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Ballistic and diffuse transport through a ferromagnetic domain wall
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We study transport through ballistic and diffuse ferromagnetic domain walls in a two-band Stoner model
with a rotating magnetization direction. For a ballistic domain wall, the change in the conductance due to the
domain wall scattering is obtained from an adiabatic approximation valid when the length of the domain wall
is much longer than the Fermi wavelength. In diffuse systems, the change in the resistivity is calculated using
a diagrammatic technique to the lowest order in the domain-wall scattering and taking into account spin
dependent scattering lifetimes and screening of the domain-wall potential.@S0163-1829~99!09829-X#
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I. INTRODUCTION

In a ferromagnet, domains with different directions of t
magnetization are favored by the long-range magnetic d
lar interaction. The boundary between the domains, the
main walls ~DW’s!, are a source of magnetoresistance t
recently has attracted experimental1–5 and theoretical
interest.6–8

For ballistic systems, where the electron mean free pat
longer than the system size, first-principles band-struc
calculations have shown that the DW resistance is enhan
due to the nearly degenerate bands at the Fermi energy.8 The
rotating magnetization direction causes an effective poten
barrier for the electrons which increase the resistance.
cently large DW resistance in ballistic Ni nanocontacts h
been measured.9 The appearance of large DW resistance
small contacts is in agreement with the results of Ref. 8.

In the diffuse transport regime Cabrera and Falicov10 in-
terpreted transport through a single DW as a tunneling p
cess and the corresponding MR was found to be expon
tially small. Berger11 modeled the domain-wall scattering a
a force on the magnetic moment of the conduction electro
Tatara and Fukuyama6 calculated the DW conductivity fo
spin-independent scattering lifetimes. Levy and Zha7

pointed out that spin dependent impurity scattering c
strongly enhance the DW resistivity.

Beyond the semiclassical transport theories, Tatara
Fukuyama6 predict a negative DW resistivity as a result
the reduced weak-localization correction due to the deco
ence of the electrons by the scattering off the domain w
However, quantum interference effects do not explain
experiments in Refs. 3 and 4, where the negative DW re
tance persists up to high temperature where the inela
scattering length is shorter than the mean free path. It
been suggested by Ruedigeret al.12 that the experimentally
observed negative DW resistance is an extrinsic ef
PRB 600163-1829/99/60~5!/3406~8!/$15.00
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caused by the interplay between orbital effects due to
internal magnetic fields and surface scattering. Recently
was also demonstrated that the large negative domain-
resistance of Co films1 is due to MR resistivity anisotropy.13

It is the purpose of the present paper to give a deta
account of the transport through a domain wall both in
ballistic and the diffuse regime in a two-band Stoner mod
In the ballistic transport regime, the transport through
magnetic domain wall can be treated by an adiabatic
proximation similar to the one used for transport through
quantum point contact. In the diffuse regime we will use t
diagrammatic technique introduced in Ref. 6 and genera
it to the case of asymmetric impurity scattering lifetimes~but
without localization effects6! and screening of the domain
wall potential. Our results, although more general, reduce
the case of strong spin splitting to results that are very si
lar to those obtained in Ref. 7 using a Boltzmann equati
We explain why the results of the two methods differ. Som
results have been published already in a brief report an
conference proceedings.8,14 Here we give an in-depth discus
sion of the results including the technical details of the de
vations.

The paper is organized in the following way. The tw
band Stoner model for the ferromagnet with a rotating m
netic field and how it can be reduced to a more tractable fo
by a local gauge transformation is discussed in Sec. II. T
ballistic transport regime is discussed in Sec. III and
diffuse transport regime in Sec. IV. We give our conclusio
in Sec. V. The appendixes include the adiabatic approxim
tion which can be used in the ballistic situation, recipes
the calculation of the frequency summation of the Feynm
diagrams, and the spin-spiral case which can be exactly
agonalized.

