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Variational calculation of excited-state properties of a®He impurity in superfluid “*He
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We report a variational Monte Carlo calculation with shadow wave function of the excited-state properties
at T=0 K for a system composed by ori¢le atom in superfluidHe. Explicit nonperturbative backflow
contributions are used both for the collectitide excitation and for the impurityHe excitation. The impurity
and the collective excitation states have been orthogonalized and diagonalization of the Hamiltonian has been
obtained directly through the Monte Carlo calculation. This process has strong effect on some of the expec-
tation values for the observables of the system. Energy, effective mass, and strength of the single excitation
peak of the impurity are computed. Aboge=0.5 A ! the effective mass increases significantly witbut
this increase is not as large as deduced from experiment. The strength of the single excitation peak in the
dynamical structure factor for thitHe impurity atom is strongly reduced by an interference contribution due to
“He atoms and the resulting strength is now in good agreement with experiment. The importance of the
coupling betweer’He and“He suggests the need for a reanalysis of the experimental data.
[S0163-182609)00829-2

[. INTRODUCTION putation has been already presented some time° ayye.
have now completed this study and we have introduced a

The finite solubility of*He in “He even alf=0 K offers  number of improvements over the earlier computation. First,
the possibility of studying a mixture of bosons and fermions.as the ground state we have used fully optimized correlating
The situation is simpler at very low concentration Hfie  factors for pure*He, which is producing the best energy
when the statistical effect of the fermion component is negfrom variational Monte Carlo calculationMC) over the
ligible and one can consider one single impurity in a sea ofull density range? In the second place, and most important,
“He atoms. This system has been widely studied and it regy using an explicit backflow term in the wave function we
resents a severe test of many-body theory due to the presenate able to optimize the form and intensity of backflow. Fi-
of strong interaction effects. For instance, the excitatiomally, we take into account that the excitation of quasiparti-
spectrum of the system has, in addition to the usual phonorsle character is not orthogonal to the collective excitation
maxon-roton spectrum of purtHe, a second branch which and a proper orthogonalization is performed by the Monte
is free-particle like E(q) =#2g%/2m*, at least at small wave Carlo method. This is a further development of VMC. Sec-
vector! This impurity branch, the so-called Landau- tion Il contains the description of the theory and of the simu-
Pomeranchuck branch, has an effective mags which  lation method that we have used. The results are presented in
strongly deviates from the bare mass and it is density deper$ecs. Il and Sec. IV contains the conclusion. Some details
dent. These are typical effects of strong interaction. The acof the simulation method are presented in the Appendix.
curate computation ofm* from the microscopic theory
turned out to be a very difficult jobA key effect is back-
flow, i.e., correlated motion of théHe atom with the*He
ones, and this has to be treated by advanced theories in order
to get reliable result?

Recently the direct measurement of the excitation spec- 1. Ground state
trum of a diluted solution ofHe in “He has been performed 4 e
at microscopic wave vectors by inelastic neutron scattéring.. For_ a system composed &f “He atoms and oneHe
This offers the opportunity for a more detailed comp(:lrison'mpur!ty we write the shadow wave function for the ground
between theory and experiment. Here we address the proﬁEate in the form
lem of one®He atom in liquid*He by the variational theory
based on shadow wave functi¢8WF).® This technique has
been found to be very useful for the study of pure liquid ‘l’o(R)=f dSHR,S), (1)
“He, in particular for the study of large wave vector excita-
tions like the rotond:® This approach is presently the most

II. VARIATIONAL CALCULATION

A. The shadow wave function technique

accurate one giving a truly quantitative description of rotonsVhereR={rims,r1, ... r\} are the coordinates of the par-
in superfluid“He by a microscopic variational theory. A key ticles (the subscript imp refers to théHe impurity vari-
element for this success of SWF is believed to be due to thable$, S={Siny.S1, ... Sy} is a set of auxiliary(shadowy

possibility of an accurate treatment of backflow at short disvariables that are integrated over the whole space. Interpar-
tance. This suggests that this technique should be useful al$isle correlations betweefiHe atoms and between thiHe
for the impurity problem. The result of a preliminary com- impurity and “He atoms are contained in

