PHYSICAL REVIEW B VOLUME 60, NUMBER 5 1 AUGUST 1999-I

Ballistic and diffuse transport through a ferromagnetic domain wall
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We study transport through ballistic and diffuse ferromagnetic domain walls in a two-band Stoner model
with a rotating magnetization direction. For a ballistic domain wall, the change in the conductance due to the
domain wall scattering is obtained from an adiabatic approximation valid when the length of the domain wall
is much longer than the Fermi wavelength. In diffuse systems, the change in the resistivity is calculated using
a diagrammatic technique to the lowest order in the domain-wall scattering and taking into account spin
dependent scattering lifetimes and screening of the domain-wall pot¢&Hl63-182899)09829-X]

[. INTRODUCTION caused by the interplay between orbital effects due to the

internal magnetic fields and surface scattering. Recently, it

In a ferromagnet, domains with different directions of thewas also demonstrated that the large negative domain-wall
magnetization are favored by the long-range magnetic dipoesistance of Co filfsis due to MR resistivity anisotropy.

lar interaction. The boundary between the domains, the do- 't iS the purpose of the present paper to give a detailed

main walls (DW's), are a source of magnetoresistance thagcc_ou_nt of the transport through a domain wall both in the
. . allistic and the diffuse regime in a two-band Stoner model.
recently has attracted experimehtdl and theoretical

. In the ballistic transport regime, the transport through the
interest®—8 b g b g

. .magnetic domain wall can be treated by an adiabatic ap-
For ballistic systems, where the electron mean free path i§ oximation similar to the one used for transport through a

longer than the system size, first-principles band-structurguantum point contact. In the diffuse regime we will use the
calculations have shown that the DW resistance is enhanceflagrammatic technique introduced in Ref. 6 and generalize
due to the nearly degenerate bands at the Fermi efiéfgg. it to the case of asymmetric impurity scattering lifetintbat
rotating magnetization direction causes an effective potentiakithout localization effec§ and screening of the domain-
barrier for the electrons which increase the resistance. Rewall potential. Our results, although more general, reduce in
cently large DW resistance in ballistic Ni nanocontacts hashe case of strong spin splitting to results that are very simi-
been measuretThe appearance of large DW resistance inlar to those obtained in Ref. 7 using a Boltzmann equation.
small contacts is in agreement with the results of Ref. 8.  We explain why the results of the two methods differ. Some
In the diffuse transport regime Cabrera and Falffon-  results have been published already in a brief report and a
terpreted transport through a single DW as a tunneling proconference proceedings? Here we give an in-depth discus-
cess and the corresponding MR was found to be exponer$l'0D of the results including the technical details of the deri-
tially small. Berget' modeled the domain-wall scattering as Vations. _ o _
a force on the magnetic moment of the conduction electrons. The paper is organized in the following way. The two-
Tatara and Fukuyariacalculated the DW conductivity for ©and Stoner model for the ferromagnet with a rotating mag-
spin-independent scattering lifetimes. Levy and ZHang netic field and how it can be reduced to a more tractable form

pointed out that spin dependent impurity scattering carPy @ !0cal gauge transformation is discussed in Sec. Il. The
strongly enhance the DW resistivity allistic transport regime is discussed in Sec. Ill and the

Beyond the semiclassical transport theories, Tatara angﬁfuse transport regime in Sec. IV. We give our conclu5|_ons
Fukuyam4 predict a negative DW resistivity as a result of n Secr.]'Vr.] The ippend(ljx.estrclgdﬁ' tthe g?la?atlc approxwfna—
the reduced weak-localization correction due to the decoheflo" Which can be used in the ballistic situation, recipes for
ence of the electrons by the scattering off the domain wallf[he calculation of the frequency summation of the Feynman

However, quantum interference effects do not explain théjlagrams, and the spin-spiral case which can be exactly di-

experiments in Refs. 3 and 4, where the negative DW resis@gonahzed.

tance persists up to high temperature where the inelastic-
scattering length is shorter than the mean free path. It has
been suggested by Ruedigetrall? that the experimentally Throughout, we will use an effective two-band model to
observed negative DW resistance is an extrinsic effectlescribe the ferromagnet with the Hamiltonian