II. MODEL

Throughout, we will use an effective two-band model
describe the ferromagnet with the Hamiltonian
3406 ©1999 The American Physical Society
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H5E dr C0
†~r !F2

\2

2m
¹21mBH~r !•sGC0~r !, ~1!

wheremB is the Bohr magneton,sx ,sy , andsz are the Pauli
spin matrices,H(r ) is the effective magnetic field arisin
from the electronic exchange interaction, the magnetic dip
interaction, and the external magnetic field, andC0(r ) is the
two-component spinor wave function. The direction of t
effective magnetic field is represented by a rotation an
u(z) which varies along thez direction. The spin-orbit inter-
action and the Lorentz force due to the internal magnet
tion are disregarded, since experimentally the DW mag
toresistance can be separated from the anoma
magnetoresistance~AMR! and the orbital magnetoresistan
~OMR!.4 We use a local gauge transformation6 C0(r )
5U(r )C(r ), where

U~r !5cos~u/2!sz1sin~u/2!sx ~2!

and introduce the Fourier transform of the change of
direction of the magnetic field a(z)[du(z)/dz
5(qexp(iqz)aq . After the gauge transformation~2! the
Hamiltonian ~1! becomesH̃5U†HU5H01V. The unper-
turbed term is

H05(
ks

~ek
s2m!cks

† cks , ~3!

where s51 (s52) denotes spin-up~spin-down! states,
ek

s5\2k2/2m2sD, and the spin splitting isD5mBuHu. The
interaction with the DW is6

V5
\2

2m

1

4 (
kqq8s

aq2q8aq8ck1qzs
† cks

1
\2

2m (
kqss8

S kz1
q

2Daqck1qẑs
†

~sy!s,s8cks8 , ~4!

whereẑ is a unit vector in thez direction andkz5kẑ.

III. BALLISTIC TRANSPORT

Transport through the domain wall is ballistic when t
system size is smaller than the mean free path. In this
gime, the transport properties can be described by the La
auer conductance,

G5
e2

h (
kiss8

Tki

ss8 , ~5!

whereTki

ss8 is the transmission probability for an electron

the transverse modeki to pass the domain wall from spi
states8 to spin states. Domain walls in transition metals ar
much thicker than the Fermi wavelength~the length of the
domain wall islw540 nm ~Fe!, lw5100 nm~Ni!, lw515
nm ~Co!, and the Fermi wavelength is roughlylF;0.2 nm!.
The transmission probability can therefore be calculated w
the aid of an adiabatic approximation on the eigenstate
the Hamiltonian after the gauge transformation~2! ~see Ap-
pendix A!. The domain wall is then equivalent to an effecti
potential barrier for the electrons. The conductance is de
mined by the minimum number of propagating modes, wh
le
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-
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h

is where the gradient of the rotating magnetic field has
maximum value,a(z)[du(z)/dz̃ amax ~for details, see
Appendix A!. The conductance can then be found from t
conductance of a spin spiral with gradientamax, which has
the dispersionEmax

6 5\2/(2m)@k21amax
2 /46(kz

2amax
2 1p4)1/2#,

and the conductance is

G5
e2

2 (
ks

uvsud~Emax
s 2EF!, ~6!

wherevs5]Es /(\]kz) is the group velocity. Carrying ou
the integration, we find the domain-wall resistanceRw /R0

5R2R0 @1/R5G, 1/R05G05(e2Ak̄F
2)/(2ph)]:

Rw

R0
5H amax

2 /~4k̄F
2 ! amax

2 <2p2

p2/ k̄F
22p4/~amax

2 k̄F
2 ! amax

2 .2p2,
~7!

where\2k̄F
2/(2m)[EF and D[\2p2/(2m). The screening

of the domain-wall potential discussed below is not imp
tant for the calculation of the conductance, since by a ca
lation following the lines in Sec. IV, we find that the shift i
the chemical potential due to the rotating magnetization
dm'2(1/48)Ew(D/EF)21O(D/EF)3. The conductance is
G;kF

2;m, and therefore screening gives a vanishing sm
contribution to the change in the resistance when the split
is sufficiently small,dRm /R0'(1/48)(Ew /EF)(D/EF)2.

Using parameters for Fe, Ni, and Co (lw540 nm, lw
5100 nm, lw515 nm, respectively!, we find Rw /R
50.0008%, Rw /R050.0001%, Rw /R050.008%, respec-
tively. Within the two-band model, the ballistic domain-wa
scattering is thus very weak. In first-principles band-struct
calculations these small numbers are enhanced by orde
magnitude due to the~near! degeneracy of the energy band
at the Fermi level.8

IV. DIFFUSE TRANSPORT

When the system size is much larger than the mean
path, the transport is in the diffuse regime. We assume
the electrons are subject to spin-dependent scattering, w
is modeled by short-range scatters giving rise to sp
dependent lifetimest1 and t2 for spin-up and spin-down
states, respectively, which will be treated as adjustable
rameters.

