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We present extensive Monte Carlo spin-dynamics simulations of the claxsiaalodel in three dimensions
on a simple cubic lattice with periodic boundary conditions. A recently developed efficient integration algo-
rithm for the equations of motion is used, which allows a substantial improvement of statistics and large
integration times. We find spin-wave peaks in a wide range around the critical point and spin diffusion for all
temperatures. At the critical point we find evidence for a violation of dynamic scaling in the sense that
independent components of the dynamic structure f&&{qrw) require different dynamic exponents in order
to obtain scaling. Below the critical point we investigate the dispersion relation of the spin waves and the
linewidths of S(q,w) and find agreement with mode coupling theory. Apart from strong spin-wave peaks we
observe additional peaks & q,w) which can be attributed to two-spin-wave interactions. The overall line
shapes are also discussed and compared to mode coupling predictions. Finally, we present results for the
transport coefficienD (q, ) of the out-of-plane magnetization component at the critical point, which is related
to the thermal conductivity ofHe near the superfluid-normal transitig§0163-18209)06629-1

[. INTRODUCTION magnetization vector is always conserved in the presence of
energy conserving driving terms. If the model is ferromag-
The theoretical investigation of classical spin systems haBetic, the magnetization is the order parameter. However, for
played a key role in the understanding of phase transition®n antiferromagnet the magnetization plays the role of a
critical behavior, scaling, and universaliy.In particular, ~conserved vector which is dynamically coupled to tiw-
the classical Ising, th¥Y, and the Heisenberg model are the conservedorder parametetstaggered magnetizatipnThis

most relevant soin models in three dimensions. Each of the difference in the conservation laws causes the classical
P ) eisenberg ferro- and antiferromagnet to be in different dy-

simple models represents a universality class which, apaffamic universality classes although they belong to the same
from the spatial dimensionality and the range of the interacstatic universality class. Due to their fundamental role in the
tions, is characterized by the number of componénté the  understanding of the critical dynamics in magnets Heisen-
order parameter, e.g., the magnetization in the case of ferriserg ferromagnets and antiferromagnets have been thor-
magnetic models. Despite their simplicity these spin systemeughly studied analytically by mode coupling theorisse
continue to be of high relevance within the framework of Ref. 5 for a general overviewespecially in the presence of
dynamicbehavior near critical poirtssee also Ref. 4 for a dipolar interactiondand numerically by spin dynamics th
recent review. The Ising N=1), theXY (N=2), and the =2 (Ref. 7 and ind=3 (Refs. 8,9 and by methods closely
Heisenberg I{=3) universality class can be extended to-'€lated to molecular dynamics.

wards dynamic universality classes, which in addition to The XY model may be viewed as a Heisenberg ferromag-

their static properties are characterized by the set of consen-et with an easy-planexy) anisotropy such that the order
. 5’ pert . y arameter has only two components. Planar ferromagnets are
vation laws? Special attention must be paid to the presenc