Il. MODEL
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is where the gradient of the rotating magnetic field has its
maximum value,a(z)=d6f(z)/dz—a. (for details, see
Appendix A). The conductance can then be found from the
whereug is the Bohr magnetons, oy, ando, are the Pauli  conductance of a spin spiral with gradiem},,, which has
spin matricesH(r) is the effective magnetic field arising the dispersionE,,=#%(2m)[k?+aZ,/4+ (k2a2,+p*?],
from the electronic exchange interaction, the magnetic dipolgnd the conductance is

interaction, and the external magnetic field, abgl(r) is the
two-component spinor wave function. The direction of the
effective magnetic field is represented by a rotation angle
6(z) which varies along the direction. The spin-orbit inter-
action and the Lorentz force due to the internal magnetizawhere v = JdE /(% dk,) is the group velocity. Carrying out
tion are disregarded, since experimentally the DW magnethe integration, we find the domain-wall resistarRg/R,
toresistance can be separated from the anomalousg_R, [1/R=G, 1Ry=Go=(e?AK2)/(27h)]:
magnetoresistand®MR) and the orbital magnetoresistance

ﬁ2
H=fdr \pg(r){—EV%MBH(r)-a Wy(r), (1)

e2
G=7 2 Vel o(EraEr), ©®

(OMR).* We use a local gauge transformafiory(r)
=U(r)Ww(r), where

U(r)=cog 0/2) o+ sin( 012) o (2)

and introduce the Fourier transform of the change of th
direction of the magnetic field a(z)=d6#(z)/dz
=X.explgza,. After the gauge transformatiori2) the
Hamiltonian (1) becomesH=U'HU=Hy+V. The unper-
turbed term is

Ho= 2% (€~ 1)CisSis, )

where s=+ (s=-) denotes spin-udspin-down states,
e;=h2k?/2m—sA, and the spin splitting ig = ug|H|. The
interaction with the DW i$

v £ 1
T 2m4
2

+_
2m

+
Z q-q'8q’ Ck+ qzscks
kqq's

>

kgss

+

q
kz+ E ank+qES( Uy)s,s’cks’ y (4)

wherez is a unit vector in the direction andk,= kz.

Ill. BALLISTIC TRANSPORT

Ry | @hal(4kE)  afa=2p7

Ro | pZ/kE—p*(a5akE)  a%a>2p%

)

é/vherehZFE/(Zm)EEF and A=%2p?/(2m). The screening

of the domain-wall potential discussed below is not impor-
tant for the calculation of the conductance, since by a calcu-
lation following the lines in Sec. 1V, we find that the shift in
the chemical potential due to the rotating magnetization is
Su~ — (1/48)E,,(A/EF)?+ O(A/Eg)3. The conductance is
G~k,2:~,u, and therefore screening gives a vanishing small
contribution to the change in the resistance when the splitting
is sufficiently small,6R,, /Ry~ (1/48) (Ew/Er)(A/ER)2.

Using parameters for Fe, Ni, and Ca =40 nm, A,
=100 nm, \,=15 nm, respectively we find R,/R
=0.0008%, R, /Ry=0.0001%, R, /Ry=0.008%, respec-
tively. Within the two-band model, the ballistic domain-wall
scattering is thus very weak. In first-principles band-structure
calculations these small numbers are enhanced by orders of
magnitude due to thénea) degeneracy of the energy bands
at the Fermi levef.