We study the current in thez direction. The current op-
erator transformed by the local spin rotationU(r ) in Eq. ~2!

is J̃5U†JU5J01Jg . The unperturbed current operator is

J05
e\

m (
ks

kzcks
† cks ~8!

and due to the local gauge transformation6

Jg5
e\

2m (
kqss8

aqck1qzs~sy!s,s8cks8 . ~9!

The conductivity is calculated from the Kubo formula:

s~v!5
i

v FP~v!1
n0e2

m G , ~10!
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wheren05N/V is the electron density,N is the number of
electrons, andV is the volume of the system. The curren
current correlation functionP(v) is obtained by an analyti
cal continuation (iv l˜v1 id, d˜01) from the Matsubara
correlation function

P l52
1

V

1

\E0

b\

eiv l t^uTt J̃~t!J̃~0!u&, ~11!

where 1/b5kBT, kB is the Boltzmann constant,T is the
temperature, andTt is thet-ordering operator. We will only
study the dc conductivity at low temperatures by lettingv
˜0 andT˜0. The relevant Feynman diagrams to the lo
est order in the scattering by the domain wall were identifi
in Ref. 6 and are shown in Fig. 1. Diagram 0 represents
zeroth-order Drude contribution, diagram 1 is due to the c
relation of the correction to the conductivity operator~9!,
diagrams 2 and 4 are self-energy corrections from the in
action Hamiltonian~4! to the electron Green’s function, dia
gram 5 is a vertex correction, and diagram 3 is the corre
tion of the change in the current operator~9! and the
interaction Hamiltonian~4!. The electron Green’s function
appearing in the Feynman diagrams in Fig. 1 is a configu
tional average over impurity positions, e.g., the retard
Green’s function is

Gks
R ~v!5

1

\v2ek
s1 i\/2ts

. ~12!

The scattering lifetimes of the states at the Fermi energy
to the impurity scatteringts are assumed to be isotropic b
may be spin dependent.15

The dc conductivity of a single domain ferromagnet is

s05
e2

V (
ks

S ]eks

]kz
D 2

d~eks2m0!ts ~13!

5
e2

m
~n1t11n2t2!, ~14!

where m0 is the bulk chemical potential,n1 (n2) is the
electron density of spin-up~spin-down! states, andt1 (t2)

FIG. 1. Feynman diagrams of the contributions to the cond
tivity to the lowest order in the domain-wall scattering. Solid lin
indicate the electron Green’s function and the dashed lines the
teraction with the domain wall. The vertex3 arises from the un-
perturbed current operator~8!, the vertexs is due to the gauge
transformation on the current operator~9!, the vertexL is due to
the first term in the interaction Hamiltonian~4!, and the vertexh is
due to the second term in the interaction Hamiltonian~4!.
-
d
e

r-

r-

-

a-
d

e

is the scattering lifetime of spin-up~spin-down! states.
There are two contributions to the conductivity which

the lowest order in the domain-wall scattering are additi
First, screening shifts the chemical potential and induce
DW conductivity in Eq.~13!. Second, the electrons are d
rectly scattered by the domain wall by the interaction te
~4! and the gauge transformed current operator~9!.

Since the width of domain walls in transition metals
much larger than the screening length, electroneutrality d
tates that the electron density to a good approximation is
same in the presence or absence of the DW, but the chem
potential differs. This is in contrast to the treatment in Re
6 and 7, where the chemical potential is assumed to be
same in the presence or absence of the DW. The chang
the conductivity due to the chemical potential shift can
found from Eq.~13! settingm0˜m01dm:

ds05dm
e2

m (
s

Nsts , ~15!

which to lowest order in the domain-wall scattering may
added to the DW conductivity. HereNs5mkF

s /(2p2\2) is
the electron density of states at the Fermi energy,kF

s is the
spin dependent Fermi wave vector related to the spin dep
dent electron density byns5(kF

s )3/(6p2), and we also in-
troduceeF

s [\2(kF
s )2/(2m).

