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Dynamical correlation functions using the density matrix renormalization group
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The density matrix renormalization group~DMRG! method allows for very precise calculations of ground
state properties in low-dimensional strongly correlated systems. We investigate two methods to expand the
DMRG to calculations of dynamical properties. In the Lanczos vector method the DMRG basis is optimized to
represent Lanczos vectors, which are then used to calculate the spectra. This method is fast and relatively easy
to implement, but the accuracy at higher frequencies is limited. Alternatively, one can optimize the basis to
represent a correction vector for a particular frequency. The correction vectors can be used to calculate the
dynamical correlation functions at these frequencies with high accuracy. By separately calculating correction
vectors at different frequencies, the dynamical correlation functions can be interpolated and pieced together
from these results. For systems with open boundaries we discuss how to construct operators for specific wave
vectors using filter functions.@S0163-1829~99!00925-X#
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I. INTRODUCTION

Since its development, the density matrix renormalizat
group1,2 ~DMRG! has been successfully used to calcul
static properties of ground states and low-lying excited sta
in various low dimensional strongly interacting systems. E
ergies can be determined with highest precision, and the
culation of time-independent correlation functions is ea
and high accuracy can be achieved. The calculation of
namical properties is more difficult.

The Lanczos vector method, also known as the contin
fractions method, can be used to determine the dynam
correlation functions in an exact diagonalization calculati
However, in a DMRG calculation, if the basis is optimize
only to represent the ground state, this will lead to po
results, since the Lanczos vectors are not represented
rectly in the truncated basis. Hallberg suggested using
eral of the first Lanczos vectors as target states in additio
the ground state.3 Reasonable results were obtained for
spin-1/2 chain, but the true accuracy of the method was
determined, since the infinite system DMRG method, rat
than the finite system method, was used. In this paper
determine the accuracy of this method for the more app
priate finite system method.

An alternative approach for generating dynamical spe
is the correction vector method, which yields exact resu
within the given basis.4 Although it has been used in th
DMRG context,5 in those calculations the basis was not e
panded to represent these correction vectors. Here we a
the correction vector method, targeting a correction vecto
a particular frequency. We find that the dynamical corre
tion function at this frequency can be calculated directly a
very accurately. We show how to piece together results fr
correction vectors at different frequencies to obtain the
spectrum.

Taking antiferromagnetic Heisenberg chains with spin
PRB 600163-1829/99/60~1!/335~9!/$15.00
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and spin-1/2 as examples, we discuss the advantages
limitations of the two methods. We show how to obtain t
spectral weight functions, and how to judge the quality of t
numerical results.

DMRG calculations are most accurate with open bou
ary conditions, in which case momentum is not precis
defined. In this work we show how to construct operato
corresponding to wave vectors in systems with open bou
aries using filter functions.

In Sec. II we discuss the construction of the operators
systems with open boundaries. In Sec. III we present
Lanczos method, and in Sec. IV we apply it to the antifer
magnetic spin-1 chain. As an example where the Lanc
method does not work so well we discuss the antiferrom
netic spin-1/2 chain in Sec. V. In Sec. VI we present t
correction vector method, and we give conclusions in S
VII.

II. CONSTRUCTION OF OPERATORS
FOR OPEN SYSTEMS

To calculate a Green’s function

G~q,z!5^0uAq
† 1

z2H
Aqu0& ~1!

with z5v1 ih, we have to be able to apply an operatorAq
in our system. The DMRG works in real-space, and ope
tors with wave vectorsq can be obtained as Fourier tran
forms of on-site operatorsAn . In infinite systems they are
given as

Aq5 (
n52`

`

Aneixnq, ~2!
335 ©1999 The American Physical Society
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An5
1

2pE2p

p

dqAqe2 ixnq, ~3!

where xn is the position of siten, the lattice spacing isa
51.

