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The canonical BCS wave function is tested for the attractive Hubbard model. Results are presented for one
dimension, and are compared with the exact solutions by the Bethe ansatz and the results from the conventional
grand canonical BCS approximation, for various chain lengths, electron densities, and coupling strengths.
While the exact ground state energies are reproduced very well both by the canonical and grand canonical BCS
approximations, the canonical method significantly improves the energy gaps for small systems and weak
coupling. The “parity” effect emerges naturally in our canonical results, as a positive gap for an even number
of electrons and a negative “gap” for an odd number of electrons. Furthermore, we find a “super-even”
effect: the energy gap oscillates as a function of even electron number, depending on whether the number of
electrons is #n or 4m+2 (m intege). Such oscillations as a function of electron number should be observ-
able with tunneling measurements in ultrasmall metallic grdi86163-182@09)08229-9

[. INTRODUCTION systems up to three dimensions can be tackled. We anticipate
that the canonical treatment will improve the grand canonical
The possibility of fabricatintunnel junctions containing BCS results for sufficiently small systems. We note that after
nanoscale particles has opened up new areas of exploratichis work was completed, a paper appearedwhich the
Experiments can now probe the energy spectrum in theseanonical BCS equations were formulated and solved for a
particles and study changes as a function of temperature amdodel system with uniformly spaced level spacings.
magnetic field®® In this way one can observe changes in theComplementary exact numerical resultsr finite systems
spectrum that are expected to occur in the bulk due to phaseere presented for the same model in Ref. 10. We will com-
transitions, and determine to what extent these concepts ament on the similarities and differences with our own work
relevant for small systenfsThe unprecedented control over in the course of our discussion below.
experimental conditions — changes due to a single tunneling The outline of the paper is as follows. In the next section
electron can be observed — allows one to ask and addresge formulate the problem. We mention the work of Falicov
guestions which, until now, have been academic only. and Proettd! who applied a canonical BCS method to the
In this study we follow the experiments of Tinkham and problem of electrons on a tetrahedr@n“small” fcc lattice).
co-workerd~3 and address the issues concerning supercorWe have generalized this method for larger systems, and
ductivity in small systems. Specifically they studied smallsolved the ensuing equations numerically. However, memory
superconducting Al particle@iameter of order 10 njnand  requirements become very demanding, and therefore, beyond
probed, through tunneling experiments, the excitation spec certain lattice size, we had to abandon this approach. We
trum as a function of temperature and magnetic field. In atinclude it in the Appendix, nonetheless, because the varia-
tempting to treat small electronic systems, there are mantional wave function in this method is more general than the
concerns related to possible surface and impurity effectd3CS canonical wave function, and the variational equation is
both of which could lead to localization, for example. For thelinear. In practice, however, as will be shown, this wave
present we ignore these potential complications, and instedtinction only marginally improves the ground state energy.
focus on a question which arises in the application of the We then formulate the canonical variational problem
Bardeen-Cooper-SchrieffeBCS) theory of superconduc- strictly in terms of theg(k)’s familiar from the grand ca-
tivity: to what extent is the grand canonical ensemble usefuhonical solution” The resulting equations are tedious, and
(which in the thermodynamic limit, is equivalent to the ca-can be cast in a more enlightening form by following the
nonical ong for systems with a small number of electrons? pioneering work of Dietrich, Mang, and Pradakho solved
We propose to tackle this question in a systematic waythe canonical BCS problem for nuclei. This “method of resi-
using the attractive Hubbard model. The choice of this modetlues” is based on representing expectation values in the
is motivated by several factors. It has long served as a par&8CS canonical ensemble through contour integrals of the
digm for sswave superconductivity, and serves as the “mini-BCS grand canonical ensemble expectation values: the latter
mal” model that best describes superconductivity. All theseems to have started with a paper by BayMarhis is also
energy scales are very well defined in the problem, so that nthe methodology adopted by Braun and von Delftho nu-
high frequency(and ill-defined cutoffs are require.Exact merically evaluated residue integrals by fast Fourier trans-
solutions are available in one dimension via Bethe ansatform. As will be explained, however, we chose to evaluate
technique<,and the grand canonical BCS solutions have rethe required integrals analyticallyhich requires numerical
cently been evaluated for large system sfzésfact in that  summations A concise summary of the residue method and
work some preliminary canonical solutions were also examfurther references are available in Ref. 15. See also Ref. 16
ined, but only for very small system sizes. In this work wefor an alternative approach.
reformulate the canonical solution, in such a way that larger Finally, we provide a review of the grand canonical for-
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mulation and the Bethe ansatz solutions in one [U|

dimension”1"® for purposes of comparison. We have also =%, €aj,ax,— N > ala’ g a kg
performed some numerical diagonalizations, although these *“ kk'q

are limited to small systems ar(ch one dimensionserve (1b)
only to verify the Bethe ansatz solutlons_. In both the granthereaiTU (a;,) creategannihilate$ an electron with spirr
canonical and _ca_nonlcal BC.S formulations we have PEat sitei and n;, is the number operator for an electron with
formed the variation strictly in terms of the single set of spin o at sitei (i is the index for the primitive vector;)
parameterg)(k). This departs from more conventional treat- Thet- is the hobping rate of electrons from on itl 't
ments where two sets of parametafk) andv (k) are used, €1, 1S the hopping rate of electrons irom one site 1o a

with an auxiliary relation between them. Our formulation is pelghbourlng sitdR ; away (often nearest neighbors only are

conceptually clearer, but slightly more cumbersome, so somicluded, and|U| is the coupling strength between electrons
details are provided. on the same site; here the fact that it is attractive is explicitly

The following section is devoted to numerical results. All included from the beginning. In Eq1b), we have Fourier
the computational results presented in this paper will be iffansformed the Hamiltonian with periodic boundary condi-
one dimension. This is because the exact results for “large’tions in each dimension fdx sites. Theaf, anda,, are the
systems are only available in one-dimensitB), and there- creation and annihilation operators in the reciprocal space,
fore it is presently only in this case that one can study the fulland the kinetic energy is given by
crossover from the bulk limit to small systems. Because the
attractive Hubbard model is a very local model, many of the
features of the variational solution will remain in higher di- €= —225 t;cosk-Rs, 2
mension; in fact we expect the agreement of the canonical
BCS results with the exact ones to improve, but we have nqyhereR; is the coordinate vector connecting sitets i + 5.
way at present to check this. In addition, many of the fea- \ye perform variational calculations using the component
tures of the solutions in higher dimensiof&uch as long 4t the BCS wave function that has a given number of pairs
range orderwill not be present in one dimension. A more ;.4 thus conserves the number of electrdhs=2v. The

systematic study of the canonical BCS solution in two andgcg waye function is a superposition of pair states with all
three dimensions will be presented elsewhergfortunately 4,4 possible numbers of paifs!:

without exact checks, except for very small systems

The so-called “parity effect,®®%.e., the dependence of oc
the energy gap on whether the superconducting particle con-  |BCS) .= 11 (uk+vkaETajkl)|o>E > [¥,,), (3
tains an even or odd number of electrons, has been under- k v=0
stood mostly in a parity-conserved grand canonical BCS
formulation?® The result was that the pair-breaking gap is W1€'€|0) denotes the vacuum state, afo)=|0). The
slightly smaller for odd number parity systems than for eve p-pair co_mponent|\If2V) can be obtaln(_ed by rearranging
number parity systems. In the canonical scheme, even ele -TCST>GC into a power series of the pair creation operator
tron number grains have a gap, whereas odd electron numb@k@-k| @nd can be written as
grains can be said to havenagative“gap” towards chang- ,
ing the electron number by one. This is just a statement that
in a tunneling experiment into an even number grain there |q}2”>=,§; g; ;k: .1]1 (g(ki)alﬂatkilﬂm (4)
will be a positive energy required in addition to the charging ’
energy, whereas into an odd number grain there will be a

negative energy with respect to the charging energy. This has :i E k)al.af |0
! . . T g(ki) ay @y )
already been observed in tunneling experiments orisAg, Vii=1 |\ ki : :
.g., Fig. 2 in Ref. Iy i o
e.g., Fig. 2 in Ref. 2 and emerges most naturally in our (k£k;, forall i£]). @)

canonical formulation, as will be demonstrated below. In ad-
dition we hav_e found an interestingmvs 4m+2 effect, _ Here we have defined(k;)= (IT,u) v, /u. . The condi-
wheremis an integer. In our case we have observed oscnla-ion ky<k,<- - - <k, for the{k;} sums in IE ('4) means that
tions as a function of electron number. Therefore we have 1=Pam" "t =0y ' q

- . : Il the k;’s should be different and ordered so that all the
variations in th tween ven r-everi.e. al ' L
anations € gap between odd, even anger-ever.e., different combinations ofk;} are counted once each: the

multiples of 4 electrons. Hints of such behavior, noted as e : ;
function of lattice size were first discussed by Fyst al? a'a?“_ef condition is removed for the sums in Eg') and the
ivision by v! compensates for the multiple counting. In a

The concluding section summarizes our results. In the it N hN sites. th b ¢ |
Appendix we outline the formulation of the linearized ca- Inite system withiy Sites, the Wave’ number can a-
ues, and hence the sums overk’s in Eq. (4) result in

nonical variation.
NC,=N!/v! (N—v)! terms.