We proceed by calculating the chemical potential sh
due to the rotating magnetization. The zeroth-order contri
tion to the electron density isn05(ksu(m2ek

s)/V, where
u(x) is the Heaviside step function. The Feynman diagra
of the contributions to the electron density in the lowe
order interaction with the domain wall are shown in Fig.
Diagram A is due to the first term in Eq.~4! and diagram B
is due to the second-order contribution of the second term
Eq. ~4!. Combining the two terms, the second-order con
bution to the electron density is

n25
\2

2mV (
kqs

uaqu2S \2kz
2/2m

2D~kq!
2

1

4D d~ek2

s 2m!, ~16!

where 2D(kq)5ek1

2s2ek2

s and k65k6(q/2)ẑ. Since the

DW is much thicker than the Fermi wavelength, we dis
gard the wave-vector dependence~q! on the electron states a
the Fermi level and introduce the energy parameter for
domain wall, Ew5(q\2uaqu2/(2m), e.g., with cosu
5tanh(z/lW), Ew5p\2/(LlWm), where nW51/L is the

-

n-

FIG. 2. Feynman diagrams of the contributions to the elect
density to the lowest order in the domain-wall scattering. Solid lin
indicate the electron Green’s function and the dashed lines the
teraction with the domain wall. The vertexL is due to the first
term in the interaction Hamiltonian~4! and the vertexh is due to
the second term in the interaction Hamiltonian~4!.



ft

l

io

-
n

ak
ermi
the
ara
era-
to

s

tic

be
c-
in

the

in-

r

ntial
esult
lt-
is

uge

3 in
a

PRB 60 3409BALLISTIC AND DIFFUSE TRANSPORT THROUGHA . . .
‘‘density’’ of the domain wall. The chemical potential shi
follows from n01n25n, wheren is the electron density,

dm5EwF 1

4
2

(
s

sNseF
s

6D(
s

Ns

G . ~17!

The correction in the conductivity~15! due to the chemica
potential shift becomes

ds05
e2Ew

m (
s

NstsF 1

4
2

(
s

sNseF
s

6D(
s

Ns

G . ~18!

The corrections to the current-current correlation funct
from diagrams 1–5 are

P1
l 5

e2\2

4m2V
(
kqs

uaqu2p1
l ~kqs!, ~19a!

P2
l 5

e2\4

8m3V
(
kqs

uaqu2kz
2p2

l ~kqs!, ~19b!

P3
l 5

e2\4

2m3V
(
kqs

uaqu2S kz2
q

2D kzp3
l ~kqs!, ~19c!

P4
l 5

e2\6

4m4V
(
kqs

uaqu2S kz2
q

2D 2

kz
2p4

l ~kqs!,

~19d!

P5
l 5

e2\6

4m4V
(
kqs

uaqu2kz
2S kz

22
q2

4 Dp5
l ~kqs!,

~19e!

where the frequency summations are defined by

p1
l 5

1

b (
n

Gk2s
n1 lGk12s

n , ~20a!

p2
l 5

1

b (
n

@Gks
n1 lGks

n1 lGks
n 1~ l˜2 l !#, ~20b!

p3
l 5

1

b (
n

@Gk2s
n1 lGk12s

n1 l Gk2s
n 1~ l˜2 l !#,

~20c!

p4
l 5

1

b (
n

@Gk2s
n1 lGk12s

n1 l Gk2s
n1 lGk2s

n 1~ l˜2 l !#,

~20d!

p5
l 5

1

b (
n

Gk2s
n1 lGk12s

n1 l Gk2s
n Gk12s

n . ~20e!

In the low impurity density limit the energy splitting be
tween the bands is larger than the broadening of the ba
n

ds

due to the impurity scattering,Dt/\@1. The frequency
sums ~20! are evaluated in Appendix B, where the we
wave-vector dependence on the electron states at the F
level is disregarded consistent with the treatment of
chemical-potential shift above. Carrying out the Matsub
frequency sums over the internal energies at low temp
ture, we find that the correction to the dc conductivity due
the DW is

s150, ~21a!

s252
e2Ew

m (
s

Nsts

1

4
, ~21b!

s352
e2Ew

m (
s

Nsts

2

3
s

eF
s

D
, ~21c!

s45
e2Ew

m (
s

NstsFseF
s

2D
2S eF

s

D D 2 t11t2

10t2s
G ,

~21d!

s55
e2Ew

m (
s

Nsts

1

5 S eF
s

D D 2

. ~21e!