For finite systems with open boundaries, we construct
erators defined as wave packets, with finite spatial extent
finite uncertainty in the momentum. We construct the wa
packet by inserting a windowing or filter function in Eq.~2!.
If only real operators are used, it is numerically conveni
to construct

A~q!5 (
n52`

`

sin~qxn! f ~xn!An

5
1

4p i E dq8~Aq82A2q8! f ~q2q8! ~4!

and

A~q!5 (
n52`

`

cos~qxn! f ~xn!An

5
1

4pE dq8~Aq81A2q8! f ~q2q8!, ~5!

where f (xn)5F(xn /M ) is the filter function, 2M is the
width of the window. We use system with even numbers
sites, andxn is offset so thatx50 is in the center of the
system. The sites closest to the middle of the system ar
x521/2 andx51/2. The operatorsA(q) are reflection sym-
metric, which allows, if the Hamiltonian is also reflectio
symmetric, using reflected system blocks as environm
blocks in the DMRG.

Applying the operator as if the system were periodic,
equivalent to using a rectangular windowFr(x) as the filter
function with 2M5L:

Fr~x!5H 1 if 21<x<1,

0 otherwise.
~6!

This operator is seriously flawed. First, it has substan
weight at the edges of the system, where open bound
effects are significant. Second, even if we ignore the e
effects, this window is very broad in the wave vector spa
The Fourier transform ofFr(x) is

Fr~q!5sinS Lq

2 D S sinS q

2D2

sin~q!cosS q

2D
cos~q!21

D , ~7!

which for smallq is

Fr~q!'
2 sin~L/2q!

q
. ~8!

The wave vector uncertaintyDq of this operator is of
order 1, even whenL→`, whereasq itself ranges from 0 to
2p. Therefore this operator is not useful.

As is well known from elementary quantum mechani
the wave packet with the minimum product of uncertaint
DqDx is a Gaussian function. However, it is more desira
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to use an operator which is equal to 0 at the edges of
system. A widely used filter that looks similar to a Gauss
in the center, but with compact support, is the Parzen fi
~Fig. 1!:

Fp~x!5H 126uxu216uxu3 if 0<uxu<1/2,

2~12uxu!3 if 1/2<uxu<1.
~9!

With 2M5L this filter smoothly goes to zero at th
boundaries. The Fourier transform is

Fp~q!'24
31cos~qM!24 cos~qM/2!

q4M3
~10!

and the wave vector uncertainty isDq52A3/M . We see that
Dq varies inversely with the system size if 2M5L. For ex-
ample, in a system with 100 sitess'0.07, and with
wavevectors 0<q<2p this is a relative error of onlyDq
51.1%. Figure 2 shows how the Fourier transform of t

FIG. 1. Parzen and Gaussian functions in aL520 site system.
The halfwidth of the Parzen function is approximately 0.18L. The
Gaussian has a standard deviation ofs'0.153L, while the standard
deviation of the Parzen window, because of the faster decay o
tails, is onlys'0.112L.

FIG. 2. The Fourier transform of the Parzen filter and the re
angular window. In real space both filters are 20 sites wide. I
obvious that the Parzen filter has a smaller width in wave vec
space.
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Parzen filter smoothly goes to zero, while the Fourier tra
form of a rectangular window has oscillations at higher f
quencies.

The use of sine@Eq. ~4!# and cosine@Eq. ~5!# functions for
the operators instead of the complex form@Eq. ~2!# requires
some special attention. The Green’s function is

G~q,z!5 K A†~q!
1

z2H
A~q!L

5
1

4 K ~Aq
†6A2q

† !
1

z2H
~Aq6A2q!L , ~11!

with ‘‘ 2 ’’ for sine and ‘‘1 ’’ for cosine. Noting that
^A2q

† @1/(z2H)#A2q&5^Aq
†@1/(z2H)#Aq& and A2p5

2Ap , there are three different cases for the Green’s fu
tion. ForA(q)5(n cos(qn)An it is

G~q,z!55
1

2 K Aq
† 1

z2H
AqL for 0,q,p,

K Aq
† 1

z2H
AqL for q50,

0 for q5p.

~12!