0163-1829/99/6(5)/34769)/$15.00 PRB 60 3476 ©1999 The American Physical Society



PRB 60 VARIATIONAL CALCULATION OF EXCITED-STATE . .. 3477

. N N . . 5 .
F(R,S)= ¢p(R)an;p(|rimp—Simp|) in the wave functloﬁ. We _extend this approach to thg case
of the impurity and we write the shadow wave function for

an excited®He atom in the form

N
X1 fosIri=siDs(S). el
N cimprls . o qu(R)=J dSHR,S)3;, (4)
d’p(R):Hi:lfp (|ri_rimp|)XHi<j=1fp(|ri__rj|) Is a Ja-
strow factor, and similarly forp(S)=11{L,fi"P(|s;—s;mpl) ~ Whereas the wave function for the collective excited state of

XTI _1f(|S—5;]). Integration over shadow coordinates €N “He atoms is taken to be

implicitly introduces correlations between particles beyond

the pair(Jastrow level at all orders. The Hamiltonian of this lIf@(R):J dSF(R,s)}a_ (5)
system is given by a

The momentum carrying factors read

S R TR o
’ Bi=em, =3, e, (®)
j=

N N
+ = rih+ fmp— D, @ _ =
i<12:1 v(ri=ril) 121 V([Timp=r3l) @ They are expressed in terms of the shadow varialsiesp-

. 4 . o ) resents a shadow variable modified by an explicit backflow
m, being the *He mass. The interatomic interactiar{r)

between the’He impurity and the*He atoms is equal to the

one between*He atoms. Therefore, théHe atom differs -~ . - .

from the “He atoms only for its bare mass. For simplicity for S;=sj+ 2, (S—S)N(s)), (7)
most of the computations we have used the same correlating 1)

3 4 4 4 : . ~
factors for “He-"He as for He-_ H.G' This assumpt!on has and a similar expression is assumed $gr,. For A (s) we
been frequently used in the variational theory of this SyStemhave assumed the same short-range ?0)“(5) = a(slr
We hfive verified that thr—_z energy spectru_m is only slightly_2)2 exp—[(s—To/W)J for s<2rg, A(s)=0 for s>2r00
;nOd'f['ﬁd Wh?g t|f|1<4e|_llmp|_l|1rlty psehudopotergjt[?hls weakIt)II ?'frleralready used in the calculation of the excitation spectrum in
orOtTmizzzleo %orruelatine. faegteo:gce E}Ve l;z f ewrr?i((::?\n ?/veu Y the pure*He system. As already noticed even when the am-
thp best variational I\/? te C Ip’d st = i ps fth EHE plitude of the explicit backflow is zero these wave functions

€ best variational Monte t.arlo description ot the p contain backflow effects in an implicit way. In fact in a pre-
ground state over the full dens[ty range of the4fIU|d phasevious computation withe=0 we found that the effective
Ihe Aaccuracy O_f the assumption of equ%_He- He and . _mass of the impurity given by Ed4) differs from the bare

He-"He correlation has been tested computing the chemic ass of3He. We find that the presence of the explicit back-

otential of the*He impurity. In this casg:; turns out to be N .~ .~ .
P purity 3 f flow contributions inoy and in &g lowers the energy and in

=—2.43+0.01 K with imental dat
Zigzez)) —_278 ki andv,t\ilg(l ?_n :)xgesrlznz)inoaos iamo this way we obtain the variational determination of the range
e . ; 16 29+ 0.

and of the amplitude of the backflow via the parameters
ro, andw. Notice that the explicit backflow is in the expo-
tgential form and no expansion is performed. In principle, the

agreement with the increase of the experimental vajug (
~5 Katp=1.16p.y). The excitation energies are obtained
as difference between the total energy of the excited state~ ™'
and the total ground-state energy; a good choice of thé(arlatlonal backflow paramet(_ars, fo, andw are wave-
ground-state wave function is, therefore, important in order/6Ctor dependent and the optimal ones for the excited state
to guarantee that the excitation energies are not affected by could be different from those optimal for the excited
poor variational ground state. state\lfg’. Our strategy has been to use for the excited state

‘PS the variational backflow parametess ry, andw which

have been optimized in an excitation spectrum calculation in
It is known that shadow variables are a way to represenpure “He. This is not a true limitation because we expect that

in Wo(R) the correlation effects of quantum delocalization the presence of ondHe atom in the system does not change

of hard-core particles. The representation of excited stategppreciably the optimal backflow to be used‘lrg’. The
with a shadow wave function is based on the hypothesis that . _ o
the correlations effects of quantum delocalization of hard—Opt'mal vananngI backfloyv parameters mi have be(‘a‘n
core particles should be present also in the excited-states gPtained performing a preliminary computation of the “ex-
low energy. This suggest&dto extend to shadow variables Ctation energy

the Feynman ansdfzfor the excited state wave function,
i.e., the phase factors of the excited states were written in
terms of the shadow variables. It is knotfithat introducing

the phase in the subsidiary variables is a way to incorporate
implicitly backflow up to high order in the real variables. We find that the optimal backflow parameters of the impurity
This already accounts for most of the effects of backflow buin superfluid*He, are essentially independentgfind they

in order to obtain really accurate results for the roton energyoincide with those of the roton excitation in puféle (r

it is necessary to introduce an explicit backflow contribution=2.81 A anda=0.3 at both densitiesy=1.53 A at equi-