The contribution to the conductivity from the diagram
1–5 in Fig. 1 is

(
i 51

5

s i52
e2Ew

m (
s

Nsts

3F1

4
1

1

6
s

eF
s

D
2

1

10S eF
s

D D 2S 12
ts

t2s
D G . ~22!

The DW resistivity can be found fromrw52swr0
2, where

the DW conductivity change due to the rotating magne
field is sw5ds01( i 51

5 s i :

rw5
e2r0

2Ew

6m (
s

NstsFdeF

D
1

seF
s

D
2

3

5 S eF
s

D D 2S 12
ts

t2s
D G ,
~23!

where deF5(ssNseF
s /(sNs . The first term in Eq.~23! is

always positive, but the second and the third terms can
negative when the relaxation time of the minority-spin ele
trons is longer than the relaxation time for the majority-sp
electrons. However, as will be demonstrated below,
domain-wall resistivity given by Eq.~23! is always positive.
Our speculation about the possibility of a negative doma
wall resistance in Ref. 14 is thus not justified from Eq.~23!
only. The result~23! differs from that obtained in Ref. 6 fo
spin independent relaxation timests5t, where screening
was not taken into account, i.e., a constant chemical pote
and not a constant electron density was assumed. The r
also differs from the calculation in Ref. 7 based on the Bo
zmann equation. We believe that this latter discrepancy
because in Ref. 7 screening as well as the effect of the ga
transformation on the current operator~9! are neglected. The
latter corresponds to the neglect of the diagrams 1 and
Fig. 1. For sufficiently weak impurity scattering and/or
large spin splitting (Dt/\@1) the contribution from dia-
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gram 1, Eq.~21a!, vanishes, so only in this limit the omissio
of this diagram is justified. Furthermore, the difference in
Fermi wave vectors for the spin-up and spin-down electr
was disregarded in parts of the calculations in Ref. 7 and
approximation was introduced in order to solve the integ
equation for the Boltzmann equation. Indeed, assuming s
spin splittings (D/eF!1, butDt/\@1) in Eq. ~23!, we ob-
tain

rw

r0
'

3EwEF

20D2

~t12t2!2

t1t2
~24!

which is very similar, but not identical to the result in Ref.
In this limit, the domain-wall resistivity increases quadra
cally with the asymmetry in the spin-up and spin-down sc
tering lifetimes as pointed out in Ref. 7. For larger spin sp
ting, Eq. ~23! should be used.

It is also interesting to study the domain-wall resistiv
when the spin splitting is large, 2D.m, which is the case for
a half metallic ferromagnet in which the minority-spin de
sity of states vanishes,N250. In this regime we find

rw

r0
5

Ew

m F m

2D
2

3

5 S m

2D D 2S 12
t1

t2
D G . ~25!

The first term in Eq.~25! can be interpreted as addition
intraband scattering in the majority-spin channel due to
rotating magnetization and the second term as virtual tra
port in the minority-spin channel which has a negative c
tribution whent2.t1 . The domain-wall resistivity~25! is
always positive. In the limit of large spin splittingsD@m the
domain-wall resistivity vanishes, since the coupling betwe
the bands becomes vanishingly small. Note that the pre
formalism is valid only for wide walls, since the domain
wall scattering is treated as a perturbation.

Our perturbative result~23! can be checked against a
exact calculation for a spin spiral,du(z)/dz5a0 , aq
5a0dq,0 with spin independent lifetimests˜t. The detailed
calculation is shown in Appendix C. The Hamiltonian is d
agonalized in spin space byu65N6@1,i (17A11a2)/a#T,
whereN6 is a normalization constant,a5kza0 /p2, andD
5\2p2/2m. The corresponding eigenvalues areEk

6

5(\2/2m)(k21a0
27Akz

2a0
21p4). The ~Drude! resistivity

can be calculated from the Kubo formula,

rw5
e2r0

2Ew

2mD
t~n12n2!. ~26!

This is in exact agreement with Eq.~23! for aq5a0dq,0 when
t15t2 ; a good indication of the correctness of our pert
bation approach. The calculations in Refs. 6 and 7 disag
with the exact result~26! presumably due to the reasons ou
lined above.

