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Spin-dynamics simulations of the three-dimensionalXY model:
Structure factor and transport properties
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~Received 8 December 1998; revised manuscript received 3 March 1999!

We present extensive Monte Carlo spin-dynamics simulations of the classicalXY model in three dimensions
on a simple cubic lattice with periodic boundary conditions. A recently developed efficient integration algo-
rithm for the equations of motion is used, which allows a substantial improvement of statistics and large
integration times. We find spin-wave peaks in a wide range around the critical point and spin diffusion for all
temperatures. At the critical point we find evidence for a violation of dynamic scaling in the sense that
independent components of the dynamic structure factorS(q,v) require different dynamic exponents in order
to obtain scaling. Below the critical point we investigate the dispersion relation of the spin waves and the
linewidths ofS(q,v) and find agreement with mode coupling theory. Apart from strong spin-wave peaks we
observe additional peaks inS(q,v) which can be attributed to two-spin-wave interactions. The overall line
shapes are also discussed and compared to mode coupling predictions. Finally, we present results for the
transport coefficientD(q,v) of the out-of-plane magnetization component at the critical point, which is related
to the thermal conductivity of4He near the superfluid-normal transition.@S0163-1829~99!06629-1#
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I. INTRODUCTION

The theoretical investigation of classical spin systems
played a key role in the understanding of phase transitio
critical behavior, scaling, and universality.1,2 In particular,
the classical Ising, theXY, and the Heisenberg model are th
most relevant spin models in three dimensions. Each of th
simple models represents a universality class which, a
from the spatial dimensionality and the range of the inter
tions, is characterized by the number of componentsN of the
order parameter, e.g., the magnetization in the case of fe
magnetic models. Despite their simplicity these spin syste
continue to be of high relevance within the framework
dynamicbehavior near critical points3 ~see also Ref. 4 for a
recent review!. The Ising (N51), theXY (N52), and the
Heisenberg (N53) universality class can be extended t
wards dynamic universality classes, which in addition t
their static properties are characterized by the set of con
vation laws.3 Special attention must be paid to the presen
of energy conserving driving terms in the equations of m
tion which lead to propagating modes~spin waves! below the
critical temperature and thus modify the dynamics.3 The dis-
crete nature of Ising spins does not allow such terms so
its dynamics is always of relaxational type~see Ref. 3 for a
complete classification!.

The simplest spin model which allows propagating mod
is a particular version of the ferromagneticXY model (N
52). The dynamics here is characterized by a nonconse
order parameter which is dynamically coupled to acon-
servedquantity ~see Sec. II!. The presence of spin wave
reduces the value of the dynamic critical exponentz as com-
pared to pure critical relaxation.3 The same is true for the
isotropic Heisenberg model for which theN53 component
PRB 600163-1829/99/60~5!/3375~13!/$15.00
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magnetization vector is always conserved in the presenc
energy conserving driving terms. If the model is ferroma
netic, the magnetization is the order parameter. However,
an antiferromagnet, the magnetization plays the role of
conserved vector which is dynamically coupled to thenon-
conservedorder parameter~staggered magnetization!. This
difference in the conservation laws causes the class
Heisenberg ferro- and antiferromagnet to be in different
namic universality classes although they belong to the sa
static universality class. Due to their fundamental role in
understanding of the critical dynamics in magnets Heis
berg ferromagnets and antiferromagnets have been t
oughly studied analytically by mode coupling theories~see
Ref. 5 for a general overview! especially in the presence o
dipolar interactions6 and numerically by spin dynamics ind
52 ~Ref. 7! and ind53 ~Refs. 8,9! and by methods closely
related to molecular dynamics.10

TheXY model may be viewed as a Heisenberg ferrom
net with an easy-plane (xy) anisotropy such that the orde
parameter has only two components. Planar ferromagnet
realized by layered compounds such as K2CuF4 ~Ref. 11!
and Rb2CrCl4 ~Ref. 12! which almost act as two-dimensiona
systems. The best results available today have been obta
on CoCl2 intercalated in graphite,13 where a crossover from
two-dimensional to three-dimensional behavior in the cor
lations has been observed below the Kosterlitz-Thoul
temperature. Apart from the evident interpretation as a pla
ferromagnet theXY model captures a larger variety of ph
nomena than the Ising or the Heisenberg model. Despite
continuousO(2) symmetry theXY model undergoes a con
tinuous phase transition at a finite temperature in two dim
sions, known as the Kosterlitz-Thouless transition.14 Rather
than by the onset of long-ranged order the transition is so
characterized by a diverging correlation length, when
critical temperature is approached from above. Due to a
3375 ©1999 The American Physical Society
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3376 PRB 60M. KRECH AND D. P. LANDAU
culiar conspiracy between the spatial dimensionalityd52
and the number of spin componentsN52 configurations of
bound and free vortices dominate the critical behavior of
XY model, where the unbinding of vortex pairs marks t
point of the phase transition.14 Naturally, many attempts to
describe the critical dynamics of theXY model ind52 theo-
retically are based on the dynamics of vortices and vor
pairs.15–18 According to analytical and numerical investig
tions for the ferromagnetic case16–19 the in-plane componen
Sxx(q,v) and the out-of-plane componentSzz(q,v) of the
dynamic structure factor are expected to have central pe
above the transition. The line shapes of these peaks are
dicted to be squared Lorentzian and Gaussian, respecti
Below the transition only spin-wave peaks are expecte16

To test these specific predictions much numerical effort
been spent on spin dynamics simulations of theXY model in
d52.20,21Although dynamic finite-size scaling and the val
of the dynamical exponentz51 has been confirmed to
high degree of confidence,20 the measured line shapes
S(q,v) ~Refs. 20,21! are apparently not well captured b
analytical theories~see Ref. 4 for details!. It is therefore in-
structive to measureS(q,v) for the XY model in d53 for
which configurations of bound or free vortices do not pl
any special role for the critical behavior and should theref
not provide particularly noticeable contributions to the stru
ture factor. Ind53 the dynamics of the planar ferromagn
has been investigated by mode coupling theory22 and specific
predictions concerning line shapes and linewidths have b
made which can be compared with our data~see Sec. IV!.

It is well known that thel transition of 4He is in theXY
universality class, but the applications of theXY model for
the physics of4He reach far beyond that. The spin dynam
for the XY model is the lattice analog of the dynamic
model E ~symmetric planar ferromagnet3! which asymptoti-
cally also describes thecritical dynamicsof 4He near thel
line.3,23–25If one therefore studies the transport properties
the XY model near the critical pointTc , one should obtain
lattice analogs of the corresponding transport coefficient
4He near thel transition. In this respect the aforemention
conserved quantity plays a particularly interesting part,
cause it is related to the entropy density in4He and its asso-
ciated transport coefficient corresponds to the thermal c
ductivity of 4He ~Refs. 23,25! which is an experimentally
accessible quantity.26 Below the critical temperature spi
waves in theXY model then correspond to travelling wav
of second sound in4He. These propagating modes cause
thermal conductivity to diverge at the lambda transition
bulk 4He.23,25 In a finite system such as our simulatio
sample, one therefore expects critical finite-size rounding
the thermal conductivity, which can be studied in the fram
work of the spin-dynamics simulation and which should a
be observable in experiments.