2. Excited states

(PRITY  (WolA|w)
<\If&|\lf%> (WolWo)

E'(q)= ®
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librium density andv=1.02 A at freezing densily These = Where
values are similar to what we found previodsiyfor the

excitation spectrum of one distinguishalflde atom. ‘= [Hip—Hoot+y e 2H 4,

The shatiow wave functior(@) and(5) are eigenstates of 2y ' Hip—Hopt y’
momentump=7%(q, so Egs.(4) and(5) are orthogonal to the
ground statd1) (and of course also to the true ground skate y=+(Hy1— Hpp) 2+ 4H 2. (15)

but they are not orthogonal between each other. Therefore,

these wave functions do not give a proper treatment of the The excited state€l4) are clearly derived only formally
two branches of excitations. We have corrected this situationq they cannot be used directly in a Monte Carlo integra-

explicitly by building proper orthonormal excited states andijon \We do not need to do this however, because the expec-
by performing the Hamiltonian diagonalization directly

. A e
through a Monte Carlo calculation as explained in the nex&t('zo)n value of an observable W'_tr [es_plect @gi ,_aBnd
subsection. V-~ can be expressed in terms(o]’d|0|\1fa>, <\Ifa|0|\lfa>,

(\If'a ©|\PE), and(\lflﬂ\lfg} as derivable from Eqg¢14) and
B. Orthogonalization process and Hamiltonian diagonalization  (10). These matrix elements can be computed directly during
the Monte Carlo calculation using a reweighting technique to
avoid the sign problem; this technique is described in detail
in the Appendix. The Hamiltonian diagonalization is there-

Starting from the wave function‘if:i and \PS’ let us con-
sider the normalized functions

N W fore obtained as algebric combinations of this set of basic
— q —B_ q integrals evaluated by Monte Carlo integration.
‘Pﬁ_ TSR ‘Pﬁ_ B . By ©)
V(W el o) (Welws)
. . Ill. RESULTS
Second, we fix one excited state to be represented by the
wave function\lfs and obtain the other orthonormal excited A. Energy spectrum
stateV- as linear complex combination of the states _ As interatomic interaction we have used the A2jgoten-
q tial. In Fig. 1 we display the two branches of the excitation
VLo <\?§|q—,lﬁ>q—,l§ spectrum computed in a system with ofide impurity and
. __ 4 a 9’ 4 (10) 107 “He atoms over the full momentum range at the equi-

./1_|@@|q—,g>|z’ librium density peq=0.0218 A"% and at 1.2¢. Our com-
a - a putation can be performed only for a discrete sefj @hlues

such that(@'~’|\f'§>:0 and(q_,'f|\ft’>:1 This is no more Such that the periodic boundary conditions are satisfied. Ex-
a'tq a' " q :

than a Gram-Schmidt orthonormalization method applied tcperimental data for the energy spectrum are available only

~ -1 —~
Egs. (4) and (5). Now we have the two orthonormal states 0" Wave vectorg=1.7 A at peqand atp=1.1%¢q. Be-
yond this wave vector the peak in the dynamic structure fac-

ey 4 1,B . .
W and¥ o which are agameorthfwgonal to the ground stateyr (g, ), due to the quasiparticleHe excitation overlaps
and eigenstates of momentys-%q. The Hamiltoniar(3) is  the one of the collectivéHe excitation of the system. For

not diagonal in this basis; i.e., thex2 matrix the wave vector beyond the crossing the quasiparfitle
T excitation has not been observed and it is not a stable exci-
(WelR[WE) (WLIRIWE)Y | (Hy Hy, tation because it can decay into the collective excitation.
H= g~ 8 oB | Y H In our theory no lifetime effect is present and we obtain a
(PHIWG)  (VglH[WYS) 21 M2z well-defined excitation energy also at large momenta. The