The result for the domain-wall resistivity~23! can be ana-
lyzed by introducingkF

15AgkF , kF
25kF /Ag, t15Aht,

t25t/Ah, whereg5kF
1/kF

2 is a measure of the polarizatio
of the ferromagnet,h5t1 /t2 is a measure of the asymme
try of the scattering lifetimes,kF is the average Fermi wav
vector, andt is the average scattering lifetime. The doma
wall resistivity is proportional tok5EW/4EF . Typically in
Fe kF;1.7 Å , lW;300 Å , andnw;2.5 mm21 giving k
e
s
n
l

all

t-
-

e
s-
-

n
nt

-
ee

-

;1026, which means that the domain-wall scattering f
symmetric scattering lifetimes is very weak. However,
pointed out in Ref. 7, the domain-wall resistivity can becom
appreciably larger when taking into account the lifetim
asymmetry of the carriers. We show in Fig. 3 the sca
domain-wall resistivityrw /(kr0) as a function of the asym
metric scattering lifetimest1 /t2 in the case of a small spin
polarizationg51.01 ~solid line!, intermediate spin polariza
tion g51.20 ~dashed line!, and large spin polarizationg
510.0 ~dotted line!. For a larger spin polarization, th
domain-wall resistivity naturally becomes asymmetric in t
relative difference in the scattering lifetimest1 andt2 . The
domain-wall resistivity becomes noticeable for asymme
lifetimes and can become of the orderrw /r0;1%.

V. CONCLUSIONS

We studied the contribution of domain-wall scattering
the transport properties of a ferromagnet using an effec
two-band model. In a diffuse ferromagnet, the domain-w
resistivity is calculated from the Kubo formula. The domai
wall resistivity is found to be strongly enhanced when t
scattering lifetimes of the majority spins and minority spi
are different, in agreement with the results in Ref. 7. In t
ballistic regime, we have demonstrated how the domain-w
scattering creates an effective barrier that the electrons m
pass. The results from the two-band model give only v
small corrections to the resistance of the system.

First-principle band-structure calculations have sho
that the domain-wall resistance can be increased by orde

FIG. 3. The relative change in the resistivityrw /(kr0) due to
the scattering by the domain wall as a function of the asymmetr
the scattering lifetimest1 /t2 . The solid line is forg5kF

1/kF
2

51.01, the dashed line is forg5kF
1/kF

251.20, and the dotted line
is for g5kF

1/kF
2510.0.
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magnitude in the ballistic regime.8 It would be interesting to
perform a realistic band-structure calculation also for diffu
systems. However, the generalization of our two-band res
turns out to be cumbersome.14
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APPENDIX A: ADIABATIC APPROXIMATION

In the ballistic regime, it is most convenient to start wi
the Hamiltonian in its first quantized form, which after th
gauge transformation~2! readsH̃5H01V:7

H052
\2

2m
¹21Dsz , ~A1!

V5
\

2m
sya~z!pz2

i\2

2m
sya8~z!1

\2

8m
a2~z!, ~A2!

wherea(z)5du(z)/dz is the gradient of the rotating angl
of the magnetization anda8(z)5d2u(z)/dz2. The wave
function can be written as

C~r !5f~r!FAk~z!S 1

0D 1Bk~z!S 0

1D G , ~A3!

where f(r)5A21/2exp(ikir) is the transverse part of th
wave function@k5(ki ,kz)#, Ak(z) is the spin-up-like longi-
tudinal amplitude andBk(z) is the spin-down-like longitudi-
nal amplitude. The Schro¨dinger equation then becomes

S 2
d2

dz2
2v1

0 2a
d

dz
2

a8

2

a1
a8

2
2

d2

dz2
2v2

0 D •S Ak

Bk
D 5S 0

0D , ~A4!

where

v6
0 5k'

2 2a~z!2/47p2, ~A5!

k'
2 52mEF /\22ki

2 , and EF is the Fermi energy. The off
diagonal terms in Eq.~A4! describe the coupling between th
spin-up- and spin-down-like states. In the case of a spin
ral, a8(z)50, the eigenstates can be found to beAk
5Ak

0 exp(ikzz), Bk5Bk
0 exp(ikzz), where the dispersion of th

modeskz is determined by

k'
2 5kz

21a2/46Ap41q2kz
2. ~A6!