For A(q)5(n sin(qn)An :

G~q,z!55
1

2 K Aq
† 1

z2H
AqL for 0,q,p,

0 for q50,

K Aq
† 1

z2H
AqL for q5p.

~13!

If only sine or cosine functions are used, the values fou
at q50 andq5p are either zero or twice the expected va
ues. By doing separate calculations with sine and cos
functions and adding up the results the correct values
always obtained.

In finite systems this effect is broadened due to the fin
width Dq of the operators in the wave vector space. To
system size independent values for the Green’s functions
requirep25*dq f(q)2 for the filter functions. For the Parze
filter this means that an additional prefactor ofA140p/151M
must be included in the filter.

III. LANCZOS VECTOR METHOD

To calculate spectral functions a Lanczos vector pro
dure can be used.3 To do this, the HamiltonianH is projected
onto a Krylov subspace spanned by Lanczos vectorsu f n&:

u f 0&5Aqu0&/iAqu0&i2,

an5^ f nuHu f n&,

bn5iur n&i2 ,

ur n&5~H2an!u f n&2bn21u f n21&,

u f n11&5ur n&/bn . ~14!
-
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In the Lanczos basis the Hamiltonian is tridiagonal:

H5S a0 b0 0

b0 a1 b1

b1 a2 b2

� � �

bn22 an21 bn21

0 bn21 an

D .

Now the eigenvectorsuFn& of H are used as an approx
mation of the identity 1'(nuFn&^Fnu. Inserting this into the
Green’s function we get

G~q,z!'(
n,m

^0uAq
†uFn&^Fnu

1

z2H
uFm&^FmuAqu0&

5(
n

^Fnu
1

z2H
uFn&^FnuAqu0&2

5(
n

~Fn
0!2^0uAq

†Aqu0&
z2En

. ~15!

Here En is the eigenvalue ofFn , and Fn
m5^ f muFn&. The

dynamical correlation functionI A(q,v) is then given by

I A~q,v!52
1

p
Im lim

h→01

G~q,v1 ih1Eg!

5
^0uAq

†Aqu0&
p

lim
h→01

(
n

h~Fn
0!2

~v1Eg2En!21h2

5^0uAq
†Aqu0&(

n
d~v1Eg2En!~Fn

0!2, ~16!

whereEg is the ground state energy. The peaks in the co
lation function are atvn5En2Eg .

The major source of errors in this is the approximation
the identity in terms of Lanczos vectors, and the small nu
ber NL of these Lanczos vectors that can be used as ta
states in practical calculations. Only those states that are
as target states can be relied on as being represented
rectly. Similar to the Lanczos algorithm for the solution
eigensystems, every additional Lanczos vector adds ano
peak, typically at high energy, while peaks with the small
frequencies are determined most precisely and converge
fastest.

To obtain the dynamical correlation function at the end
the calculation, we make full use of the available Hilbe
space. We calculateI (q,v) at the DMRG step where the
system block is the same size as the environment blo
since the truncation errors are smallest in that step. To
this, we not only use the Lanczos vectors that were tar
states, but keep calculating new Lanczos vectors until
thogonality breaks down and the overlap of the new Lanc
vector u f n& with the first Lanczos vectoru f 0& is bigger than
1%.

If more than just a few Lanczos vectors are used,
question of the weight that is assigned to these target st
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in the density matrix has to be addressed. The weight o
Lanczos vector in the spectrum is given by

wn5(
m

~Fm
0 !2~Fm

n !2. ~17!

Taking this as a measure for the importance of a Lanc
vector, we assign 50% of the weight to the ground state,
distribute the remaining 50% among the Lanczos tar
states according to their weightwn .

IV. THE SPIN-1 HEISENBERG MODEL

As an example we look at the antiferromagnetic spin
Heisenberg model:

H5(
i

SW iSW i 11 . ~18!