(11)  theoretical quasiparticle excitation spectrum shows devia-
tions from a simple parabola, but it can be represented by
E(q)=%2g%/2m* (q), where the effective mass* (q) is a
function ofq and it increases significantly witlh The values
for the effective mass range from 2r@@to 2.26n; between
N, O g=0.37 and 1.7 A! at po,, and from 2.7in; to 2.93n,
NN ) (12 betweenq=0.39 and 1.8 A' at 1.2.,. There is no roton

2 minimum in the dispersion relation neither at, nor at
where\; andX\, are the eigenvalues ¢f 1.2p¢4. The orthogonalization-diagonalization process has
little effect on the®*He quasiparticle excitation branch which,
after this process, remains substantially equal to the excita-
tion energy computed through E@). The situation is com-
pletely different for the collectivéHe excitation which un-

. . derestimates the excitation energies in the maxon and high-
vector g dependent The corresponding wave functions 9 9

: . ) . -~ phonon regions of the spectrum if the orthogonalization-
\r/;k;gh give the diagonal representation of the Ham'lton'andiagonalization process is not introducésbe Fig. 2 Our

results for the energy of the quasiparticle branch are in good
agreement with the neutron-scattering results at the lowest
measuredy, around 1 Al At largerq there is an increas-

has the off-diagonal complex elemeis, and H,.(=H?,)
different from zero. We must search for the unitary transfor
mationU (UUT=1) which gives

UHUT:(

A =1[H +Ho+ V(Hiu—Hp)?+4[H %] (13
12 2 11 22— 11 2 12

(note that even if not expressed, \,, andH;; are wave-

Ty 4 ¢ 0B WO o0 — 8
YW=+ oW, WP =([0v; -V, (19
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FIG. 1. (a) Excitation spectrum at; (circles 3He quasiparticle excitation branctitiangles collective “He excitation branch(plus)
experimental excitation spectrum in putde, (dashed lingexperimentafHe quasiparticle excitation brandtib) the same aga) at 1.2¢q;
here the experimentdHe quasiparticle excitation branch is measured at 18 sl (15, . When not reported, error bars are less than
the symbol size.

ing deviation between our results and experiment, the experi+0.0016 & and m* =(2.708+0.015)n; with b=0.0241
mentale(q) having much less curvature. Similar behavior is +0.0019 & at 1.2peq. Our result agrees very well with the

found at higher density. recent accurate measureméntby Yorozuet al.,as well as

Our computed impurity spectrum can be represented quitgy Simons and Mueller, when the experimental data for the
accurately by a simple analytical expression, either by,

2 5 . > > N effective massatq=0) m* are extrapolated to zero concen-
E(a)=A"q (1 +aq)/2m™ or by E(q)=A"q7/[2m™(1  yation taking into account the Fermi-iquid effects as
+bg“)] with m*, a, andb as fitted parametersee Fig. 3.

4 . *
5. . g suggestet?? by Krotschecket al. m*=2.16m; at Peq and
These_ forms have been a_lready used by &tal.” to f.'t thelr_ considering the results for positive pressure one can extrapo-
experimental data. We find that these expressions give

. .
good representation of our result fiégg over the fullg range fite the valuen =2.74m; at freezing (1.4qg). Our system

of our computation. From the fit of our data with these twoin fact is at finite concentration otHe but it has no Fermi
formulas we find similar values of the effective mas$ at statistjc effecj[s begause of the presence of one sifigte
q=0 for the 3He impurity; we obtain the valuesn*  alom in the simulation box. o

—(2.075:0.013m; with a=—0.0269-0.0019 & and The orthogonalization-diagonalization process has a small

m* =(2.065-0.014)n; with b=0.0314-0.0022 & at effect on the quasiparticle spectrum and therefore on the ex-
peq; m* = (2.714+ 0.014)n, with a=—-0.0213 trapolated value for the effective mass . Without this pro-

