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The density matrix renormalization grodPMRG) method allows for very precise calculations of ground
state properties in low-dimensional strongly correlated systems. We investigate two methods to expand the
DMRG to calculations of dynamical properties. In the Lanczos vector method the DMRG basis is optimized to
represent Lanczos vectors, which are then used to calculate the spectra. This method is fast and relatively easy
to implement, but the accuracy at higher frequencies is limited. Alternatively, one can optimize the basis to
represent a correction vector for a particular frequency. The correction vectors can be used to calculate the
dynamical correlation functions at these frequencies with high accuracy. By separately calculating correction
vectors at different frequencies, the dynamical correlation functions can be interpolated and pieced together
from these results. For systems with open boundaries we discuss how to construct operators for specific wave
vectors using filter functiongS0163-1829)00925-X]

[. INTRODUCTION and spin-1/2 as examples, we discuss the advantages and
limitations of the two methods. We show how to obtain the
Since its development, the density matrix renormalizatiorspectral weight functions, and how to judge the quality of the
group”? (DMRG) has been successfully used to calculatenumerical results.
static properties of ground states and low-lying excited states DMRG calculations are most accurate with open bound-
in various low dimensional strongly interacting systems. Enary conditions, in which case momentum is not precisely
ergies can be determined with highest precision, and the caflefined. In this work we show how to construct operators
culation of time-independent correlation functions is easycorresponding to wave vectors in systems with open bound-
and high accuracy can be achieved. The calculation of dy@ries using filter functions. _
namical properties is more difficult. In Sec. I_I we discuss the construction of the operators for
The Lanczos vector method, also known as the continuegyStems with open boundaries. In Sec. Ill we present the
fractions method, can be used to determine the dynamicaf@nczos method, and in Sec. IV we apply it to the antiferro-
correlation functions in an exact diagonalization calculationMagnetic spin-1 chain. As an example where the Lanczos
However, in a DMRG calculation, if the basis is optimized Method does not work so well we discuss the antiferromag-
only to represent the ground state, this will lead to pooretic spin-1/2 chain in Sec. V. In Sec. VI we present the
results, since the Lanczos vectors are not represented cdorrection vector method, and we give conclusions in Sec.
rectly in the truncated basis. Hallberg suggested using seWll.
eral of the first Lanczos vectors as target states in addition to
thg ground ;taté.ReasonabIe results were obtained for a Il. CONSTRUCTION OF OPERATORS
spin-1/2 chain, but the true accuracy of the method was not FOR OPEN SYSTEMS
determined, since the infinite system DMRG method, rather
than the finite system method, was used. In this paper we To calculate a Green’s function
determine the accuracy of this method for the more appro-
priate finite system method. 1
~An alternatllve approach for genergtlng_dynammal spectra G(q,z)=<O|Ag_—Aq|O> )
is the correction vector method, which yields exact results z—H
within the given basié. Although it has been used in the
DMRG context in those calculations the basis was not ex-with z=w+i 7, we have to be able to apply an operakQr
panded to represent these correction vectors. Here we appiy our system. The DMRG works in real-space, and opera-
the correction vector method, targeting a correction vector ators with wave vectors| can be obtained as Fourier trans-
a particular frequency. We find that the dynamical correlaforms of on-site operatord,,. In infinite systems they are
tion function at this frequency can be calculated directly andjiven as
very accurately. We show how to piece together results from
correction vectors at different frequencies to obtain the full

spectrum. A= 2 Aneian, (2)
Taking antiferromagnetic Heisenberg chains with spin-1 R
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wherex,, is the position of siten, the lattice spacing is
=1.