IIl. FORMULATION
A. Model B. Grand canonical variation
. Gl We begin by reviewing the grand canonical formulation
The attractive Hubbard Hamiltonian is given by of BCS theory. We have opted, contrary to convention, to
. formulate the minimization problem in terms of only the
H= —% ts(@iy 5080t H-C-)—|U|Ei NitN;y (18 variational parameterg, =g(k) (and not theu,’s andv,’s).
- This was originally motivated by the loss of clear meaning
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for the u’s andv,’s in the canonical ensemble, though in where now the summations are unrestricted. The entire ex-
fact one can proceed also with thé$€.One therefore sim- pression is now clearly extensive, as it should be, though in
ply writes this formpairing terms of order IM have been mixed in with
the Hartree term.
The next step is to carry out the variation with respect to

- oot
[BCY = Cl;[ (1+gkagaly)[0), ) thegys; this can be done straightforwardly to yield
where the coefficient properly normalizes the wave func- 2(ex—m) 9= Agcd 1- ¢l (10)
tion. One then calculates the expectation value of the grand
canonical Hamiltonian where
(W[H=pN W) ~ U] 9i
=i 6 =ut+— 11
(V) © Bt 2 e (10

where, in this case, the wave function is the BCS grand ca:
. . . . ~“and
nonical one given in Eq(5). For example, the expectation

value of the kinetic energy operatdr- uNg is

U] ]
) Apcs= "2 — (12)
k 1+g
AN 5 ) P k
(WIT=uN¥)=2c] [T 1+g)> (e—p)— . -
P k 1+gi The solution is
(7
Note that normally the product and the denominator are ab- _ Ex—(ek—m) (13)
sent because these factors are usually defined to be unity due 9k Ages

to normalization. Also note that thgg’s are generally com-

plex, but can be chosen to be real; this is presumed in Equhere E, = /(e,—)?+A%s is the quasiparticle energy.

(7), and will be implicit in what follows. Careful evaluation This solution is only implicit, sinceAgcs depends on the

of the potential energy terms yields the following result:  g,’s through Eq.(12), and must be determined by numerical
iteration. The number equation is also required to determine

gﬁ |U] gﬁ the chemical potential as a function of coupling strength. It

K=2 €— 12
2 (e Mg N 1ig is
) -~
Ml % o Uy G g =g iz lecs g
N K=K’ 1+gi 1+gi, N k#k’ 1+gi 1+gi' “ “
(8)  The gap is then defined to be
with u the chemical potential; it plays the mathematical role Ap=min(E,). (15)

of the Lagrange multiplier for the condition that the average
electron numbeg(BCYN/BCS)cc=N,. We have written  If we define the minimum band energgiyi,=—D/2, with D
the total energy term by term in the following sequence: thehe bandwidth, then it follows thak,= \/(emin—ﬁ)2+A§CS
first term is the kinetic energy, the following two come from \yhen 7, < ¢ .. This definition implies that the gap depends
Cooper pair scatteringg=0), and the fourth term is the on  certain momentum, determined by the wave velctar
Hartree term ¢+0). When displayed this way it is apparent yhich the minimum energy occurs. The total enefyc
that the last term excludes the spurious Hartree term wherebyisg follows readily from these expressions. It is

an electron interacts with itse(f “1/N effect”). It is also
apparent that theeducedBCS Hamiltonian =0 scattering
only) will exclude this last term, and in doing so omits the
Hartree term(since it is often deemed to merely represent a

Ecc=(H)=K+ u(Ng),

shift in energies At the same time Eq8) appears to have E_Gc_ EZ 1- =t v n 2_ Aécs (16)
terms of order M smaller than the dominant terms. In fact it N N4 = 2 U] "
does not, and we can rewrite this equation in the following
form: where we have used the fact that
2 2
9« |V O O« 2 O
k=23 (e—p)— s | G n=" .
e kM 1+g2 N & [1+92 1+df N 1+g2

The BCS grand canonical results in the remainder of the
, 9 paper have been obtained through the solution of these equa-
tions on finite lattices.

2
9 O
1+92 1+g7,
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C. Canonical variation For an even number of electrons thgair wave function
1 BCS in the projected form is

Rather than adopt the wave function given by E5), 1 o M
which spans allever number sectors, one can work directly | V20 =5~ % dé ¢ 1;[ (1+£giayaly)[0),
with the wave function¥5,) givep_ by_Eq.(4) with _fixed (20)
electron numbeN,=2v. A “simplification” occurs if we . .
try to linearize the problem, by defining a variational param-Where the contour is any counterclockwise path that encloses

eter C(kq,Ks, . .. K,)=0g(ky)g(k,)- - -g(k,) for this wave the origin. If we perform the residue integral above, we re-
function, following Refs. 11 and 8 for the two-pair case. COver the desired wave function Eep). _
Thus one can rewrite Eq4) as As written above the wave function is not normalized, so

expectation values of observables will include a factor given

v by (¥,|¥,) in the denominator. A straightforward evalua-
|‘I'2V>:k2< > ;k C(ky,kz, ... ,ky)Hl aEiTaT_kiﬂO)- tion of this factor give§ ¥ ,|¥,)=RY, whereR" is defined
1 v 1=

ko< by the residue integrl
(17) y g
As discussed in Ref. 11, th@'s defined as above are subject R™(k, .k k)= i dgg(-m-1
to constraints; for example, far=2 and for a given set of niAnLR2y e BMIT D

four k values ;,92,03,04) Which satisfygq;<q,<g3<qa,

2
C(d1,02) C(Gs,0a) = C(0z,Gs) C(0l2, ) e Al (regd) @D
=C(d1,04) C(02,03). (18
— 2 2 2
If these constraints are ignored and & in Eq. (17) are _pE< pz< "'<p2 99,90, "9, (22)
treated agyC, independent parameters, the minimization of S o
the energy where
_<\P2V|H|\If2]}> (19) pi7&k1,k2, ...,km (i:].,...,V_n).
2 (W, Wy,) The integral in Eq(21) has sharp oscillations as a function

X . ; i0
with respect tdC} reduces to a linear problethWe initially ~ ©f & (or ¢ defined by the coordinate transformatign e')
whose severity increases with increasing system size. We

adopted this method of canonical variation, which actually ) ) .
allows more variational freedom than using tgs. How- therefore evaluated the integral using the analytical result Eq.

ever, as one can readily appreciate, the number of variationé\fz)' This was accomfplLshedl efficignltly with an ?I%orithlm.
parameters grows very quickly with increasing lattice size @t took advantage of the polynomial structure of the origi-
and therefore in practice, this method has limited usagel@! intégrand in Eq(21), and led to a considerable speed up
Where it was practical, however, we carried out these calcul the integral evaluations.

lations and compared them with the canonical BCS results to | N€s€ residue integrals are useful not only because the

be described below. The gain in accuracy for the ground“atrix elements can be easily evaluated, but also because

state energy was fairly small. Our formulation and results inth€Y Satisfy various recursion and sum formulas. For ex-

this case are summarized in the Appendix. ample, Dietrichet al’® found the following recursion rela-
The cost of working with theg,’s is that the problem O™
remains a very nonlinear one. Nonetheless the gain in com-

m _pm+1
putational ease more than compensates for this, in that only Ro(kykz, o km) =Ry (ke K, ki K)

N variational parameters are required, whiris the number +2R™M Ky Ky, s K K).
of lattice sites. As we shall see, this allows us to easily study
the limit from small systems to those that are well described (23

by the grand canonical ensemble. The formulation of thisrnis result follows straightforwardly from the definition. An-

problem using the expression fp¥',,) given in Eq.(4) i qther useful relation involves the derivative required in the
straightforward but tedious. We therefore follow the ayiational principle:

“method of residues®® (see also Ref. 15 and more recently

Ref. 9 originally developed for the nuclear pairing problem. IRM(Kq Kz, .+ .. Kim) o
An advantage of this method is that matrix elements are a9 =20gkRy 1 (kg Ko, oo K K).
more easily evaluatetthey remain as simple as the ones in k (24)

the grand canonical formulationMoreover the energy and

the resulting variational equation can be written in a compactn addition, we have also found and exploited the following
way which parallels the grand canonical BCS equations. Theum rule:

starting point is to write Eq(4) in the general form as a

particle-number projection of the grand canonical BCS 2 g2R™ (K, k K. k)

state’* In more general terms, this is the projection that re- ktky i Kn 1 AR B2 e ey

stores the symmetry of the Hamiltonigire., conserved par-

ticle number in this ca3en the wave functiort>?2 =(r=nRy(ky Ky, ... ky)  (v>n). (29