cess the effective mags* at q=0 for the 3He impurity
20.0 : , turns out to bem* =(2.049+0.012)m; with a=—0.0308
+ +0.0018 & and m* =(2.036+0.014)m; with b=0.0369
+0.0022 A. Because the orthogonalization-diagonalization
Poe process has a small effect on the quasiparticle spectrum, one
150 F oy $ © A can see the importance of the inclusion in the SM)Fof the
VNS A ® explicit backflow term by comparing in Fig. 2 our previous
® resulf for the quasiparticle spectrum with the new one. In
that calculation the backflow was not optimized because no
explicit backflow terms were introduced; the effective mass
¢ extrapolated ap.qatq=0 was onlym* =1.74m;. A strong
o @ discrepancy is instead present in the coefficients b giv-
301 &® 1 ing the g dependence ain*(q), the theoretical value being
about four times smaller than the experimental valae
equilibrium density and about three times smaller at the
0.0 ' ' larger density. This could be a genuine discrepancy due to a
0.0 10 o) 20 defect of the theory, either the assumed form of our excita-
q[A’] tion operator(4), (5) or the assumption that the ground-state
FIG. 2. Excitation spectrum gieq as in Fig. 1; open and full correlating factors do not distinguish betwedne andf‘He.
circles and triangles represent, respectively, the computed twhiowever, it should be kept in mind that the analysis of the
branches of the spectrum before and after the orthogonalizatiorscattering dafahas been performed with a number of ap-
diagonalization process. Squares represent the quasiparticle excifaroximations and these could affect the extracted energy
tion spectrum ap,, computed without the explicit backflow term spectrum. The experiment is performed at a finite concentra-
and without the orthogonalization-diagonalization proqéssf. 9. tion so that the®He signal consists of a particle-hole band

E(q) [K]
S
(=4
>»
>
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FIG. 3. (a) 2E(q)/%2q? as function ofg? at peg (triangles and at 1.2, (circles. The linear fit is also reported; the intercept gives the
value of 1m*. (b) A#29%/2E(q) for the same data ife). Here the intercept gives the value rf .

due to Fermi statistics. It has been assumed that the maxieavily on the approximation used fgg, either the convo-
mum of the observed band coincides with the quasiparticléution or the Kirkwood approximation, and a further element
energy E(g). This is correct, forq larger than the Fermi of empirical character is the use of the experimental excita-
wave vectorkg, in the case of independent particles with ation spectrum of bulk helium in the energy denominators.
quadratic spectrum in. Both of these features are not cor- Similar approximations are present in the recent Wark
rect in the present case, a strong interacting system. In addkrotschecket al. where CBF theory to infinite order and the
tion, another assumption could modify the extracted energgquations of motions method have been used to compute the
spectrum: the neglect in the scattering cross section of thggfective mass also at higher density. Our computation is that
interference contribution betweefHe and *He atoms. As E(q) at finite q in which backflow is treated at high order
d!gcussed in the next subsec;ﬂon we find that yndgr the coRgiout introducing uncontrolled approximations.
d't'on of t_he eXpe”_mer.” Fhe _mterfere_nce contribution t(_) the Once the orthogonalization-diagonalization process has
qua_13|part|clt_a peak is similar n m_agmtudg to tﬂdg contri- been performed, we find that the presence ofiHe impu-
bution and it has the opposite sign. This is similar to what .~ " h tem h little effect on th lectiti
Krotscheck and Saaréfafound from a computation of this rity n t € system has very lithe efiect on he coliectivae
excitation branch both at equilibrium and at freezing density.

interference contribution at a finite concentrati of . . ; :
6% Comparing these collective branches with those calculated in

3He using the correlated basis functié@BF) technique 4 . )
based on a very simplified theory, the random-phase approxf€ Pureé"He system at the same density we find no substan-

mation. They found that the assumption that the interferenchal differences within the statistical errors. This behavior is
contribution is negligible compared to the direct contributionin @greement with experimental data of the collectfirge
is not justified; moreover they also computed thedepen- ~ €xcitation branch where it has been found that the deviation
dence of this interference contribution which at laggeins ~ from the excitation spectrum in the pufiéle system is al-
out to be skewed with respect to the direct contribution thugvays less than 0.2 K. As in the puféie system, at freezing
inducing a displacement of the overall peak. A possible ori-density there is a significant disagreement with the experi-
gin of this skewedness is the stromgdependence of the mental data for the excitation spectrum in the maxon region.
backflow of “He. Here the experimental spectrum is about twice the roton en-
We compare now our results with other theories. Theergy at the same density, so that we should expect that these
main approach which has been used is the correlated bag#xcitations are a mixture of single excitations and double
function at various levels of approximation, and almost al-roton excitations. The relevance of this argument was
ways only the effective mass at=0 has been computed. proved’ by computing the excitation energy of double roton
Going beyond second-order perturbation thavith a one-  excited states in the purtHe system and finding that in the
phonon intermediate state gives an incomplete correction tgaxon region at freezing density the energy of a double ex-
the bare massn* ~1.8m;. By using two independent pho- citation is below the one of the single excitation and close to
non statesn* increases to 2rf, at equilibrium density and  €xperiment.
only by including an infinite number of rescattering pro-
cesses of the one-phonon states one finds a valtie
=2.2m;. This is close to what we find. Recentlyhis
scheme of computation has been extended at fiiteetors In addition to energy an important quantity is the strength
and the authors find an increasing value of the effective massf the quasiparticle peak in the scattering cross section. This
with g, in good agreement with experiment. Unfortunately quantity, in fact, is sensitive to details of the wave function
such a CBF computation needs the triplet correlation funcof the excited state. In the case of bulke the analogous
tion gs(ry,r»,rs) Which is not known and some approxima- strength of the roton peak has been a severe test for the
tion has to be introduced. The results at lang#epend rather theory. We present now a quantitative microscopic compu-