IV. DIFFUSE TRANSPORT

When the system size is much larger than the mean free
path, the transport is in the diffuse regime. We assume that
the electrons are subject to spin-dependent scattering, which

Transport through the domain wall is ballistic when theis modeled by short-range scatters giving rise to spin-
system size is smaller than the mean free path. In this redependent lifetimes, and r_ for spin-up and spin-down
gime, the transport properties can be described by the Landtates, respectively, which will be treated as adjustable pa-

auer conductance,

o2
G= T 5)

/
TSS
g‘s, K

ﬁf' is the transmission probability for an electron in

the transverse modie to pass the domain wall from spin
states’ to spin states. Domain walls in transition metals are
much thicker than the Fermi wavelengttne length of the
domain wall isA,=40 nm(Fe), A,,= 100 nm(Ni), A, =15
nm (Co), and the Fermi wavelength is roughly~0.2 nm.

where

The transmission probability can therefore be calculated with

rameters.
We study the current in the direction. The current op-
erator transformed by the local spin rotatiorr) in Eq. (2)

isjzuTJU=J0+Jg. The unperturbed current operator is

eh
= i
Jo="y 2 KeCisChs ®
and due to the local gauge transformation
eh
Jg:ﬁ Zs, ankJrqzs(o'y)s,s’Cks'- )
kgs

the aid of an adiabatic approximation on the eigenstates of

the Hamiltonian after the gauge transformati@n (see Ap-
pendix A). The domain wall is then equivalent to an effective

potential barrier for the electrons. The conductance is deter-
mined by the minimum number of propagating modes, which

The conductivity is calculated from the Kubo formula:

2

Noe
[I(w)+ ? , (10

o(w)=

|
w
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(A) (B)

) 3)
FIG. 2. Feynman diagrams of the contributions to the electron
© density to the lowest order in the domain-wall scattering. Solid lines
H indicate the electron Green’s function and the dashed lines the in-
4) 5) teraction with the domain wall. The verteg is due to the first

term in the interaction Hamiltonia(®) and the vertex] is due to
FIG. 1. Feynman diagrams of the contributions to the conducthe second term in the interaction Hamiltoni@).
tivity to the lowest order in the domain-wall scattering. Solid lines
indicate the electron Green’s function and the dashed lines the i the scattering lifetime of spin-ufspin-down states.

teraction with the domain wall. The vertex arises from the un- There are two contributions to the conductivity which to
perturbed current operatd), the vertexO is due to the gauge tne owest order in the domain-wall scattering are additive.
transformation on the current operal®), the vertex¢ is due 10 pjrgt gcreening shifts the chemical potential and induces a
the first term in the intera}ction I_—lamiltopian), anql the verteXd is DW conductivity in Eq.(13). Second, the electrons are di-
due to the second term in the interaction Hamiltor¢dh rectly scattered by the domain wall by the interaction term
(4) and the gauge transformed current oper&®r
Since the width of domain walls in transition metals is
much larger than the screening length, electroneutrality dic-
tates that the electron density to a good approximation is the
same in the presence or absence of the DW, but the chemical
potential differs. This is in contrast to the treatment in Refs.
11 (B . L 6 and 7, where the chemical potential is assumed to be the
n'=- v gf e ([T, I(n)JI0)]), (1) same in the presence or absence of the DW. The change in
0 the conductivity due to the chemical potential shift can be
where 18=kgT, kg is the Boltzmann constanf is the found from Eq.(13) settinguo— uo+ Su:
temperature, andl, is the r-ordering operator. We will only
study the dc conductivity at low temperatures by letting e?
—0 andT—0. The relevant Feynman diagrams to the low- d0o= 5:“5 Zs Ns7s, (15
est order in the scattering by the domain wall were identified

in Ref. 6 and are shown in Fig. 1. Diagram 0 represents thghich to lowest order in the domain-wall scattering may be
zeroth-order Drude contribution, diagram 1 is due to the cor444ed to the DW conductivity. Herd = mk/(2m242) is

re_Iatlon of the correction to the conduct_lwty opera(@t),_ the electron density of states at the Fermi enekgyis the
diagrams 2 and 4 are self-energy corrections from the inter-

: . . . . 'spin dependent Fermi wave vector related to the spin depen-
action Hamiltonian4) to the electron Green’s function, dia- P P P P

; — (1,S\3 2 in.
gram 5 is a vertex correction, and diagram 3 is the correlaEjent electron density bys=(kg)™/(677), and we also in