Each of the spins can be viewed as two spin-1/2 spins
pair with the spin-1/2 on the neighboring site in an antisy
metric singlet wave function.6 In an open chain this effec
tively leaves unpaired spin-1/2’s at the ends. To compen
for this, we add real spin-1/2’s at the ends of the chain.
do not include theses spins in the calculation of the spe
and set 2M5L22 for the Parzen filter.

This system has a finite correlation lengthj'6.03(1) and
the Haldane gapDH50.41050(2),7 that separates the groun
state from the first excitation, a single magnon with wa
vectorp. DMRG is particularly accurate in this system ev
if the number of states kept is small.

To obtain the dynamical correlation function we keep t
ground state and the three first Lanczos states as target s
(NL53), and we keepm5128 states in the DMRG basis. T
verify that keeping three Lanczos vectors as target state
enough, we calculate the weight of the Lanczos vectors
the finalS1(q,v) for q5p. Figure 3 shows that the weigh
of the first vectors is big and decays fast, and the first th
Lanczos vectors contain 98.87% of the total weight.

To further verify the convergence of the DMRG basis, w
calculateS81(q,v) in every step and compare it to the fin
resultS1(q,v) by taking the inner product of the two:

FIG. 3. The weightwn of the Lanczos vectors in the spectrum
L5320,NL53 Lanczos target states,m5128 states for spin 1, and
m5256 states for spin 1/2,q5p. Weight for the first three vectors
(n50

2 wn50.2799 for spin 1/2, and(n50
2 wn50.9887 for spin 1.
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S81~q!•S1~q!

iS81~q!iiS1~q!i
, ~19!

with the inner product defined asA•B[*2p
p dvA(v)B(v),

and the normiAi5AA•A. For this calculation we use a
finite broadening factorh50.01. Figure 4 shows the produc
for every DMRG step. The discontinuities occur when t
system and environment blocks have the same size, and
lizing reflection symmetry, the system block is reflected on
the environment block. After two sweeps the DMRG basis
converged, there are no further discontinuities, only sm
oscillations which are due to the different truncation effe
depending on the size of the system and the environm

FIG. 5. The single magnon excitation atq5p in spin-1 chains
of different length versus the frequency minus the Haldane gapDH .
Calculations withm5128 states kept and broadening factorh
50.001.

FIG. 4. Deviation from unity of the overlap of the spectr
weight calculated in every step with the spectral weight calcula
in the last step. Spectral weights atq5p in a 320 site long spin-1
chain, with a broadening factorh50.01 andm5128 states kept.
Iterations are counted from the first step after the build-up pha
The dashed lines indicate the iterations at which the system
environment block have the same size. The inset shows the ove
of the first Lanczos vectoru f 0& with u f n& in the final calculation of
the correlation function.
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PRB 60 339DYNAMICAL CORRELATION FUNCTIONS USING THE . . .
block. Obviously with three Lanczos target states the sp
trum is described well enough, and convergence is v
good.

In the calculation of the final spectrum, Lanczos vect
are calculated until the overlap of the new vector with t
first one exceeds 1%. The inset of Fig. 4 shows that
overlap ^ f nu f 0& increases exponentially. In the given e
ample we use the first 83 Lanczos vectors. It can be s
from the overlap that orthogonality breaks down after
Lanczos vectors have been calculated, effectively restar
the procedure. The effect on the resulting spectrum if m
Lanczos vectors are used is very small.

Figure 5 showsS1(q,v) for q5p. Most of the weight is
in one single peak, and with increasing system size this p
moves towards the Haldane gap. To be sure that keepinm
5128 states in the DMRG basis is enough, we compare
sults with those from calculations withm564 andm5256
states. Table I shows the truncation error depending on
system size and number of states. The truncation errors
relatively small even withm564 states, and the differenc
between those withm5128 andm5256 states are small.

Table II and Fig. 6~a! show the weight in the first peak
The weight grows with the system size, but seems to go
W0597.6%60.1% instead of 100%. This value is importa
for estimating how good a single mode approximation
this excitation is.

