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Variational calculation of excited-state properties of a 3He impurity in superfluid 4He

D. E. Galli, G. L. Masserini, and L. Reatto
Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica, Universita´ di Milano, Via Celoria 16, 20133 Milano, Italy

~Received 15 December 1998!

We report a variational Monte Carlo calculation with shadow wave function of the excited-state properties
at T50 K for a system composed by one3He atom in superfluid4He. Explicit nonperturbative backflow
contributions are used both for the collective4He excitation and for the impurity3He excitation. The impurity
and the collective excitation states have been orthogonalized and diagonalization of the Hamiltonian has been
obtained directly through the Monte Carlo calculation. This process has strong effect on some of the expec-
tation values for the observables of the system. Energy, effective mass, and strength of the single excitation
peak of the impurity are computed. Aboveq.0.5 Å 21 the effective mass increases significantly withq but
this increase is not as large as deduced from experiment. The strength of the single excitation peak in the
dynamical structure factor for the3He impurity atom is strongly reduced by an interference contribution due to
4He atoms and the resulting strength is now in good agreement with experiment. The importance of the
coupling between3He and4He suggests the need for a reanalysis of the experimental data.
@S0163-1829~99!00829-2#
ns

eg
o

re
e
io
o

h

u-

e
a

r

e
d
g
o
ro

id
ta
st
n
y
th
is
a
-

d a
rst,
ting
y

nt,
e
i-

rti-
ion
nte
c-
u-
d in

ails

d

r-

par-
I. INTRODUCTION

The finite solubility of3He in 4He even atT50 K offers
the possibility of studying a mixture of bosons and fermio
The situation is simpler at very low concentration of3He
when the statistical effect of the fermion component is n
ligible and one can consider one single impurity in a sea
4He atoms. This system has been widely studied and it
resents a severe test of many-body theory due to the pres
of strong interaction effects. For instance, the excitat
spectrum of the system has, in addition to the usual phon
maxon-roton spectrum of pure4He, a second branch whic
is free-particle like,E(q)5\2q2/2m* , at least at small wave
vector.1 This impurity branch, the so-called Landa
Pomeranchuck branch, has an effective massm* which
strongly deviates from the bare mass and it is density dep
dent. These are typical effects of strong interaction. The
curate computation ofm* from the microscopic theory
turned out to be a very difficult job.2 A key effect is back-
flow, i.e., correlated motion of the3He atom with the4He
ones, and this has to be treated by advanced theories in o
to get reliable results.3,4

Recently the direct measurement of the excitation sp
trum of a diluted solution of3He in 4He has been performe
at microscopic wave vectors by inelastic neutron scatterin5

This offers the opportunity for a more detailed comparis
between theory and experiment. Here we address the p
lem of one3He atom in liquid4He by the variational theory
based on shadow wave function~SWF!.6 This technique has
been found to be very useful for the study of pure liqu
4He, in particular for the study of large wave vector exci
tions like the rotons.7,8 This approach is presently the mo
accurate one giving a truly quantitative description of roto
in superfluid4He by a microscopic variational theory. A ke
element for this success of SWF is believed to be due to
possibility of an accurate treatment of backflow at short d
tance. This suggests that this technique should be useful
for the impurity problem. The result of a preliminary com
PRB 600163-1829/99/60~5!/3476~9!/$15.00
.

-
f

p-
nce
n
n-

n-
c-

der

c-

.
n
b-

-

s

e
-
lso

putation has been already presented some time ago.9 We
have now completed this study and we have introduce
number of improvements over the earlier computation. Fi
as the ground state we have used fully optimized correla
factors for pure4He, which is producing the best energ
from variational Monte Carlo calculations~VMC! over the
full density range.10 In the second place, and most importa
by using an explicit backflow term in the wave function w
are able to optimize the form and intensity of backflow. F
nally, we take into account that the excitation of quasipa
cle character is not orthogonal to the collective excitat
and a proper orthogonalization is performed by the Mo
Carlo method. This is a further development of VMC. Se
tion II contains the description of the theory and of the sim
lation method that we have used. The results are presente
Secs. III and Sec. IV contains the conclusion. Some det
of the simulation method are presented in the Appendix.

II. VARIATIONAL CALCULATION

A. The shadow wave function technique

1. Ground state

For a system composed ofN 4He atoms and one3He
impurity we write the shadow wave function for the groun
state in the form

C0~R!5E dSF~R,S!, ~1!

whereR5$rW imp ,rW1 , . . . ,rWN% are the coordinates of the pa
ticles ~the subscript imp refers to the3He impurity vari-
ables!, S5$sW imp ,sW1 , . . . ,sWN% is a set of auxiliary~shadow!
variables that are integrated over the whole space. Inter
ticle correlations between4He atoms and between the3He
impurity and 4He atoms are contained in
3476 ©1999 The American Physical Society
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F~R,S!5fp~R! f ps
imp~ urW imp2sW impu!