To what extent the spin-dynamics simulation actua
captures the critical dynamics of4He is a rather delicate
question. Although theasymptoticbehavior is described by
model E, the actualcrossoverto the asymptotic behavior
i.e., the decay ofnonasymptoticcorrections is governed b
the specific heat exponenta.20.013,27 which is so small
that the true asymptotic behavior will never be seen in
simulation. From the point of view of analytic theory th
means that in order to capture the nonansymptotic eff
e
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present in experiments one has to replace modelE by the
more complicated modelF.3,23,25,28From the point of view of
spin dynamics simulations this means that one has to l
for sources of such nonasymptotic behavior artificially ge
erated by the simulation method and other nonasympt
corrections not captured by the model or the method~see
Sec. II!. Apart from these problems, it should also be me
tioned that the dynamical modelE has two renormalization
group fixed points. One of these fixed points yields dynam
scaling with a single dynamic exponentz5d/2 in d dimen-
sions, whereas the other gives rise to a weakviolation of
dynamic scaling. Theoretical arguments24,25,28 and experi-
mental evidence indicate that the latter fixed point is
stable one for4He in d53, i.e., the critical dynamics is
characterized by two different dynamic exponentszf ~order
parameter! andzm ~conserved quantity! which fulfill the scal-
ing relation zf1zm5d. Their differencevw[zf2zmÞ0
has the nature of a dynamic Wegner exponent and is kn
as thetransientexponent.25,28

The remainder of the paper is organized as follows.
Sec. II we present the model and the simulation meth
used to generate equilibrium configurations and to obtain
critical point of the model and its static critical exponen
Furthermore, the equations of motion and the method use
integrate them numerically are presented. In Sec. III
briefly discuss the static critical behavior of our model a
present an accurate estimate of the critical temperature.
tion IV is devoted to the discussion of the dynamic structu
factor and the comparison with predictions of analy
theory. In Sec. V we present results for the lattice analog
the thermal conductivity and discuss its scaling properties
summary and prospects for future work are given in Sec.
Unless otherwise stated statistical errors quoted in this w
correspond to one standard deviation.

II. MODEL AND SIMULATION METHOD

The system under investigation is given by a ferroma
netic Heisenberg model with the strongest possible ea
plane anisotropy. The model Hamiltonian reads

H52J(̂
i j &

~Si
xSj

x1Si
ySj

y!, ~2.1!

where ^ i j & denotes a nearest neighbor pair of spins on
simple cubic lattice in three dimensions. The lattice conta
L lattice sites in each direction and in order to avoid surfa
effects periodic boundary conditions are applied. Each s
Si is a classical spinSi5(Si

x ,Si
y ,Si

z) with the normalization
uSi u51. The easy-plane anisotropy in Eq.~2.1! is the stron-
gest possible in the sense that thez components of the spin
do not couple, so that Eq.~2.1! looks similar to the standard
Hamiltonian for the usual~plane rotator! XY model.

As a starting point for the spin dynamics a sequence
equilibrium configurations is needed to provide initial cond
tions for the equations of motion. These configurations
obtained from a Monte Carlo simulation of the model Ham
tonian given by Eq.~2.1!. The Monte Carlo algorithm chose
is a hybrid scheme, where each hybrid Monte Carlo s
~MCS! consists of 10 updates each of which can be one
one Metropolis sweep of the whole lattice, one single clus
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Wolff update,29 or one overrelaxation update of the who
lattice.8 The Metropolis algorithm updates the lattice sequ
tially in the standard way. According to the detailed balan
condition we choose the acceptance probabilityp(bDE)
51/@exp(bDE)11# for a single spin flip, whereDE is the
change in configurational energy according to Eq.~2.1! and
b51/(kBT).

The Wolff algorithm also works the standard way,29 ex-
cept thatonly the x andy components of the spins are us
for the cluster growth. This means that a cluster update ne
changes thez component of any spin so that the Wolff alg
rithm is nonergodic in this case. Our cluster update is sti
valid Monte Carlo step in the sense that it fulfills detail
balance, however, in order to provide a valid Monte Ca
algorithm it has to be used together with the Metropolis
gorithm described above in a hybrid fashion. The use
Wolff updates allows us to take advantage of improv
estimators30 for magnetic quantities.

The overrelaxation part of the algorithm performs a m
crocanonical update of the configuration in the followi
way. The local configurational energy has the functio
form of a scalar product of the spins, where according to
~2.1! only thex andy components are involved. With respe
to the sum of its nearest neighbor spins each spin ha
transverse component in thexy plane which does not ente
the scalar product. The overrelaxation algorithm sim
scans the lattice sequentially, determines this transv
component for each lattice site and flips its sign. This d
not change the local configurational energy (DE50) and by
virtue of the usual Metropolis acceptance functionf (bDE)
5min@exp(2bDE),1# the update is always accepted. Alon
with this simple operation the sign ofSi

z is flipped with prob-
ability 1/2 at each lattice site which according to Eq.~2.1!
also does not change the energy of the configuration. T
overrelaxation algorithm is similar to the one used in Ref
and it quite efficiently decorrelates subsequent configurat
over a wider range of temperatures around the critical p
than does the Wolff algorithm. Typically, we use three M
tropolis (M ), five single cluster Wolff (C), and two overre-
laxation updates~O! in a hybrid Monte Carlo step in the
critical region of ourXY model. The inividual updates ar
mixed automatically in the program so that the update
quence (MCCMOCMCCO) is generated as one hybri
Monte Carlo step in this case. The random number gener
we use is the shift register generator R1279 given by
recursion relation Xn5Xn2p% Xn2q for (p,q)5(1279,
1063). Generators such as this are known to cause system
errors in combination with the Wolff algorithm;31 however,
for lags (p,q) as large as the ones used here these errors
be far smaller than typical statistical errors. They are furt
reduced by the hybrid nature of our algorithm.32

The spin dynamics of theXY model is defined by the
equations of motion

d

dt
Sk5

]H
] Sk

3Sk , ~2.2!

whereH is the Hamiltonian defined by Eq.~2.1!. One may
interpret Eq. ~2.2! as the direct classical analog of th
Heisenberg equations of motion for spin operators, wher\
51 so that energies and frequencies are measured in
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same units. From the symmetry of Eq.~2.1! it is evident that
the componentsMx and M y of the magnetizationM5(kSk

are not conserved under the dynamics given by Eq.~2.2!.
Note that the two-component vector (Mx ,M y) is the order
parameterof the XY model. Thez or out-of-plane compo-
nentMz of the magnetizationM is just the conserved quan
tity within the framework of modelE dynamics we have
already referred to in Sec. I.3 Note that Eq.~2.1! is invariant
with respect to the transformationMz˜2Mz which is a
symmetry required by modelE.