§ o ) . ealized by layered compounds such agCKF, (Ref. 11
of energy conserving driving terms in the equations of mo-5q RBCrCl, (Ref. 12 which almost act as two-dimensional
tion which lead to propagating modéspin wavegbelow the  systems. The best results available today have been obtained
critical temperature and thus modify the dynani@e dis-  on CoC}, intercalated in graphit® where a crossover from
crete nature of Ising spins does not allow such terms so thaivo-dimensional to three-dimensional behavior in the corre-
its dynamics is always of relaxational tyfeee Ref. 3 for a lations has been observed below the Kosterlitz-Thouless
complete classification temperature. Apart from the evident interpretation as a planar
The simplest spin model which allows propagating modegerromagnet theXY model captures a larger variety of phe-
is a particular version of the ferromagnetcy model (N nomena than the Ising or the Heisenberg model. Despite its
=2). The dynamics here is characterized by a nonconservesbntinuousO(2) symmetry theXY model undergoes a con-
order parameter which is dynamically coupled tocan- tinuous phase transition at a finite temperature in two dimen-
servedquantity (see Sec. )l The presence of spin waves sions, known as the Kosterlitz-Thouless transifidiRather
reduces the value of the dynamic critical exporeas com-  than by the onset of long-ranged order the transition is solely
pared to pure critical relaxatichThe same is true for the characterized by a diverging correlation length, when the
isotropic Heisenberg model for which tiN=3 component critical temperature is approached from above. Due to a pe-
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culiar conspiracy between the spatial dimensionadity2  present in experiments one has to replace ma&dély the
and the number of spin compones-2 configurations of more complicated mod&.®%*2>?%From the point of view of
bound and free vortices dominate the critical behavior of thespin dynamics simulations this means that one has to look
XY model, where the unbinding of vortex pairs marks thefor sources of such nonasymptotic behavior artificially gen-
point of the phase transitioff. Naturally, many attempts to erated by the simulation method and other nonasymptotic
describe the critical dynamics of ti€Y model ind=2 theo-  corrections not captured by the model or the metksee
retically are based on the dynamics of vortices and vortexsec. I). Apart from these problems, it should also be men-
pairs®~8 According to analytical and numerical investiga- tioned that the dynamical mod& has two renormalization
tions for the ferromagnetic ca$s'®the in-plane component group fixed points. One of these fixed points yields dynamic
S.,(0,w) and the out-of-plane componeB,(q,w) of the  scaling with a single dynamic exponentd/2 in d dimen-
dynamic structure factor are expected to have central peakdons, whereas the other gives rise to a weakation of
above the transition. The line shapes of these peaks are prdynamic scaling. Theoretical argumeftt®?® and experi-
dicted to be squared Lorentzian and Gaussian, respectivelinental evidence indicate that the latter fixed point is the
Below the transition only spin-wave peaks are expetfed. stable one for*He in d=3, i.e., the critical dynamics is
To test these specific predictions much numerical effort hasharacterized by two different dynamic exponenjs(order
been spent on spin dynamics simulations ofXdémodel in  parameterandz,, (conserved quantitywhich fulfill the scal-
d=2 2921 Although dynamic finite-size scaling and the valueing relation z4+z,=d. Their differencew,=z4—2,#0
of the dynamical exponere=1 has been confirmed to a has the nature of a dynamic Wegner exponent and is known
high degree of confidenéd,the measured line shapes of as thetransientexponenf>2?
S(q,w) (Refs. 20,21 are apparently not well captured by  The remainder of the paper is organized as follows. In
analytical theoriegsee Ref. 4 for details It is therefore in- Sec. Il we present the model and the simulation methods
structive to measur&(q,w) for the XY model ind=3 for  used to generate equilibrium configurations and to obtain the
which configurations of bound or free vortices do not playcritical point of the model and its static critical exponents.
any special role for the critical behavior and should thereford-urthermore, the equations of motion and the method used to
not provide particularly noticeable contributions to the struc-integrate them numerically are presented. In Sec. Il we
ture factor. Ind=3 the dynamics of the planar ferromagnet briefly discuss the static critical behavior of our model and
has been investigated by mode coupling théoand specific  present an accurate estimate of the critical temperature. Sec-
predictions concerning line shapes and linewidths have beelfpn IV is devoted to the discussion of the dynamic structure
made which can be compared with our dégee Sec. IV. factor and the comparison with predictions of analytic
It is well known that thex transition of*He is in theXY  theory. In Sec. V we present results for the lattice analog of
universality class, but the applications of tK& model for the thermal conductivity and discuss its scaling properties. A
the physics of*He reach far beyond that. The spin dynamicssummary and prospects for future work are given in Sec. VI.
for the XY model is the lattice analog of the dynamical Unless otherwise stated statistical errors quoted in this work
model E (symmetric planar ferromagrigtwhich asymptoti- ~ correspond to one standard deviation.
cally also describes theritical dynamicsof “He near thex
line 223-25f one therefore studies the transport properties of Il. MODEL AND SIMULATION METHOD
the XY model near the critical point., one should obtain ] S
lattice analogs of the corresponding transport coefficients of The system under investigation is given by a ferromag-
“He near thex transition. In this respect the aforementionedn€tic Heisenberg model with the strongest possible easy-
conserved quantity plays a particularly interesting part, bePlane anisotropy. The model Hamiltonian reads
cause it is related to the entropy density’ide and its asso-
ciated transport coefficient corresponds to the thermal con- _ XX
ductivity of “He (Refs. 23,25 which is an experimentally H= J(% (S'5+575)), 2.
accessible quantitf Below the critical temperature spin
waves in theXY model then correspond to travelling waves where (ij) denotes a nearest neighbor pair of spins on a
of second sound iffHe. These propagating modes cause thesimple cubic lattice in three dimensions. The lattice contains
thermal conductivity to diverge at the lambda transition ofL lattice sites in each direction and in order to avoid surface
bulk *He?3?® In a finite system such as our simulation effects periodic boundary conditions are applied. Each spin
sample, one therefore expects critical finite-size rounding of; is a classical spirs=(S',S’,S) with the normalization
the thermal conductivity, which can be studied in the frame{S|=1. The easy-plane anisotropy in E&.1) is the stron-
work of the spin-dynamics simulation and which should alsogest possible in the sense that theomponents of the spins
be observable in experiments. do not couple, so that E@2.1) looks similar to the standard
To what extent the spin-dynamics simulation actuallyHamiltonian for the usualplane rotator XY model.
captures the critical dynamics dfHe is a rather delicate As a starting point for the spin dynamics a sequence of
guestion. Although th@symptoticbehavior is described by equilibrium configurations is needed to provide initial condi-
model E, the actualcrossoverto the asymptotic behavior, tions for the equations of motion. These configurations are
i.e., the decay ofhonasymptoticorrections is governed by obtained from a Monte Carlo simulation of the model Hamil-
the specific heat exponeat=—0.013%" which is so small  tonian given by Eq(2.1). The Monte Carlo algorithm chosen
that the true asymptotic behavior will never be seen in d@s a hybrid scheme, where each hybrid Monte Carlo step
simulation. From the point of view of analytic theory this (MCS) consists of 10 updates each of which can be one of:
means that in order to capture the nonansymptotic effectesne Metropolis sweep of the whole lattice, one single cluster
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Wolff update?® or one overrelaxation update of the whole same units. From the symmetry of Hg.1) it is evident that
lattice® The Metropolis algorithm updates the lattice sequenthe component#, and M, of the magnetizatioM =X, S,
tially in the standard way. According to the detailed balanceare not conserved under the dynamics given by @®).
condition we choose the acceptance probabifyBAE)  Note that the two-component vectokl(,M,) is the order
=1/[exp(BAE)+1] for a single spin flip, where\E is the  parameterof the XY model. Thez or out-of-plane compo-
change in configurational energy according to Ej1) and  nentM, of the magnetizatioM is just the conserved quan-
B=1(kgT). tity within the framework of modeE dynamics we have
The Wolff algorithm also works the standard w&yex-  already referred to in Sec3INote that Eq(2.1) is invariant
cept thatonly the x andy components of the spins are used yith respect to the transformatiod,——M, which is a
for the cluster growth. This means that a cluster update nevefymmetry required by modé.
changes the component of any spin so that the Wolff algo- ~ For the comparison of the critical spin dynamics with the
rithm is nonergodic in this case. Our cluster update is still &yitical dynamics according to modd it is important to
valid Monte Carlo step in the sense that it fulfills detailed eglize, that the configurationahergyis anadditional con-
balance, however, in order to provide a valid Monte Carlogignt of motion, because E(R.2), in contrast to the coarse
algorithm it has to be used together with the Metropolis al-grained modeE, does not contain relaxation. Whether en-
gorithm described above in a hybrid fashion. The use okrgy conservation is a reasonable assumption for the dynam-
Wolff updates allows us to take advantage of improvedics of the XY model or any other classical spin model is a
estimatorg’ for magnetic quantities. _ _ question of the time scales to be resolved. The most impor-
The overrelaxation part of the algorithm performs a mi-tant time scale for our investigation is set by the propagating
crocanonical update of the configuration in the foIIovying modes(spin wavesin the system and for these the configu-
way. The local configurational energy has the functionalational energy is indeed constant. Within the time scale of
form of a scalar product of the spins, where according to Egthe spin waves thermal averages can therefore be replaced by
(2.1) only thex andy components are involved. With respect ayerages over the initial configurations from which the time
to the sum of its nearest neighbor spins each spin has tegration of Eq.(2.2) is started. For much longer times
transverse component in they plane which does not enter rejaxation processe®quilibration with the heat batttome
the scalar product. The overrelaxation algorithm simplyjnto play which violate energy conservation and render our
scans the lattice sequentially, determines this transversgn-dynamics approach invalid. In the vicinity of the critical
component for each lattice site and flips its sign. This doegoint energy conservation becomes particularly important,
not change the local configurational enerdy(=0) and by  pecause the dynamic universality class may change under the
virtue of the usual Metropolis acceptance functidlBAE)  influence of an additional conservation law. If modelis
=min[exp(-BAE),1] the update is always accepted. Along agugmented by energy conservatiomodelE’, see Ref. 2Bit
with this simple operation the sign &f is flipped with prob-  turns out that the energy asymptotically decouples from the
ability 1/2 at each lattice site which according to E8.1) ~ order parameterM,,M,) and the conserved out-of-plane
also does not change the energy of the configuration. ThigagnetizatiorM, and modelE critical behavior is restored.
overrelaxation algorithm is similar to the one used in Ref. 8However, energy conservation may introduce corrections to
and it quite efficiently decorrelates subsequent configurationghe asymptotic finite-size scaling behavibmwhich decay
over a wider range of temperatures around the critical pointery slowly and may cause ambiguities in the scaling analy-
than does the Wolff algorithm. Typically, we use three Me-sijs of the spin-dynamics data. Note that these corrections are
tropolis (M), five single cluster Wolff C), and two overre-  generated by the spin-dynamics method.
laxation updategO) in a hybrid Monte Carlo step in the  The equations of motion given by E.2) are integrated
critical region of ourXY model. The inividual updates are numerically for each initial spin configuration by a recently
mixed automatically in the program so that the update sedeveloped decomposition meth&tThis method guarantees
quence MCCMOCMCCQ is generated as one hybrid exact energy conservation and conservation of spin length
Monte Carlo step in this case. The random number generat¢g,|=1 and conserve$/, within its numerical truncation
we use is the shift register generator R1279 given by therrors. For the present study a second order integrator is used
recursion relation X,=X,_,®X,_q for (p,q)=(1279,  with the time stepst=0.050. This time step guarantees suf-
1063). Generators such as this are known to cause systematigient accuracy with respect to the conservatiovigfand is
errors in combination with the Wolff algorithif;however,  much faster than well-known predictor corrector methibds.
for lags (p,q) as large as the ones used here these errors wifor some accuracy and stability tests the time step has been
be far smaller than typical statistical errors. They are furtheincreased tost=0.1/J which still yields sufficient accuracy