—22/1,5\2
tion of the change in the current operat@®) and the troduceeg=A"(kg)"/(2m). . . . .
interaction Hamiltonian(4). The electron Green's function = W& proceed by calculating the chemical potential shift

appearing in the Feynman diagrams in Fig. 1 is a Configurague to the rotating magnetization. The zeroth-order contribu-

; ih iR — S
tional average over impurity positions, e.g., the retardedion t0 the electron density igo=2s0(n—€,)/V, where
Green's function is 0(x) is the Heaviside step function. The Feynman diagrams

of the contributions to the electron density in the lowest-
order interaction with the domain wall are shown in Fig. 2.
P — (12 Diagram A is due to the first term in E¢4) and diagram B
ho= etihl2rs is due to the second-order contribution of the second term in
The scattering lifetimes of the states at the Fermi energy duEd- (4). Combining the two terms, the second-order contri-
to the impurity scattering- are assumed to be isotropic but bution to the electron density is
may be spin dependett.

whereny=N/V is the electron density\l is the number of
electrons, and/ is the volume of the system. The current-
current correlation functiotl () is obtained by an analyti-
cal continuation {w,— w+id, 6—07) from the Matsubara
correlation function

GR(w)=

The dc conductivity of a single domain ferromagnet is 72 , A2G2m 1)
No=5— 2 [ag®| Sarcar — 7/ Ok —w), (16
e2 &Ek 2 2mV kgs ZA(kq) 4
S
UO:VE ((?T) O(€ks— o) Ts (13 .
ks z where 2A(kq)=¢, *—€; and k.=k=*(q/2)z. Since the
e? DW is much thicker than the Fermi wavelength, we disre-
=m(n+ T.+n_71_), (14 gard the wave-vector dependeriggon the electron states at

the Fermi level and introduce the energy parameter for the
where u, is the bulk chemical potentiah, (n_) is the domain wall, E,=2.%%a4%(2m), e.g., with cog
electron density of spin-ufspin-down states, and, (7_) =tanh@\), E,,=7h%/(L\ym), where ny,=1/L is the
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“density” of the domain wall. The chemical potential shift due to the impurity scatteringAr/2>1. The frequency

follows from ng+n,=n, wheren is the electron density,

| 2SNt
S
op=Bu| - ——— 1
6A >, Nq
S

The correction in the conductivit§l5) due to the chemical
potential shift becomes

2 1 E SNSGIS:
Soo=—2 S Nqr Z—S— RNCT: )
° 6A>, N
S

sums (20) are evaluated in Appendix B, where the weak
wave-vector dependence on the electron states at the Fermi
level is disregarded consistent with the treatment of the
chemical-potential shift above. Carrying out the Matsubara
frequency sums over the internal energies at low tempera-
ture, we find that the correction to the dc conductivity due to
the DW is

The corrections to the current-current correlation function

from diagrams 1-5 are

2ﬁ2
M= v & 2 lad*mkas), (193
2
M= 8m3v2 |ag| 2k mh(kas), (19b)
e’h* q
|3_2m3V %S |aq|2 k,— 5) k,m5(kgs), (190
e2h/6 q 2
My=7 o 2 1aal?| ke 5) K ma(kqs),
(199
2ﬁ6 qz
M=, 2 la q|2k§(k§— z)w's(kqsx
(199
where the frequency summations are defined by
1 n+l1
=5 2 GGk, o (208
| 1 n+l~n+l~n
Y= BE [GR'GR'GR+ (I-— 1], (20b)
= BE[G““GE G o+ (1—==D)],
(200)
1 n+| n+l n+l
=75 2 [GF'Gi LG SG o+ (1= 1],
(200
Ty= 52 E GG L GR GR s (208

- (213
_ ezrf‘” z NSngs%S:. (219

a4=eznfw 2 Ner %‘(EKE)ZTIOZ
(219

The contribution to the conductivity from the diagrams
1-5in Fig. 1 is

> e’E,,
i:ZJ.Ui:_ m < sTs
1 1 & 1/[e)? Ts
|2 ESK_E(K == @

The DW resistivity can be found from,,= —awpg, where
the DW conductivity change due to the rotating magnetic
field is o= 80+ 27107

e st 3(e)’( 7
A A 51A 7o |
(23

where der =3 SNgep/=Ng. The first term in Eq.(23) is
always positive, but the second and the third terms can be
negative when the relaxation time of the minority-spin elec-
trons is longer than the relaxation time for the majority-spin
electrons. However, as will be demonstrated below, the
domain-wall resistivity given by Eq23) is always positive.