For the comparison of the critical spin dynamics with t
critical dynamics according to modelE it is important to
realize, that the configurationalenergyis anadditional con-
stant of motion, because Eq.~2.2!, in contrast to the coarse
grained modelE, does not contain relaxation. Whether e
ergy conservation is a reasonable assumption for the dyn
ics of theXY model or any other classical spin model is
question of the time scales to be resolved. The most imp
tant time scale for our investigation is set by the propagat
modes~spin waves! in the system and for these the config
rational energy is indeed constant. Within the time scale
the spin waves thermal averages can therefore be replace
averages over the initial configurations from which the tim
integration of Eq.~2.2! is started. For much longer time
relaxation processes~equilibration with the heat bath! come
into play which violate energy conservation and render
spin-dynamics approach invalid. In the vicinity of the critic
point energy conservation becomes particularly importa
because the dynamic universality class may change unde
influence of an additional conservation law. If modelE is
augmented by energy conservation~modelE8, see Ref. 23! it
turns out that the energy asymptotically decouples from
order parameter (Mx ,M y) and the conserved out-of-plan
magnetizationMz and modelE critical behavior is restored
However, energy conservation may introduce corrections
the asymptotic finite-size scaling behavior23 which decay
very slowly and may cause ambiguities in the scaling ana
sis of the spin-dynamics data. Note that these corrections
generated by the spin-dynamics method.

The equations of motion given by Eq.~2.2! are integrated
numerically for each initial spin configuration by a recen
developed decomposition method.33 This method guarantee
exact energy conservation and conservation of spin len
uSku51 and conservesMz within its numerical truncation
errors. For the present study a second order integrator is
with the time stepdt50.05/J. This time step guarantees su
ficient accuracy with respect to the conservation ofMz and is
much faster than well-known predictor corrector methods.4,33

For some accuracy and stability tests the time step has b
increased todt50.1/J which still yields sufficient accuracy
for the dynamic structure factor. Fourth order integrators
much more accurate as far asMz conservation is concerned
but their internal complexity makes them much slower tha
second order method for the same time step.33 Moreover,
statistical errors are not decrased significantly by fourth or
methods and we therefore only report results obtained by
second order method. The equations of motion are integr
to a final time of 800/J and thermal averages are taken ov
1000 initial configurations. All error bars of dynamic qua
tities correspond to one standard deviation. The simulati
have been performed on various DEC alpha AXP, IB
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RS6000, and HP RISC8000 workstations both at the RW
Aachen and the BUGH Wuppertal.

III. STATIC PROPERTIES OF THE XY MODEL

A. Thermodynamic properties

The basic ingredient for the spin-dynamics simulation
provided by the sequence of initial spin configuration
which has to be generated according to the canonical
semble in order to provide well defined thermal averag
Therefore, the static behavior of theXY model and espe
cially the location ofTc have to be determined first. For th
purpose we employ the hybrid Monte Carlo scheme
scribed above for lattice sizesL betweenL520 andL580.
For each system size and temperature we perform 10 bl
of 103 hybrid steps for equilibration followed by 104 hybrid
steps for measurements. Each measurement block yield
estimate for all static quantities of interest and from these
obtain our final estimates and estimates of their statist
error following standard procedures. The integrated auto
relation time of our hybrid algorithm is determined by th
autocorrelation function of the energy or, equivalently, t
modulusAMx

21M y
2 of the order parameter, which yield th

slowest modes for the Wolff algorithm. The autocorrelati
times are generally rather short, atTc ~see below! they range
from about 5 hybrid MCS forL520 to about 10 hybrid MCS
for L580. For comparison, the autocorrelation function
the order parameter itself yields an autocorrelation time
less than one hybrid MCS. The values for the equilibrat
and measurement periods given above thus translat
roughly 100 and 1000 autocorrelation times, respectiv
which is sufficient for all practical purposes. In order to o
tain the best statistics for magnetic quantities a measurem
is made after every hybrid MCS.

The critical temperatureTc is determined by monitoring
the temperature and size dependence of the Binder cum
ratio. Specifically, we measure the cumulants

u1512
^Mx

4&

3^Mx
2&2 and u2512

^~Mx
21M y

2!2&

3^Mx
21M y

2&2 .

~3.1!

It turns out thatu1 is more sensitive to changes in tempe
ture and system size so that we only useu1 for the final
fine-tuning of the temperatureT. For convenience the tem
perature is expressed as the dimensionless reduced cou
K[J/(kBT), whereKc[J/(kBTc) denotes the critical point
From standard procedures34 we obtain Kc50.64440
60.00005. For comparison we mention thatKc50.45420
60.00002 for the standard plane rotatorXY model on a
simple cubic lattice ind53.35 By ignoring corrections to
scaling and averaging over the measurements forL
540, 50, 60, and 80 we find the estimates

u1* 50.378960.0015 and u2* 50.585960.0008
~3.2!

for the valuesu1* and u2* of the cumulants defined by Eq
~3.1! at the critical point. Note that forK50.6444 the value
of u1 remains within two standard deviations ofu1* for all L.
Our estimate foru2* is within two standard deviations of th
H
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corresponding estimate 0.589160.0020 found in Ref. 35
which already gives some evidence that the planar Heis
berg variant of theXY model studied here is indeed a mem
ber of the staticXY universality class.

The critical exponents are estimated from the critic
finite-size scaling behavior of the average modu
^AMx

21M y
2& of the order parameter, the average squ

^Mx
21M y

2& of the order parameter, and the temperature
rivative of the latter. AtT5Tc , i.e., K5Kc one finds the
leading scaling behavior

L23^AMx
21M y

2&;L2b/n, L23^Mx
21M y

2&;Lg/n,

]

]T
ln^Mx

21M y
2&;L1/n ~3.3!

with the system sizeL, whereb, g, and n are the critical
exponents of the order parameter, the susceptibility, and
correlation length, respectively. During the data analysis
turns out that corrections to scaling can be ignored within
statistical error of the quantities in Eq.~3.3!. From our esti-
mateKc50.6444 andL520, 24, 30, 36, 40, 50, 60, and 8
we find the following values for the critical exponents:

b/n50.517960.0024, g/n51.96560.005,
~3.4!

1/n51.49460.013.

These values satisfy the scaling relation 2b/n1g/n5d. Fur-
thermore, we directly obtain from Eq.~3.4! n50.6693
60.0058, h50.03560.005, g51.31560.012, and b
50.346760.0034 in very good agreement with previou
Monte Carlo estimates35 and renormalization group theor
for the O(N52) Ginzburg-Landau model.36 The critical ex-
ponenta of the specific heat can be obtained from, e.g.,
hyperscaling relation, but the statistical error ofn is too large
to exclude logarithmic behavior (a50). Apart from this de-
ficiency our simulations confirmXY-like critical behavior
for our version of theXY model @see Eq.~2.1!# quite accu-
rately. In the followingkBT is measured in units ofJ chosen
such thatkBTc51.