......
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All these relations follow in a very straightforward fashion [U|
from the definition. For completeness we include the case\k=2exggr1(K)[1—ri(k)]+ _{rl(k) (1—-gp)—rikk)}
where the residue with two or more equal indices is required;
it is then useful to rewrite the definition of the residue, Eq. 9z,
(21), as H(1+0D) D 2e — 5 [r3(k’ k) —ri(k)rik’)]
k' #k 1+g,
RI(kq,Ko, . Ki)
—2—— 0 S (13K )+ GG 3K k)]

1;[ (1+§gﬁ) k' #k gk/
e . 29 u) g
27T| % deg I . r k
el (e N gk)ppz:vtk 1+g2 1+g2 Lra(pe" k)

+9p9p r3(P,p’ k)]
The advantage of this definition over EG1) is that there is pERTS
no ambiguity when one or more momentum index is used [U]

more than once. With this definition these residues still sat-  + W(1+gk (k)E 1+ > 1+ > [ri(p.p)
isfy the recursion relatiori23). This fact is useful for sim- 9p Ypr
plifying the expressions that involve restricted double mo- +gpgprr§(p,p’)]. (32)

mentum sums, which arise in the canonical formulation. _ . . o .
Omitting details, the ground state energy can be written irA solution to Eq.(29) is obtained by numerical iteration.
a form reminiscent of the grand canonical BCS formulationNote that Eq.(29) resembles the analogous equation in the

[see Eq(9)]: grand canonical ensemble, Ed.0). The factorA, appears
here in addition; all terms in Eq32) are of order IN, and
2 therefore vanish in the thermodynamic limit. Moreover, both
E 22 2¢ Y r}(k) the single-particle energy E¢30) and the pairing potential
4 K1 gﬁ 1 Eqg. (31) are modified by the normalized residue integrals. In
practice, instead of Eq929)—(32), we used the simpler-
|U| Ok looking expression
- ritk,k’)
N 1+9? 1+gk, ,
2, Ri(k,p)
gﬁ gi, __ A
5 r5(k,k") |, (27) 9= "N " denom
1+gi 1+9,
where
where we have now defined normalized residues I]
denom=(E2V—26k+ N Ri(K)
RI(Kq, - Km) 5
rMky, oo Ky =———— ] (1+g;,). |U|
n (K1 m Rg K=k, ..., K k — 2 2€y— 3+ ggRg(k,p)
1 m p#k N
(28)
This definition is clearly motivated by the fact that in the TN &, & [9p9p'R2(K,p,p")
bulk limit, the canonical results converge to the grand ca- P p 2k’ #p
nonical ones. +929%,R3(k,p,p")]. (33
A straightforward but tedious variation of EQ7) yields PP
the following variational equation: Although this equation does not resemble the grand canoni-
cal equations, it is homogeneous{ig,} and has far fewer
~ terms.
_ 2
(2ext A gk= Al 1 gl (29) In the case of an odd electron numbdég=2v+1, we
define the fixed\, wave function in terms of a residue inte-
where gral as
|V, +1>:i- fﬁ deg v tal (1+&gial,aly))[0).
6v4uﬂm———2 Sk k), (30) T 2w kg o
ge (34
This wave function carries a momentum lalgelvhich gives
U] O the momentum of the unpaired electréand hence of the
A= N 2 5 ri(k’,k), (31 total state¢. The normalization factor is now
ko 140y (V5,1 V5, 1)=R3(q), and the total energy is given by
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I} gk ritka Ok
Eupir1=e€qt 2 (26———— Ne= > Ngy=2———ri(k). (39
2v+1 q & k N 1+g§ ré(q) k ~ k 1+gﬁ 1
3 '
3 M Ok O rikk’,q) 2. Exact solutions
2 2 1
N FaiZq 140k 140, ro(a) The formalism developed so far is applicable in any di-
5 2 3 , mension. The results to be discussed later in this paper focus
Ok 9 rakk’,q) (35) on one dimension only. One reason is that the model is very
1+g2 1+9§' i) | local, so that for the properties we will discuss here, dimen-

sionality is not too important. The second reason is that com-
This expression for the ground state energy has the samgarisons can be made with exact results, which are readily
form as Eq.(27) except that the kinetic energy of the un- ayailable only in one dimension.
paired electron is singled out and the momentum sums ex- Ground state energies can be obtained both by exact di-
plicitly prohibit the singly occupied momentum state. As in ggonalization(on small system siz¢sand by Bethe ansatz
the even case a lengthy variational equation fordhis is  techniques:!”®we have already outlined in some détalie
obtained and must be solved numerically. The end result ifumerical procedure used to obtain ground state energies for
that we have the ground state energy for any fixed number ahe attractive Hubbard model, and the reader is referred to

electrons. those references for further details.
Thus one can construct the gap by

ZANQEENe_l—zENe+ Eng+1- (36) Ill. RESULTS

Various definitions of a gap or binding energy exist in the A. Ground state energy
literature®*!2***The basic idea is the same — one wants to ¢ present results in one dimension and with only the

compare the difference in energies between two systems, one, . .ot neighbors included for the electron hopping=¢).

in which 2N, electrons are distributed equally over two Sub-|; has heen shown in Ref. 8 that for large systems, the grand
systems containiniyle electrons each, and the other in which .5nqnical BCS approximation yields the exact energy in the
the subsystems contaM,+1 andN.—1 electrons, respec- grong- and weak-coupling limits, and in the dilute limit for
tively. If N is even, the former has lower energy since pair-y| coupling strengths. Thus deviations from the exact results
ing is fully utilized; this is reflected in a positive gap.Nt is  gre |argest for weak to intermediate coupling strengths and
odd the latter has lower energy and therefore the gap is neggs, larger electron densityn=(N,)/N. Because of the

tive. This is the origin of the positive and negative gaps Withparticle—hole symmetr{® we need to study only up to half
respect to the charging energy for even and odd electrofyjing n=1 (i.e., the number of pairs is half the number of
number parggl&s, respectively, as observed by Tinkham angiteg. Note that for the exact and canonical calculations, the
co-workers. >*®For evaluating the gapy, in Eq.(36), We  gensity is defined simply by=N,/N for a given number of
choose the momentum that yields the lowest energy for @lectronsN,. In the results shown below, for changing the
given odd number of electrons and for a given couplingdensity, we vary the electron number for a fixed system size,
strength. This means that ft\, even, the gap&Ne depends as is the case in the experiments.

on two momenta, one for thid,+ 1 system and one for the  In Fig. 1, we show the ground state energy per &ife-
Ne—1 system. On the other hand, fii, odd, Ay_ depends solute valug as a function of the electron density féa)

only on one momentum for the odd, system. This is im- |U|/t=10 and 4 andN=16, and for(b) [U|/t=2 andN

portant for properly recovering the grand canonical limits in=4. 8, and 32. The exact and canonical results are plotted
certain regimes, i.e., strong coupling and/or low electronVith symbols and the grand canonical ones are shown with
density. curves. In Fig. 1a), for the exact and canonical cases, the

In the grand canonical BCS formulation, there is a directgnergies with even and odd numbers of electrons are shown

correspondence between the variational parameters and tiedifferent symbols. The conventional grand canonical BCS
occupation probabilitynkzEa(aﬁaak,,}. It is determined Wave function contains only the components with even num-

, bers of electrons. Strictly speaking, the exact and canonical
hrough th '
through thegis as results for odd numbers of electrons should be compared

g2 T with the grand canonical ones in the parity-conserved
ne=2—=% S=1- L (377 schem&? with the odd number parity.
1+0; = In Fig. 1(a), we first note the difference between the en-

ergies with even and odd numbers of electrons, as clearly
seen for|U|/t=10. The difference becomes more apparent
for larger coupling strengths, giving rise to the even-odd os-
cillations in the energy as a function of the electron density.
For|U|/t=10, we note another difference between the even
and odd electron numbers; the canonical energies are much
_ t closer to the exact ones for the even numbers. It can also be
Mo = (Y2l BicoBuo| Y2u) (38) seen for this strong coupling case that the canonical results
and obtain (for evenN,) are converged to the grand canonical ones for

where the various functions are defined in Sec. Il B. Utiliz-
ing theu,’s andv,’s instead of theg,’'s makes the corre-
spondence even more transparent, for we hweZvﬁ in
that case. In the canonical formulation, for an even numbe
of electrons, for example, we construct the matrix element
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(b)|U]/t=2
20 T T T T T T T T T
a)N=16 b
5 @wh=te N =4 GCBCS -
T T T T T T T T £ 15+ _ N=8GCBCS T 1
- e e
o even exact Ul 0 e
— =10 OF .
Al % even CBCS R | o N =4 exact
o odd exact x N=4CBCS
05 o N=8exact A
* odd CBCS / « N-8OBOS
— GCBCS *
3 | i 0-0 1 1 1 1 1 1 1 1 1
1] 00 01 02 03 04 05 06 07 08 09 1.0
- — =4 2.0 T T T T T T T T T
N 9
2 . 15| N=32 i
N
1.0 | E
1+ i X o exact
x CBCS
05 — GCBCS T
0 1 1 1 1 1 1 1 1 1 00 1 1 1 1 1 1 1 1 1
0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 09 1.0 00 01 02 03 04 05 06 07 08 09 1.0
n n