Table III and Fig. 6~b! show the position of the first pea
v0. We expect this value to converge against the Hald
gap DH50.41050(2) for big systems. For theL5320 site
chains our result is only 0.7%~128 states! above this value,
and Fig. 6~b! indicates that the distance between the Hald
gap and the peak vanishes for big systems.

By determining the frequency at which the first peak is
different wavevectors, we can calculate the single mag
dispersion relation. Figure 7 shows the dispersion rela
determined with the Lanczos vector method, as well as qu
tum Monte Carlo8 and exact diagonalization.9 The different
sets of data are in good agreement, except for smallq, where
the quantum Monte Carlo results are smaller than ours.

In summary, we have shown that the Lanczos vec

TABLE I. The truncation errorP(m) as a function of the length
L of the spin-1 chain and the numberm of states kept.

L P(m564) P(m5128) P(m5256)

40 1.131026 2.131028 1.231028

80 1.631026 3.031028 3.531029

160 1.731026 3.231028 8.631029

320 1.531026 3.231028 3.031029

TABLE II. The weightW0 of the first peak as a function of th
lengthL of the spin-1 chain and numberm of states kept.

L W0(m564) W0(m5128) W0(m5256)

40 0.9346 0.9288 0.8415
80 0.9675 0.9617 0.9540
160 0.9753 0.9742 0.9737
320 0.9755 0.9755 0.9756
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method works very well for the dynamical spectrum of t
antiferromagnetic spin-1 Heisenberg model.

V. THE SPIN-1/2 HEISENBERG MODEL

As we have already pointed out, the spin-1 chain is
relatively easy case. Since there is an excitation gap and
correlation length is short, the ground state properties can
calculated with high accuracy with a relatively small DMR
basis. Following the example of Hallberg,3 we now investi-
gate the antiferromagnetic spin-1/2 chain. This is a m
difficult case, since it has no excitation gap and a diverg
correlation length, requiring a slightly bigger DMRG bas
More importantly, instead of a single peak with most of t
weight in it, for S1(v,q) an excitation band is found. It ha
a lower boundary10

vq
l 5

p

2
usin~q!u, ~20!

and upper boundary11

vq
u5pusin~q/2!u. ~21!

For this band the following structure was proposed:12

Szz~q,v!5
A

Av22vq
l 2

Q~v2vq
l !Q~vq

u2v!. ~22!

FIG. 6. The upper plot~a! shows the weight of the first peakW0

versus the system sizeL. The lower plot~b! shows the difference of
the frequency of first peakv0 and the Haldane gapDH . The dif-
ference tends to zero as the system size increases.

TABLE III. The position of the first peakv0 as a function of the
lengthL of the spin-1 chain and numberm of states kept.

L v0(m564) v0(m5128) v0(m5256)

40 0.4657 0.4642 0.4477
80 0.4326 0.4313 0.4304

160 0.4192 0.4173 0.4174
320 0.4159 0.4134 0.4137
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In a finite chain there can be no continuous energy ba
Instead, we expect separate peaks in the same region
that the number of peaks increases as the system size
creased.

This poses a problem to the Lanczos vector method. F
ure 3 shows that the weight of the Lanczos vectors in
spectral weight function decreases only very slowly. T
means that a lot of Lanczos vectors are needed to des
the correlation function well. Figure 8 shows the spect
weight atq5p determined with different numbers of Lanc
zos vectors. For reference we also show results using
much more accurate correction vector method, discusse
the next section. The spectral weight function strongly
pends on the number of Lanczos target states, and eve
16 and 32 Lanczos vector target states there is no sig
convergence. Bigger numbers of target statesNL would re-
sult in very long calculation times, and would also requ
that we keep substantially more states per block.

FIG. 7. The single magnon line of the spin-1 Heisenberg a
ferromagnet. DMRG results withm5128 states per block, an
three Lanczos vectors as target states. Quantum Monte Carlo~Ref.
8! ~QMC! and exact diagonalization~Ref. 9! ~ED! data are from the
work of Takahashi.