The coupling is weak when the gradient of the spin rotat
gradient is slow compared to the Fermi wavelength. T
e
lts

-

n

ro

i-

n
s

permits us to make use of a multiple scale analysis~or adia-
batic approximation!.16 This analysis is done by introducin
the small parametere, so thatv(z)˜v(ez), a(z)˜a(ez),
and da/dz̃ eda/dz and we introduce the new variableZ
5g(ez)/e, whereg(ez) is a scaling function.16 We expand
the longitudinal functionAk(z) andBk(z) to the lowest order
in the small parametere, Ak(z,Z)5ak

0(Z,z)1O(e). To the
lowest order in the small parametere, the equation to solve
is thus

S d2

dZ2
1

v1
0

~g8!2

a

g8

2
a

g8

d2

dZ2
1

v2
0

~g8!2

D •S ak
0

bk
0D 5S 0

0D . ~A7!

We now make the ansatzak
0(z,Z)5ak

0,0(z)exp(iZ) and find
that the scaling functiong is chosen such that

@~g8!22v2#@~g8!22v1#5p41~ag8!2 ~A8!

andZ5(1/e)*zdx g8(x), so that the adiabatic solution is

Ak~z!;a0~z!expS Ez

dx g8~x! D . ~A9!

Similarly we can find a solution forBk(z). Disregarding tun-
neling states which only give an exponentially small con
bution to the conductance, the number of propagating mo
is determined by the condition Im@g8(x)#50. From Eq.
~A8!, we see that the number of propagating modes is de
mined by the position wherea(z) attains its maximum, i.e.
the conductance can be calculated as for a spin spiral
a(z)˜amax.

APPENDIX B: FREQUENCY SUMMATIONS

The typical frequency sum to be performed is

p l5
1

b (
n

Xn1 lYn1~ l˜2 l !, ~B1!

whereXn andYn are Matsubara Green’s functions. They c
be written in the spectral representation

Xn5E
2`

` de

2p

SX~e!

ivn2e
, ~B2!

where the spectral function is determined by the retarded
the advanced function

SX~e!5 i @XR~e!2XA~e!#. ~B3!

Performing the frequency summation in Eq.~B1!, we get

p l5E
2`

` de1

2p E
2`

` de2

2p
SX~e1!SY~e2!

3F f ~e2!2 f ~e1!

iv l2~e12e2!
2

f ~e1!2 f ~e2!

iv l2~e22e1!G . ~B4!

The dc conductivity is obtained by an analytical continuati
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I[2 lim
v˜0

p l~ iv l˜v1 id!

v
~B5!

and we consider the limit of zero temperature (T˜0):

I 5
\

2p
SX~0!SY~0! ~B6!

5
\

p
Re@XR~0!YA~0!2XR~0!YR~0!#. ~B7!

The product of the two retarded~advanced! Green’s func-
tions vanishes when integrating over the energy since
poles are on the same side of the imaginary plane. The
can then be simplified to

I 5
\

p
Re@XR~0!YA~0!#. ~B8!

This relation will be used in the following in order to calcu
late the contributions from the diagrams 1–5~Fig. 1!.

We use

Gs8
R

~0!Gs
A~0!5

Gs8
R

~0!2Gs
A~0!

2 i ~ds1ds8!2~es2es8!
, ~B9!

whereds5\/(2ts) and obtain in the limitds!m the contri-
bution fromp1 to the conductivity

I 1'F11S es2es8

ds1ds8
D 2G21

tsts8

ts1ts8

@d~js8!1d~js!#,

~B10!

wherejs5es2m is the quasiparticle energy relative to th
Fermi level. In the case of no spin splitting (js

˜j) and
(ds˜d), the result isI 1'td(j). In the limit of strong spin
splitting, the result is vanishingly small~of order \/Dt
small!,

I 1'0. ~B11!

The sump2 gives a contribution

I 25
\

2p

]

]js

1

~js!21ds
2
'ts

]

]js
d~js!. ~B12!

The sump3 gives a contribution

I 352
\

p

1

~js!21ds
2

j2s

~j2s!21d2s
2

. ~B13!

In the limit of vanishing spin splitting and equal lifetime
the contribution isI 3't(]/]j)d(j), which agrees with the
result ofp2 as it should. WhenDts /\@1 ~large spin split-
ting! it is

I 3'2
2ts

e2s2es
d~js!. ~B14!