FIG. 1. (a) Ground state energy as a function of the electron densitil. /N for 16 sites. The points are the canonical and exact results
(different symbols for even and odd,), while the grand canonical ones are shown with curves. The difference between the energies with
even and oddN, can be seen clearly flJ|/t=10. The canonical BCS results for evp are better than those for oddl,, and converge
to the grand canonical energies for strong coupliilyy.Same asga), but for |U|/t=2 and forN=4,8 (upper framg and 32(lower frame,
and here the even and odd points are not distinguished. The improvement by the canonical scheme is more apparent for weak coupling and
small system size, as can be seenNet4 and 8. FolN= 32, the canonical and grand canonical results are more or less converged for all
densities.

almost all density values, and both results are in very goodies with (a) even and(b) odd numbers of electrons. For
agreement with the exact solutions for smaller density. Asmall systems, the canonical results improve the grand ca-
the coupling strength becomes smaller, for a fixed systemonical ones, especially for intermediate coupling strengths,
size, the canonical energy deviates more from the grand cavhile the former converge to the latter as the coupling
nonical one and, for an even number of electrons, improvestrength is increased. This can be seenNer8 in Fig. 2a).
slightly the agreement with the exact energy for larger denin fact for n=0.25, the exactsolid) and canonicaldashegl
sity. This can be seen fdU|/t=4 in Fig. 1(a), while the lines are indistinguishable, though the grand canonical one
even-odd difference is now smaller. deviates from them only slightly. The three results converge
For smaller system size and coupling strength, we seas the coupling goes to zero, and also in the strong-coupling
more improvements due to the use of the canonical formulalimit. For N=64, the size is large enough that the canonical
tion. In the upper part of Fig.(b), we show the results for and grand canonical results are converged in the given scale
|U|/t=2 and forN=4 and 8. Note that the energy range is for all densities and coupling strengths.
magnified compared with Fig(d), and that for the exact and In Fig. 2(b), the canonical and exact energies are com-
canonical results, the even and odd energies are not distipared for odd electron numbers. Fdr=8, compared with
guished by different symbols. Ff=4 the agreement be- Fig. 2(a), the exact energy is reproduced rather poorly by the
tween the canonical and exact energies is excellent for atanonical BCS approximation, especially for larger coupling
values ofn, and it is still very good foN=8. In the latter strengths. Moreover, unlike the even number case, the ca-
case, the grand canonical curve happens to be very close tmnical BCS results do not converge to the exact ones as the
the exact results for odd numbers of electrons for larger dencoupling strength is increased further. This difference be-
sity. As explained above, however, the grand canonical retween the errors in the energy by the even- and Ndda-
sults shown here must be compared for the even numbersnical BCS approximation turns out to be smaller as the
only. In fact, the grand canonical energy for an even numbesystem size becomes larger. Adr=64, the difference be-
of electrons differs most from the exact and canonical enereween the even and odd cases has diminished significantly
gies for larger density. On the other hand, the canonical enfrom theN=8 case.
ergy converges to the grand canonical one as the system size
becomes larger, as can be seen in Fitp) for N=32. The B. Energy gap
even-odd difference is negligible for this weak coupling and
large system size.
In Fig. 2, the ground state energy is plotted as a function We show the energy gap as a function of the density for
of the coupling strength fo=8 and 64, for various densi- (a) |U|/t=1, (b) |U|/t=1.5, and(c) |U|/t=4; for N=4 and

1. Finite size effects
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U]/t U]/t

FIG. 2. () Ground state energy as a function of the coupling strefigiht for N=8 (upper framg¢and 64(lower frame and for various
values ofn=N,/N. ForN=8, the improvement by the canonical method can be seen, amd=f0r25, the canonical and exact energies are
indistinguishable. On the other hand, fér= 64, the canonical energies are converged to the grand canonical ones. Both the canonical and
grand canonical results reproduce well the exact solutions for snaaitl in the zero- and strong-coupling limib) Same aga), but here
we compare the exact and canonical BCS results for an odd number of eleldirori®r N=8, the energies with oddl.'s are poorly
reproduced for larggJ| by the canonical BCS approximation, compared with the é\gnase shown irfa). As the system size is increased,
the difference between the errors in the energy for even and\Qiddbecomes smaller, as can be seenNer 64.

8 (upper figuresandN= 16 (lower figures in Fig. 3 and for  electrons than with #h electrons. This effect is more pro-
N=232 (uppe) and 64(lower) in Fig. 4. Again, the exact and nounced when the coupling is weak, and it stems from the
canonical result§Ay_defined by Eq(36)] are plotted with  quantized and doubly degenerate energy levglse_ of

symbols and the grand canonical resilis in Eq. (15)] are  the unperturbed system. As will be shown later, when the
shown with curves. In the upper parts of Fig. 3, the exactoupling is weak, the occupation probabilities of the unper-
solutions forN=4 and 8 are the circles and squares, respecturbed states can be approximated by those for zero cou-
tively, and the corresponding canonical results are theling. We can thus understand the super-even effect as fol-
crosses and stars. The gaps for odd numbers of electrons desvs, in terms of the unperturbed energy levels which are
negative. As discussed above, the conventional BCS waveccupied by pairs of electrons up to the Fermi level and are
function that is used in this work does not contain the djd- empty above it. To simplify the discussion, we ignore the
components, and thus the gap defined by @d) is the energy change due to the blocked states by unpaired elec-
(positive) pair-breaking gap for an even number of electronstrons.
The negative ‘“gap” is obtained only in the canonical In the case of one dimension and with=t, the unper-
scheme, and then only for an odd number of electrons. Faurbed energy, Eq2), reduces tce,= — 2t coskR, whereR
even electron numbers, the canonical BCS method improves the lattice constant. From the periodic boundary condition,
the grand canonical results significantly for weak couplingkR=2mj/N (—N/2<j=<N/2), and each energy level is de-
and small system size. generate for- kR except forkR=0 ands. Hence each level

In Fig. 3@) for |U|/t=1 andN=4, 8, and 16, we can see with 0<|kR|<# can accommodate two pairki,—k|)
the excellent agreement between the exact and canonicahd (—k7,k|). Thus when there arerd+ 2 electrons, in the
BCS results. Furthermore, there is a striking feature in thesground state, all the levels frokR=0 up tokgR are fully
figures — the difference between the gapsf=4m and  occupied by the pairs, while withmd electrons, the Fermi
Ne.=4m+2, wherem is an integer.(Note that for all the level has a vacancy for one more pair. Therefore, when there
results shown, the number of sites is a multiple of Bhe  are 4m electrons, a way to break a pair with the minimum
gaps forNo=4m+2 are much larger than those fd&,  energy is to flip the spin of an electron of the pair at the
=4m. Moreover, it is clearly seen fdl=16 that the gaps Fermi level. The unpaired electrons then occupy the states
for No=4m+2 increase as the density increases. We calt-kg and there is no extra cost for the kinetic energy. On the
these oscillations in the gap as a function of the eMerthe  other hand, when there arem4 2 electrons, one cannot
super-eveneffect: the system is more stable withm42  break either pair at the Fermi level simply by flipping a spin,



3516 K. TANAKA AND F. MARSIGLIO PRB 60

(@) |U|/t=1 by |U|/t=15
1-5 1 1 1 1 1 T 1 T 1 15 T T 1 1 1 1 T 1 T
----- N=4 GCBCSA, — N=8 GCBCSA, - N=4 GCBCSA, — N=8 GCBCS A,
1.0 F o o exact & B 1.0 o O exact 8 B
_ x % CBCS x _ x x CBCS )
= 05} . >~ 05} , 1
4 " 4 ¥ L
; Eu) %
puinie— | *
0 0 PP 00 PP PP T -
= ® 2 ® E &
Q B °] g %)
_05 1 1 1 1 1 1 1 1 1 _05 1 1 1 1 1 1 1 9 1 1
0.0 0.1 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 0.7 08 09 10
O 5 T T T T T T T T T 0 5 T T T T T T T T T
X
N=16 v 8 N=16 5 ©
IS (o)
© o] B
— _/é/\ ] & R —
> 00 > 00
< B ? Q ” [ ] 2 R <
[o]
A
o exact x CBCS — GCBCSA, ] o exact x CBCS —— GCBCSA,
_0.5 1 1 1 1 1 1 1 1 1 _0.5 1 1 1 1 1 1 1 1 1
0.0 0.1 02 03 04 05 06 07 08 09 10 0.0 01 02 03 04 05 06 0.7 08 09 10
n n
(c)Ul/t=4