Our speculation about the possibility of a negative domain-
wall resistance in Ref. 14 is thus not justified from E23)

only. The resul{23) differs from that obtained in Ref. 6 for
spin independent relaxation timeg= r, where screening
was not taken into account, i.e., a constant chemical potential
and not a constant electron density was assumed. The result
also differs from the calculation in Ref. 7 based on the Bolt-
zmann equation. We believe that this latter discrepancy is
because in Ref. 7 screening as well as the effect of the gauge
transformation on the current operat®y are neglected. The
latter corresponds to the neglect of the diagrams 1 and 3 in

2 2
e“poEw
E N
s

pW: 6m

sTs

In the low impurity density limit the energy splitting be- Fig. 1. For sufficiently weak impurity scattering and/or a
tween the bands is larger than the broadening of the bandarge spin splitting A 7/2>1) the contribution from dia-
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gram 1, Eq(213a), vanishes, so only in this limit the omission 10°
of this diagram is justified. Furthermore, the difference in the

Fermi wave vectors for the spin-up and spin-down electrons

was disregarded in parts of the calculations in Ref. 7 and ar .
approximation was introduced in order to solve the integral 10
equation for the Boltzmann equation. Indeed, assuming smal

spin splittings A/e<1, butA7/A>1) in Eq.(23), we ob-

tain 108

pw_ 3EuEr (14 —7)°
pPo  20A%2  T4T-

(24

which is very similar, but not identical to the result in Ref. 7.

In this limit, the domain-wall resistivity increases quadrati-

cally with the asymmetry in the spin-up and spin-down scat-
tering lifetimes as pointed out in Ref. 7. For larger spin split-
ting, Eq.(23) should be used.

It is also interesting to study the domain-wall resistivity
when the spin splitting is large &> u, which is the case for 10°
a half metallic ferromagnet in which the minority-spin den-
sity of states vanishe®y_=0. In this regime we find

ﬂ_ﬂ[if i)2<1_7_+)
po wm|[2A 5(2A )]
The first term in Eq.(25) can be interpreted as additional
intraband scattering in the majority-spin channel due to the FIG. 3. The relative change in the resistivjty, /(«po) due to
rotating magnetization and the second term as virtual tranghe scattering by the domain wall as a function of the asymmetry in
port in the minority-spin channel which has a negative conthe scattering lifetimes. /7_. The solid line is fory=Kkg/ke
tribution whens_> 7, . The domain-wall resistivity25) is ~ =101, the dashed line is for=Kk /kz =1.20, and the dotted line
always positive. In the limit of large spin splittings> u the 1S for y=kg/kg =10.0.
domain-wall resistivity vanishes, since the coupling between . . , .
the bands becomes vanishingly small. Note that the present0 » Which means that the domain-wall scattering for
formalism is valid only for wide walls, since the domain- SYmmetric scattering lifetimes is very weak. However, as
wall scattering is treated as a perturbation. pomted_ out in Ref. 7, the domaln-v_vall resistivity can b_ecc_)me
Our perturbative resulf23) can be checked against an @PPreciably larger when taking into account the lifetime
exact calculation for a spin spiraldé(z)/dz=a,, aq asymr_netry of the_ carriers. We show |n.F|g. 3 the scaled
=ay0q,0 With spin independent lifetimes,— 7. The detailed domgm-wall r_eS'St_'V'tpr/(KpO) asa function of the asym-
calculation is shown in Appendix C. The Hamiltonian is di- pmo?g:icz;;g:e”nf (l)lfle(tg;?dgﬁr%_ imgr;g;x;;;;g;gﬁgn
agonalized in spin space =N.[Li(1FV1+ad)/a]", : Y= . ’ . R ]
W%ere/\/’i is a r?ormZIizatig% cojr\(s_tgmtz(: k,a/p>, ?’:md]A tion y=1.20 (da;hed ling and large spin polgrlz_atlon/
=#h”p’/2m. The crrhorresponding eigenvalues _ ar; cTolrgé?n(\(/jvc;flﬁeriszggitnggtjr;ﬁ;gﬁécng:gs F;C;I;r:;?gtc;ir::, irEht?le
:(ﬁ2/2m)(k2+a§+ k;ag+p"). The (Drude resistivity relative difference in the scattering lifetimes andr_ . The
can be calculated from the Kubo formula, domain-wall resistivity becomes noticeable for asymmetric
lifetimes and can become of the ordgy/po~1%.