B. Static structure factor at criticality

We continue this section with a short discussion of t
static spin-spin correlation function~structure factor! G(q) at
the critical temperature. The static structure factor is the s
tial Fourier transform of the spin-spin correlation function

Gab~Ri2Rj ![^Si
aSj

b&2^Si
a&^Sj

b&, ~3.5!

wherea,b refer to spin the components,Ri and Rj denote
lattice vectors, and the thermal average is indicated
^•••&. Note thatGab5Gab(Ri2Rj )5Gab(Rj2Ri) due to
translational invariance and reflection symmetry of the s
tem. The spatial Fourier transform is therefore given by
cosine transform which we use in the form

Gab~q!5(
i
Gab~Ri !cosq•Ri . ~3.6!

With respect to the spontaneous magnetization of theXY
modelGab(q) has a transverse componentGt(q) and a lon-
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gitudinal componentGl(q). In our Monte Carlo simulation
we measureGt andGl by rotating the coordinate system o
the spins around thez axis such that the random but finit
magnetization vector (Mx ,M y) is aligned with they direc-
tion. The x and y components of the spins in the rotate
frame then correspond to the transverse and the longitud
spin components, respectively, and their correlation fu
tions yield Gt[Gxx and Gl[Gyy . It should also be men
tioned that the out-of-plane componentGzz(q) of the static
structure factor is independent ofq and does not show an
critical behavior. According to Eq.~3.6! the normalization of
Gab(q) is such thatGab(q50)5kBTxab , wherexab is the
static susceptibility. Note thatGt(q50)50 by definition and
that Gl(q50)5kBTx8, wherex8 is the magnetic suscept
bility with respect to themodulusof the magnetization. We
furthermore limit the discussion to the~100! direction, be-
cause other lattice directions do not provide new informat
on a simple cubic lattice. The components ofq are always
measured in units of the inverse lattice contant.

At Tc the longitudinal componentGl(q) of the static
structure factor can be described by the model function

Gl@q5~q,0,0!#5L22hgl~qL!h~q!, ~3.7!

where 22h5g/n is taken from Eq. ~3.4!, h(q)
5@(q/2)/sin(q/2)#2 captures lattice effects,37 and the finite-
size scaling functiongl(x) is chosen as a simple generaliz
tion of a Lorentzian

gl~x!5a2(22h)@11~x/b!2#2(22h)/2. ~3.8!

The parametersa andb are determined from a fit to the dat
where a and b are independent ofL. We have chosena
53.70 andb54.35 as obtained from a fit to the data forL
560. For L540 andL580 a and b are found within less
than 1% of these values, forL520 they are about 3%
smaller. Despite its simplicity the model function given b
Eq. ~3.7! captures the shape of the Monte Carlo estimate
the longitudinal component of the structure factor rema
ably well. The finite-size scaling analysis of our data f
Gl(q) for smallq, is shown in Fig. 1. Deviations from finite
size scaling set in atqL54p for L520, the data forL
540, 60, and 80 collapse within the error bars up toqL
56p. Within the symbol sizes data collapse is obtained
to qL510p, where lattice effects set in. For comparison t
model scaling functiongl(qL) @a53.70 andb54.35, see
Eq. ~3.8!# is shown by the dashed line in Fig. 1. The tr
scaling form ofGl(q) for small q is captured rather well by
gl(x). However, the choice of the model function is,
course, not unique.

IV. THE DYNAMIC STRUCTURE FACTOR

The dynamic structure factorS(q,v) is the space-time
Fourier transform of the position and time displaced sp
spin correlation functionSab(Ri2Rj ,ut2t8u) which we de-
fine by @see Eq.~3.5!#

Sab~Ri2Rj ,ut2t8u![^Si
a~ t !Sj

b~ t8!&2^Si
a~ t !&^Sj

b~ t8!&.
~4.1!

The indicesa,b refer to spin components,Ri and Rj are
lattice vectors, andt andt8 are moments in time to which th
al
-

n

r
-
r

p

-

initial spin configuration has evolved according to the eq
tions of motion@see Eq.~2.2!#. The averagê•••& is taken
over the set of initial configurations as described in Sec.
Note thatSab is also symmetric with respect toRi and Rj
@see Eq.~3.5!#. As the second argument only the time di
placement enters, because the equations of motion are in
ant under the transformationSi˜2Si , t˜2t @see Eqs.
~2.1! and ~2.2!#. The space-time Fourier transform is ther
fore also given by the cosine transform@see Eq.~3.6!#

Sab~q,v!52/pE
0

`

(
i
Sab~Ri ,utu!cosq•Ri cosvtdt.

~4.2!

Note that the normalization in Eq.~4.2! is such that
*0

`Sab(q,v)dv5Gab(q), whereGab(q) is the static struc-
ture factor defined by Eq.~3.6!.

The out-of-plane componentSzz(q,v) of the dynamic
structure factor is associated with the conserved out-of-pl
magnetizationMz , i.e.,( iSzz(Ri ,utu) @see also Eq.~4.2!# is a
constant in time. The in-plane magnetization~order param-
eter! (Mx ,M y) is not conserved under the spin dynamic
Although the time scale set by the motion ofMx andM y is
considerably larger than typical time scales set by s
waves, all initial differences between longitudinal and tran
verse components of the spin correlations completely dis
pear during the integration of the equations of motion. W
therefore only discuss the average of thexx and theyy com-
ponent ofS(q,v) and refer to it as the ‘‘in-plane compo
nent’’ Sxx(q,v).

We now turn to the discussion ofS(q,v) above, below,
and at the critical point. The correlation functions are me
sured up to a time displacement of 400/J away from critical-
ity, where only smaller systems are considered. At the c
cal temperature we measure correlations up to 600/J for
systems with up toL560 lattice sites in each direction.

FIG. 1. Scaling plot forGl(q)/L22h at T5Tc for L520
(L), 40 (1), 60 (h), and 80 (3) as a function ofqL with h
50.035. Statistical errors of the data are much smaller than
symbol sizes. The dashed line displays the scaling functiongl(qL)
as given by Eq.~3.8! for a53.70 andb54.35. Note thatqL
520p corresponds to the Brillouin zone boundary forL520.
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A. The structure factor above Tc

In order to avoid effects of criticality we choose the tem
peratureT51.1Tc in the following. Due to the absence o
critical finite-size scaling at this temperature we limit t
spin-dynamics simulations to smaller systems withL520,
24, and 30. For better momentum resolution we only pres
results obtained forL530, smallerL yield identical results
with a lower resolution inq. We also limit the presentation
to S(q,v) in the (100) direction, other lattice directions pr
vide essentially the same information. In Fig. 2 we sh
Sxx@q5(q,0,0),v# and Szz@q5(q,0,0),v# for q5p/15 as
functions of the dimensionless frequencyv/J. Both compo-
nents apparently display a central peak without any ad
tional features. For the values ofT andq used in Fig. 2 one
expects a central peak of Lorentzian shape.22 As displayed
by the solid line in Fig. 2 a simple Lorentzian of the form

Lxx~q,v!5
Axx

0 ~q!

11@v/Gxx
0 ~q!#2

~4.3!

characterized by an amplitudeAxx
0 (q) and a widthGxx

0 (q)
captures the shape ofSxx very well up tov/J.0.4, where
the intensity has already dropped by an order of magnitu
For largerv Sxx decays faster than a Lorentzian. If one tri
to fit the line shape ofSzz also with a Lorentzian for smallv,
it turns out that a better fit is obtained from a superposit
of symmetrically placed Lorentzians. We use

Lzz~q,v!5
Azz~q!