FIG. 8. The spectral weight function atq5p in a 160 site spin-
1/2 chain withh50.1 for calculations with different numbers o
Lanczos target stateNL and with the correction vector method. I
all calculationsm5256 states were kept in the DMRG basis. T
correction vector method works well, while the Lanczos method
far from convergence.
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While the high energy part of the spectral weight functi
is not accessible with the Lanczos vector method, the p
tion of the first peak is only weakly dependent on the num
of Lanczos vector target statesNL . Table IV shows the po-
sition of the first peakv0 in a L5160 site chain atq5p
calculated withm5256 states kept. The dependence of t
position of the first peak on the number of Lanczos vec
target states is small. The reason why it is shifted to hig
values if more target states are used are the increasing
cation errors arising from targeting more states with fix
m5256.

Keepingm5256 states in the DMRG basis, and targeti
four Lanczos vectors, we have determined the lower edg
the energy band for differentq. Figure 9 shows the disper
sion relation. For the longer systems it compares increasin
well with the analytic result@Eq. ~20!#.

VI. CORRECTION VECTORS

In the previous section we found that the Lanczos vec
method works very well if only low-energy properties of th
dynamical correlation function are of interest, but that it
unable to reproduce higher energy properties like the sh
of the excitation band in the spin-1/2 model. Instead of us
the Lanczos vector method, the spectrum can be calcul
directly for a givenz5v1 ih by using a correction vector
To do this, the following states must be included as tar
states:

i-

s

TABLE IV. The position of the first peakv0 depending on the
number of Lanczos vector target statesNL in the spectral weight
function of an antiferromagneticL5160 site spin-1/2 chain atq
5p. m5256 states were kept in the DMRG basis.

NL v0 P

4 0.0269 9.431028

8 0.0297 6.231026

16 0.0380 1.531024

32 0.0644 6.931024

FIG. 9. The lower bound of the excitation band in the spin-1
Heisenberg model. The results for the 28 site periodic system
from Hallberg~Ref. 3!.
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u0& the ground state,
uAq&5Aqu0& the first Lanczos vector,

ux(z)&5
1

z2H
uAq& the correction vector.

Since a finite broadening factorh is used, the correction
vector becomes complex. To avoid the use of complex nu
bers, we split the correction vector into real and imagin
part, both used as target states:

ux~z!&5uxr~z!&1 i uxi~z!&. ~23!

The equation for the correction vector is split into real a
imaginary partsuxr(z)& anduxi(z)&, and the imaginary part is
found by solving

„~H2v!21h2
…uxi~z!&52huAq& ~24!

using the conjugate gradient method. Note that this equa
system gets more singular asv gets closer to an eigenenerg
of the Hamiltonian, and as the broadening factorh gets
smaller. For largeh the Hamiltonian is close to a diagon
matrix, and the conjugate gradient method converges m
faster than for smallh. This means that a largeh results in
short calculation times, but it also limits the resolution of t
spectrum. The convergence is also slowed down becaus
ergy gaps inH2v are squared in Eq.~24!, and the conver-
gence rate of the conjugate gradient method depends on
gap between the lowest and the next lowest eigenvector

The real part of the correction vector is calculated
rectly:

uxr~z!&5
1

h
~H2v!uxi~z!&. ~25!

Using the correction vector, the Green’s function can
calculated directly:

G~q,z!5^Aqux~z!&. ~26!

Taking these states„u0&, uAq&, and ux(z)&… as target states
and optimizing the DMRG basis to represent them allows
a very precise calculation of the Green’s function for a giv
frequencyv and broadening factorh. Unfortunately, the
correction vector has to be calculated separately for everv.
If the correction vector does not change very rapidly withv,
the DMRG basis that is optimized to represent the correc
vector at a certainv, should also be able to represent co
rection vectors for nearby frequencies.