reduced by the hybrid nature of our algoritfifn. for the dynamic structure factor. Fourth order integrators are
The spin dynamics of th&Y model is defined by the much more accurate as far &, conservation is concerned,
equations of motion but their internal complexity makes them much slower than a

second order method for the same time sSteMoreover,
d IH statistical errors are not decrased significantly by fourth order
&S;Ex Sc (2.2) methods and we therefore only report results obtained by the
second order method. The equations of motion are integrated
where’H is the Hamiltonian defined by E¢2.1). One may to a final time of 800J and thermal averages are taken over
interpret Eq.(2.2) as the direct classical analog of the 1000 initial configurations. All error bars of dynamic quan-
Heisenberg equations of motion for spin operators, wiiere tities correspond to one standard deviation. The simulations
=1 so that energies and frequencies are measured in theve been performed on various DEC alpha AXP, IBM
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RS6000, and HP RISC8000 workstations both at the RWTHorresponding estimate 0.5890.0020 found in Ref. 35

Aachen and the BUGH Wuppertal. which already gives some evidence that the planar Heisen-
berg variant of theXY model studied here is indeed a mem-
ll. STATIC PROPERTIES OF THE XY MODEL ber of the staticXY universality class. N
. . The critical exponents are estimated from the critical
A. Thermodynamic properties finite-size scaling behavior of the average modulus

The basic ingredient for the spin-dynamics simulation is( \/Mx2+ My2> of the order parameter, the average square
provided by the sequence of initial spin configur:’ations,(MiwL Mf,) of the order parameter, and the temperature de-
which has to be generated according to the canonical enivative of the latter. AtT=T,, i.e., K=K one finds the
semble in order to provide well defined thermal averagesleading scaling behavior
Therefore, the static behavior of th€Y model and espe-
cially the location ofT, have to be determined first. For this L 3(IME+ MO ~L A L M+ My ~LY",
purpose we employ the hybrid Monte Carlo scheme de-
scribed above for lattice sizésbetweenL =20 andL =80.

For each system size and temperature we perform 10 blocks
of 10° hybrid steps for equilibration followed by 1®ybrid ) ) N
steps for measurements. Each measurement block yields #fth the system sizé, whereB, y, and v are the critical
estimate for all static quantities of interest and from these wé&xponents of the order parameter, the susceptibility, and the
obtain our final estimates and estimates of their statisticaforrelation length, respectively. During the data analysis it
error following standard procedures. The integrated autocofrns out that corrections to scaling can be ignored within the
relation time of our hybrid algorithm is determined by the Statistical error of the quantities in E(B.3). From our esti-
autocorrelation function of the energy or, equivalently, themateK.=0.6444 and.= 20, 24, 30, 36, 40, 50, 60, and 80
modulus\/m of the order parameter, which yield the W& find the following values for the critical exponents:

J
2.0 N2\ 1w
ﬁ|n<Mx+ My> L (3.3

slowest modes for the Wolff algorithm. The autocorrelation _ _
times are generally rather short,Tat (see belowthey range plv=0.5178-0.0024, y/v=1.9650.005, (3.4)
from about 5 hybrid MCS fok = 20 to about 10 hybrid MCS 1/v=1.494+0.013. '

for L=80. For comparison, the autocorrelation function for

the order parameter itself yields an autocorrelation time offhese values satisfy the scaling relatigd/2+ y/v=d. Fur-

less than one hybrid MCS. The values for the equilibrationthermore, we directly obtain from Eq3.4) »=0.6693

and measurement periods given above thus translate t60.0058, 7=0.035£0.005, y=1.315-0.012, and B

roughly 100 and 1000 autocorrelation times, respectively=0.3467-0.0034 in very good agreement with previous

which is sufficient for all practical purposes. In order to ob-Monte Carlo estimatés and renormalization group theory

tain the best statistics for magnetic quantities a measuremefar the O(N=2) Ginzburg-Landau modéf. The critical ex-

is made after every hybrid MCS. ponenta of the specific heat can be obtained from, e.g., the
The critical temperaturd is determined by monitoring hyperscaling relation, but the statistical erronaf too large

the temperature and size dependence of the Binder cumulatd exclude logarithmic behaviow(=0). Apart from this de-

ratio. Specifically, we measure the cumulants ficiency our simulations confirnXY-like critical behavior
y . for our version of theXY model[see Eq.(2.1)] quite accu-
B (M) . {(MZ+EMD?H) rately. In the followingkgT is measured in units af chosen
up=1- 3<MX7>2 and u;=1- 3<MX7+ My7>2 : such thatkkgT,=1.
(3.1
) o ) B. Static structure factor at criticality
It turns out thatu, is more sensitive to changes in tempera- . i ) . ) .
ture and system size so that we only usefor the final We continue this section with a short discussion of the

fine-tuning of the temperaturE. For convenience the tem- Static Spin-spin correlation functidstructure factorG(q) at
perature is expressed as the dimensionless reduced coupliif critical temperature. The static structure factor is the spa-
K=J/(ksT), whereK .=J/(ksT.) denotes the critical point. tial Fourier transform of the spin-spin correlation function
From standard procedu?’és we obtain K;=0.64440 e "

+0.00005. For comparison we mention thét=0.45420 Gup(Ri~ R)=(S"S)) ~(SUS)), @5
+0.00002 for the standard plane rotatély model on a wherea,p refer to spin the component®; andR; denote
simple cubic lattice ind=3.3°> By ignoring corrections to lattice vectors, and the thermal average is indicated by
scaling and averaging over the measurements lfor (...). Note thatG,z=G,z(Ri—R;)=G,s(R;—R;) due to

=40, 50, 60, and 80 we find the estimates translational invariance and reflection symmetry of the sys-
tem. The spatial Fourier transform is therefore given by a
uy =0.3782-0.0015 and uj=0.5859+0.0008 cosine transform which we use in the form
(3.2
for the valuesu? andu} of the cumulants defined by Eq. Gap(d) =2 Gap(Ri)COSY-R; . (3.6)
|

(3.1) at the critical point. Note that fak =0.6444 the value
of u; remains within two standard deviationsigf for all L. ~ With respect to the spontaneous magnetization of Xhe
Our estimate fou3 is within two standard deviations of the modelG ,4(q) has a transverse componéy(q) and a lon-
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gitudinal componenG,(q). In our Monte Carlo simulation 0.1 -

we measurés; and G, by rotating the coordinate system of L=20 =~
the spins around the axis such that the random but finite '\, L=40—
magnetization vectorNl,,M,) is aligned with they direc- L=60 =
tion. Thex and y components of the spins in the rotated 0o1h L=80 =
frame then correspond to the transverse and the longitudinal 9,(ab) ---
spin components, respectively, and their correlation func- G.(q)/Lz_" .