- N=4
hy omexact xxCBCS — N=8 GCBCS 4,
> 00
<1
10} @ & o o o _
* * o] *
X
_20 1 1 1 1 1 1 1 1 1
0.0 04 02 03 04 05 06 07 08 09 1.0
20 T T T T T T T T T
N =16 X
10| o o o o o ° p
hat o exact x CBCS — GGCBCSA,
» 00
<
1 o o) o 9] o] IS}
1.0 F R N i
% x X X x
_2 O 1 1 1 1 1 1 L 1 L

0.0 01 02 03 04 05 06 07 08 09 1.0

n

FIG. 3. (8) Energy gap as a function of the electron densityN,/N for N=4,8 (upper framg and 16(lower frame and for|U|/t
=1. In the upper figure, the circles and crosses are the exact and canonical BCS reduitglfmespectively; the squares and stars are for
N=8. In all casek andk’ have been determined variationally and used in(Bf).. The grand canonical results are shown with curves. The
gap for oddN, is negative, and for eveN,, the super-everoscillations No=4m vs 4m+2) can be seen. The canonical results are in
excellent agreement with the exact ones, while the grand canonical BCS result completely misses theNyap4drfor 2. (b) Same asa),
but for |U|/t=1.5. The symbols used for the exact and canonical gap fo# and 8 are the same as(@®. The canonical results are still
in good agreement with the exact onés.Same asa), but for|U|/t=4. ForN=16 the canonical gaps are converged to the grand canonical
curve for almost all densities. Even foéi=4 and 8, the canonical results are closer to the grand canonical ones, and the super-even
oscillations have disappeared.
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FIG. 4. (a) Same as Fig. @), but for larger system siz&§ =32 (upper framg¢ andN= 64 (lower framg. The super-even oscillations can
be seen clearly, whereas the grand canonical BCS missesth@4aps completely. While fad =32 the canonical BCS results still follow
the exact ones closely, foi=64 the former are closer to the grand canonical curve for low electron deflsitiame adqa), but for
|U]/t=1.5. The canonical gaps are converged to the grand canonical ones for smaller density, while the former improve the latter still
significantly near half filling(c) Same aga), but for|U|/t=4. For the large sizes shown, this is strong enough coupling so that the canonical
and grand canonical results are converged for all densities, and the super-even oscillations have disappeared.

but an unpaired electron has to move up to the next availablN, is particular to the one-dimensional band structure that
level, increasing the kinetic energy. This is why the gap forwe use: the level spacing becomes maximum arokiRd
pair breaking is larger fordh+ 2 electrons than forwh elec- = /2 (i.e., half filling) and so does the kinetic energy cost
trons. The fact that the former gap increases as a function dbr breaking a pair.
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The super-even effect can be recognized more clearly icanonical gaps are converged to the grand canonical one for
Fig. 4@ for N=32 and 64. The overall scale of the gap low density, while they are much better for higher density,
becomes smaller for larger system siz®te the reduced especially forN.=4m.
scale compared to Fig(&@]. For 32 sites, the canonical BCS  As the coupling strength is increased furtfitar a fixed
results still follow the exact solutions closely for almost all size), the scale of the gap increases as a whole for both even
density values. For 64 sites, the system is so large that eveghd oddN, (thus the even-odd difference becomes larger
for this weak coupling, the canonical gaps are converged tyhjle the 4m vs 4m+ 2 difference decreases. For example, it
the grand canonical curve in the dilute limit. The canonicalcgn pe seen in Figs.(@ and 4c) that |U|/t=4 is strong
results more or less follow the exact ones er 0.3, where  on6,9h for most of the sizes shown for the system to reach
the super-even effect is manifest. the “bulk” limit, where the canonical and grand canonical

hlt ca&b%;eerélanlgzs.(@ and 43) thl?t for Iar?edr ciﬁn3|ty, dmethods hardly differ from one another. Even kb+4 and
w r?cgﬁicaT BCaSn com Iet(ge?p?n?sr:evgethzegi;ite 'a sl\?r?n 8, the super-even structure is gone, and the canonical gaps
ca pietely 9aPSTeT  are closer to the grand canonical ones.

=4m+2. On the other hand, the grand canonical curves :
To see the effect of the coupling strength on the energy
appear to follow closely the exactlgaps. However, as the oo . .
gap, we plot in Fig. ) the gap as a function of the coupling

size is made larger than 64 sites, the exantgaps become strength forN=8 (upped and 64 (lowe), for quarter @

smaller than the gap given by the grand canonical c[see . ) _
the bottom graph of Flg(a)] and flnaIIy in the bulk Iimit, :05) and half fl”lng. Interestlngly, fol =8 the exact gaps

they are quite small compared to the grand canonical value§?r quarter and half filling are almost equal over the.entire
at n=1.0, the exact and grand canonical gaps are aboU@nge of|U|, whereas folN=64 they are somewhat differ-
0.003 and 0.015, respectivéljleanwhile, the canonicald ~ €nt. On the contrary, in the BCS pictufeoth canonical and
gaps go up towards the grand canonical curve, as (tblﬂ(;l’ grand CanoniCaJ the difference between quarter and half
the 4m+2 gaps$ converge to the grand canonical values.filling in the strong-coupling limit is about the same for
Hence for some particular sizékarger than 64 sitgsthe  small (N=8) and large K=64) sizes and much larger than
canonical results for themt gaps will be closer to the exact the exact result. As for the difference between the canonical
ones. and grand canonical results, we first note tNat=4m for

In fact the grand canonical gaps tend to have a discontiboth cases shown in Fig(&. For N=8, the canonical and
nuity atN,=4m-+ 2, but either value is generally well below grand canonical results are equally good for weak coupling
the exact or canonical value. For smaller density where th¢|U|/t<2), whereas the canonical gaps improve the grand
super-even oscillations are not so prominent, the grand caanonical ones slightly for stronger coupling. For large sys-
nonical gaps have cuspsMf=4m+ 2, as can be seen, e.g., tems and for very weak coupling, the grand canonical results
for N=64 andn=<0.5 in Fig. 4a). Also, as the coupling are better than the canonical ones. This can be seeN for
strength is made a little larger but still smallu(/t<2), =64 for |U|/t=<1 for half filling, as we have seen in Fig.
these discontinuities at larger density are replaced by cuspg(a). As the coupling becomes stronger, the canonical gap
This can be seen in Figs(9 and 4b) for |U|/t=1.5. While  converges to the grand canonical one, and this happens faster
for the small sizes shown in Fig(i9 there are still discon- for larger systems. Indeed for 64 sites, the two curves for
tinuities for n=0.5, for the larger sizes in Fig.(d) the |U|/t=2 can barely be distinguished in the given scale both
curves are continuous for all densities, with cuspsNat  for quarter and half filling, although half filling is a special
=4m+2. It is intriguing that the grand canonical BCS par- case where the canonical gap defined by @) does not
tially reproduces the super-even oscillations in this way. Theonverge to the conventional BCS gap — this will be dis-
grand canonical solutions in the zero-coupling limit will be cussed shortly.
discussed further below. In Fig. 5(b), we compare the magnitude of the exact and