10"

10-1 ) NSRS A | ) NS S |
(25) 10" 10° 10°

T/t

2 2
e“poEw
Pw= T(n+—n7), (26)
Y 2mA V. CONCLUSIONS
This is in exact agreement with E@3) for a,=ag6,,0 when We studied the contribution of domain-wall scattering on

7.=7_; agood indication of the correctness of our pertur-the transport properties of a ferromagnet using an effective
bation approach. The calculations in Refs. 6 and 7 disagregyo-band model. In a diffuse ferromagnet, the domain-wall
with the exact resulf26) presumably due to the reasons out- resistivity is calculated from the Kubo formula. The domain-
lined above. . o wall resistivity is found to be strongly enhanced when the
The result for the domain-wall resistivit23) can be ana-  gcattering lifetimes of the majority spins and minority spins
lyzed by introducingk? = \yke, ke =ke/\y, 7.=Vn7,  are different, in agreement with the results in Ref. 7. In the
7_=1l\/n, wherey=kg /k¢ is a measure of the polarization ballistic regime, we have demonstrated how the domain-wall
of the ferromagnety= 7, /7_ is a measure of the asymme- scattering creates an effective barrier that the electrons must
try of the scattering lifetimeskr is the average Fermi wave pass. The results from the two-band model give only very
vector, andr is the average scattering lifetime. The domain-small corrections to the resistance of the system.
wall resistivity is proportional tac=E/4Er. Typically in First-principle band-structure calculations have shown
Feke~1.7 A, Ay~300 A, andn,~2.5 um ! giving «  that the domain-wall resistance can be increased by orders of
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magnitude in the ballistic reginfelt would be interesting to  permits us to make use of a multiple scale analysisadia-
perform a realistic band-structure calculation also for diffusebatic approximation!® This analysis is done by introducing
systems. However, the generalization of our two-band resultthe small parametes, so thatw(z) — w(ez), a(z)—a(ez),

turns out to be cumbersomé. and da/dz— eda/dz and we introduce the new variable
=g(ez)/e, whereg(ez) is a scaling functior® We expand
ACKNOWLEDGMENTS the longitudinal functiorA(z) andB,(z) to the lowest order

in the small parametet, Ak(z,Z)=aE(Z,z)+(9(e). To the
lowest order in the small parameterthe equation to solve
is thus
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2 0
d Wy a

) . (A7)

We now make the ansat(z,Z)=ay%z)exp(Z) and find
APPENDIX A: ADIABATIC APPROXIMATION that the scaling functiog is chosen such that
In the ballistic regime, it is most convenient to start with [(9")2—w_1[(g")*— 0 ]=p*+(ag’)? (A8)
the Hamiltonian in its first quantized form, which after the

gauge transformatiof2) readsF = Ho+ V7 andZ=(1/e) [*dx ¢'(x), so that the adiabatic solution is
=Hg+V:

2 z
Ho=— ;l—mVZWLAUz, (A1) Ak(z)~a0(z)exp<j dx g'(x) |. (A9)
5 72 52 Similarly we can find a solution foB,(z). Disregarding tun-
| : . X : .
_ " . / "2 neling states which only give an exponentially small contri-
v ZmGVa(Z)pz 2mv@ @)+ gm® (@), (A2 bution to the conductance, the number of propagating modes

is determined by the condition [m@’(x)]=0. From Eg.
(A8), we see that the number of propagating modes is deter-
mined by the position whera(z) attains its maximum, i.e.,
the conductance can be calculated as for a spin spiral with
a(z)—amax-

wherea(z)=d6(z)/dz is the gradient of the rotating angle
of the magnetization ana’'(z)=d?6(z)/dz>. The wave
function can be written as

, (A3)

W(r)=¢(p)| Ac(2)

0
where ¢(p)=A""exp(kp) is the transverse part of the
wave functior k= (k| ,k,) ], Ax(2) is the spin-up-like longi-
tudinal amplitude an@®,(z) is the spin-down-like longitudi-

1 0
+By(2) 1
APPENDIX B: FREQUENCY SUMMATIONS

The typical frequency sum to be performed is

nal amplitude. The Schdinger equation then becomes W':é > XY (15 1), (B1)
n
d? 0 d a n n , .
-y - ad— 5 whereX" andY" are Matsubara Green'’s functions. They can
dz z Ad (O (Ad) be written in the spectral representation
a’ d2 o Bk B 0/’ d SX( )
a+ — ———w. n_ |7 d€ €
2 dz’ X f_OCZﬂ' iw,— €’ (B2)
where L .
where the spectral function is determined by the retarded and
wg _ kf —a(2)%45p?, (A5) the advanced function
k? =2mEg /2~ k{, and E is the Fermi energy. The off- Sy(e)=i[XR(e)—XA(e)]. (B3)

diagonal terms in EqA4) describe the coupling between the . o
spin-up- and spin-down-like states. In the case of a spin spferforming the frequency summation in Eg1), we get

ral, a’(z)=0, the eigenstates can be found to B

=A? exp(k,2), B,= B exp(k,2), where the dispersion of the e J'w dey (= Esx(el)s\((ez)
modesk, is determined by 2w ) 2w
k% =k2+a%4+ \p?+q?k2. (AB) fle))—f(e))  fler)—f(ep) 84)

L . . . iw|_(€1_€2)_iw|_(62_€1) '
The coupling is weak when the gradient of the spin rotation
gradient is slow compared to the Fermi wavelength. ThisThe dc conductivity is obtained by an analytical continuation
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 d(iw—w+id)
|=— lim —m—— (B5)
w

w—0

and we consider the limit of zero temperatufie£0):

l,~7 —%5(5)5—%%5"(5)5-1 . (B15)

In the general case, we use

R R
i Rk GE(0)-GR((0)
- GS(0)GE(0)= . B16
I=5-5x(0)Sy(0) (B6) s(0)GZ4(0) (o o) —(e e (B16)
5 For large splitting the result is then
=;Re[XR(O)YA(O)—XR(O)YR(O)]. (B7)
- 2
, 4~ 5 (€9~ — = 8(&)
The product of the two retarde@dvanceg Green’s func- € S— €S (65— €2
tions vanishes when integrating over the energy since the
poles are on the same side of the imaginary plane. The sum 1— Ts
can then be simplified to 7s s . (B17)
—8(&). B1
(efs_ 63)2 (f )

| = %RG[XR(O)YA(O)]. (B8)

This relation will be used in the following in order to calcu-
late the contributions from the diagrams 15g. 1).
We use

G (0)~G4(0)
(8t 8g)— (58— €%)’

GL(0)GA(0)= (B9)

where§;="%/(275) and obtain in the limitss< n the contri-

bution from 7, to the conductivity
27-1

s’
TsTgr

eS—€

S+ By

I~ 1+

[8(£5)+8(£9)],
(B10)

TS+ Ts!

where £&= €%— u is the quasiparticle energy relative to the

Fermi level. In the case of no spin splitting* ¢) and
(65— 6), the result isl =~ 75(£). In the limit of strong spin
splitting, the result is vanishingly smallof order A/A~
smal),

l,~0. (B11)
The suma? gives a contribution

h 9 1 d

= =~ 8(&). 2
zwags(§5)2+§§ Tsﬁgs (f) (Bl)