tions yield G;=G,, and G;=G,,. It should also be men- p <

tioned that the out-of-plane componeaj,(q) of the static 0.001 F . <L,
structure factor is independent qfand does not show any *\n__ R

critical behavior. According to Eq3.6) the normalization of ) *. :
Ga@(q) is such fchaGaB(q=O)=kBTXaB, where.)(q[.g isthe | T
static susceptibility. Note th&,(q=0) =0 by definition and o
that G,(q=0)=kgTx’, wherey’ is the magnetic suscepti- 0.0001 0 an 8t 12n  16m  20;m  22n
bility with respect to themodulusof the magnetization. We qL

furthermore limit the discussion to th@00) direction, be- FG. 1 i ot § L7 gt T=T. for L=2
cause other lattice directions do not provide new information  7'G: 1. Scaling plot forG(q) at T=T, for L.=20

; . . (¢), 40 (+), 60 (@), and 80 () as a function ofgL with »
on a S|mplg Cuplc Iatt|ce.. The Componentsq)are always =0.035. Statistical errors of the data are much smaller than the
measured in units of the inverse lattice contant.

o . | sizes. Th hed line displays the scaling funcj6mlL
At T. the longitudinal componen6,(q) of the static symbol sizes. The dashed line displays the scaling fungjeaL)

. . i by Eq.(3.9 f =3.70 andb=4.35. Note thatqL
structure factor can be described by the model function iSZ(g};Iigrreyspoi(gs tg tﬁ; grillouin fgne boundary(t)metzo.aq
Gi[q=(9,0,0)]=L* "g,(qL)h(q), 3.7

where 2-7=1y/v is taken from Eq. (3.4, h(q)
=[(q/2)/sin@/2)]? captures lattice effect€,and the finite-
size scaling functiomg, (x) is chosen as a simple generaliza-
tion of a Lorentzian

initial spin configuration has evolved according to the equa-

tions of motion[see Eq.(2.2)]. The averag€- - -) is taken

over the set of initial configurations as described in Sec. II.

Note thatS,; is also symmetric with respect ®; and R;

[see EQq.(3.5]. As the second argument only the time dis-

9i(x)=a~ @~ M[ 1+ (x/b)2]~ @M, (3.9 placement enters, because.the equations of motion are invari-

ant under the transformatio§— —S, t——t [see Egs.

The parametera andb are determined from a fit to the data, (2.1) and (2.2)]. The space-time Fourier transform is there-

where a and b are independent of. We have chosem  fore also given by the cosine transfofsee Eq.(3.6)]

=3.70 andb=4.35 as obtained from a fit to the data for

=60. ForL=40 andL=80 a and b are found within less

than 1% of these values, fdr=20 they are about 3% o

smaller. Despite its simplicity the model function given by Saﬁ(q’“’)ZZ/WJO Z Sap(Ri,[t])cosq- R; coswtdt.

Eq. (3.7) captures the shape of the Monte Carlo estimate for 4.2

the longitudinal component of the structure factor remark-

ably well. The finite-size scaling analysis of our data for

Gi(q) for smallqg, is shown in Fig. 1. Deviations from finite- Note that the normalization in Eq4.2) is such that

size scaling set in agL=4m for L=20, the data fol.  [{S, ;(q,0)do=G,4(q), whereG,,4(q) is the static struc-

=40, 60, and 80 collapse within the error bars upgtio  ture factor defined by E(3.6).

= 6. Within the symbol sizes data collapse is obtained up The out-of-plane componers,,(q,») of the dynamic

to gL= 10w, where lattice effects set in. For comparison thestructure factor is associated with the conserved out-of-plane

model scaling functiorg,(qL) [a=3.70 andb=4.35, see magnetizatiorM,, i.e.,Z;S,(R; ,|t|) [see also Eq4.2]is a

Eq. (3.8)] is shown by the dashed line in Fig. 1. The true constant in time. The in-plane magnetizati@ider param-

scaling form ofG,(q) for smallq is captured rather well by etep (M,,M,) is not conserved under the spin dynamics.

gi(x). However, the choice of the model function is, of Although the time scale set by the motion Mf, andM, is

course, not unique. considerably larger than typical time scales set by spin
waves, all initial differences between longitudinal and trans-
IV. THE DYNAMIC STRUCTURE FACTOR verse components of the spin correlations completely disap-

, ) . pear during the integration of the equations of motion. We
The dynamic structure factdd(q,w) is the space-time  iharefore only discuss the average of #heand theyy com-
Fo.urler transform of .the position and time dllsplaced SPiNyonent of S(q,w) and refer to it as the “in-plane compo-
spin correlation functiorS, 5(R;— R;,|[t—t'[) which we de- o S (G, ).
fine by[see Eq(3.5)] We now turn to the discussion &(q,») above, below,
LRt e e\ SB()) _ (Q 811 and at the critical point. The correlation functions are mea-
Sap(Ri =Ry, [t=UD=(STOF) —(SHONS (). sured up to a time displacement of 40@way from critical-
4.1 ; L
ity, where only smaller systems are considered. At the criti-
The indicesa, refer to spin components}; andR; are  cal temperature we measure correlations up to Bdor
lattice vectors, antlandt’ are moments in time to which the systems with up td. =60 lattice sites in each direction.
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FIG. 3. Out-of-plane componerg,, of the dynamic structure
FIG. 2. In-plane componer8,, (¢ ) and out-of-plane compo- factor in the (100 direction for T=1.1T., L=30, andg=#/15

nentS,, (+) of the dynamic structure factor in t&00) direction (0), q= _ —
i - = ) . : , g=27/15 (+), g=3#/15 (O), q=4=x/15 (X) as a func-
for T=1.1T., L=30, andg= 7/15 as functions of the dimension- tion of the dimensionless frequenayJ.

less frequencyw/J. For small enoughw the line shapes are well
approximated by Lorentzians given by E4.3) (solid line) and Eq.
(4.4) (dashed ling respectively. The ranges over which the Lorent-
zian approximation is valid differ significantly f&,, andS,,.

w(/15)=0.030 is indeed finite within its statistical error of
roughly 10 3. However, Eq(4.4) only captures the shape of
S,; up to w/J=0.15. If Eq.(4.3) [w(7/15)=0] is used in-
A. The structure factor above T, stead, this frequency range becomes even smaller. This dis-
crepancy in frequency range between the in-plane and the
out-of-plane components &(q,») may be due to the dif-
ference in time scales between in-plane and out-of-plane
modes as predicted by mode coupling theGry.
Spin-wave signatures are still visible$,atT=1.1T. as
own in Fig. 3, wheré,, is plotted for the first four mo-
mentaq=nm/15, n=1,2,3,4. Fom=2 a very broad maxi-
mum becomes visible which moves to the right gsn-
creases. The appearance of spin-wave signatui®s above
WTc is expected from renormalization group theory for model
E dynamics?® For theq values used in Fig. 3 the shape)f,
is captured quite well by the Lorentzian defined by Eq4).
Due to the small enhancement of the line intensity over the
signal level ato=0 the peak positionw(q) and linewidth
e R . . I',Aq) are not very well defined. We therefore refrain from a
by the solid line in Fig2 a simple Lorentzian of the form more detailed analysis at this point. The frequency depen-
A% (q) dence of the in-plane componeRy, is dominated by a cen-
S S (4.3 tral peak as in Fig. 2 for alfl. Only for largeq near the
1+[w/l“2x(q)]2 Brillouin zone boundary a shoulder appearsSy near the
position of the spin-wave peak i8,,. We illustrate this in
Fig. 4, whereS,, andS,, are shown foig= 7. Note thatS,,,