For N=4 and 8 in Fig. 8), the agreement between the canonical gaps for even and obld for half filling, for 8 and
canonical and exact gaps is still very good, and the overalb4 sites. For smaller systems, the magnitude of the gap for
structure of the gaps as a function of the density is the sameven N, (=4m) is a little larger than the one for odd,
as for|U|/t=1. For 16 sites, the canonical results deviate(=4m+1), as can be seen fdd=8. This difference is
slightly but still reproduce the exact gaps well. For smallslightly larger for the exact solutions than the canonical BCS
density, the canonical evé¥s gaps are closer to the grand results. As the coupling strength or the system size is in-
canonical curve, while for larger density the canonibal  creased, this difference between the magnitude of the even
=4m+2 gaps significantly improve the grand canonical(4m) and odd gaps diminishes. This can be seen in Klg. 5
curve. As the system becomes larger, the super-even oscill&lso note that the difference between the BCS gap and the
tions diminish in amplitudes and also are confined more toexact gap increases as the system size increddgs.can be
wards half filling. Also, as the size increases, for larger denseen in Fig. &) as well. This is due to the fact that the exact
sity where thgexact and canonicefim and 4n+2 gaps are  gap becomes smaller for larger systems, whereas the canoni-
well separated, the grand canonical curve shifts up relative toal gap in the strong-coupling limit hardly changes as the
them, from near thedh gaps to above them+2 gaps. This system becomes largéandN= 64 is large enough to be the
can be seen in Figs(® and 4b) in increasing order in size. bulk limit for [U|/t=4). Note that Janket al?° have found
For 32 sites, the last two cusps in the grand canonical curvthat the pair-breaking gap is slightly smaller for systems with
happen to be closer to the exact values than the canonicalld number parity than with even number parity. It is in-
ones. However, the canonical gaps capture the correct behatviguing that themagnitudeof the canonical gap, E¢36), is
ior of the super-even oscillations. Finally for 64 sites, thealso smaller for odd electron numbers than for even ones.
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FIG. 5. (a) Energy gap as a function of the coupling strength/t for N=8 (upper framg and 64(lower frame, for the densities
=0.5 and 1.0. FoN=8 (and forN,=4m) the canonical and grand canonical results are equally good for weak coupling, while the former
improve the latter slightly for stronger coupling. Rde=64 the canonical and grand canonical results can hardly be distinguished for almost
all the coupling strengths showtb) Same aga), but here the magnitude of the gaps for even and odd electron numbers are compared for
the exact and canonical BCS results. The comparison is made at half filling, so thidgvdhand oddN,=N—1. ForN=8 the even gaps
are slightly larger in magnitude than the odd ones, whileNer64 the difference has diminished.

2. Grand canonical gap for weak coupling (12) cannot take certain values in between two leVetare-

As mentioned above, for very weak coupling, the grandSponding to the plateau regions inin Fig. 6], and this

canonical gaps have discontinuities fég=4m-+ 2 at larger car|1: be undl(e:rstoo? in the following .‘g’ay'h lation b
density. We can understand how these discontinuities arise, or W?a coup mg,_we can cqr1~5| er the re_ ation between
by looking at the density as a function of the chemical po-t1€ density and chemical potentigk) roughly in the same
tential in the zero-coupling limit. In Fig. (&) we show the Wway as for the zero-coupling case: fbl,=4m,u is very
density (top) and the gap\, (middle) as a function of the ~Close to one of the levelg, (when|U[=0, it is equal toey),
chemical potentiak, andA, as a function of the density ~ While for Ne=4m+2 it must be in between two levels.
(bottom), for zero coupling andN=16. When|U|=0,Agcs  Therefore forN,=4m,e,—u=0 and thusAgcs must be fi-
=0, %= andE,=|e,— u|. There is no gap equation and nite for n to have a cer'@lin valugsee Eq.(14)]. For N

is simply determined by Eq14) for a givenu. Thus the ~=4m+2, however, ife,— u is finite, thenAgcsis driven to
existence of a gap is solely due to the finite system size. [£€r0 so that the right-hand sidBRHS) of Eq. (40) attains a
can be seen in the top figure that@ashanges continuously, |arge enough value for smajU|. Indeed, for sufficiently
the densityn changes as a step function: it is multivalued SMall|U[, even ifAgcs is zero, Eq(40) cannotbe satisfied
when u is equal to any of the discretg due to the orbital for x« near the middle of the range between two levels. In-
and spin degeneracy. As moves from one level to the next, steady is driven towards either level, so that the RHS of Eq.
the density stays the same, whereégas=min(E,) increases (40) increases sufficiently to equal the LHS. The number
from zero, peaks whep is precisely between the two levels, equation(14) is still satisfied, sinceAgcg=0. Thus certain

and falls to zero again. Henc®, as a function ofn has  values of are not allowed for small values ¢)|. This

o-function-like peaks, as seen in the bottom figure. situation is illustrated in Fig. ®) for |U|/t=1. In the top
When the coupling is nonzero,and . must satisfy not  part, the abrupt jumps in seen in Fig. éa) have been some-
only the number equatiofiL4) but the gap equation what smoothed, whereas the plateau parts have disappeared.
Accordingly the gap becomes discontinuous as a function of
1 1 D 1 1 1 40 w as well asn. In the latter cased, indeed has two values
W_ N < 2_Ek_ N < 2\/( fk—/NL)ZﬁLAécs, (40 for a givenn at each discontinuity shown, corresponding to

the two solutions fog for coming up from a lower level and
which is obtained by substituting E¢L3) into Eq. (12). It  coming down from the next level. In any case, all values of

turns out that when the coupling is weak, given by Eq. n are possibldin contrast tou).
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FIG. 6. (a) The electron density (top frame and the gap\, (middle frame as a function of the chemical potentjal andA, as a
function of n (bottom frame, for N=16 and for zero coupling. The fact that the density is a step functiqm and that the gap exists is

because of quantized energy levels due to the finite system size\ jThas peaks Whehk—m becomes a maximuntb) Same asa), but
for |U|/t=1 and now the “chemical potential” ig. given by Eq.(11). The x cannot take certain values in between unperturbed energy

levels, corresponding to the plateau regiongan (c) Same aga), but for|U|/t=2. This coupling strength is large enough so thatan
take all the values in between levels. On the other hand, the coupling is weak enough &qdhit small andA, has cusps whete,

— 1| becomes a maximum, similarly to the zero-coupling case.
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For smaller density or larger system size, the level spaceontex} for all quasiparticle momentdi.e., not just at the
ings become smaller, and it becomes possibledfdo have ~ minimum in Figs. Ta)-7(c)].
all the values in between levels. This also occurs for stronger In the canonical picture, when the coupling is weak and
coupling, as can be seen in Figcpfor |U|/t=2, whereA,  there are # electrons, the lowest energy for breaking a pair
is now continuous and has cusps\at=4m+2. These cusps is to create an electron and a hole both at the Fermi level.
come about when the coupling is still weak enough so thaThus |k| for an electron and a hole is the same, and this
Apcs is small, and for the same reason as in the zeroexplains the super-even effect. The gap with this configura-
coupling case, that is, whénk—m becomes a maximum. tion is the minimum value seen in Fig(af for both quarter

It is intriguing that the weak but nonzero coupling picture and half filling. In the grand canonical schemigcg be-
described above does not extrapolate smoothly to the zer@omes very small for this weak coupling and herigeg
coupling case. A4U| decreases, the slope of (centered  ~|¢, 7|, wheref tums out to be almost at the Fermi level
aroundN,=4m) as a function ofu seen in Fig. €) (top  (slightly above for quarter filling and it is at the Fermi level
frame lNI|| become sharper, while the corresponding curvesy,, paif filling (%=0).
in Ag(x) will be reduced to points. At exactijy|=0,n As the coupling strength increases, the momentum of an
becomes vertical arountle=4m for all m. However, all  ynpaired electrork (or k' of a holg that yields the lowest
values ofu in between are allowed now, anl,() be-  energy for an oddN, system shifts from the Fermi momen-

comes continuous as in Fig(éd (middle frame. tum in the zero-coupling limit towards zero momentum — it
o eventually reaches zero momentum, that is, the bottom of the
3. Quasiparticle energy noninteracting band, in the strong-coupling limit. This hap-

In the conventional BCS theory, there is no distinctionPens soonei.e., for smaller|U[) for smaller number of
between a particle and a hole excitation in that the energglectrons: not only the Fermi momentum for zero coupling is
E,= /(fk_ﬁ)2+AZBcs is the same for either excitatidA. closer to zero than tho_se for largdg, but a_Iso the optimal

. : . momentum starts shifting at weaker coupling. In the case of
As defined by Eq(15), the gapA, is the lowest quasi- uarter filling for N=32, the optimal momenta fdl.=15
particle energye, . The minimum energy required for break- q 9 oo P e

ing a pair is 2 and thus, the momentk| carried by an and 17 are bothkR|=/4 for zero coupling, while for

electron and a hole are the same. In the canonical BCérJ] L/tnjosn’]é?]fu?nmggdesntg;sge;gfslﬁaa\l/r;d El:nri]r?i\r/neu?fliifgt-
scheme, for eveM, the minimum pair-breaking energy is P

. : : ~ =3m/16 andn/4, respectively. Yet if we take the same mo-
given by 24y, in Eq. (36), where the lowest energy is cho mentum for bothN.=15 and 17,A\ (k) agrees very well
sen for each of the systems with—1, No, andN.+ 1 elec- e

trons. For the lowesEy, ., andEy ., the momentum car- with E, for all the|k|’s, as seen in Fig. (D). TheAy (k) has
ried by an unpaired eelectrok z;nd that by a holek’ its minimum whenE 5+ E4; is the smallest; this occurs at

- - A kR|=3/16 for |U|/t=5. For half filling, the optimal mo-
respectively, are not necessarily the saféis is also the | ! e _
case for the exact solutions by the Bethe ansatz for a finit%?nta for bothNe=31 and 33 are stillkR|=/2 (€.=0)