3)
i 51

N

f ps~ urW i2sW i u!fs~S!. ~2!

fp(R)5) i 51
N f p

imp(urW i2rW impu)3) i , j 51
N f p(urW i2rW j u) is a Ja-

strow factor, and similarly forfs(S)5) i 51
N f s

imp(usW i2sW impu)
3) i , j 51

N f s(usW i2sW j u). Integration over shadow coordinate
implicitly introduces correlations between particles beyo
the pair~Jastrow! level at all orders. The Hamiltonian of thi
system is given by

Ĥ52
\2

2m4
(
i 51

N

¹ i
22

\2

2m3
¹ imp

2

1 (
i , j 51

N

v~ urW i2rW j u!1(
j 51

N

v~ urW imp2rW j u!, ~3!

m4 being the 4He mass. The interatomic interactionv(r )
between the3He impurity and the4He atoms is equal to the
one between4He atoms. Therefore, the3He atom differs
from the 4He atoms only for its bare mass. For simplicity f
most of the computations we have used the same correla
factors for 3He-4He as for 4He-4He. This assumption ha
been frequently used in the variational theory of this syste
We have verified that the energy spectrum is only sligh
modified when the impurity pseudopotentials weakly dif
from those of bulk4He. Here we have used the recently ful
optimized10 correlating factorsf p , f s , and f ps which give
the best variational Monte Carlo description of the pure4He
ground state over the full density range of the fluid pha
The accuracy of the assumption of equal3He-4He and
4He-4He correlation has been tested computing the chem
potential of the3He impurity. In this casem3 turns out to be
m3(req)522.4360.01 K with an experimental data o
m3(req)522.78 K,11 and m3(1.16req)55.2960.03 K in
agreement with the increase of the experimental valuem3
;5 K at r.1.16req). The excitation energies are obtaine
as difference between the total energy of the excited s
and the total ground-state energy; a good choice of
ground-state wave function is, therefore, important in or
to guarantee that the excitation energies are not affected
poor variational ground state.

2. Excited states

It is known that shadow variables are a way to repres
in C0(R) the correlation effects of quantum delocalizati
of hard-core particles. The representation of excited st
with a shadow wave function is based on the hypothesis
the correlations effects of quantum delocalization of ha
core particles should be present also in the excited-state
low energy. This suggested12 to extend to shadow variable
the Feynman ansatz13 for the excited state wave function
i.e., the phase factors of the excited states were writte
terms of the shadow variables. It is known14 that introducing
the phase in the subsidiary variables is a way to incorpo
implicitly backflow up to high order in the real variable
This already accounts for most of the effects of backflow
in order to obtain really accurate results for the roton ene
it is necessary to introduce an explicit backflow contributi
d
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in the wave function.15 We extend this approach to the ca
of the impurity and we write the shadow wave function f
an excited3He atom in the form

CqW
I
~R!5E dSF~R,S!d̃qW , ~4!

whereas the wave function for the collective excited state
the N 4He atoms is taken to be

CqW
B
~R!5E dSF~R,S!s̃qW . ~5!

The momentum carrying factors read

d̃qW5eiqW •sW̃ imp, s̃qW5(
j 51

N

eiqW •sW̃ j . ~6!

They are expressed in terms of the shadow variables:sW̃ rep-
resents a shadow variable modified by an explicit backfl
term

sW̃ j5sW j1 (
l (5” j )

~sW j2sW l !l~sjl !, ~7!

and a similar expression is assumed forsW̃ imp . For l(s) we
have assumed the same short-range form,l(s)5a(s/r 0
22)2 exp$2@(s2r0 /w)#2% for s,2r 0 , l(s)50 for s.2r 0,
already used in the calculation of the excitation spectrum
the pure4He system. As already noticed even when the a
plitude of the explicit backflow is zero these wave functio
contain backflow effects in an implicit way. In fact in a pre
vious computation witha50 we found9 that the effective
mass of the impurity given by Eq.~4! differs from the bare
mass of3He. We find that the presence of the explicit bac
flow contributions ins̃qW and in d̃qW lowers the energy and in
this way we obtain the variational determination of the ran
and of the amplitude of the backflow via the parametersa,
r 0, andw. Notice that the explicit backflow is in the expo
nential form and no expansion is performed. In principle,
variational backflow parametersa, r 0, and w are wave-
vector dependent and the optimal ones for the excited s
CqW

I could be different from those optimal for the excite

stateCqW
B . Our strategy has been to use for the excited s

CqW
B the variational backflow parametersa, r 0, andw which

have been optimized in an excitation spectrum calculation
pure 4He. This is not a true limitation because we expect t
the presence of one3He atom in the system does not chan
appreciably the optimal backflow to be used inCqW

B . The

optimal variational backflow parameters inCqW
I have been

obtained performing a preliminary computation of the ‘‘e
citation energy’’

EI~q!5
^CqW

I uĤuCqW
I
&

^CqW
I uCqW

I
&

2
^C0uĤuC0&

^C0uC0&
. ~8!