Although the correction vectors are needed as target s
to determine the DMRG basis, it is more efficient to use
Lanczos vector method to determine the complete spe
within that basis. Using the correction vector, but no Lanc
vectors except the first one, as a target state, DMRG sw
are performed until the basis is converged~typically two or
three sweeps!. The dynamical correlation function is the
calculated in the same way as in the Lanczos vector met
when the left and right block have the same size Lanc
vectors are calculated until orthogonality is lost. Since t
method is almost exact in the given basis, in principle
should yield the same result as using the correction ve
method in the same basis, and it is much faster. Of cou
-
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while the spectrum is produced for allv, it is only accurate
near thev used to produce the correction vector.

To determine the range ofv in which the truncated basi
is good enough to calculate the spectral function, we co
pare calculations with different frequencies for the correct
vectors. Figure 10 shows the spectral weight function n
the upper edge of the excitation band in the antiferrom
netic spin-1/2 chain. This is an especially difficult regio
because there are a lot of peaks at lower energies. We
several calculations with correction vectors for differentv,
calculating the spectral weight in the region around the
geted frequencies. Withm5128 states kept, the overa
shape reproduces the edge of the band accurately. Devia
between the pieces of the spectrum calculated with differ
correction vectors can be seen. The small mismatch betw
the very accurate values calculated directly from the corr
tion vectors, and the corresponding part obtained with
Lanczos vector method are due to numerical errors in
Lanczos procedure. By keeping more states this result ca
improved. Figure 11 shows the same part of the spect
with m5256 states kept. Now the different parts match ve
well. Further improvement would be possible by keepi
more states or reducing the distance between the frequen
of the correction vectors.

This result can be improved even further. Instead of us
just one correction vector as a target state, we try using
correction vectors at the same time. The spectral weight
then be interpolated for frequencies between these two
rection vectors. With a broadening factor ofh50.1, a dis-
tance ofDv50.2 between the two correction vectors see
appropriate. In Figs. 12 and 13 the results from calculati
with different frequencies for the correction vectors are pl
ted. With m5128 states the parts for 3.0<v<3.3 match
perfectly, and for 2.8<v<3.0 they still match better than
with only one correction vector as a target state~Fig. 10!.
With m5256 states~Fig. 13! all pieces of the spectrum
match up almost perfectly. This gives us a consistent met

FIG. 10. The spectral weight in an 80 site spin-1/2 chain aq
5p with one correction vector as a target state and 128 states in
DMRG basis andh50.1. The crosses show the results calcula
directly from the correction vectors, the lines show the parts ca
lated with the Lanczos procedure in the basis optimized for
correction vectors. For example, the dashed line fromv52.8 to
v53.0 is calculated in the basis that is optimized for the correct
vector withv52.9.
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to verify how good our numerical results are, and we fi
that it is possible to achieve very high accuracy.

Now we use this method to obtain the complete spec
weight in a 160 site chain. Keepingm5256 states and usin
two correction vectors as target states, we start with cor
tion vectors forv50 andv50.2. After two sweeps through
the system the DMRG basis is converged, and the spe
weight function is calculated for 0<v<0.2 using the Lanc-
zos procedure. Then we targetv50.2 andv50.4, perform
two sweeps through the system, and calculate the spe
weight for 0.2<v<0.4. Continuing this procedure, we ob
tain the function shown in Fig. 8. In contrast to the resu
from the Lanczos vector method, the spectral weight fu
tion calculated using two correction vectors shows no fin
size peaks and reflects the shape expected in the infinite
tem. Equation~22! predicts 1/v decay fromv50 to v5p,
where the spectral weight drops to zero. The band prese
in Fig. 8 shows the correct upper and lower bound, but
spectral weight in the band decays faster than 1/v. To verify
if this is a finite-size effect, we look at chains with differe

FIG. 11. The spectral weight in an 80 site spin-1/2 chain aq
5p with one correction vector as a target state and 256 states in
DMRG basis andh50.1.