B. Scattering strength



PRB 60 VARIATIONAL CALCULATION OF EXCITED-STATE. .. 3481

050 | @ o ]
o 2
0.40 | o o - o @ Q
) [ @ 9 o JAY
o t 8, co o A 00
= 030 } *. & % . & ¢ |
S 1
. !
020 | R < a .
A A A
A A A A A A A
0.10 A T A oa At a2 .
A ADLA
0.00 1 1 1 1 1 I
0.0 05 .10 15 00 05 , 10 15
q9{A] ql[A]

FIG. 4. (@) (full circles) results atpeq for the intensity of the excitation peak E§(5|,w) for the quasiparticléHe excitation,(triangles

intensity of the excitation peak i8(q, ») for the collective*He excitation. The open circles represent the intensity of the excitation peak for
the quasiparticléHe excitation computed without the orthogonalization-diagonalization prof®sthe same aga) at 1.2Peq-

tation of the strengtiZ(q) of the excitation peak i15(q, ) of a set of matrix elements built with the wave functiokg,
for the quasiparticleHe excitation which includes the con- l[/l», and\IfS’, as derivable from Ed14); these quantities are

tribution coming from the*He atoms. In a neutron-inelastic- || computable by a reweighting technique via direct Monte

differential cross section. In our system, with only oftde In order to obtain the correct comparison between the

impurity, the density spin fluctuations are not present, so th@yperimental dafaand our results, we have defined the in-
double-differential cross section is given by the expression tensity Z™P(q) of the excitation peak for théHe impurity

branch normalizing the total scattering contribution with the

d20' kl 1 N . - i H .
d0dE; = ke 4Wﬁ{a4x4844(q,w)+(03+a'3)x3833(q,w) factor x3(o3+ o3) as done in Ref. 5:
1/2 = imp, imp 04 X4 imp
+ 03 X3X4] 7 S34(q, )}, (16) Z™(q)=2Z337(q) + o2t oh X Zyy(9)
where the dynamical structure faclﬁq(ﬁ,w) atT=0 Kis o
given by +—2 \/—4 Z5P(a)
0'3+ 0'|3 X3
N 1 ) ’ : ) ) )
(9,0)= 0[p__cIn)(n|p0)+(0|p" ;n =Z8P(a) + C1 ZiP(@) + CZ(a), (19
Sj(d,) N 2 [(0lp" ¢InXnlpglo) +(0lp" gln) () +C1Zi(a) +CZ50 (), (19)
i where the last equality defines and c,. The supers_cript
X(nlpgl0)18(w—wy). (179 imp means that of the two excited-state wave functiéng

in Eqg. (14) the one has been used which corresponds to the
quasiparticle®He excitation. In Fig. 4 we report our results

pid(j) are the density fluctuation of thi¢j) component of the
mixture and{[n)} (n=0,1,2...) is anorthonormal com-  for the intensity of the peak for the impurity excitationggy,

plete set of eigienstates of the Hami_ltonian with e_nergie%nd 1.9 for wave vectors up to the crossing region with
hw,. 04, 03, 03, 034 are the scattering cross sectidns; the collective excitation.

X3=N3/(N3+Ny) andx,=N,4/(N3+N,) are the concentra-  The quasiparticle®He excitation is decoupled from the
tion of the *He impurity and of the*He atoms in the yariables of*He atoms when no backflow is present; in this
system?® (xz= 1/108 andx,=107/108 in our cage The am- caseZ™(q) =Z™(q) =0 andZ™P(q)=1 Vq. Experimen-
plitudes of the excitation peaks B); are therefore given by tally has been found a much smaller value Z8P, of order

of 1/3 and no explanation was given. On the basis of sum

S0(q)— 1 <‘1’0|PL§|‘I’S)><‘I’S)|P5|‘P0> rule arguments it has been sugge&tehlat the depression of
(@)= 2NN; (Wo| W) Z'™P could be due to the interference contributidf}’ but no
o . . guantitative computation was presented. As already men-
(11/0|p1_a|\1_fg)><\1_fg)|p'd|\lfo> tioned, Krotscheck and Saarélacomputed the dynamic
Vol To) ; (18 structure factorsSy((q, ), Su(q,®), andSs(q,w) at a fi-