We find that the optimal backflow parameters of the impur
in superfluid 4He, are essentially independent ofq and they
coincide with those of the roton excitation in pure4He (r 0
52.81 Å anda50.3 at both densities,w51.53 Å at equi-
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librium density andw51.02 Å at freezing density!. These
values are similar to what we found previously7,8 for the
excitation spectrum of one distinguishable4He atom.

The shadow wave functions~4! and~5! are eigenstates o
momentumpW 5\qW , so Eqs.~4! and~5! are orthogonal to the
ground state~1! ~and of course also to the true ground sta!
but they are not orthogonal between each other. Theref
these wave functions do not give a proper treatment of
two branches of excitations. We have corrected this situa
explicitly by building proper orthonormal excited states a
by performing the Hamiltonian diagonalization direct
through a Monte Carlo calculation as explained in the n
subsection.

B. Orthogonalization process and Hamiltonian diagonalization

Starting from the wave functionsCqW
I andCqW

B let us con-
sider the normalized functions

C̄qW
I
5

CqW
I

A^CqW
I uCqW

I
&

, C̄qW
B
5

CqW
B

A^CqW
BuCqW

B
&

. ~9!

Second, we fix one excited state to be represented by
wave functionC̄qW

B and obtain the other orthonormal excite

stateC̄qW
I 8 as linear complex combination of the states~9!

C̄qW
I 85

C̄qW
I
2^C̄qW

BuC̄qW
I
&C̄qW

B

A12u^C̄qW
BuC̄qW

I
&u2

, ~10!

such that̂ C̄qW
I 8uC̄qW

B
&50 and^C̄qW

I 8uC̄qW
I 8&51. This is no more

than a Gram-Schmidt orthonormalization method applied
Eqs. ~4! and ~5!. Now we have the two orthonormal state

C̄qW
I 8 andC̄qW

B which are again orthogonal to the ground sta

and eigenstates of momentumpW 5\qW . The Hamiltonian~3! is
not diagonal in this basis; i.e., the 232 matrix

H5S ^C̄qW
I 8uĤuC̄qW

I 8& ^C̄qW
I 8uĤuC̄qW

B
&

^C̄qW
BuĤuC̄qW

I 8& ^C̄qW
BuĤuC̄qW

B
&
D 5S H11 H12

H21 H22
D

~11!

has the off-diagonal complex elementsH12 andH21(5H12* )
different from zero. We must search for the unitary transf
mationU (UU†51) which gives

UHU†5S l1 0

0 l2
D , ~12!

wherel1 andl2 are the eigenvalues ofH

l1,25
1

2
@H111H226A~H112H22!

214uH12u2# ~13!

~note that even if not expressedl1 , l2, andHi j are wave-
vector q dependent!. The corresponding wave function
which give the diagonal representation of the Hamilton
read

C̄qW
(1)

5z@C̄qW
I 81u* C̄qW

B
#, C̄qW

(2)
5z@uC̄qW

I 82C̄qW
B
#, ~14!
re,
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where

z5AH112H221g

2g
, u5

2H12

H112H221g
,

g5A~H112H22!
214uH12u2. ~15!

The excited states~14! are clearly derived only formally
and they cannot be used directly in a Monte Carlo integ
tion. We do not need to do this however, because the ex
tation value of an observableÔ with respect toC̄qW

(1) , and

C̄qW
(2) can be expressed in terms of^C̄qW

I uÔuC̄qW
I
&, ^C̄qW

BuÔuC̄qW
B
&,

^C̄qW
I uÔuC̄qW

B
&, and^C̄qW

I uC̄qW
B
& as derivable from Eqs.~14! and

~10!. These matrix elements can be computed directly dur
the Monte Carlo calculation using a reweighting technique
avoid the sign problem; this technique is described in de
in the Appendix. The Hamiltonian diagonalization is ther
fore obtained as algebric combinations of this set of ba
integrals evaluated by Monte Carlo integration.