In order to avoid effects of criticality we choose the tem-
peratureT=1.1T in the following. Due to the absence of
critical finite-size scaling at this temperature we limit the
spin-dynamics simulations to smaller systems with 20,
24, and 30. For better momentum resolution we only present,
results obtained fob. =30, smallerL yield identical results
with a lower resolution ing. We also limit the presentation
to S(qg,w) in the (100) direction, other lattice directions pro-
vide essentially the same information. In Fig. 2 we sho
S.[d=(9,0,0),w] and S,/ q=(q,0,0),w] for g==/15 as
functions of the dimensionless frequeneyJ. Both compo-
nents apparently display a central peak without any addi
tional features. For the values ®fandq used in Fig. 2 one
expects a central peak of Lorentzian sh&pés displayed

Lyx(0, @)

characterized by an amplitudféegx(q) and a widthl“gx(q)

captures the shape &, very well up t0w/J=0.4, where  \nich is much smaller thais,, for small q (see Fig. 2,
the intensity has already dropped by an order of magnitudeDecomes comparable 8, in r?agnitude for largay. In a
For largerw Sy, decays faster than a Lorentzian. If one triesqualitative sense we havxe recovered the same behavior as
to fit the line shape 0§,, also with a Lorentzian for smaib, observed by spin-dynamics simulations of %¥ model in

it turns out that a better fit is obtained from a superposition;_ 5 opove the Kosterlitz-Thouless transith
of symmetrically placed Lorentzians. We use '

A;AQ) B. The structure factor below T,
Leddw)= 1+{[o—w(q))/T,£q)}? As before we want to avoid critical finite—'size effects also
below T, and we therefore choose=0.9T in the follow-
A LQ) 4.4 ing. Again relatively small systems are sufficient for this
+ ' . investigation. Our main results have been obtained Lfor
1+ {[w+o(a) T;40)}? ;

=30, smaller systems vyield the same results at a logver
wherew(q) denotes the spin wave frequency which is usedesolution. The dynamics of theY model belowT is domi-
as an additional fit parameter. The dashed line in Fig. 2 dispated by spin waves which are visible #(q,») as pro-
plays the Lorentzian fit fos,, according to Eq(4.4), where  nounced peaks at the spin wave frequengy) as shown in
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FIG. 4. In-plane componer8,, (<) and out-of-plane compo-
nentS,, (+) of the dynamic structure factor in t{&00) direction FIG. 6. Dispersion relatiom(q) (<) in the(100 direction for
for T=1.1T,, L=30, andq= = as functions of the dimensionless T=0.9T; andL=30. The solid line is thd =0 dispersion relation
frequencyw/J. A shoulder appears at the position of the spin waveobtained from linear spin wave theofgee Eq.(4.6)]. The dashed
peak inS,,. line is a fit to the first two terms of the Fourier series given by Eq.

4.7

Fig. 5 forg= /15 in the(100) direction. The peak intensity : )
of S, is more than one order of magnitude larger than theenergy(frequency. The differencebetween the correspond

corresponding peak intensity &f,. S, also displays a pro- ing frequencies is marked as (1) in Fig. 5, theumis
z X . .
nounced central peak, where the intensity exceeds the intermir:flds?gf%'eﬁlgg)cg{;gcggz It: tgeéo?n%?:;rltwglgni?v@:\tes
sity of S,, by over three orders of magnitude. In a qualitativeﬁ',l the (100) direction, one af=/15 the othper at
sense this is again the same behavior as observed i?° ’ 9

) . =2m/15, where again the latter has a higher energy. The
where the central peak i8,, was not expected by analytical . SR :
16 ' » : - sumof the corresponding frequencies is marked as (3) in
theory.” We also find some “fine structure” at low intensi-

ties in S, for which no theoretical predictions exist. In Fig. Fig. 5 theirdifferencealmost coincides with the position of

5 we have marked these additional resonances by arrows. ,&rs]e spin wave peak and can therefore not be resolved.

. . In order to monitor theg dependence of the spin wave
demontrated already id=2 (Ref. 20 these signals can be . -
interpreted as two-spin wave peaks in the following way. Infrequencyw(q) and the line widthd ,,(q) andI’;(q) of the

o B . spin-wave peaks, we again employ fits to simple Lorentz-
order to produce a contribution t8,, at q=/15 in the . o .
(100 direction one can combinewo spin waves atq ians. For the in-plane component we generalize B®) to

= /15, one in the (010) direction, which is eqgivalent to theInCIUOIe the spin-wave peaks

(100) direction on a simple cubic lattice, and one in the L (q.0) A% (q) An(Q)
110) direction(not shown, where the latter has a higher qw)= +
(110) ( " gher ot oM@ 1+{[w- 0@ )Tl )}2
1000 . A
. S xx(Q) . @5
100 F . Szz ] l+{[w+w(q)]/rxx(q)}
m = For the out-of-plane component we use E4) which cap-
10 l PRI @ tures the shape @&,, for sufficiently small frequencies in a
" . '-,‘! ‘ 3) satisfactory way. The dispersion relatia(q) can be ob-
S(g,m) 1F !‘”ﬁw" l tained from Eq.(4.5 or Eq. (4.4), where the latter yields

i3 e
0.01 g,

Ervte
Hioen,
N !ﬁ.k i 3

0.001 L L L
0 0.2 0.4 0.6
o/J

0.8 1.0 1.2 1.4

slightly smaller error bars, becausg, displays a sharper
spin-wave maximum. The estimates fe(q), I',,(q), and
I',{q) depend on the frequency range over which E4<5)

and (4.4) are fitted toS,, and S,,, respectively. We have
chosen a frequency window around the spin-wave peak,
where forS,, the central peak has been subtracted first. The
error in the dispersion relation and the line widths is esti-
mated by varying the size of the frequency window from

about 1.2 times the half width to about twice the half width
nents,, (+) of the dynamic structure factor in t{@00) direction ~ Of the peak. The dispersion relatiar(q) obtained from this

for T=0.9T,, L=30, andq= /15 as functions of the dimension- Procedure for the(100 direction is shown in Fig. 6, the
less frequencyw/J. Apart from the dominant spin wave peak addi- correpond.lng. zero tempgrathe.dISpel’Sllon relation is shown
tional resonances appeardg, (arrows at low intensitiegsee main by the solid line. According to linear spin-wave theory one
text). obtains