FIG. 12. The spectral weight function in an 80 site spin-1
chain atq5p, with 128 states in the DMRG basis andh50.1. Two
correction vectors are used as target states, and the plot show
values calculated directly with these correction vectors, and
connecting lines show the interpolated spectral weight calcula
with the Lanczos procedure in the basis optimized for the correc
vectors.
al
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lengths. Figure 14 shows that the spectral weight dec
faster than 1/v in all system, and the decays do not becom
slower for longer chains. The only hint at finite-size effects
the different size of the spectral weight for different syste
sizes.

The small oscillations in the 40 site chain are due to
limited number of peaks in the relatively small system, tho
in the 160 site chain are due to the large distance ofDv
50.4 between the correction vectors. They do not affect
result, and could be removed by using pairs of correct
vectors with closer frequencies or by increasing the size
the DMRG basis.

In Fig. 13 the upper edge of the excitation band can
seen, but due to the broadening factorh50.1 it is difficult to
determine the position of the edge. Since the spectral we
function is plotted by taking the peaks found in the Lancz
procedure and plotting them with the givenh, they can as
well be plotted with smaller broadening factors. Figure
shows plots withh50.1, for which the DMRG basis wa

he

the
e
d
n

FIG. 13. The spectral weight function in an 80 site spin-1
chain atq5p, with 256 states in the DMRG basis andh50.1. Two
correction vectors are used as target states, and the plot show
values calculated directly with these correction vectors, and
connecting lines show the interpolated spectral weight calcula
with the Lanczos procedure in the basis optimized for the correc
vectors.

FIG. 14. The spectral weight function atq5p, with different
system sizes. The spectra were calculated with two correction
tor target states with distances ofDv50.4, a broadening factorh
50.2, andm5256 states.
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optimized, andh50.05 andh50.01. For the smallerh the
different parts of the spectral weight function no long
match, but now the poles are easily identifiable. The posi
of the peaks can also be determined by directly taking
position of the peaks from the Lanczos procedure. Do
this, the last peak in the band is found atv53.128, com-
pared tov5p given in @Eq. ~21!#. To verify if the small
difference is a finite-size effect or a numerical error, long
chains can be studied, or correction vectors closer to
desired region could be used. Using smallerh and reducing
the distance between the correction vectors also gives hi
resolution.

VII. CONCLUSIONS

In conclusion, we have presented and tested two meth
to calculate dynamical correlation functions using DMR
We have shown that the Lanczos vector method works v
well if only the low-energy part of the correlation function

FIG. 15. The spectral weight function in an 80 site chain aq
5p. These are the same data as in Fig. 13, with two correc
vectors with a distance ofDv50.2 between them, andh50.1. If
the spectral weight function is plotted with a smallerh, the parts
calculated with different frequencies for the correction vectors
longer match perfectly, but the peaks become easily distinguisha
J.
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ry

of interest, or if the bulk of the weight is in one single pea
We demonstrated this for the case of the antiferromagn
spin-1 and spin-1/2 chains, where we could reproduce
dispersion relation of the lower edge of the spectral wei
functions correctly.

If there is an excitation band, the Lanczos vector meth
is unable to describe the higher energy part of the correla
functions. These parts can be determined using the correc
vector method. This method gives very precise results
frequencies at which the correction vectors are used as ta
states. The Lanczos procedure can be used in the basis
mized for the correction vectors to determine the spectr
fast and efficiently not only at the frequency of the correcti
vector, but also in the region around that. By comparing
plots from calculations with different frequencies for the co
rection vectors it is possible to estimate the range over wh
the spectral function is determined correctly. We find th
remarkably good spectra can be determined if two correc
vectors are used as target states, and the spectral functi
calculated for the frequencies between them. In the cas
the excitation band in the spectral weight function of t
antiferromagnetic spin-1/2 chain, we used this method
were able to study a system long enough and with suffic
accuracy that no finite-size peaks were visible and excel
agreement with theoretical expectations was obtained.

Our results show that using these techniques, obtain
accurate dynamical spectral functions from DMRG is fe
sible and can be considered a standard DMRG techniq
The calculation time is longer than for ground state prop
ties, but still manageable for single chain systems and pr
ably for ladders with a few chains.
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