and the effect will be stronger for sma
systems.16 For very weak coupling, the grand canonical BC
fails to reproduce the super-even effect, while the canon
scheme does; indeed, it yields very good agreement with
exact solutions.

For purposes of experimental observation, it should fi
be noted that a weak coupling superconducting materia
required for the nanoparticle. If the coupling is too stron
the super-even effect is diminished. Thus, Al is an excell
candidate. One would like to be able to vary the electr
density over some range using a gate voltage as in Re
Another desirable ingredient is a clean, quasi-crystall
nanoparticle, so that the finite-size level spacings will

FIG. 9. Energy gap as a function of the electron densityn for
N516, for ~a! uUu/t51.5 and~b! uUu/t54. The exact solutions are
shown with circles, while the canonical results from theg formula-
tion and from the linearC formulation are shown with the crosse
and triangles, respectively.
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well defined. As the gate voltage is varied, we expect to
strong variations in the gap, not only in changing from ev
to odd electron states, but also to ‘‘super-even’’ electr
states. Some tuning of nanoparticle size with applied g
voltage may be required to see the super-even effect at
cal bulk Al electron densities.

Finally, we note that the grand canonical BCS qua
particle dispersion relation was beautifully reproduced by
canonical results,simply by varying the odd number groun
state momentum, with the proviso that the electron and ho
momenta were the same. This simple correspondence is
surprising.
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APPENDIX: LINEAR CANONICAL VARIATION

We summarize the linearized formulation of the canoni
variation. In addition to the wave function forNe52n de-
fined by Eq.~17!, we define the wave function for odd num
ber of electronsNe52n11, following Ref. 8 as

uC2n11&5aqs
† (

k1Þq,
(

k2Þq,
••• (

,knÞq
C~k1 ,k2 , . . . ,kn!

3)
i 51

n

aki↑
† a2ki↓

† u0&, ~A1!
e
n
n
te
i-

i-
e

ite

n-
e-
d-
is
e
e,
s,

s
he

l

where spin of the extra electrons can be either up or down
The extra electron blocks the stateq from being occupied by
pairs. There is no variational parameter for the blocked st
for the variational calculations, we always chooseq that
gives the lowest energy. Note that theC’s in the above equa-
tion are different from those for the same number of pairs
Eq. ~17! due to the missingq.

We now derive the variational equation usinguCn& in Eq.
~17! for an even number of electronsNe52n. The formulas
below are slightly modified for an odd number of electron
We mention the difference forNe52n11 in the end.

The normalization factor foruC2n& defined in Eq.~17! is

^C2nuC2n&5(
k1,

•••(
,kn

(
p1,

•••(
,pn

C* ~k1 , . . . ,kn!

3C~p1 , . . . ,pn!

3^0u a2kn↓akn↑•••a2k1↓ak1↑ap1↑
†

3a2p1↓
†

•••apn↑
† a2pn↓

† u0&

5(
k1,

•••(
,kn

uC~k1 , . . . ,kn!u2. ~A2!

Similarly, the expectation value of the kinetic energy ope
tor in H5T̂1V̂ is

^C2nuT̂uC2n&5^C2nu(
ks

ekaks
† aksuC2n&

5(
k1,

•••(
,kn

uC~k1 , . . . ,kn!u2

32~ek1
1•••1ekn

!. ~A3!

Calculation of the potential energy term is more tedious. A
ter some lengthy operator algebra it can be written in a g
eral form forn pairs as
e
another
^C2nuV̂uC2n&52
uUu
N

^C2nu(
kk8 l

ak↑
† a2k1 l↓

† a2k81 l↓ak8↑uC2n&52
uUu
N (

k1,
•••(

,kn

C~k1 , . . . ,kn!

3Fn~n21!C* ~k1 , . . . ,kn!1 (
p,k1

C* ~p,k1 ,k2 , . . . ,kn21!1 (
k1,p,k2

C* ~k1 ,p,k2 , . . . ,kn21!1•••

1 (
kn21,p

C* ~k1 ,k2 , . . . ,kn21 ,p!1 (
p,k1

C* ~p,k1 ,k2 , . . . ,kn22 ,kn!

1 (
k1,p,k2

C* ~k1 ,p,k2 , . . . ,kn22 ,kn!1•••1 (
kn,p

C* ~k1 ,k2 , . . . ,kn22 ,kn ,p!1•••

1 (
p,k2

C* ~p,k2 ,k3 , . . . ,kn!1 (
k2,p,k3

C* ~k2 ,p,k3 , . . . ,kn!1•••1 (
kn,p

C* ~k2 ,k3 , . . . ,kn ,p!G .
~A4!

The first term on the right hand side corresponds to a Hartree-like term, and gives the interaction energy of each of thn pairs
with the othern21 pairs. The other terms systematically consider the various cases when one pair is scattered into
~unoccupied! pair state.
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In the following, we take theC’s to be real variables. In Ref. 13 it has been proved for the BCS formulation tha
negative pairing-type interactions, real~and positive! variational parameters yield the lowest energy. The minimization c
dition for the energy~19! with respect to the real$C% results in the equation

C~k1 , . . . ,kn!52
1

d

uUu
N F (

p,k1

C~p,k1 ,k2 , . . . ,kn21!1 (
k1,p,k2

C~k1 ,p,k2 , . . . ,kn21!1•••

1 (
kn21,pÞkn

C~k1 ,k2 , . . . ,kn21 ,p!1 (
p,k1

C~p,k1 ,k2 , . . . ,kn22 ,kn!

1 (
k1,p,k2

C~k1 ,p,k2 , . . . ,kn22 ,kn!1•••1 (
kn22,pÞkn21,kn

C~k1 ,k2 , . . . ,kn22 ,p,kn!

1 (
kn,p

C~k1 ,k2 , . . . ,kn22 ,kn ,p!1•••1 (
pÞk1,k2

C~p,k2 ,k3 , . . . ,kn!1 (
k2,p,k3

C~k2 ,p,k3 , . . . ,kn!

1•••1 (
kn,p

C~k2 ,k3 , . . . ,kn ,p!G , ~A5!
tio

q

e

q

he
red

the
u-
rgy.

e
y.
where

d5En22~ek1
1•••1ekn

!1
uUu
N

n2. ~A6!

This should be solved for all theC’s self-consistently.
For an odd number of electrons, in the energy expecta

value and the variational equation in terms ofuC2n11&, the
blocked q is excluded in all the$k% sums and$p% sums.
Other than that, the normalization factor foruC2n11& is the
same as Eq.~A2!: the kinetic energy term is the same as E
~A3! except that 2(ek1

1•••1ekn
) should be replaced by

2(ek1
1•••1ekn

)1eq : the potential energy term is the sam

as Eq. ~A4! except that the factorn(n21) should be re-
placed byn2: the variational equation is the same as E
n

.

.

~A5!, while in d as defined in Eq.~A6! 2eq should be added
andn2 should be replaced byn(n11).

We have found that this linear variation in terms of t
C’s just barely improves the ground state energy, compa
to the nonlinear variation in terms of theg’s. Interestingly,
theC formulation does not improve theg formulation for the
energy gap. We illustrate this in Fig. 9 forN516 and for
uUu/t51.5 and 4. We found that for smaller system size,
two formulations do not make any difference for any co
pling strength, for the gap as well as the ground state ene
For larger system size~which was limited forN&30) the
gap from theC formulation is slightly worse than the on
from theg formulation for weak coupling and larger densit
This can be seen in Fig. 9~a!, while for uUu/t54 in ~b! the
two results have converged for all the density.
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