o o B nite concentratior{5%) of 3He on the basis of a very sim-
where\Ifg) can be eithe®r™ or \sz) andW¥ is the ground plified theory. They found that the particle-hoféde con-
state(1). The expectation values in E(L8) cannot be com- tinuum is not negligible in thé'He-*He channel, neither is
puted directly. Like in the case of the Hamiltonian diagonal-the collective mode in théHe-*He channel and also that the

ization, one must write E¢(18) as an algebric combination assumption thaB,,(q,w) is negligible compared to the di-
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FIG. 5. (@ (full circles) Z™(q) at Peq: (Plug experimental data foE™P(q), (open circles Z59P(q), (squares c,ZiP(q), (triangles
c2Z3,°(q); (b) the same aga) at 1.2,

agonal terms is not justified. Our results agree with theseven if they do not consider the contribution duestg and
previous qualitative results and we are able now to give &,,. This is rather surprising in view of our results and an
quantitative description of these effects. We indeed find thaextension of the theory of Ref. 4 to include such interference
both contributionZ},°(q) andZy,’(q) are quite important at effects should be important.

all wave vectors and the results are shown in Fig. 5. It can be

noticed thatc,Z3;°(q) is negative and almost as large as

ZP(q) so that there is a very large cancellation and the IV. CONCLUSION

weakerc; Z;;°(q) turns out to represent a rather large part of e have extended our previous computation of the exci-
the totalZ"™P. This is true both at equilibrium density and at t4tion spectrum of onéHe impurity in liquid “He by the
freezing. We can also notice that these strengfffsdepend  shadow wave function technique by including an explicit
rather strongly on the orthogonalization-diagonalization prohackflow contribution and by using improved ground-state
cess as can be seen in Fig. 4. pseudopotentials. We have also introduced a methodological
The strengttz"™" deduced from experiment is also shown jmprovement. It is customary with the CBF method to start
in Fig. 5. We note the excellent agreement with our resultsyith nonorthogonal states which are then orthonormalized.
Also the weak density dependenceZdf* found experimen-  This is not usually done in the framework of the Monte Carlo
tally agrees with our result. All this allows us to conclude method. Here we start from trial wave functions for the
that the experimental “missing” intensity i@"(q) is due  single particle and for the collective excitations which are
to the coupling betweeriHe and “He arising from strong  not orthogonal to each other. We have shown that the needed
backflow effects. In the case of rotons in pufitde backflow  orthogonalization of the states and the diagonalization of the
reduces the intensity of the roton peakS(q,w) by about  Hamiltonian are feasible within the Monte Carlo method.
30% compared with the result expected in the absence ofhe present case, with just two states for each wave vector,
backflow(the Feynman description of a rotofThe backflow is rather simple and it will be important to verify if this
effect is even stronger in the case of the impurity excitatiomprocedure is also possible in cases in which a larger set of
where the reduction is about 70%. As mentioned in the prestates is involved.
vious subsection our results suggest the need for a reanalysis The present computation confirms that with the shadow
of the experimental data. In fact the data has been analyzadchnique starting with a rather simple ansatz for the states,
under the assumption that onfs3(q,w) gives strength to  one is able to include backflow effects to high order. In fact
the impurity branch. This assumption, which has been showme find an effective mass at smallwhich is similar to what
not to be correct by our computation, would not affect thejs found with an infinite order calculation within the CBF
extracted energy spectrubi,,(q) if the » dependence of formalism. Our result is in good agreement with experiment
S34(0, ) and Sy4(q,w) were the same as that 863(q,w).  both at equilibrium and at freezing density. Less satisfactory
Unfortunately our theory is not able to give thesedepen- appears to be the momentum dependencenbfwhich is
dences but the result of Ref. 20 indicates that this is not thenuch smaller than what has been deduced from neutron-
case at large] whereS;, is asymmetric and skewed toward scattering data. Perhaps the most important aspect of our
larger frequencies compared wif;. This suggests that the computation is the first quantitative computation of the
analysis of the experimental data in Ref. 5 has overestimatestrength of the single-particle peak in the neutron-scattering
Eimp(Q) at largeq. cross section which includes the strength coming not only
Very recently Krotschecket al. computed the strength from the 3He atom but also from théHe atoms. These
Z(q) of the excitation peak i1%33(q, w) for the quasiparticle processes give strength to the impurity peak via backflow.
3He excitation for a system composed of one singlée  We find that these processes give a major contribution, es-
atom in bulk*He. TheirZ(q) agrees with experimental data pecially the 3He*He interference term. With the present
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theory we now find good agreement with experiment for theobtained as algebric combination of a set of basic expecta-
total strength of the impurity peak. However, our results sugtion values which can be computed directly by Monte Carlo
gest that the impurity excitation energy deduced from experiintegration using a standard reweighting technique which we
ment might need a reanalysis by including in the treatment o§how in the following. The reweighting technique is needed
the data the contributions coming both from tREe*He  because the Metropolis alghorithm we use to generate the
channel and from théHe-*He one. This should not affect particle (real and shadow variablegonfigurations in the
the strength of the impurity excitation branch but it might simulation box is able to reproduce only a strictly positive
affect its energy. distribution probability. This is the case for the extended
ground-state configuration probability:
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APPENDIX f dRASASF(R,S')F(R,S)