11$@v2v~q!#/Gzz~q!%2

1
Azz~q!

11$@v1v~q!#/Gzz~q!%2
, ~4.4!

wherev(q) denotes the spin wave frequency which is us
as an additional fit parameter. The dashed line in Fig. 2
plays the Lorentzian fit forSzz according to Eq.~4.4!, where

FIG. 2. In-plane componentSxx (L) and out-of-plane compo
nentSzz (1) of the dynamic structure factor in the~100! direction
for T51.1Tc , L530, andq5p/15 as functions of the dimension
less frequencyv/J. For small enoughv the line shapes are we
approximated by Lorentzians given by Eq.~4.3! ~solid line! and Eq.
~4.4! ~dashed line!, respectively. The ranges over which the Lore
zian approximation is valid differ significantly forSxx andSzz.
nt

i-

e.

n

d
s-

v(p/15).0.030 is indeed finite within its statistical error o
roughly 1023. However, Eq.~4.4! only captures the shape o
Szz up to v/J.0.15. If Eq. ~4.3! @v(p/15)50# is used in-
stead, this frequency range becomes even smaller. This
crepancy in frequency range between the in-plane and
out-of-plane components ofS(q,v) may be due to the dif-
ference in time scales between in-plane and out-of-pl
modes as predicted by mode coupling theory.22

Spin-wave signatures are still visible inSzz at T51.1Tc as
shown in Fig. 3, whereSzz is plotted for the first four mo-
mentaq5np/15, n51,2,3,4. Forn>2 a very broad maxi-
mum becomes visible which moves to the right asq in-
creases. The appearance of spin-wave signatures inSzz above
Tc is expected from renormalization group theory for mod
E dynamics.25 For theq values used in Fig. 3 the shape ofSzz
is captured quite well by the Lorentzian defined by Eq.~4.4!.
Due to the small enhancement of the line intensity over
signal level atv50 the peak positionv(q) and linewidth
Gzz(q) are not very well defined. We therefore refrain from
more detailed analysis at this point. The frequency dep
dence of the in-plane componentSxx is dominated by a cen
tral peak as in Fig. 2 for allq. Only for largeq near the
Brillouin zone boundary a shoulder appears inSxx near the
position of the spin-wave peak inSzz. We illustrate this in
Fig. 4, whereSxx andSzz are shown forq5p. Note thatSzz,
which is much smaller thanSxx for small q ~see Fig. 2!,
becomes comparable toSxx in magnitude for largeq. In a
qualitative sense we have recovered the same behavio
observed by spin-dynamics simulations of theXY model in
d52 above the Kosterlitz-Thouless transition.20

B. The structure factor below Tc

As before we want to avoid critical finite-size effects al
below Tc and we therefore chooseT50.9Tc in the follow-
ing. Again relatively small systems are sufficient for th
investigation. Our main results have been obtained foL
530, smaller systems yield the same results at a loweq
resolution. The dynamics of theXY model belowTc is domi-
nated by spin waves which are visible inS(q,v) as pro-
nounced peaks at the spin wave frequencyv(q) as shown in

FIG. 3. Out-of-plane componentSzz of the dynamic structure
factor in the ~100! direction for T51.1Tc , L530, andq5p/15
(L), q52p/15 (1), q53p/15 (h), q54p/15 (3) as a func-
tion of the dimensionless frequencyv/J.
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PRB 60 3381SPIN-DYNAMICS SIMULATIONS OF THE THREE- . . .
Fig. 5 for q5p/15 in the~100! direction. The peak intensity
of Sxx is more than one order of magnitude larger than
corresponding peak intensity ofSzz. Sxx also displays a pro-
nounced central peak, where the intensity exceeds the in
sity of Szz by over three orders of magnitude. In a qualitati
sense this is again the same behavior as observed ind52,20

where the central peak inSxx was not expected by analytica
theory.16 We also find some ‘‘fine structure’’ at low intens
ties in Sxx for which no theoretical predictions exist. In Fig
5 we have marked these additional resonances by arrows
demontrated already ind52 ~Ref. 20! these signals can b
interpreted as two-spin wave peaks in the following way.
order to produce a contribution toSxx at q5p/15 in the
~100! direction one can combinetwo spin waves atq
5p/15, one in the (010) direction, which is eqivalent to t
(100) direction on a simple cubic lattice, and one in t
(110) direction~not shown!, where the latter has a highe

FIG. 4. In-plane componentSxx (L) and out-of-plane compo
nentSzz (1) of the dynamic structure factor in the~100! direction
for T51.1Tc , L530, andq5p as functions of the dimensionles
frequencyv/J. A shoulder appears at the position of the spin wa
peak inSzz.

FIG. 5. In-plane componentSxx (L) and out-of-plane compo
nentSzz (1) of the dynamic structure factor in the~100! direction
for T50.9Tc , L530, andq5p/15 as functions of the dimension
less frequencyv/J. Apart from the dominant spin wave peak add
tional resonances appear inSxx ~arrows! at low intensities~see main
text!.
e

n-

As

energy~frequency!. The differencebetween the correspond
ing frequencies is marked as (1) in Fig. 5, theirsum is
marked as~2!. A second way to get a contribution toSxx at
q5p/15 in the~100! direction is to combine two spin wave
in the (100) direction, one atq5p/15 the other atq
52p/15, where again the latter has a higher energy. T
sum of the corresponding frequencies is marked as (3)
Fig. 5 theirdifferencealmost coincides with the position o
the spin wave peak and can therefore not be resolved.

In order to monitor theq dependence of the spin wav
frequencyv(q) and the line widthsGxx(q) andGzz(q) of the
spin-wave peaks, we again employ fits to simple Loren
ians. For the in-plane component we generalize Eq.~4.3! to
include the spin-wave peaks

Lxx~q,v!5
Axx

0 ~q!

11@v/Gxx
0 ~q!#2

1
Axx~q!

11$@v2v~q!#/Gxx~q!%2

1
Axx~q!

11$@v1v~q!#/Gxx~q!%2
. ~4.5!