FIG. 5. In-plane componerg,, (<) and out-of-plane compo-



3382 M. KRECH AND D. P. LANDAU PRB 60

1o 0.18
@@ /S ]
— parabolic fit R { 0.16 |
0.8+ ---- Fourier fit {{ { 014l
A 012}
06 ¥ |
. 0.10 |
L/ J e r/y
- 0.08 |
0.4}
0.06 |
02t ] 0.04
0.02}
0 L O ’,I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 £ s & an T 1 4 9 16
q a7 @whsy
10 o FIG. 8. Extrapolation of the linewidthE,(q) (solid line) and
—— parabolic fit I',(q) (dashed lingto q=0. The linewidths vary ag? for smallq
08l ---- Fourierfit } as predicted by mode coupling thedsee main tejt
0 - o
1 =—0.4559 which is shown by the dashed line in Figa)7
06| /I 1 The statistical error oy andb; is about 510 “. The data

for smallq are represented quite well, whereas near the Bril-
louin zone boundary significant deviations occur. These can
be reduced very quickly by including higher Fourier modes
in the fit (not shown, where the higher Fourier coefficients
decrease rapidly in magnitude. Here, we are primarily inter-
ested in theg dependence of the linewidth near the center of
the Brillouin zone(see below. A corresponding analysis has
been performed for the linewidth,,(q) of the spin wave
q 3 5 peak in the out-of-plane component of the structure factor.
The result is shown in Fig.(B), where the Fourier coeffi-
FIG. 7. Linewidths(a) I'y,(q) and(b) I';(q) of the spin-wave cients in the fitdashed lingare given byb,=0.4160(5) and
peak inS,, for the (100) direction, T=0.9T, andL=30. The solid  b,=—0.416%5). Again the smallq behavior is captured
lines are parabolic fits to the first four data poigse Fig. 8 The  very well by the fit, but near the Brillouin zone boundary
dashed lines are fits with the first two terms of the Fourier seriegjeviations occur which can also be reduced very quickly by

Iz2/J
04F

02f

o

ala
nl

I3
(]
a
-~
A

a

given by Eq.(4.8). including higher Fourier modes.
The limit g— 0 is of particular interest for the linewidths,
w(q)/J=2\/ﬁsin(q/2), (4.6) because it reflects the influence of conservation laws on the

dynamics. The linewidtl’,,(q=0) can be interpreted as the

for T=0 whered=3 in our case. As expected, the Spin wave g|axation rate of thgnonconservedorder parameter and
frequencies are “renormalized” to fall below the=0 dis- i arefore I .(q=0) should be positive. The linewidth

persion curve. The functional form ef(q) can be captured = q=0) is the relaxation rate of the out-of-plane magneti-
by a Fourier series. A convenient choice is zationM, which isconservedi.e.,I",(q=0) shouldvanish
_ . . . From the Fourier fits shown in Fig. 7 one finds,(0)
w(a)/J=a, sin(q/2) +a, sin(3q/2) + a3 sin(5g/2) + - (47) =0.0063 andI',(0)=—0.0005 with statistical errors of
' about 7X10 4 in both cases. The extrapolation bf,(q)
where the Fourier coefficients, ,a,,as, . . ., arerapidly de-  andI’,(q) to g=0 is shown in Fig. 8. Thg dependence of
creasing. If Eq.(4.7) is truncated after the second term onethe linewidths for small is quadratic as anticipated by the
obtainsa,;=2.919 anda,=—0.116 from a least square fit Fourier fits shown in Fig. 7. From a fit to a straight line we
which connects all data points within their error bars asfind I'y,(0)=0.0076+0.0006>0 (solid line), whereas
shown by the dashed line in Fig. 6. I',(0)=0 (dashed ling within its statistical error in agree-
The linewidthT',(q) of the spin wave peak in the in- ment with the conservation laws. Finally, we note thatdfe
plane component of the structure factor is shown in Fg).7 dependence of the linewidth,, is in agreement with the
As before the data can be analyzed by a Fourier series witprediction of mode coupling theof.
rapidly decreasing coefficients. A convenient choice here is
C. The structure factor at T
I',o(q)/J=bg+b;cosq+b,cosq+---, (4.9
The exploration of critical dynamics and dynamic scaling
where « refers tox (in-plang andz (out-of-plang. A fit to  naturally requires most of the numerical effort. In order to
I’y with only two coefficients yieldd,=0.4622 andb, reach the scaling regime large systems are required and we
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FIG. 9. Dispersion relatiom,,(q) in the (100) direction forT
=T.andL=24 (+) and 40 (¢). The solid line displays a linear
extrapolation of the data fay< /2 to g=0. Deviations from lin-
earity become visible only fog< 77/20 where critical effects set in.

have therefore performed simulations fo= 20, 24, 30, 40,

and 60. Our prime objective here is the test of dynamic

finite-size scaling which we assume to be valid in the
form®2°

Seal 4, 0)/Goa(@)=L%% (L, wL %) (4.9

at the critical point, wher& ,, is the static structure factor
discussed in Sec. lll and, denotes the dynamic critical

exponent. Note, that theg dependence is reduced to a depen-

dence only or=|q|, i.e., isotropic scaling in space has been
assumed. The index again refers to the spin componeant
(in-plang or z (out-of-plang, wherez,=z, andz,=z,, re-
spectively. In order to estimatg, we scale our data accord-
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FIG. 10. Smallg behavior of the dispersion relatiof® w,,q)

and(b) w,,(q) in the (100) direction foif =T.. The solid line is a

power law fit to the data which yieldg,= 1.38+0.05. The dashed

i_ng_ to Eq.(4.9 and test the result_ for data collapse in the|jjeis a power law with the exponenf,=3—z,,= 1.62+0.05. The
limit of small frequencies. The static structure factor neede@jata for the smallest systerhs=20 andL =24 deviate systemati-

for normalization in Eq.(4.9) is given by the equal-time

cally from the power law.

correlations which we also extract from the spin-dynamics

data for consistency.

which differs substantially from the mode-coupling predic-

In order to provide numerical estimates of the dynamiction zm:z¢:1_5_22 From the scaling relatiorz,,=3—zy,

exponentg,,, andz, first we analyze the dispersion relations
w,Aq) and w,,(q) at the critical point as obtained from a
Lorentz fit to the spin-wave peak & (g, ) [see Eq(4.4)]
and a Lorentz fit t&8,,(q,w) according to Eq(4.3). The line
shape ofS,, is dominated by a strong central pe@ee be-
low) so that we restrict the analysis of the full dispersion
relation tow,/q). The result in thé¢100) direction is shown
in Fig. 9 forL=24 andL =40. The data apparently collapse
onto a single curve and show a linear behavior det 7/2
down to q=/20, wherew(q) becomes nonlinear. From
finite-size scaling one expects the scaling form

®40= 9", (qL) (4.10

at T, for sufficiently small q. ForgL=2# and L=20, 24,
30, 40, and 60 we obtain an approximation of the small
behavior ofw,, which is shown in Fig. 1@&). According to
Eg. (4.10 w,, should vary asg®™ for fixed qL. A least
square fit to the data shown in Fig.(&Dyields the dynamic
exponent

z,,=1.38+0.05 (4.12)

(Refs. 24,25,2Bwe obtainz,=1.62+0.05 which can be
tested against the smajlbehavior ofw,,(q). The result is
shown in Fig. 1(b). For the larger systems=30, 40, and
60 the data agree with the power law, but for smaller lattice
sizesL=20 andL =24 systematic deviations occur. If we
exclude these smaller systems from the power-law fit shown
in Fig. 10@) we find z,,=1.43+0.14 which is at the upper
error boundary of the previous estimate given by &qlJ.
An alternative estimate of the dynamic exponents is provided
by the median frequencwﬁf’a which is defined by the rela-
tion
wZL 1
J' Saa(q!w)deEGaa(q)'
0