For finite systems with open boundaries, we construct op- 0.6
erators defined as wave packets, with finite spatial extent and g
finite uncertainty in the momentum. We construct the wave

0.4 |
packet by inserting a windowing or filter function in Eg).
If only real operators are used, it is numerically convenient 1
to construct 0.2 .
A(@)= 2 sin(gx,)f(x,)A, 00 20
n=—o X
_ 1 f dg'(Ay —A_,)f(q—q’) (4) FIG. 1. Parzen and Gaussian functions ih-a20 site system.
47i q —d The halfwidth of the Parzen function is approximately @.18he
and Gaussian has a standard deviatiowef0.153_, while the standard
deviation of the Parzen window, because of the faster decay of its

% tails, is onlyoc~0.114..
Ala)= 2 cogax,) (XA,

n=- to use an operator which is equal to 0 at the edges of the

1 system. A widely used filter that looks similar to a Gaussian
= _f dg'(Ag+A_¢)f(q—q’), (5) in the center, but with compact support, is the Parzen filter
4w (Fig. :
where f(x,)=F(x,/M) is the filter function, M is the ) s
width of the window. We use system with even numbers of _[1-6Ix[*+6[x]* if 0<[x|<1/2, g
sites, andx, is offset so thatx=0 is in the center of the pX)= 2(1—|x))® if 12<|x|<1. ©)

system. The sites closest to the middle of the system are at \yith oM=L this filter smoothly goes to zero at the

x=—1/2 andx=1/2. The operator8(q) are reflection sym-

metric, which allows, if the Hamiltonian is also reflection

symmetric, using reflected system blocks as environment

blocks in the DMRG. F (q)%243+COSC]M)_4 COS{QM/Z)

Applying the operator as if the system were periodic, is P q*m?3

equivalent to using a rectangular windd¥(x) as the filter

function with 2M =L: and the wave vector uncertaintyAsj=2/3/M. We see that
Aq varies inversely with the system size ie=L. For ex-
ample, in a system with 100 sitee~0.07, and with

6) wavevectors 6&q=<2m this is a relative error of onlyAq

=1.1%. Figure 2 shows how the Fourier transform of the
This operator is seriously flawed. First, it has substantial

weight at the edges of the system, where open boundary T T T T T T
effects are significant. Second, even if we ignore the edge
effects, this window is very broad in the wave vector space.
The Fourier transform o' (x) is

boundaries. The Fourier transform is

(10

. 1 if —1sx=<1,
F'(x)= .
) 0 otherwise.

15.0 |- —— P{(q) Parzen n

—-——- W'(q) Rectangular

. q - .
Fr( )zsin L_q sin g _M (7)
q 2 2 cofq)—1 /' i
which for smallq is
//\\ AN o~
2 sin(L/2q) N ~- S~
Fliag)~———. (8)
q 1 | 1 1 1 1
The wave vector uncertaintgq of this operator is of 05 1.0

order 1, even wheh — oo, whereaq itself ranges from 0 to ¥n

2. Therefore this operator is not useful. FIG. 2. The Fourier transform of the Parzen filter and the rect-

As is well known from elementary quantum mechanics,angular window. In real space both filters are 20 sites wide. It is
the wave packet with the minimum product of uncertaintiesobvious that the Parzen filter has a smaller width in wave vector
AgAx is a Gaussian function. However, it is more desirablespace.
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Parzen filter smoothly goes to zero, while the Fourier trans-
form of a rectangular window has oscillations at higher fre-

guencies.

The use of sin¢Eq. (4)] and cosingEq. (5)] functions for
the operators instead of the complex fofEy. (2)] requires
some special attention. The Green’s function is

1
G(q,2)=<AT(q)ﬁA(q)>

—h (Ainq)>, (12)

1
- t t
= Z<(Ainq)

with “ =" for sine and “+" for cosine. Noting that
(AL [1(z—H)IA_)=(Al[1/(z—H)]A;) and A_ =

—A,, there are three different cases for the Green’s func-

tion. ForA(q) =2, cos@n)A, it is
(12

For A(q) =X, sin(@n)A,:

LAt oA for o
PARAL At or 0<g<mr,
G(q,2)=4 0

for =0, (13)

1
AqﬁAq for gq=1.

If only sine or cosine functions are used, the values found
atg=0 andq= are either zero or twice the expected val-
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In the Lanczos basis the Hamiltonian is tridiagonal:

a, by 0
bo a; by
b, a; b
H=
Pn-2 @n-1 bp-g
0 Ph-1 @

Now the eigenvectorgb,) of H are used as an approxi-
mation of the identity &3 ,|®,){®,|. Inserting this into the
Green'’s function we get

1
G(q,2)~ % <O|A;|®n><¢n|ﬁ|q)m><(bm|Aq|0>

:En: <(I)n| %|Q)n><®n|Aq|O>2

(dP)%(0|AlA|0)
z—E, '

-

(15

Here E,, is the eigenvalue ofb,,, and ®'=(f|P,). The
dynamical correlation functiohy(q,w) is then given by

1
la(g,0)=—=—1Im lim G(q,0+in+Ey)
T p0t
_(OlAAO) 7(®p)°
(w+Eg—En)2+ 7?

>

p—0t "

=(O|A$Aq|0); Sw+Ey—E) (@92, (16)

ues. By doing separate calculations with sine and cosine
functions and adding up the results the correct values arhereE, is the ground state energy. The peaks in the corre-

always obtained.

lation function are atv,=E,—E,.

In f|n|te SyStemS thIS effect iS broadened due to the f|n|te The major source of errors in th|s iS the approximation Of
width Aq of the operators in the wave vector space. To gethe identity in terms of Lanczos vectors, and the small num-
system size independent values for the Green's functions Wger N, of these Lanczos vectors that can be used as target
requirem®= [dqf(q)? for the filter functions. For the Parzen states in practical calculations. Only those states that are used

filter this means that an additional prefactor,&40m/15IM
must be included in the filter.

Ill. LANCZOS VECTOR METHOD

as target states can be relied on as being represented cor-
rectly. Similar to the Lanczos algorithm for the solution of
eigensystems, every additional Lanczos vector adds another
peak, typically at high energy, while peaks with the smallest
frequencies are determined most precisely and converge the

To calculate spectral functions a Lanczos vector procesggiest

dure can be usetiTo do this, the HamiltoniaH is projected
onto a Krylov subspace spanned by Lanczos vedtigjs

[fo)=Agl0)[|Ag|0)]2,
an=(fn[H|fpn),
ba=llIra)ll2.
Iry=(H—ap)|fn)—bn_a[fr-1),

|fn+1>:|rn>/bn- (14

To obtain the dynamical correlation function at the end of
the calculation, we make full use of the available Hilbert
space. We calculate(q,w) at the DMRG step where the
system block is the same size as the environment block,
since the truncation errors are smallest in that step. To do
this, we not only use the Lanczos vectors that were target
states, but keep calculating new Lanczos vectors until or-
thogonality breaks down and the overlap of the new Lanczos
vector|f,) with the first Lanczos vectdif,) is bigger than
1%.

If more than just a few Lanczos vectors are used, the
question of the weight that is assigned to these target states
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FIG. 3. The weightw,, of the Lanczos vectors in the spectrum 107° T
-9 n - : 1 4 1272 1 1
L=320,N, =3 Lanczos target statesy)= 128 states for spin 1, and 0 818 636 itgfation 590 908

m= 256 states for spin 1/2,= 7. Weight for the first three vectors:
S2_oW,=0.2799 for spin 1/2, an&?_,w,=0.9887 for spin 1. FIG. 4. Deviation from unity of the overlap of the spectral
weight calculated in every step with the spectral weight calculated
in the density matrix has to be addressed. The weight of & the last step. Spectral weightsat 7 in a 320 site long spin-1
Lanczos vector in the spectrum is given by chain, with a broadening factay=0.01 andm= 128 states kept.
Iterations are counted from the first step after the build-up phase.
The dashed lines indicate the iterations at which the system and
Wn= % ((Dg\)z((bnm)z' 17 environment block have the same size. The inset shows the overlap
of the first Lanczos vectdifo) with |f,,) in the final calculation of
Taking this as a measure for the importance of a Lanczoghe correlation function.
vector, we assign 50% of the weight to the ground state, and
distribute the remaining 50% among the Lanczos target '+ +
states accordi ir wei S (@S (a)
ing to their weigtt, . ,
IS (llIs* (@)l