III. RESULTS

A. Energy spectrum

As interatomic interaction we have used the Aziz16 poten-
tial. In Fig. 1 we display the two branches of the excitati
spectrum computed in a system with one3He impurity and
107 4He atoms over the full momentum range at the eq
librium densityreq50.0218 Å23 and at 1.2req. Our com-
putation can be performed only for a discrete set ofq values
such that the periodic boundary conditions are satisfied.
perimental data for the energy spectrum are available o
for wave vectorsqu1.7 Å21 at req and atr.1.15req. Be-
yond this wave vector the peak in the dynamic structure f
tor, S(q,v), due to the quasiparticle3He excitation overlaps
the one of the collective4He excitation of the system. Fo
the wave vector beyond the crossing the quasiparticle3He
excitation has not been observed and it is not a stable e
tation because it can decay into the collective4He excitation.
In our theory no lifetime effect is present and we obtain
well-defined excitation energy also at large momenta. T
theoretical quasiparticle excitation spectrum shows de
tions from a simple parabola, but it can be represented
E(q)5\2q2/2m* (q), where the effective massm* (q) is a
function ofq and it increases significantly withq. The values
for the effective mass range from 2.09m3 to 2.26m3 between
q50.37 and 1.7 Å21 at req, and from 2.71m3 to 2.93m3
betweenq50.39 and 1.8 Å21 at 1.2req. There is no roton
minimum in the dispersion relation neither atreq nor at
1.2req. The orthogonalization-diagonalization process h
little effect on the3He quasiparticle excitation branch which
after this process, remains substantially equal to the exc
tion energy computed through Eq.~8!. The situation is com-
pletely different for the collective4He excitation which un-
derestimates the excitation energies in the maxon and h
phonon regions of the spectrum if the orthogonalizatio
diagonalization process is not introduced~see Fig. 2!. Our
results for the energy of the quasiparticle branch are in g
agreement with the neutron-scattering results at the low
measuredq, around 1 Å21. At larger q there is an increas
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FIG. 1. ~a! Excitation spectrum atreq; ~circles! 3He quasiparticle excitation branch,~triangles! collective 4He excitation branch,~plus!
experimental excitation spectrum in pure4He, ~dashed line! experimental3He quasiparticle excitation branch.~b! the same as~a! at 1.2req;
here the experimental3He quasiparticle excitation branch is measured at 18 bars (r.1.15req). When not reported, error bars are less th
the symbol size.
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ing deviation between our results and experiment, the exp
mentale(q) having much less curvature. Similar behavior
found at higher density.

Our computed impurity spectrum can be represented q
accurately by a simple analytical expression, either
E(q)5\2q2(11aq2)/2m* or by E(q)5\2q2/@2m* (1
1bq2)# with m* , a, andb as fitted parameters~see Fig. 3!.
These forms have been already used by Fa˚k et al.5 to fit their
experimental data. We find that these expressions giv
good representation of our result forEq over the fullq range
of our computation. From the fit of our data with these tw
formulas we find similar values of the effective massm* at
q50 for the 3He impurity; we obtain the valuesm*
5(2.07560.013)m3 with a520.026960.0019 Å2 and
m* 5(2.06560.014)m3 with b50.031460.0022 Å2 at
req; m* 5(2.71460.014)m3 with a520.0213

FIG. 2. Excitation spectrum atreq as in Fig. 1; open and full
circles and triangles represent, respectively, the computed
branches of the spectrum before and after the orthogonaliza
diagonalization process. Squares represent the quasiparticle e
tion spectrum atreq computed without the explicit backflow term
and without the orthogonalization-diagonalization process~Ref. 9!.
ri-

te
y

a

60.0016 Å2 and m* 5(2.70860.015)m3 with b50.0241
60.0019 Å2 at 1.2req. Our result agrees very well with th
recent accurate measurement17,18by Yorozuet al.,as well as
by Simons and Mueller, when the experimental data for
effective mass~at q50) m* are extrapolated to zero conce
tration taking into account the Fermi-liquid effects
suggested19,4 by Krotschecket al.: m* .2.16m3 at req and
considering the results for positive pressure one can extra
late the valuem* .2.74m3 at freezing (1.2req). Our system
in fact is at finite concentration of3He but it has no Fermi
statistic effects because of the presence of one single3He
atom in the simulation box.

The orthogonalization-diagonalization process has a sm
effect on the quasiparticle spectrum and therefore on the
trapolated value for the effective massm* . Without this pro-
cess the effective massm* at q50 for the 3He impurity
turns out to bem* 5(2.04960.012)m3 with a520.0308
60.0018 Å2 and m* 5(2.03660.014)m3 with b50.0369
60.0022 Å2. Because the orthogonalization-diagonalizati
process has a small effect on the quasiparticle spectrum,
can see the importance of the inclusion in the SWF~4! of the
explicit backflow term by comparing in Fig. 2 our previou
result9 for the quasiparticle spectrum with the new one.
that calculation the backflow was not optimized because
explicit backflow terms were introduced; the effective ma
extrapolated atreq at q50 was onlym* 51.74m3. A strong
discrepancy is instead present in the coefficientsa or b giv-
ing theq dependence ofm* (q), the theoretical value being
about four times smaller than the experimental value5 at
equilibrium density and about three times smaller at
larger density. This could be a genuine discrepancy due
defect of the theory, either the assumed form of our exc
tion operator~4!, ~5! or the assumption that the ground-sta
correlating factors do not distinguish between3He and4He.
However, it should be kept in mind that the analysis of t
scattering data5 has been performed with a number of a
proximations and these could affect the extracted ene
spectrum. The experiment is performed at a finite concen
tion so that the3He signal consists of a particle-hole ban