(4.12

Note that we have normalized the dynamic structure factor
such that its integral over all frequencies yields the static
structure factor. We evaluate E@.12 with the trapezoidal
rule. Systematic errors induced by this simple numerical in-
tegration method are smaller than statistical uncertainties
coming from the statistical errors &,(q,») andS,/q,w).
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FIG. 11. Median frequencies!, (¢, solid ling and Y, (+, FIG. 12. Scaling plot ofS,/q,)/[(L/10)"G,{q)] versus

Zm — i =
dashed lingfor qL=27. The solid and dashed lines display fits to /J(L/10)"n for gL =2 and system sizeks =30, 40, and 60.

power laws{see Eq.(4.13]. viation. This could be an effect of the finite statistical

If the integration is performed with Simpsons rule the Samesample. The line shape of the central peakSig still fits

. s o . rather well to a Lorentzian. Only in the vicinity @=0 are
results are obtained within statistical errors. According to Eq ; : L

. : the data also compatible with the Gaussian line shape ex-
(4.9 we expect the scaling behavior

pected from mode coupling theofs.
oM =L"2aM,(qL) (4.13 The_abo_ve scaling an_alysis _proyides quite strong evide_nce
o w for a violation of dynamic scaling in the sense that two dif-
of the median frequency at the critical point. Due to theferent dynamic exponents are required in order to obtain
presence of a strong central peak3p(q,») the median scaling in the dispersion relations, the median frequencies,
frequencyw)'l"x for L=60 turns out to be of the same size asand the two components of the dynamic structure factor.
the frequency resolution of our data. We therefore limit theHowever, we cannot prove from our data whether the esti-
analysis ofw to the system sizek=20, 24, 30, and 40. Mate w,=2z4—2z,=0.24, which indicates the violation of
The other median frequency”, can be determined accu- dynamic scaling, corresponds to the transient expongnt
rately for all system sizes. The result fqL=2 is dis- (Refs. 25,28 or if the measur_ed dlffer_ence consitutesein _
played in Fig. 11. From a least square fitc@f{"x to a power fectlveex_p_onent for system S|zes_wh|ch are too small to ig-
law for L=20, 24, 30, and 40 we obtain,=1.61+0.03. If nore additional corrections. As pointed out in Sec. | the pres-
only the data forL=30 and 40 are used we obtai ence of.energy conservation in our spin-dynamics simulation
=1.65+0.10. Both estimates are consistent with E411) 9"’623 rise to suc_h corrections governed by the exponent
and the scaling relatioz,+z,=3. The latter estimate is a/v.~= On the basis of our data we cannot exclude the pos-
displayed by the solid line in Fig. 11. The corresponding fits.'b'l'ty‘ that these correctlo_ns yield the dominant c_o_ntrlbu—
of wg"z for L=30 yieldsz,,=1.35+0.01 which is also within tion to th_e me_asured effectlve exponeR For a cIanﬂcaT
the error bar of our previous estimdtee Eq(4.11), dashed tion o_f this point more mfo_rmatlo_n is needgd from analytical
A : __theories of dynamic finite-size scaliffg and from
line in Fig. 11. The spread in the values for the dynamic simulation<®
exponents obtained from the dispersion relations for small '
and the median frequencies is considerable. In order to rec- 3.0 :
oncile all estimates with Eq4.11) almost the full width of L 230 v
the error intervallone standard deviationis needed. How- o5l L=40 = |
ever, Eq.(4.1) represents a reasonable mean value of all I L=60 =
estimates discussed so far and we therefore adopt it as our 2ol i
final estimate forz,, and usez,+z,,=3 to determinez, . '
As a final test of Eq(4.11) we use Eq(4.9) in order to
obtain a scaling plot of the dynamic structure factor. For
gL=2, L=30, 40, and 60 and,,=1.38 the resulting scal-
ing plot for S, (g, w) is shown in Fig. 12. The corresponding 10T
plot for S(q,w) with z,=3—z,=1.62 is displayed in Fig. .
13. Data collapse can only be expected for sufficiently small 05¢ -~ e
w. Scaling works quite well for all frequencies up to the spin teel
wave peak, where the intensity decreases slightly with in- 0 - - - - -
creasingL, but the error bars are still overlapping. The qual- 0 02 04 (D/J(E/'?O)z¢ 08 10 12
ity of the data collapse in not so evident frddp(q,w) (see
Fig. 13. At =0 the scaled intensity foL =60 deviates FIG. 13. Scaling plot ofS(q,w)/[(L/10)*G,(q)] versus
from the ones folL =30 and 40 by about one standard de- »/J(L/10)* for gL=2# and system sizels=30, 40, and 60.

1.5}

Sx(9,)
G.{a)(L/ 10
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V. SPIN TRANSPORT AND THERMAL CONDUCTIVITY 0.20

We have already mentioned in the Introduction that the L=40 =
transport properties of th¥Y model near the critical point F{* L=60 = |
provide lattice analogues of the corresponding transport co-
efficients of *He near the\ transition. The conserved out-
of-plane componenM, of the magnetization is the lattice & hl{
analog of the entropy density ftHe and its associated trans- g = 0107 1 Hi
port coefficient therefore corresponds to the thermal conduc- al= t i}
tivity of “He which is of experimental interest. In principle “{3&}; 1 *{, i
the thermal conductivity can be extracted from an extrapola- 0.051 SRR 3:‘;
tion of the characteristic frequeney, of S,, given by wgl
=1S,/0,0) (Refs. 25,40 to q=0. However, in order to
obtain a reliable extrapolation at the critical point a very high 0
momentum resolution fag— 0 is required and this can only
be realized with very large systerfeee Fig. 9 and Ref. 40
We therefore resort to an alternative approach already con- FIG. 14. Scaling plot of D(q,®)yx,,/(L/10)2 % versus
sidered in Ref. 40, we express the thermal conductivity by au/J(L/10)?m for g=0, L=30, 40, and 60, ang,,= 1.38. The value
current-current correlation function for a suitably chosen curD(q=0,0=0) corresponds to the thermal conductivity.
rent densityj, = (j1x.j2x.i3x) at lattice sitek.**

0 02 04 06 08 ) 1.0 12 14 16
o/J(L1oy"

In order to identify the current densify we reexamine 1 2 (= _ _
the z component of the equation of motigsee Eq.(2.2)] D(q,w)= T —f dt 2 (j100)j1;(1))
. Bl XzzTJo i
which reads
X c0sq- R; coswt (5.9
d L _
— =] XY QYY) 5.1 for the transport coefficierd(q,w), whereq=(q,0,0) and
dtS< Ie%(k) (S8-S0 G0 the same normalization as in E@.2 has been used. Note

that the out-of-plane  static  susceptibility x,,

where the sum is over all nearest neighbors of latticeksite =(M3)/(ksTL®) needed for normalization in Ed5.4) is
We define theith component; , (i=1,2,3) of the current essentially constant as a function of system gizat fixed

densityj, associated with the lattice poiktby*° temperature. In the following we will analyZe(q,w) only
for T=T., where A=D(0,0) corresponds to the thermal