_ . ~with the inner product defined & B=[" dwA(w)B(w),
As an example we look at the antiferromagnetic spin-land the normj|A|=A-A. For this calculation we use a
Heisenberg model: finite broadening factof=0.01. Figure 4 shows the product
for every DMRG step. The discontinuities occur when the
— & & system and environment blocks have the same size, and uti-
H=2 SS.1. (18 ¥ . :
i lizing reflection symmetry, the system block is reflected onto

the environment block. After two sweeps the DMRG basis is

Ea_ch QLtme spl.nsl(/:gn behwewgdhgs two ?p”."l’z spins thaéonverged, there are no further discontinuities, only small
pair with the spin- on the neighboring site in an antlsym'oscillations which are due to the different truncation effect

r_netric singlet wave func.tioﬁ.ln an open chain this effec- depending on the size of the system and the environment
tively leaves unpaired spin-1/2's at the ends. To compensate

for this, we add real spin-1/2’s at the ends of the chain. We
do not include theses spins in the calculation of the spectra
and set M =L —2 for the Parzen filter.

This system has a finite correlation lengts 6.03(1) and 4000
the Haldane gap;,=0.4105@2),’ that separates the ground

(19

IV. THE SPIN-1 HEISENBERG MODEL

5000

state from the first excitation, a single magnon with wave 3 3000 .
vector7. DMRG is particularly accurate in this system even & .
if the number of states kept is small. £ ]

2000 H

To obtain the dynamical correlation function we keep the
ground state and the three first Lanczos states as target states
(N_=3), and we keepn= 128 states in the DMRG basis. To 1000
verify that keeping three Lanczos vectors as target states is
enough, we calculate the weight of the Lanczos vectors in
the finalS* (g, w) for q= . Figure 3 shows that the weight
of the first vectors is big and decays fast, and the first three
Lanczos vectors contain 98.87% of the total weight. FIG. 5. The single magnon excitation g 7 in spin-1 chains
To further verify the convergence of the DMRG basis, weof different length versus the frequency minus the HaldaneAgap
calculateS’ *(q,w) in every step and compare it to the final Calculations withm=128 states kept and broadening factgr
resultS*(q,w) by taking the inner product of the two: =0.001.

0 L ,-—’/; N ST ! s
0.00 0.02 0.04 0.06 0.08 0.10
w-A,
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TABLE I. The truncation erroP(m) as a function of the length 0.20 T T . T r T .
L of the spin-1 chain and the numberof states kept. 015 L ]
L P(m=64) P(m=128) P(m=256) 2 o010 a
40 1.1x10°° 2.1x10°® 1.2x10°8 0.05 - ]
80 1.6x10°° 3.0x10°8 3.5x10°° 0.00
160 1.7x10°° 3.2¢10°8 8.6x10°° L0 100 200 800 400
320 1.5¢10°¢ 3.2x10°8 3.0x10°° L A AL B A
< o=
PR
2 10 E =
block. Obviously with three Lanczos target states the spec- & : b 3
trum is described well enough, and convergence is very g C ]
good. 107 T i
In the calculation of the final spectrum, Lanczos vectors 10 130 1000

are calculated until the overlap of the new vector with the

first one exceeds 1%. The inset of Fig. 4 shows that the FIG. 6. The upper plofa) shows the weight of the first peai(,
overlap (f,|fo) increases exponentially. In the given ex- versus the system site The lower plot(b) shows the difference of
ample we use the first 83 Lanczos vectors. It can be seeiie frequency of first peako, and the Haldane gapy . The dif-
from the overlap that orthogonality breaks down after 95ference tends to zero as the system size increases.