o
n-
ita-
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FIG. 3. ~a! 2E(q)/\2q2 as function ofq2 at req ~triangles! and at 1.2req ~circles!. The linear fit is also reported; the intercept gives t
value of 1/m* . ~b! \2q2/2E(q) for the same data in~a!. Here the intercept gives the value ofm* .
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due to Fermi statistics. It has been assumed that the m
mum of the observed band coincides with the quasipart
energyE(q). This is correct, forq larger than the Ferm
wave vectorkF , in the case of independent particles with
quadratic spectrum inq. Both of these features are not co
rect in the present case, a strong interacting system. In a
tion, another assumption could modify the extracted ene
spectrum: the neglect in the scattering cross section of
interference contribution between3He and 4He atoms. As
discussed in the next subsection we find that under the
dition of the experiment the interference contribution to t
quasiparticle peak is similar in magnitude to the3He contri-
bution and it has the opposite sign. This is similar to wh
Krotscheck and Saarela20 found from a computation of this
interference contribution at a finite concentration~5%! of
3He using the correlated basis function~CBF! technique
based on a very simplified theory, the random-phase appr
mation. They found that the assumption that the interfere
contribution is negligible compared to the direct contributi
is not justified; moreover they also computed thev depen-
dence of this interference contribution which at largeq turns
out to be skewed with respect to the direct contribution th
inducing a displacement of the overall peak. A possible o
gin of this skewedness is the strongq dependence of the
backflow of 4He.

We compare now our results with other theories. T
main approach which has been used is the correlated b
function at various levels of approximation, and almost
ways only the effective mass atq50 has been computed
Going beyond second-order perturbation theory2 with a one-
phonon intermediate state gives an incomplete correctio
the bare mass,m* ;1.8m3. By using two independent pho
non statesm* increases to 2.1m3 at equilibrium density and
only by including an infinite number of rescattering pr
cesses of the one-phonon states one finds a valuem*
52.2m3. This is close to what we find. Recently3 this
scheme of computation has been extended at finite-q vectors
and the authors find an increasing value of the effective m
with q, in good agreement with experiment. Unfortunate
such a CBF computation needs the triplet correlation fu
tion g3(rW1 ,rW2 ,rW3) which is not known and some approxim
tion has to be introduced. The results at largeq depend rather
xi-
le

di-
y
e

n-

t
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e

s
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e
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to

ss
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heavily on the approximation used forg3, either the convo-
lution or the Kirkwood approximation, and a further eleme
of empirical character is the use of the experimental exc
tion spectrum of bulk helium in the energy denominato
Similar approximations are present in the recent work4 of
Krotschecket al. where CBF theory to infinite order and th
equations of motions method have been used to compute
effective mass also at higher density. Our computation is
of E(q) at finiteq in which backflow is treated at high orde
without introducing uncontrolled approximations.

Once the orthogonalization-diagonalization process
been performed, we find that the presence of the3He impu-
rity in the system has very little effect on the collective4He
excitation branch both at equilibrium and at freezing dens
Comparing these collective branches with those calculate
the pure4He system at the same density we find no subst
tial differences within the statistical errors. This behavior
in agreement with experimental data of the collective4He
excitation branch where it has been found that the devia
from the excitation spectrum in the pure4He system is al-
ways less than 0.2 K. As in the pure4He system, at freezing
density there is a significant disagreement with the exp
mental data for the excitation spectrum in the maxon regi
Here the experimental spectrum is about twice the roton
ergy at the same density, so that we should expect that t
excitations are a mixture of single excitations and dou
roton excitations. The relevance of this argument w
proved7 by computing the excitation energy of double roto
excited states in the pure4He system and finding that in th
maxon region at freezing density the energy of a double
citation is below the one of the single excitation and close
experiment.

B. Scattering strength

In addition to energy an important quantity is the streng
of the quasiparticle peak in the scattering cross section. T
quantity, in fact, is sensitive to details of the wave functi
of the excited state. In the case of bulk4He the analogous
strength of the roton peak has been a severe test for
theory. We present now a quantitative microscopic com
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FIG. 4. ~a! ~full circles! results atreq for the intensity of the excitation peak inS(qW ,v) for the quasiparticle3He excitation,~triangles!

intensity of the excitation peak inS(qW ,v) for the collective4He excitation. The open circles represent the intensity of the excitation pea
the quasiparticle3He excitation computed without the orthogonalization-diagonalization process.~b! the same as~a! at 1.2req.
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tation of the strengthZ(q) of the excitation peak inS(q,v)
for the quasiparticle3He excitation which includes the con
tribution coming from the4He atoms. In a neutron-inelastic
scattering experiment the measured quantity is the dou
differential cross section. In our system, with only one3He
impurity, the density spin fluctuations are not present, so
double-differential cross section is given by the expressi5

d2s

dVdE1
5

k1

k0

1

4p\
$s4x4S44~qW ,v!1~s31s3

i !x3S33~qW ,v!