For the out-of-plane component we use Eq.~4.4! which cap-
tures the shape ofSzz for sufficiently small frequencies in a
satisfactory way. The dispersion relationv(q) can be ob-
tained from Eq.~4.5! or Eq. ~4.4!, where the latter yields
slightly smaller error bars, becauseSzz displays a sharpe
spin-wave maximum. The estimates forv(q), Gxx(q), and
Gzz(q) depend on the frequency range over which Eqs.~4.5!
and ~4.4! are fitted toSxx and Szz, respectively. We have
chosen a frequency window around the spin-wave pe
where forSxx the central peak has been subtracted first. T
error in the dispersion relation and the line widths is es
mated by varying the size of the frequency window fro
about 1.2 times the half width to about twice the half wid
of the peak. The dispersion relationv(q) obtained from this
procedure for the~100! direction is shown in Fig. 6, the
correponding zero temperature dispersion relation is sho
by the solid line. According to linear spin-wave theory o
obtains

FIG. 6. Dispersion relationv(q) (L) in the~100! direction for
T50.9Tc andL530. The solid line is theT50 dispersion relation
obtained from linear spin wave theory@see Eq.~4.6!#. The dashed
line is a fit to the first two terms of the Fourier series given by E
~4.7!.
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v~q!/J52A2d sin~q/2!, ~4.6!

for T50 whered53 in our case. As expected, the spin wa
frequencies are ‘‘renormalized’’ to fall below theT50 dis-
persion curve. The functional form ofv(q) can be captured
by a Fourier series. A convenient choice is

v~q!/J5a1 sin~q/2!1a2 sin~3q/2!1a3 sin~5q/2!1•••,
~4.7!

where the Fourier coefficientsa1 ,a2 ,a3 , . . . , arerapidly de-
creasing. If Eq.~4.7! is truncated after the second term o
obtainsa152.919 anda2520.116 from a least square fi
which connects all data points within their error bars
shown by the dashed line in Fig. 6.

The linewidth Gxx(q) of the spin wave peak in the in
plane component of the structure factor is shown in Fig. 7~a!.
As before the data can be analyzed by a Fourier series
rapidly decreasing coefficients. A convenient choice here

Gaa~q!/J5b01b1 cosq1b2 cos 2q1•••, ~4.8!

wherea refers tox ~in-plane! and z ~out-of-plane!. A fit to
Gxx with only two coefficients yieldsb050.4622 andb1

FIG. 7. Linewidths~a! Gxx(q) and ~b! Gzz(q) of the spin-wave
peak inSxx for the ~100! direction,T50.9Tc , andL530. The solid
lines are parabolic fits to the first four data points~see Fig. 8!. The
dashed lines are fits with the first two terms of the Fourier se
given by Eq.~4.8!.
s

ith
s

520.4559 which is shown by the dashed line in Fig. 7~a!.
The statistical error ofb0 andb1 is about 531024. The data
for smallq are represented quite well, whereas near the B
louin zone boundary significant deviations occur. These
be reduced very quickly by including higher Fourier mod
in the fit ~not shown!, where the higher Fourier coefficient
decrease rapidly in magnitude. Here, we are primarily int
ested in theq dependence of the linewidth near the center
the Brillouin zone~see below!. A corresponding analysis ha
been performed for the linewidthGzz(q) of the spin wave
peak in the out-of-plane component of the structure fac
The result is shown in Fig. 7~b!, where the Fourier coeffi-
cients in the fit~dashed line! are given byb050.4160(5) and
b1520.4165(5). Again the smallq behavior is captured
very well by the fit, but near the Brillouin zone bounda
deviations occur which can also be reduced very quickly
including higher Fourier modes.

The limit q˜0 is of particular interest for the linewidths
because it reflects the influence of conservation laws on
dynamics. The linewidthGxx(q50) can be interpreted as th
relaxation rate of the~nonconserved! order parameter and
therefore Gxx(q50) should be positive. The linewidth
Gzz(q50) is the relaxation rate of the out-of-plane magne
zationMz which isconserved, i.e.,Gzz(q50) shouldvanish.
From the Fourier fits shown in Fig. 7 one findsGxx(0)
.0.0063 andGzz(0).20.0005 with statistical errors o
about 731024 in both cases. The extrapolation ofGxx(q)
andGzz(q) to q50 is shown in Fig. 8. Theq dependence of
the linewidths for smallq is quadratic as anticipated by th
Fourier fits shown in Fig. 7. From a fit to a straight line w
find Gxx(0)50.007660.0006.0 ~solid line!, whereas
Gzz(0)50 ~dashed line! within its statistical error in agree
ment with the conservation laws. Finally, we note that theq2

dependence of the linewidthGzz is in agreement with the
prediction of mode coupling theory.22

C. The structure factor at Tc

The exploration of critical dynamics and dynamic scali
naturally requires most of the numerical effort. In order
reach the scaling regime large systems are required and

s

FIG. 8. Extrapolation of the linewidthsGxx(q) ~solid line! and
Gzz(q) ~dashed line! to q50. The linewidths vary asq2 for smallq
as predicted by mode coupling theory~see main text!.
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have therefore performed simulations forL520, 24, 30, 40,
and 60. Our prime objective here is the test of dynam
finite-size scaling which we assume to be valid in t
form8,20

Saa~q,v!/Gaa~q!5LzaSaa~qL,vLza! ~4.9!

at the critical point, whereGaa is the static structure facto
discussed in Sec. III andza denotes the dynamic critica
exponent. Note, that theq dependence is reduced to a depe
dence only onq5uqu, i.e., isotropic scaling in space has be
assumed. The indexa again refers to the spin componentx
~in-plane! or z ~out-of-plane!, wherezx[zf andzz[zm , re-
spectively. In order to estimateza we scale our data accord
ing to Eq. ~4.9! and test the result for data collapse in t
limit of small frequencies. The static structure factor need
for normalization in Eq.~4.9! is given by the equal-time
correlations which we also extract from the spin-dynam
data for consistency.

In order to provide numerical estimates of the dynam
exponentszm andzf first we analyze the dispersion relation
vzz(q) and vxx(q) at the critical point as obtained from
Lorentz fit to the spin-wave peak ofSzz(q,v) @see Eq.~4.4!#
and a Lorentz fit toSxx(q,v) according to Eq.~4.3!. The line
shape ofSxx is dominated by a strong central peak~see be-
low! so that we restrict the analysis of the full dispersi
relation tovzz(q). The result in the~100! direction is shown
in Fig. 9 for L524 andL540. The data apparently collaps
onto a single curve and show a linear behavior forq,p/2
down to q.p/20, wherev(q) becomes nonlinear. From
finite-size scaling one expects the scaling form

vaa5qzaVa~qL! ~4.10!

at Tc for sufficiently small q. ForqL52p and L520, 24,
30, 40, and 60 we obtain an approximation of the smaq
behavior ofvzz which is shown in Fig. 10~a!. According to
Eq. ~4.10! vzz should vary asqzm for fixed qL. A least
square fit to the data shown in Fig. 10~a! yields the dynamic
exponent

zm51.3860.05 ~4.11!

FIG. 9. Dispersion relationvzz(q) in the ~100! direction forT
5Tc andL524 (1) and 40 (L). The solid line displays a linea
extrapolation of the data forq,p/2 to q50. Deviations from lin-
earity become visible only forq<p/20 where critical effects set in
c

-

d

s

c
which differs substantially from the mode-coupling pred
tion zm5zf51.5.22 From the scaling relationzf532zm
~Refs. 24,25,28! we obtain zf51.6260.05 which can be
tested against the smallq behavior ofvxx(q). The result is
shown in Fig. 10~b!. For the larger systemsL530, 40, and
60 the data agree with the power law, but for smaller latt
sizesL520 andL524 systematic deviations occur. If w
exclude these smaller systems from the power-law fit sho
in Fig. 10~a! we find zm51.4360.14 which is at the uppe
error boundary of the previous estimate given by Eq.~4.11!.
An alternative estimate of the dynamic exponents is provid
by the median frequencyvaa

M which is defined by the rela
tion

E
0

vaa
M

Saa~q,v!dv5
1

2
Gaa~q!. ~4.12!

Note that we have normalized the dynamic structure fac
such that its integral over all frequencies yields the sta
structure factor. We evaluate Eq.~4.12! with the trapezoidal
rule. Systematic errors induced by this simple numerical
tegration method are smaller than statistical uncertain
coming from the statistical errors ofSxx(q,v) andSzz(q,v).