As _a trivial exercise one cag)eflsilygj)verif)_/ th_at_ every eX-[note thatP(R,S,S') is not equivalent tdWo| /(¥ | ).
pectation values of the fornW ;/|O[W ") (with i,j=1,2)  The average of any functiof(R,S,S’) can be computed in
can be written as algebric combination of the matrix ele-this way:
ments (Wi[O[We), (WC|O|WD), (Wi |O|¥s), and
<‘I_’15|$CB]> using Eqs(14), (15), and(10). This is true also in <f>RSS:f dRASdSP(R,S,S")f(R,S,S')
the calculation of the contributions to the intensity of the
excitation peaks in the dynamical structure factor where the 1

—ny =— f(R,S,S'), A2
matrix elements of the fom{“\Ifg)|p‘(i|\Ifo)/<\lf0|\lfo>l’2 (I M {Rgs,} ( ) (A2)
=12 andj=34) can be wrltte_nl ajs algebric con;/kz)ma- where{R,S,S'} is the set of the configurations generated by
tion of those of the type(WqlplWo)/(WolWo)™  the Metropolis algorithm.
<\I_fq§|p:i|\lf0>/<\1’0|‘lfo>1/2, and(\lf'a|\l_fg>. The indirect Monte Now consider for example the quanti@l’g
Carlo orthogonalization-diagonalization process is thereforean be computed in this way:

D .
W) which

(Welwd)

VOV H WY (W)

(Vv =

dedeSF(R,S’)F(R,S)EQd}d

\/f deSdSF(R,S’)F(R,S)?s’_dE(;\/J dRASdSF(R,S)F(R,S)o’ o

dedeSP(R,S,S )6_5074 (8" ;oa)rss

\/f deSdSP(R,S,S’)E'_dB‘*\/J dRASASP(R,S,S) 7" g V(3 8anss V(o oaless
(A3)

The prime over the density fluctuatioﬁzé or?SéI means that those are functions of the shadow varidlggs In a similar way
quantities Iike(‘l_f:i|(5|‘l_f'a) can be computed as

(VO =— = (A%)

whereF stands fofF (R,S) or, for better statistics; = 1[F(R,S) + F(R,S’)]. In a similar way the matrix elements which enter
in the expression for the intensity of the excitation peaks in the dynamical structure factor can be written as
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W) WD (W)

folreols,dsn:(R,S’)F(R,S)?s’_»pii

\/f deSdSF(R,s')F(R,S)?s’a?sd\/f dRASdASF(R,S')F(R,S)

JdeSdSP(RSS’)(S »p» (3 >Rss

\/f dRASASP(R,S,S)3’ 5 \/<57q5Q>RSS

(A5)

and
(Velpgl¥o) (o splrss
\/<\I,0|\If0> \/<0’_q(Tq>RSS

With this reweighting technique any function in the extended configuration sga&S’} is averaged with the extended
configurational distribution probability of the ground state.

The orthogonalization-diagonalization process is, however, very delicate because it exploits a reweighting technique to
obtain the diagonalization of the Hamiltonian directly from Monte Carlo integration. It is, in fact, well known that a lot of
statistics are needed to reach the convergence of this type of algorithm: at each density &btart&Carlo steps have been
used to obtain these results. A calculation with this computational cost is only possible on a parallel supercomputer: we have
used a CRAY-T3E with 128 processing elements to run in parallel statistically independent random walks, obtaining a linear
speedup.
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