1s34@x3x4#1/2S34~qW ,v!%, ~16!

where the dynamical structure factorSi j (qW ,v) at T50 K is
given by

Si j ~qW ,v!5
1

2ANiNj
(

n
@^0ur

2qW
i un&^nurqW

j u0&1^0ur
2qW
j un&

3^nurqW
i u0&#d~v2vn!. ~17!

rqW
i ( j ) are the density fluctuation of thei ( j ) component of the

mixture and$un&% (n50,1,2, . . . ) is anorthonormal com-
plete set of eigenstates of the Hamiltonian with energ
\vn . s4 , s3 , s3

i , s34 are the scattering cross sections21

x35N3 /(N31N4) andx45N4 /(N31N4) are the concentra
tion of the 3He impurity and of the 4He atoms in the
system23 (x351/108 andx45107/108 in our case!. The am-
plitudes of the excitation peaks inSi j are therefore given by

Zi j
( l )~q!5

1

2ANiNj

F ^C0ur
2qW
i uC̄qW

( l )
&^C̄qW

( l )urqW
j uC0&

^C0uC0&

1
^C0ur

2qW
j uC̄qW

( l )
&^C̄qW

( l )urqW
i uC0&

^C0uC0&
G , ~18!

whereC̄qW
( l ) can be eitherC̄qW

(1) or C̄qW
(2) andC0 is the ground

state~1!. The expectation values in Eq.~18! cannot be com-
puted directly. Like in the case of the Hamiltonian diagon
ization, one must write Eq.~18! as an algebric combinatio
e-

e

s

-

of a set of matrix elements built with the wave functionsC0 ,
CqW

I , andCqW
B , as derivable from Eq.~14!; these quantities are

all computable by a reweighting technique via direct Mon
Carlo integration as shown in the Appendix.

In order to obtain the correct comparison between
experimental data5 and our results, we have defined the i
tensity Zimp(q) of the excitation peak for the3He impurity
branch normalizing the total scattering contribution with t
factor x3(s31s3

i ) as done in Ref. 5:

Zimp~q!5Z33
imp~q!1

s4

s31s3
i

x4

x3
Z44

imp~q!

1
s34

s31s3
i
Ax4

x3
Z34

imp~q!

5Z33
imp~q!1c1Z44

imp~q!1c2Z34
imp~q!, ~19!

where the last equality definesc1 and c2. The superscript
imp means that of the two excited-state wave functionsC̄ ( l )

in Eq. ~14! the one has been used which corresponds to
quasiparticle3He excitation. In Fig. 4 we report our resul
for the intensity of the peak for the impurity excitation atreq
and 1.2req for wave vectors up to the crossing region wi
the collective excitation.

The quasiparticle3He excitation is decoupled from th
variables of4He atoms when no backflow is present; in th
caseZ34

imp(q)5Z44
imp(q)50 andZ33

imp(q)51 ;q. Experimen-
tally has been found a much smaller value forZimp, of order
of 1/3 and no explanation was given. On the basis of s
rule arguments it has been suggested22 that the depression o
Zimp could be due to the interference contributionZ34

imp but no
quantitative computation was presented. As already m
tioned, Krotscheck and Saarela20 computed the dynamic
structure factorsS33(qW ,v), S44(qW ,v), andS34(qW ,v) at a fi-
nite concentration~5%! of 3He on the basis of a very sim
plified theory. They found that the particle-hole3He con-
tinuum is not negligible in the4He-4He channel, neither is
the collective mode in the3He-3He channel and also that th
assumption thatS34(qW ,v) is negligible compared to the di
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FIG. 5. ~a! ~full circles! Zimp(q) at req, ~plus! experimental data forZimp(q), ~open circles! Z33
imp(q), ~squares! c1Z44

imp(q), ~triangles!
c2Z34

imp(q); ~b! the same as~a! at 1.2req.
es
e
h
t

b
as
th
o

at

ro

n
lt

e

e

io
re
ly
z

w
he
f

th
d
e
at

a

an
ce

ci-

cit
te
ical

art
ed.
rlo
e
re
ded
the
d.
tor,

s
t of

ow
tes,
ct

F
nt

ory

ron-
our

he
ring
nly

w.
es-

nt
agonal terms is not justified. Our results agree with th
previous qualitative results and we are able now to giv
quantitative description of these effects. We indeed find t
both contributionsZ34

imp(q) andZ44
imp(q) are quite important a

all wave vectors and the results are shown in Fig. 5. It can
noticed thatc2Z34

imp(q) is negative and almost as large
Z33

imp(q) so that there is a very large cancellation and
weakerc1Z44

imp(q) turns out to represent a rather large part
the totalZimp. This is true both at equilibrium density and
freezing. We can also notice that these strengthsZab

imp depend
rather strongly on the orthogonalization-diagonalization p
cess as can be seen in Fig. 4.