- - - |U|/t=5, as in the zero-coupling case.
system. In this section, we evaluate the gAme by taking The preceding discussion illustrates that to obtain the

the same momentum for an e!ectron and a hole as in thgrang canonical limit, one must in general choose the quasi-
grand canonical picture, i.&=k’, and compare it with the 5 tjcje momentuntidentical for the particle and hole cages
grand canonical quasiparticle energy. We will denote thigg minimize the sum of the two odd-electron energies. For
gap asiy (k). We should remark that the difference in 9apsintermediate to strong coupling this will not be given by the
defined in these two different ways is generally quite smallmomentum expected from the noninteracting lifirit Ref. 9
but noticeable in certain extreme limits. this procedure worked because they adopted a particle-hole
In Fig. 7, we plotANe(k) obtained by the canonical BCS symmetric model — see belowThe last casdénext para-
method as a function of the kinetic energy. The energy graph shows this for a very strong coupling example.
band in one dimension is from 2t to 2t, corresponding to For extremely strong coupling such Ag|/t=50, the op-
0<|kR|=< . We show results foN=32 and for quarter and timal momenta foN.=15 and 17 are both zero. In such a
half filling, i.e., No=16 andN,=32, respectively and faja) ~ case, the ground state energy increases almost linearly as a
|[Ul/t=1, (b) |U|/t=5, and(c) |U|/t=50. The canonical function of ¢ from kR=0 to «. This can be seen in the
results are shown with circles, while the grand canonicabpper part of Fig. @), whereE,s and Ey7 are the squares

_ = : . . ith the left axig and the crosse@with the right axi3, re-
energyE, = (e— 1)+ A2q is plotted with solid curves.  (With | ; SRV
We h;ve se;n in Fig.(;ﬁhat for|U|/t=1 andn=0.5, spectively. AccordmegANe(k) is minimum atkR=0 and

the grand canonical gapg\¢) happens to be very close to the increases linearly as a function ef, as seen in Fig.(€). In
exact one foN.=4m and forN=32, also to the canonical the grand canonical casg, [related tox by Eq. (11)] for

gap (note thatN.=4m for both quarter and half filling We  such strong coupling is a large negative value &pdchas a
also showed in Fig. @) thatN=32 is large enough for the minimum well below the bottom of the band.

canonical gap to converge to the grand canonical BCS gap Half filling is a special case due to the particle-hole sym-
for almost the entire density range, already|(idf/t=4. We  metry. In this caseu is zero for any coupling strength and
find the result that the momentum-dependent canonical gaRence the quasiparticle energy is always minimuniké

Ay (k) defined in this section agrees remarkably well with = 7/2. By the canonical variation, the ground state energy
the quasiparticle energlf, (defined in the grand canonical for No.= 31 (the largest odd number far<1) has its mini-
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FIG. 7. (a) The momentum-dependent canonical @ape(k), for which the samék| is taken for an electron and a hdlgircles, and the
grand canonical quasiparticle enery (curves, as a function of the kinetic energy,. The results are foN=32 and|U|/t=1, and for
quarter(upper framgand half(lower framé filling. For this weak couplingE,=|e,— |. (b) Same asa), but for|U|/t=5. (c) Same aga),
but for |U|/t=50. (d) Ground state energy for odd, as a function of the quasiparticle kinetic energy, for N=32. In the upper figure,
the energies foN,= 15 and 17 are shown with the squatesth the left axig and the crossesvith the right axi3, respectively; in the lower
figure, the energies fdl.=31 and 33 are plotted accordingly.

mum at 37/8. This can be seen in the lower part of Figd)7  about|kR|= /2 as a function of the momentuifor any
(the squares, with the left ajisalthough the differences in |U]), as follows from the particle-hole symmetry relation.
energy for differentk|’s are rather small. The results fBg;  Interestingly, the optimal momentum fod,=31 (and for
(the crosses, with the right axiss the mirror image oE3;  N.=33) is still close tom/2 for this coupling strength. In-
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(a) variational parameters (b) occupation probability
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FIG. 8. (a) Variational parametefg,} as a function ok and the coupling strengtf|/t, for N=8 (upper figur¢ and 64(lower figure
and for half filling. The increment ifU|/t has been taken to be finer fr= 64, while the increment i is naturally smaller(b) Occupation
probability {n,} as a function ok and|U|/t, for N=8 (upper figur¢ and 64(lower figure and for half filling. At|U|/t= 10, n, is roughly
0.7 and 0.3 ak=0 and, respectively(here the lattice consta=1). In the weak-coupling limit, the distribution for the noninteracting
electron gas is recovered.

deed, one requires even stronger coupling to Haygthat  probability {n,} as a function ok and the coupling strength
beha"es_aflsh_'” Fl!g- 7(|d)’f WQ'S_ESB» will decrease in a ||, for N=8 and 64 and for half filling. In both figures, the
symmetric fashion linearly froltR=0 to . é:)oints at discrete values &f(and discrete values ¢b)|) are

As the coupling increases, the system of any finite siz . )
approaches the “bulk” limit. We have seen above for ;lmply gonnected by lines. The sma_II¢St| shown in these
PP figures is 0.26 and for N=64, the increment ifU| has

=0.5 that in the strong-coupling limit, the energies for both : i i _
of the odd systemé.e., N,= 15 and 17 have their minimum  been taken finer than foN=8 (while the k increment is
values with the momenturk=0. This is true for any finite haturally smaller for larger system sjz&he results shown
size and any density smaller than unity. Thus the canonicdtave been obtained by the canonical BCS formalism. How-
ANe(k) with the |0WGStENe+1 and ENe—l (N, even con-  ever, also in the grand canonical scheme, Kot and{n,}

verges toA,, which is, for such strong coupling, given by have the same overall shape as a functiok ahd |U|: the

\/ﬁ L . ~ actual values ofg,} may be different but only slightly, so
ev(g:wll'hﬁé) I;L\s :gé;rgﬁ (:IISE:gtv\t/ri}ler?:\f: ;cgjglf;gléng, rr]ng that they look the same as those in Figa)8with the given

. : . scale.
spectively, while both should haveR= 7r/2 for the canoni- N . S
cal gap to converge td.,. We can see in Fig. (@) that in the strong-coupling limit,

For 4m+ 2 electrons, the agreement &f, (k) with E, is {ax} as a function ok is almost flat(in the given scalefor
e

not as good for all quasiparticle momenta for weak coupling™ given|U|, and thus all the unperturbed levels are almost
9 quasiparl b g'equally mixed® On the other hand, in the zero-coupling
In the strong-coupling limit, howeverANe(k) eventually

limit, {g,} becomes a cosine function &f Since the grand
converges tdey, for all the momenta as we have seen above:gnonical BCS yields the same behavior{gf}, this can be
for Ng=4m. Flnally, as explained above for the super-even nderstood by the simple expression of Ef3). As |U|

effect, the minimum gap foN,=4m+2 for weak coupling approaches zerd ges goes to zero, anfi, can be expanded

has differentk|’s for theNe+1 andNe—1 systems. On the 't the leading order itgcs. Then Eq.(13) reduces to

contrary, the grand canonical gap has always the same mo-
mentum for an electron and a hole. This explains why it does
not reproduce the exact gap fbi,=4m+2 for such weak A2
coupling, while the canonical one does. 9 BCS

2(e—n)?

1

- . (41
Nocs 4D

lex—ul| 1+ —(&— 1)

C. Occupation probability

To conclude the discussion of our results, we show in Fig.
8(a) the variational parametgg,} and (b) the occupation Thus in the limit of|{U|—0 andAgcs—0,
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A ~ 2le = _ N=16
K= Bci (Ek> /.L) and gk: # (€k< ,LL) 0.5 T T T T T T T T T
2| €= p BCS (@) Ul /t=15 " 5
(42) °
o] A i
Henceg,— 0 for e,> ., while for e,< ., g diverges in the © © ¥
zero-coupling limit, and provides an image gf (note that < P GCBCS A,
for half filling, x=0). F
Furthermore, the occupation probability clearly shows s ) ° 9 2 g g 4
how the distribution over the unperturbed states changes as ¢
function of the coupling strength. It can be seen in Fidp) 8 o exact x CBCS & LCBCS
that the distribution function for the noninteracting case is 05 oy aa
recovered for weak couplingl,=1 for e,<u and 0 fore, "00 01 02 03 04 05 06 07 08 09 1.0
>, andn,=0.5 at the doubly degenerate Fermi level. In 5

Fig. 8b), not only the scale is reduced compared to Fig),8

but also the relativelaverage height of n, at |U|/t=10 (b) Ul/t=4 X ]
against the one in the zero-coupling limit is larger. Timys 1k * o o . i
o] [0}

may appear to have more variation as a functioik of the

strong-coupling limit tharg, does. However, the difference = o exact x CBCS 4 LCBCS
between the maximum and minimum values$ldl/t= 10 are z 0 GOBOS

approximately the same for both cases, apds about 0.7 at o Ao

k=0 and about 0.3 at the edges of the band. As the coupling 4L ® 2 °© e e © ° °
is made stronger, the occupation probabilignd g,) be- " % « " x ﬁ

comes almost equal for all the states, ape-0.5 for allk in
the case of half fillind.