FIG. 10. Smallq behavior of the dispersion relations~a! vzz(q)
and~b! vxx(q) in the (100) direction forT5Tc . The solid line is a
power law fit to the data which yieldszm51.3860.05. The dashed
line is a power law with the exponentzf532zm51.6260.05. The
data for the smallest systemsL520 andL524 deviate systemati-
cally from the power law.
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3384 PRB 60M. KRECH AND D. P. LANDAU
If the integration is performed with Simpsons rule the sa
results are obtained within statistical errors. According to
~4.9! we expect the scaling behavior

vaa
M 5L2zaMaa~qL! ~4.13!

of the median frequency at the critical point. Due to t
presence of a strong central peak inSxx(q,v) the median
frequencyvxx

M for L560 turns out to be of the same size
the frequency resolution of our data. We therefore limit t
analysis ofvxx

m to the system sizesL520, 24, 30, and 40
The other median frequencyvzz

m can be determined accu
rately for all system sizes. The result forqL52p is dis-
played in Fig. 11. From a least square fit ofvxx

M to a power
law for L520, 24, 30, and 40 we obtainzf51.6160.03. If
only the data forL530 and 40 are used we obtainzf
51.6560.10. Both estimates are consistent with Eq.~4.11!
and the scaling relationzf1zm53. The latter estimate is
displayed by the solid line in Fig. 11. The corresponding
of vzz

M for L>30 yieldszm51.3560.01 which is also within
the error bar of our previous estimate@see Eq.~4.11!, dashed
line in Fig. 11#. The spread in the values for the dynam
exponents obtained from the dispersion relations for smaq
and the median frequencies is considerable. In order to
oncile all estimates with Eq.~4.11! almost the full width of
the error interval~one standard deviation! is needed. How-
ever, Eq.~4.11! represents a reasonable mean value of
estimates discussed so far and we therefore adopt it as
final estimate forzm and usezf1zm53 to determinezf .

As a final test of Eq.~4.11! we use Eq.~4.9! in order to
obtain a scaling plot of the dynamic structure factor. F
qL52p, L530, 40, and 60 andzm51.38 the resulting scal
ing plot for Szz(q,v) is shown in Fig. 12. The correspondin
plot for Sxx(q,v) with zf532zm51.62 is displayed in Fig.
13. Data collapse can only be expected for sufficiently sm
v. Scaling works quite well for all frequencies up to the sp
wave peak, where the intensity decreases slightly with
creasingL, but the error bars are still overlapping. The qu
ity of the data collapse in not so evident fromSxx(q,v) ~see
Fig. 13!. At v50 the scaled intensity forL560 deviates
from the ones forL530 and 40 by about one standard d

FIG. 11. Median frequenciesvxx
M (L, solid line! andvzz

M (1,
dashed line! for qL52p. The solid and dashed lines display fits
power laws@see Eq.~4.13!#.
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viation. This could be an effect of the finite statistic
sample. The line shape of the central peak inSxx still fits
rather well to a Lorentzian. Only in the vicinity ofv50 are
the data also compatible with the Gaussian line shape
pected from mode coupling theory.22

The above scaling analysis provides quite strong evide
for a violation of dynamic scaling in the sense that two d
ferent dynamic exponents are required in order to obt
scaling in the dispersion relations, the median frequenc
and the two components of the dynamic structure fac
However, we cannot prove from our data whether the e
mate vw5zf2zm50.24, which indicates the violation o
dynamic scaling, corresponds to the transient exponentvw
~Refs. 25,28! or if the measured difference consitutes anef-
fectiveexponent for system sizes which are too small to
nore additional corrections. As pointed out in Sec. I the pr
ence of energy conservation in our spin-dynamics simula
gives rise to such corrections governed by the expon
a/n.23 On the basis of our data we cannot exclude the p
sibility, that these corrections yield the dominant contrib
tion to the measured effective exponentvw . For a clarifica-
tion of this point more information is needed from analytic
theories of dynamic finite-size scaling38 and from
simulations.39

FIG. 12. Scaling plot ofSzz(q,v)/@(L/10)zmGzz(q)# versus
v/J(L/10)zm for qL52p and system sizesL530, 40, and 60.

FIG. 13. Scaling plot ofSxx(q,v)/@(L/10)zfGxx(q)# versus
v/J(L/10)zf for qL52p and system sizesL530, 40, and 60.
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V. SPIN TRANSPORT AND THERMAL CONDUCTIVITY

We have already mentioned in the Introduction that
transport properties of theXY model near the critical poin
provide lattice analogues of the corresponding transport
efficients of 4He near thel transition. The conserved ou
of-plane componentMz of the magnetization is the lattic
analog of the entropy density in4He and its associated tran
port coefficient therefore corresponds to the thermal cond
tivity of 4He which is of experimental interest. In princip
the thermal conductivity can be extracted from an extrapo
tion of the characteristic frequencyv0 of Szz given byv0

21

5 1
2 Szz(q,0) ~Refs. 25,40! to q50. However, in order to

obtain a reliable extrapolation at the critical point a very hi
momentum resolution forq˜0 is required and this can onl
be realized with very large systems~see Fig. 9 and Ref. 40!.
We therefore resort to an alternative approach already c
sidered in Ref. 40, we express the thermal conductivity b
current-current correlation function for a suitably chosen c
rent densityj k5( j 1,k , j 2,k , j 3,k) at lattice sitek.41

In order to identify the current densityj k we reexamine
the z component of the equation of motion@see Eq.~2.2!#
which reads

d

dt
Sk

z52J (
l PNN(k)

~Sl
xSk

y2Sl
ySk

x!, ~5.1!

where the sum is over all nearest neighbors of lattice sitk.
We define thei th componentj i ,k ( i 51,2,3) of the current
densityj k associated with the lattice pointk by40

j i ,k[J~Sk
ySk1ei

x 2Sk
xSk1ei

y !, ~5.2!

where the notationk1ei denotes the nearest neighbor of t
lattice sitek in the i th lattice direction. For the case of th
simple cubic lattice studied heree1 , e2, ande3 can be visu-
alized as the unit vectors of a Cartesian coordinate sys
aligned with the lattice. The lattice divergence of the curr
density according to Eq.~5.2! at lattice sitek is then given by

¹• j k5(
i 51

3

~ j i ,k2 j i ,k2ei
!5J (

l PNN(k)
~Sl

xSk
y2Sl

ySk
x!