The strengthZimp deduced from experiment is also show
in Fig. 5. We note the excellent agreement with our resu
Also the weak density dependence ofZimp found experimen-
tally agrees with our result. All this allows us to conclud
that the experimental ‘‘missing’’ intensity inZimp(q) is due
to the coupling between3He and 4He arising from strong
backflow effects. In the case of rotons in pure4He backflow
reduces the intensity of the roton peak inS(q,v) by about
30% compared with the result expected in the absenc
backflow~the Feynman description of a roton!. The backflow
effect is even stronger in the case of the impurity excitat
where the reduction is about 70%. As mentioned in the p
vious subsection our results suggest the need for a reana
of the experimental data. In fact the data has been analy
under the assumption that onlyS33(q,v) gives strength to
the impurity branch. This assumption, which has been sho
not to be correct by our computation, would not affect t
extracted energy spectrumEimp(q) if the v dependence o
S34(q,v) andS44(q,v) were the same as that ofS33(q,v).
Unfortunately our theory is not able to give thesev depen-
dences but the result of Ref. 20 indicates that this is not
case at largeq whereS34 is asymmetric and skewed towar
larger frequencies compared withS33. This suggests that th
analysis of the experimental data in Ref. 5 has overestim
Eimp(q) at largeq.

Very recently4 Krotschecket al. computed the strength
Z(q) of the excitation peak inS33(q,v) for the quasiparticle
3He excitation for a system composed of one single3He
atom in bulk 4He. TheirZ(q) agrees with experimental dat
e
a
at

e

e
f

-

s.

of

n
-
sis
ed

n

e

ed

even if they do not consider the contribution due toS34 and
S44. This is rather surprising in view of our results and
extension of the theory of Ref. 4 to include such interferen
effects should be important.

IV. CONCLUSION

We have extended our previous computation of the ex
tation spectrum of one3He impurity in liquid 4He by the
shadow wave function technique by including an expli
backflow contribution and by using improved ground-sta
pseudopotentials. We have also introduced a methodolog
improvement. It is customary with the CBF method to st
with nonorthogonal states which are then orthonormaliz
This is not usually done in the framework of the Monte Ca
method. Here we start from trial wave functions for th
single particle and for the collective excitations which a
not orthogonal to each other. We have shown that the nee
orthogonalization of the states and the diagonalization of
Hamiltonian are feasible within the Monte Carlo metho
The present case, with just two states for each wave vec
is rather simple and it will be important to verify if thi
procedure is also possible in cases in which a larger se
states is involved.

The present computation confirms that with the shad
technique starting with a rather simple ansatz for the sta
one is able to include backflow effects to high order. In fa
we find an effective mass at smallq which is similar to what
is found with an infinite order calculation within the CB
formalism. Our result is in good agreement with experime
both at equilibrium and at freezing density. Less satisfact
appears to be the momentum dependence ofm* which is
much smaller than what has been deduced from neut
scattering data. Perhaps the most important aspect of
computation is the first quantitative computation of t
strength of the single-particle peak in the neutron-scatte
cross section which includes the strength coming not o
from the 3He atom but also from the4He atoms. These
processes give strength to the impurity peak via backflo
We find that these processes give a major contribution,
pecially the 3He-4He interference term. With the prese



th
ug
er
t o

t
ht

d
e

x

le

he
th

a-

or

cta-
rlo
we
ed
the

ve
ed

by

PRB 60 3483VARIATIONAL CALCULATION OF EXCITED-STAT E . . .
theory we now find good agreement with experiment for
total strength of the impurity peak. However, our results s
gest that the impurity excitation energy deduced from exp
ment might need a reanalysis by including in the treatmen
the data the contributions coming both from the3He-4He
channel and from the4He-4He one. This should not affec
the strength of the impurity excitation branch but it mig
affect its energy.
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APPENDIX

As a trivial exercise one can easily verify that every e
pectation values of the form̂CqW

( i )uÔuCqW
( j )

& ~with i , j 51,2)
can be written as algebric combination of the matrix e
ments ^C̄qW

I uÔuC̄qW
I
&, ^C̄qW

BuÔuC̄qW
B
&, ^C̄qW

I uÔuC̄qW
B
&, and

^C̄qW
I uC̄qW

B
& using Eqs.~14!, ~15!, and~10!. This is true also in

the calculation of the contributions to the intensity of t
excitation peaks in the dynamical structure factor where
matrix elements of the form̂C̄qW