-2
00 01 02 03 04 05 06 0.7 08 09 1.0

IV. SUMMARY AND DISCUSSIONS n

FIG. 9. Energy gap as a function of the electron densifpr

We have formulated BCS theory for a canonical en-
y N=16, for(a) |U|/t=1.5 and(b) |U|/t=4. The exact solutions are

semble, following earlier work by Dietricht al*® and Fali- s . )
g y shown with circles, while the canonical results from thtormula-

1
cov %nd Proetts, and very _recently by Braun and_ VON tion and from the linea€ formulation are shown with the crosses
Delft.” We have also generalized the linear formulation in- i .

and triangles, respectively.

troduced in Ref. 11 for any system size. However, this
method has proven to be numerically too intensive for
“large” systems, and provided at best only marginal im- which are multiples of 4 (/) and nonmultiples of
provement over the nonlinear canonical formulation. 4 (4m+2). The magnitude of the gap variation for even

In this work we have adopted a very definite model, thenumbers of electrons is, in some cases, comparable to the
attractive Hubbard model, for various reasons. First, weeven-odd variation, i.€.,|Asm—Asms1|~|Asm—Asmeiol-
wanted to have an exact solution with which to monitor theThus, such oscillations should be observable in the same
improvement over the grand canonical scheme. These akind of tunneling experiments used for seeing the even-odd
available for the Hubbard model in one dimension by theeffect. We note, however, a key ingredient for the super-even
Bethe ansatz technique, and so we have used these aseffect to occur is the double degeneracy of levels, which in
benchmark throughout this work. Second, we wanted t@ur case comes about from the simple equaldity e_, . In a
study a system which, by choice of parameters, could easilynore general casdor example, in higher dimensionshe
span the weak coupling to strong coupling regime, as well agegeneracy structure will be more complicated, and therefore
the low density to high density limits. In this way we have oscillations will exist but may not be as simply periodic as a
observed the crossover from the bulk to quantum limit for afunction of electron number as is the case here. The super-
variety of regimes. The attractive Hubbard model is no doubeven effect is also a result of quantized energy levels due to
the “minimal” model that accomplishes this. Finally, we finite system size and the effect will be stronger for smaller
wanted to use a model which could readily be generalized tsystems® For very weak coupling, the grand canonical BCS
a realistic case, so, for example, one could use a paranfails to reproduce the super-even effect, while the canonical
etrized tight-binding model to fit the band structure for Al to scheme does; indeed, it yields very good agreement with the
better describe ultrasmall metallic Al grains. exact solutions.

In this work, however, we focused on the first two points  For purposes of experimental observation, it should first
listed above, with the goal of establishing generic trends. Wéve noted that a weak coupling superconducting material is
have emphasized the parity effect, which emerges in our carequired for the nanoparticle. If the coupling is too strong,
nonical scheme as a positive gap for even number of eledhe super-even effect is diminished. Thus, Al is an excellent
trons and a negative “gap['see Eq(36)] for odd number of candidate. One would like to be able to vary the electron
electrons. However, in addition to the even-odd effect, wedensity over some range using a gate voltage as in Ref. 3.
have found asuper-evereffect, with oscillations in the su- Another desirable ingredient is a clean, quasi-crystalline
perconducting gap occurring between even electron numbergnoparticle, so that the finite-size level spacings will be
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well defined. As the gate voltage is varied, we expect to seavhere spin of the extra electran can be either up or down.
strong variations in the gap, not only in changing from evenThe extra electron blocks the statdrom being occupied by
to odd electron states, but also to “super-even” electronpairs. There is no variational parameter for the blocked state:
states. Some tuning of nanoparticle size with applied gatéor the variational calculations, we always choagethat
voltage may be required to see the super-even effect at typgives the lowest energy. Note that t6é&s in the above equa-
cal bulk Al electron densities. tion are different from those for the same number of pairs in
Finally, we note that the grand canonical BCS quasi-Eq. (17) due to the missing.
particle dispersion relation was beautifully reproduced by the We now derive the variational equation using,) in Eq.
canonical resultssimply by varying the odd number ground (17) for an even number of electrom&,=2v. The formulas
state momentupwith the proviso that the electron and hole below are slightly modified for an odd number of electrons.
momenta were the same. This simple correspondence is quifge mention the difference fal,=2v+ 1 in the end.

surprising. The normalization factor fop¥,,) defined in Eq(17) is
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APPENDIX: LINEAR CANONICAL VARIATION

We summarize the linearized formulation of the canonical (W, |TIW,,)=(¥,,| > eal,aw¥s,)
variation. In addition to the wave function fot,=2v de- ko
fined by Eq.(17), we define the wave function for odd num-
ber of electronN,=2v+ 1, following Ref. 8 as :kz . Ek IC(Kyq, ... k,)|?

1< <k,
Wy )=al, 2 2 o 2 Clkyky, ... k,) X2(e + e ). (A3)

ki#q< kp#q< <k,#q
» Calculation of the potential energy term is more tedious. Af-
XH aI.Taik.ﬂO), (A1) ter some lengthy .operator algebra it can be written in a gen-
=1 i eral form for v pairs as

- U] U]
(W2, |V|W,)=— W(‘I’2V|z alTaik-Hia—k’+Iiak’T|\I’2v>: N > 2 Cky, . k)
Kk'| K <k,

1<

X| v(r—1)C*(Kq, ... K,)+ > C*(pky, Koy .o Kpo)+ 2 C*(Ky,pKoy oo Ky q) -
p<kj

kq<p<kjy

+ E C*(klvk21 e vkv—lvp)+ E C*(p!kl!k21 e !kv—21kv)

kV*1<p p<k1

+ > C*(ky,pKoy oo Ko k) e+ D CF(Ky,Koy e Ko K, p)

k1<p<kjy k,<p

+ > C*(pky,Ks, ... k)+ D C*(Ko,piks, ... k) o+ 2 CH(KyoKs, ... k,,P) ]

p<ky ko<p<ks k,<p
(A4)
The first term on the right hand side corresponds to a Hartree-like term, and gives the interaction energy of eacpaifdhe

with the otherv—1 pairs. The other terms systematically consider the various cases when one pair is scattered into another
(unoccupied pair state.
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In the following, we take theC’s to be real variables. In Ref. 13 it has been proved for the BCS formulation that for
negative pairing-type interactions, reaind positive variational parameters yield the lowest energy. The minimization con-

dition for the energy(19) with respect to the redIC} results in the equation

1|V
Clky, - k)=—5 > CpKi Koy o Ky + D C(KypKo, o Ky )
p<ky kq<p<ky

+ > Ckyky, oo Ko p)+ D CPK Ko, L KooK,
kv—l<p#kv p<k

+ > C(ky,pkoy oo Koo k) > C(Ky,Kp, .. Kye0.pK,)
ki<p<ky k,—o<p#k,_1<k,

+ > CKy Koy oo Kyn kPt D C(pKaks, .. k)F D C(Ka,piks, ... k)
k,<p p#ky<ky ko<p<ks

+o 4+ > C(Ky,Ks, ... k,,P) |, (A5)

k,<p
|
where (A5), while ind as defined in EqLA6) — €4 should be added
U] and »? should be replaced by(v+1).
d:EV—2(5k1+ o +6ky)+ WVZ' (A6) We have found that this linear variation in terms of the

This should be solved for all thé’s self-consistently.

For an odd number of electrons, in the energy expectatio

value and the variational equation in terms|®#f,, . 1), the
blocked q is excluded in all thelk} sums and{p} sums.
Other than that, the normalization factor fo¥,,. ;) is the

C’s just barely improves the ground state energy, compared
to the nonlinear variation in terms of tlgs. Interestingly,
the C formulation does not improve thggformulation for the
Icl,nergy gap. We illustrate this in Fig. 9 foé=16 and for
|U|/t=1.5 and 4. We found that for smaller system size, the
two formulations do not make any difference for any cou-

) R . pling strength, for the gap as well as the ground state energy.
same as EO(ArZ])' the kinetic energy rt]ernrd|sbthe salme gstq‘For larger system sizéwhich was limited forN=30) the
(A3) except that 2¢,+ - +€'<V_) should be rep aced by gap from theC formulation is slightly worse than the one
2(e,t -+ - + e )+ €q: the potential energy term is the same from the g formulation for weak coupling and larger density.
as Eq.(A4) except that the factor(v—1) should be re-

This can be seen in Fig.(®, while for |U|/t=4 in (b) the

placed byv?: the variational equation is the same as Eq.two results have converged for all the density.
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