In the case of no spin splitting, the sump4 gives a con-
tribution
e
m

I 4'\F2
1

4
d~j!d231

1

8
d9~j!d21G . ~B15!

In the general case, we use

Gs
R~0!G2s

R ~0!5
Gs

R~0!2G2s
R ~0!

i ~d2s2ds!2~e2s2es!
. ~B16!

For large splitting the result is then

I 4'
2ts

e2s2es
d8~js!2

2ts

~e2s2es!2
d~js!

1

tsS 12
ts

t2s
D

~e2s2es!2
d~js!. ~B17!

Finally, the sump5 gives a contribution

I 55
\

2p

1

~js!21ds
2

1

~j2s!21d2s
2

. ~B18!

In the case of no spin splitting the sum is

I 5'\F1

4
d~j!d231

1

8
d9~j!d21G . ~B19!

For large spin splitting, we have

I 5'
1

~es2e2s!2
@tsd~js!1t2sd~j2s!#. ~B20!

APPENDIX C: SPIN SPIRAL

The spin-spiral system has a constant gradient of the
tating magnetization direction (aq5a0dq,0). We perform the
local gauge transformation~2!. The transformed Hamiltonian
is

H̃5
\2

2m (
k

ck
†S k22szp

21a0kzsy1
1

4
a0

2D ck , ~C1!

whereck is an annihilation operator in the spinor spin spa
and the exchange splittingD[\2p2/(2m) has been intro-
duced. The transformed current operator is

J5
e\

m (
k

ck
†S kz1

a0

2
syD ck . ~C2!

The Hamiltonian~C1! can be exactly diagonalized, and th
eigenvalues are

Ek
65

\2

2m S k21
1

4
a0

27Akz
2a0

21p4D ~C3!

with the corresponding eigenvectors

u65N6S 1

i ~17A11a2!/a
D , ~C4!

where the parametera[kza0 /p2 is introduced and the nor
malization factors are
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N6
2 5

a2

2A11a2~711A11a2!
. ~C5!

The annihilation operators are transformed asc5(u1 ,u2)a.
In the new basis, the current operator is

J̃5
e\

m (
k

ak
†S kz2

a0a

2A11a2

a0

2A11a2

a0

2A11a2
kz1

a0a

2A11a2

D ak .

~C6!

The dc conductivity is

s5
1

4p

\

V (
kss8

uJss8u
2Ak

sAk
s8 , ~C7!

where the electron spectral function (A522 ImGR) at the
Fermi level is

Ak
s5

\/t

~Ek
s2m!21~\/t!2

. ~C8!

Here we have inserted a phenomenological scattering
time, which is identical for the two eigenstates. Note that
cannot treat different scattering lifetimes for the minority a
majority states in the bulk ferromagnet with the method o
lined in this appendix, since the lifetimes appearing in E
~C7! are the lifetimes for the exact eigenstates in the s
spiral. In order to determine the relation between the diff
ent lifetimes, the general method described above in our
A

.

.

i-

g

y

c

e-
e

-
.
n
-
a-

per should be used. From Eqs.~C7! and ~C8! it can be seen
that the off-diagonal terms in the conductivityA1A2 are in
the order 1/(tD/\)2 smaller than the diagonal terms. W
further assume that the scattering by the domain wall
weak, i.e.,a0

2!p2 and a0kF
s !p2 and expand the result fo

the conductivity to the second order ina0. The conductivity
becomes

s5
e2t

6p2m
(

s
S km

2 2
a0

2

4
1sp2D 3/2S 12

sEw

4D D , ~C9!

where \2km
2 /(2m)5m and Ew5\2a0

2/(2m) are used. The
conductivity should be related to the electron density
eliminating any reference to the chemical potential whi
may change in the presence of the domain wall,

ns5
1

6p2 S km
2 2

a0
2

4
1sp2D 3/2S 11

sEw

4D D . ~C10!

Inserting Eq.~C10! into Eq.~C9!, the conductivity can there-
fore be written as

s5s0S 12
n12n2

n11n2

Ew

2D D , ~C11!

wheres05e2(n11n2)t/m is the Drude conductivity. The
domain-wall resistivity,rw52dsw /s0

2, is thus

rw5
e2r0

2Ew

2mD
~n12n2!, ~C12!

wherer051/s0.
J.
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