( l )urqW
j uC0&/^C0uC0&

1/2 ( l
51,2 and j 53,4) can be written as algebric combin
tion of those of the type ^C̄qW

I urqW
j uC0&/^C0uC0&

1/2,

^C̄qW
BurqW

j uC0&/^C0uC0&
1/2, and^C̄qW

I uC̄qW
B
&. The indirect Monte

Carlo orthogonalization-diagonalization process is theref
e
-
i-
f

i
r-

-

-

e

e

obtained as algebric combination of a set of basic expe
tion values which can be computed directly by Monte Ca
integration using a standard reweighting technique which
show in the following. The reweighting technique is need
because the Metropolis alghorithm we use to generate
particle ~real and shadow variables! configurations in the
simulation box is able to reproduce only a strictly positi
distribution probability. This is the case for the extend
ground-state configuration probability:

P~R,S,S8!5
F~R,S8!F~R,S!

^C0uC0&

5
F~R,S8!F~R,S!

E dRdSdS8F~R,S8!F~R,S!

~A1!

@note thatP(R,S,S8) is not equivalent touC0u2/^C0uC0&#.
The average of any functionf (R,S,S8) can be computed in
this way:

^ f &RSS85E dRdSdS8P~R,S,S8! f ~R,S,S8!

5
1

M (
$R,S,S8%

f ~R,S,S8!, ~A2!

where$R,S,S8% is the set of the configurations generated
the Metropolis algorithm.

Now consider for example the quantity^CqW
CuCqW

D
& which

can be computed in this way:
er
^C̄qW
I uC̄qW

B
&5

^CqW
I uCqW

B
&

A^CqW
I uCqW

I
&A^CqW

BuCqW
B
&

5

E dRdSdS8F~R,S8!F~R,S!d̃
2qW
8 s̃qW

AE dRdSdS8F~R,S8!F~R,S!d̃
2qW
8 d̃qWAE dRdSdS8F~R,S8!F~R,S!s̃

2qW
8 s̃qW

5

E dRdSdS8P~R,S,S8!d̃
2qW
8 s̃qW

AE dRdSdS8P~R,S,S8!d̃
2qW
8 d̃qWAE dRdSdS8P~R,S,S8!s̃

2qW
8 s̃qW

5
^d̃2qW

8 s̃qW&RSS8

A^d̃2qW
8 d̃qW&RSS8

A^s̃2qW
8 s̃qW&RSS8

.

~A3!

The prime over the density fluctuationss̃qW
8 or d̃qW

8 means that those are functions of the shadow variables$S8%. In a similar way

quantities like^C̄qW
I uÔuC̄qW

I
& can be computed as

^C̄qW
I uÔuC̄qW

I
&5

K ÔF

F
d̃

2qW
8 d̃qW L

RSS8

^d̃2qW
8 d̃qW&RSS8

. ~A4!

whereF stands forF(R,S) or, for better statistics,F5 1
2 @F(R,S)1F(R,S8)#. In a similar way the matrix elements which ent

in the expression for the intensity of the excitation peaks in the dynamical structure factor can be written as
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^C̄qW
I urqW

j uC0&

A^C0uC0&
5

^CqW
I urqW

j uC0&

A^CqW
I uCqW

I
&A^C0uC0&

5

E dRdSdS8F~R,S8!F~R,S!d̃
2qW
8 rqW

j

AE dRdSdS8F~R,S8!F~R,S!d̃
2qW
8 d̃qWAE dRdSdS8F~R,S8!F~R,S!

5

E dRdSdS8P~R,S,S8!d̃
2qW
8 rqW

j

AE dRdSdS8P~R,S,S8!d̃
2qW
8 d̃qW

5
^d̃2qW

8 rqW
j
&RSS8

A^d̃2qW
8 d̃qW&RSS8

~A5!

and

^C̄qW
BurqW

j uC0&

A^C0uC0&
5

^s̃2qW
8 rqW

j
&RSS8

A^s̃2qW
8 s̃qW&RSS8

. ~A6!

With this reweighting technique any function in the extended configuration space$R,S,S8% is averaged with the extende
configurational distribution probability of the ground state.

The orthogonalization-diagonalization process is, however, very delicate because it exploits a reweighting tech
obtain the diagonalization of the Hamiltonian directly from Monte Carlo integration. It is, in fact, well known that a
statistics are needed to reach the convergence of this type of algorithm: at each density about 108 Monte Carlo steps have bee
used to obtain these results. A calculation with this computational cost is only possible on a parallel supercomputer:
used a CRAY-T3E with 128 processing elements to run in parallel statistically independent random walks, obtaining
speedup.
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