) v ‘e conductivity measured ifiHe experiments. According to Eq.
Jik=I(SSse,~ SSkre) (52 (5.1 the current density, has the scaling dimension 1
—z,—d/2, becausey,, has the scaling dimension zero.

where the notatiolk+e; denotes the nearest neighbor of the From Eq. (5.4) we then find 2(tz,—d/2)+d+2z,=2
lattice sitek in theith lattice direction. For the case of the —Zm as the scaling dimension db(g,«) so that naive
simple cubic lattice studied hees, e,, ande; can be visu-  finite-size scaling yield<(0,0)=A~L" *n at the critical
alized as the unit vectors of a Cartesian coordinate systefeint™> We therefore expect the scaling form

li ith the lattice. The latti i f th
aligned with the lattice. The lattice divergence of the current D0, )keToxarm L2~ A (qL, oL ™) 55

density according to Edq5.2) at lattice sitek is then given by

at T=T., wherekgT.x,, IS just a normalization factor. A
3 corresponding scaling plot @ (g, ) x,, versusw/JL* for
V.jkzz (ik—likee)=J E (S-S L=30, 40, and 60 and=0 is shown in Fig. 14, where we
i=1 o 1'eNN(K) have used our estimat®,= 1.38. The statistical noise in the
(5.3 data forD(q,w) is considerably larger than the noise in the
data for the structure factdsee also Ref. 40The spread of
which is just the negative right-hand side of Ef.1). Note  the data points in Fig. 14 is of the same magnitude as the
that the lattice spacing has been set to unity. In the spirit ofcatter of the data in each individual data set displayed. In
hydrodynamics Eq(5.1) can be interpreted as second orderview of these statistical uncertainties our data scale reason-
discretization of an equation of continuity of the form ably well for smallw and confirm the scaling exponent 2
amy/dt=—V-j,. The densitym,=S; and the curreng, de- —z,=0.62 [see Eq.(4.11)] of the transport coefficient
fined by Eq.(5.2) are located on staggered meshes, i.e., thé®(q,»). Forq#0 D(qg,w) scales accordingly as shown in
current density componept, associated with lattice siteis Fig. 15 forqL=2m. The position of the spin wave maxi-
located half way betweek andk+eg;, so that each of the mum appears to be shifted to the right as compared to the
finite differences appearing in E¢6.3) is located at lattice spin wave peak ir5,/q, ). According to Eq.(5.5 scaling
site k just as the left-hand side of E¢5.1). This displace- is obtained up to a value of about 0.6 of the scaling argument
ment of spins and currents on the lattice has no further corfor both g=0 andgL=2. According to Fig. 15 the spin-
seqguences in our case, because we have applied periodi@ave maximum itself appears to be outside the scaling re-
boundary conditions in all lattice directions. According to gime for the system sizes used here. §&r0 D(q,») tends
Eq. (44) of Ref. 41 we find the expression to zero asw—0 within the statistical errors.
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FIG. 15. Scaling plot of D(q,w)x,,/(L/10)" *m versus FIG. 16. Thermal conductivity x,, versus system size for

/J(L/10y' for qL=2m, L=30, 40, and 60, and,=1.38. | _5q 24 30, 40, and 60. The solid line displays the power law
D(q,w) shows a strong spin wave resonance and it vanishes f()ltzfzm for z,,=1.38 for comparison. The power law represents the

©—0. data reasonably well for=30.

The thermal conductivith=D(0,0) is shown in Fig. 16
as a function of the system size. The overall behaviok of
with L is captured quite well by the expected power kdwl

wave peakS,,(q,w) displays a central peak of Lorentzian
shape and additional multi-spin-wave peaks which do not
appear inS,,(q, o). For smallg the dispersion relatiom(q)
|ine) for L=30 and even the data pOint fo=24 is Only one is linear |nq and the ||neW|dth§‘XX(q) andl_‘zz(q) are qua-
standard deviation away. Systems wiitk 20 or less may be dratic in q as expected from mode-coupling theory. The
too small to be in the scaling regime. In view of the consid-qualitative agreement with the spin-dynamics datadfer2
erable statistical error in the data slowly varying correctionssyggests that the dynamics of the two-dimensidtéimodel
to scaling as discussed in the previous section cannot bﬁﬁay not be captured by vortex dynamics theories.
identified. In any case more theoretical information is needed (3) At T, in contrast to mode-coupling theory and in
in order to provide a reliable background for the interpreta—agreement with field-theoretic predictionS,,(q,) and
tio_n_ of spi_n dg/sn?%mics data of transport coefficients in theSZZ(q,w) require different dynamic exponents in order to
critical regime™ obtain scalingz,,=1.38+0.05 andz,=3—2z,=1.62+0.05,
whereas mode coupling theory yieldg=z,=3/2. The out-
of-plane componers,,(q,») is dominated by a strong cen-
tral peak. A shoulder at a finite frequency indicates the pres-

The easy-plane Heisenberg ferromagnet belongs to thence of a spin-wave signal. 8, (q, ) a strong spin-wave
XY universality class which has been demonstrated by thpeak remains the dominating feature. The line shapes are still
evaluation of the critical exponents and the static structureompatible with Lorentzians, the central peakSy is only
factor. Unlike the standard plane rotad¥ model the planar compatible with a Gaussian shape very closete0.
ferromagnet is endowed with a reversible spin dynamics (3) The transport coefficierD(q,»), which provides ac-
which can be efficiently simulated by recently developed de<cess to the lattice analog of the thermal conductivity'lde
composition methods. Due to spatial and temporal symmewithin the XY model, has been investigatedTat. The sta-
tries the spin dynamics of the planar ferromagnet is expectetistical fluctuations of the data are much stronger than those
to be in the same dynamic universality class’b® near the in the data for the structure factor which makes the scaling
superfluid normal transition, but may have different correc-analysis less unique. However, scaling in agreement with the
tions to scaling. The data have been compared to fieldpreviously obtained dynamic exponents is obtained. The
theoretic and mode-coupling predictions with the following transport coefficient also shows a strong spin-wave reso-
main results. nance for finiteq and vanishes fow—0 in this case. The

(1) Above the critical regime the spin-dynamics datathermal conductivity =D(0,0) scales with the system size
show a strong Lorentzian central peak in the in-plane comin the expected way within the error bars for sufficiently
ponentS,,(q,) in agreement with mode coupling theory. large systems.
The out-of-plane componer$,(q,w) displays a pseudo
spin-wave peak which is also of Lorentzian shape and be-
comes increasingly prominent &gsis increased. The pres-
ence of this peak is in accordance with field-theoretic predic- M. Krech gratefully acknowledges many helpful discus-
tions forT>T.. sions with V. Dohm and financial support of this work

(2) Below the critical regime strong spin-wave peaks oc-through the Heisenberg program of the Deutsche Fors-
cur in both components of the dynamic structure factor. Theehungsgemeinschaft. This research was supported in part by
shape of these peaks is captured very well by Lorentians a8SF Grant No. DMR - 9727714 and by the Computer Center
expected from mode-coupling theory. In addition to the spin-of the RWTH Aachen.
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