~5.3!

which is just the negative right-hand side of Eq.~5.1!. Note
that the lattice spacing has been set to unity. In the spiri
hydrodynamics Eq.~5.1! can be interpreted as second ord
discretization of an equation of continuity of the for
]mk /]t52¹• j k . The densitymk[Sk

z and the currentj k de-
fined by Eq.~5.2! are located on staggered meshes, i.e.,
current density componentj i ,k associated with lattice sitek is
located half way betweenk and k1ei , so that each of the
finite differences appearing in Eq.~5.3! is located at lattice
site k just as the left-hand side of Eq.~5.1!. This displace-
ment of spins and currents on the lattice has no further c
sequences in our case, because we have applied per
boundary conditions in all lattice directions. According
Eq. ~44! of Ref. 41 we find the expression
e

o-

c-

-

n-
a
-

m
t

f
r

e

n-
dic

D~q,v!5
1

kBTxzz

2

pE0

`

dt (
i

^ j 1,0~0! j 1,i~ t !&

3cosq•Ri cosvt ~5.4!

for the transport coefficientD(q,v), whereq5(q,0,0) and
the same normalization as in Eq.~4.2! has been used. Not
that the out-of-plane static susceptibility xzz

5^Mz
2&/(kBTL3) needed for normalization in Eq.~5.4! is

essentially constant as a function of system sizeL at fixed
temperature. In the following we will analyzeD(q,v) only
for T5Tc , where l[D(0,0) corresponds to the therma
conductivity measured in4He experiments. According to Eq
~5.1! the current densityj k has the scaling dimension 1
2zm2d/2, becausexzz has the scaling dimension zero
From Eq. ~5.4! we then find 2(12zm2d/2)1d1zm52
2zm as the scaling dimension ofD(q,v) so that naive
finite-size scaling yieldsD(0,0)5l;L22zm at the critical
point.25 We therefore expect the scaling form

D~q,v!kBTcxzz5L22zmD~qL,vLzm! ~5.5!

at T5Tc , wherekBTcxzz is just a normalization factor. A
corresponding scaling plot ofD(q,v)xzz versusv/JLzm for
L530, 40, and 60 andq50 is shown in Fig. 14, where we
have used our estimatezm51.38. The statistical noise in th
data forD(q,v) is considerably larger than the noise in th
data for the structure factor~see also Ref. 40!. The spread of
the data points in Fig. 14 is of the same magnitude as
scatter of the data in each individual data set displayed
view of these statistical uncertainties our data scale rea
ably well for small v and confirm the scaling exponent
2zm.0.62 @see Eq. ~4.11!# of the transport coefficien
D(q,v). For qÞ0 D(q,v) scales accordingly as shown i
Fig. 15 for qL52p. The position of the spin wave maxi
mum appears to be shifted to the right as compared to
spin wave peak inSzz(q,v). According to Eq.~5.5! scaling
is obtained up to a value of about 0.6 of the scaling argum
for both q50 andqL52p. According to Fig. 15 the spin-
wave maximum itself appears to be outside the scaling
gime for the system sizes used here. ForqÞ0 D(q,v) tends
to zero asv˜0 within the statistical errors.

FIG. 14. Scaling plot of D(q,v)xzz/(L/10)22zm versus
v/J(L/10)zm for q50, L530, 40, and 60, andzm51.38. The value
D(q50,v50) corresponds to the thermal conductivity.
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The thermal conductivityl5D(0,0) is shown in Fig. 16
as a function of the system size. The overall behavior ol
with L is captured quite well by the expected power law~full
line! for L>30 and even the data point forL524 is only one
standard deviation away. Systems withL520 or less may be
too small to be in the scaling regime. In view of the cons
erable statistical error in the data slowly varying correctio
to scaling as discussed in the previous section canno
identified. In any case more theoretical information is nee
in order to provide a reliable background for the interpre
tion of spin dynamics data of transport coefficients in t
critical regime.38,39

VI. SUMMARY AND CONCLUSIONS

The easy-plane Heisenberg ferromagnet belongs to
XY universality class which has been demonstrated by
evaluation of the critical exponents and the static struct
factor. Unlike the standard plane rotatorXY model the planar
ferromagnet is endowed with a reversible spin dynam
which can be efficiently simulated by recently developed
composition methods. Due to spatial and temporal sym
tries the spin dynamics of the planar ferromagnet is expe
to be in the same dynamic universality class as4He near the
superfluid normal transition, but may have different corre
tions to scaling. The data have been compared to fi
theoretic and mode-coupling predictions with the followi
main results.

~1! Above the critical regime the spin-dynamics da
show a strong Lorentzian central peak in the in-plane co
ponentSxx(q,v) in agreement with mode coupling theor
The out-of-plane componentSzz(q,v) displays a pseudo
spin-wave peak which is also of Lorentzian shape and
comes increasingly prominent asq is increased. The pres
ence of this peak is in accordance with field-theoretic pred
tions for T.Tc .

~2! Below the critical regime strong spin-wave peaks o
cur in both components of the dynamic structure factor. T
shape of these peaks is captured very well by Lorentian
expected from mode-coupling theory. In addition to the sp

FIG. 15. Scaling plot of D(q,v)xzz/(L/10)22zm versus
v/J(L/10)zm for qL52p, L530, 40, and 60, andzm51.38.
D(q,v) shows a strong spin wave resonance and it vanishes
v˜0.
-
s
be
d
-

he
e
e

s
-

e-
d

-
d-

-

e-

-

-
e
as
-

wave peakSxx(q,v) displays a central peak of Lorentzia
shape and additional multi-spin-wave peaks which do
appear inSzz(q,v). For smallq the dispersion relationv(q)
is linear inq and the linewidthsGxx(q) andGzz(q) are qua-
dratic in q as expected from mode-coupling theory. T
qualitative agreement with the spin-dynamics data ford52
suggests that the dynamics of the two-dimensionalXY model
may not be captured by vortex dynamics theories.

~3! At Tc , in contrast to mode-coupling theory and
agreement with field-theoretic predictions,Sxx(q,v) and
Szz(q,v) require different dynamic exponents in order
obtain scaling:zm51.3860.05 andzf532zm51.6260.05,
whereas mode coupling theory yieldszm5zf53/2. The out-
of-plane componentSxx(q,v) is dominated by a strong cen
tral peak. A shoulder at a finite frequency indicates the pr
ence of a spin-wave signal. InSzz(q,v) a strong spin-wave
peak remains the dominating feature. The line shapes are
compatible with Lorentzians, the central peak inSxx is only
compatible with a Gaussian shape very close tov50.

~3! The transport coefficientD(q,v), which provides ac-
cess to the lattice analog of the thermal conductivity of4He
within the XY model, has been investigated atTc . The sta-
tistical fluctuations of the data are much stronger than th
in the data for the structure factor which makes the sca
analysis less unique. However, scaling in agreement with
previously obtained dynamic exponents is obtained. T
transport coefficient also shows a strong spin-wave re
nance for finiteq and vanishes forv˜0 in this case. The
thermal conductivityl5D(0,0) scales with the system siz
in the expected way within the error bars for sufficien
large systems.
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FIG. 16. Thermal conductivitylxzz versus system sizeL for
L520, 24, 30, 40, and 60. The solid line displays the power l
L22zm for zm51.38 for comparison. The power law represents
data reasonably well forL>30.
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