P

The sum2 gives a contribution

|——ﬁ ! £ (B13)
N A

In the limit of vanishing spin splitting and equal lifetimes,
the contribution isl 3~ 7(d/9¢€) (&), which agrees with the
result of 7, as it should. Whem\ 7, /7> 1 (large spin split-
ting) it is

27

S_ ¢S

lg~— 5(£°). (B14)

€

In the case of no spin splitting, the sunf gives a con-
tribution

Finally, the summs gives a contribution

ls= h ! ! (B19)

Y 2m (924 02 (67924 8%

In the case of no spin splitting the sum is
1 1
ls~7 Za(g)5—3+§5"(§)5—1 ) (B19)
For large spin splitting, we have

1 S —S

ls~ ———5[7:0(&)+7-s0(67%].  (B20)

(Es— 6_5)2

APPENDIX C: SPIN SPIRAL

The spin-spiral system has a constant gradient of the ro-
tating magnetization directioraf=ayd,,0). We perform the
local gauge transformatiai2). The transformed Hamiltonian
is

hZ

~ 1
H=>— ; cl( k2= o,p?+agk,oy+ 7 a3

¢, (C1
wherec, is an annihilation operator in the spinor spin space

and the exchange splitting=%2p?/(2m) has been intro-
duced. The transformed current operator is

eh
i
‘]_mkc"

The Hamiltonian(C1) can be exactly diagonalized, and the
eigenvalues are

Ck - (CZ)

aog
k,+ > oy

h? 1
Ekt Z% k2+ ZaOI \/k§a§+ p4 (C3)
with the corresponding eigenvectors
T Ip—
U. =Nl . , C4
- “\i(l¥V1+ad)/a €4

where the parameter=k,a,/p? is introduced and the nor-
malization factors are
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2
2

o
Na= )
T 2V1+ad(F1l+ 1+ ad)

The annihilation operators are transformeccagu, ,u_)a.
In the new basis, the current operator is

(CH

k aoal a.o
. eh JT 21t 2V1+a?
=2 3 3.
k aO k n aoaf
2\/1-i—a2 z 2\/1-i—a2
(Co)
The dc conductivity is
14 '

= E v 2 |‘Jss’|2AEAS ’ (C7)

kss'

where the electron spectral functioA€ —2 ImGR) at the
Fermi level is

hlT
(Ef—w)2+ (him)?

S__
K=

(C8

BALLISTIC AND DIFFUSE TRANSPORT THROUGHA . ..
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per should be used. From Eq€7) and (C8) it can be seen
that the off-diagonal terms in the conductividy, A_ are in

the order 1/¢A/%)? smaller than the diagonal terms. We
further assume that the scattering by the domain wall is
weak, i.e.,a3<p? and agki<p? and expand the result for
the conductivity to the second orderdg. The conductivity
becomes

eZT

o= >

6m°m s

2 3/2
(ki—?Jrspz (1— %), (C9

where #%k%/(2m) = u and E,=%%aj/(2m) are used. The
conductivity should be related to the electron density by
eliminating any reference to the chemical potential which
may change in the presence of the domain wall,

SEy
1+ ﬂ) (C10

3/2

1 a2
_ 20
nS_GWZ( ) +sp?

Inserting Eq(C10) into Eq.(C9), the conductivity can there-
fore be written as

n,—n_ EW>

n,+n_ 2A (C1Y

0'=0'0( 1-

Here we have inserted a phenomenological scattering life-
time, which is identical for the two eigenstates. Note that wewhere op=e?(n, +n_) 7/m is the Drude conductivity. The
cannot treat different scattering lifetimes for the minority anddomain-wall resistivity p,,= — 50’W/0'(2), is thus

majority states in the bulk ferromagnet with the method out-
lined in this appendix, since the lifetimes appearing in Eq.
(C7) are the lifetimes for the exact eigenstates in the spin
spiral. In order to determine the relation between the differ-

e’pGE.,

pw= 5 (N —N-), (C12

ent lifetimes, the general method described above in our pawherepgy=1/cy,.
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