Lanczos vectors have been calculated, effectively restarting

the procedure. The effect on the resulting spectrum if morgnethod works very well for the dynamical spectrum of the

Lanczos vectors are used is very small. antiferromagnetic spin-1 Heisenberg model.
Figure 5 showss" (q,w) for = . Most of the weight is
in one single peak, and with increasing system size this peak V. THE SPIN-1/2 HEISENBERG MODEL

moves towards the Haldane gap. To be sure that keaping
=128 states in the DMRG basis is enough, we compare re- As we have already pointed out, the spin-1 chain is a
sults with those from calculations witm=64 andm=256 relatively easy case. Since there is an excitation gap and the
states. Table | shows the truncation error depending on theorrelation length is short, the ground state properties can be
system size and number of states. The truncation errors amalculated with high accuracy with a relatively small DMRG
relatively small even withm=64 states, and the difference basis. Following the example of Hallbetgye now investi-
between those witm=128 andm= 256 states are small. = gate the antiferromagnetic spin-1/2 chain. This is a more

Table Il and Fig. 6a) show the weight in the first peak. difficult case, since it has no excitation gap and a diverging
The weight grows with the system size, but seems to go teorrelation length, requiring a slightly bigger DMRG basis.
W= 97.6%* 0.1% instead of 100%. This value is important More importantly, instead of a single peak with most of the
for estimating how good a single mode approximation forweight in it, for S*(w,q) an excitation band is found. It has
this excitation is. a lower bounda

Table 11l and Fig. 6b) show the position of the first peak
wg. We expect this value to converge against the Haldane [T
gap A, =0.41050(2) for big systems. For the=320 site quilsm(q)l, (20
chains our result is only 0.7%128 statesabove this value,
and Fig. &b) indicates that the distance between the Haldan
gap and the peak vanishes for big systems.

By determining the frequency at which the first peak is for
different wavevectors, we can calculate the single magnon
dispersion relation. Figure 7 shows the dispersion relation
determined with the Lanczos vector method, as well as quan- For this band the following structure was proposéd:
tum Monte Carl8 and exact diagonalizatichThe different
sets of data are in good agreement, except for spmathere
the quantum Monte Carlo results are smaller than ours. SFq,w)=

In summary, we have shown that the Lanczos vector \/wz—qu

@nd upper boundaty

wg=w|sin(q/2)|. (21

O(0—wy)d(w5—w). (22

TABLE II. The weightW, of the first peak as a function of the TABLE lll. The position of the first peakoy as a function of the

lengthL of the spin-1 chain and numbaer of states kept. lengthL of the spin-1 chain and numbaer of states kept.
L Wo(m=164) Wy(m=128) Wo(m=256) L wo(M=64) wo(M=128) wo(M=256)
40 0.9346 0.9288 0.8415 40 0.4657 0.4642 0.4477
80 0.9675 0.9617 0.9540 80 0.4326 0.4313 0.4304
160 0.9753 0.9742 0.9737 160 0.4192 0.4173 0.4174

320 0.9755 0.9755 0.9756 320 0.4159 0.4134 0.4137
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8 T T T T T T T T TABLE IV. The position of the first peakw, depending on the
number of Lanczos vector target statds in the spectral weight
i % 7 function of an antiferromagnetit =160 site spin-1/2 chain &
6 +/.p *\QQ B = . m=256 states were kept in the DMRG basis.
>3 \+
- ./ % - N ) P
i /54 \\.\ L 0
d4 S ¥ - 4 0.0269 9.410°®
P 7/ +L=18 periodic, ED LY 8 0.0297 6.% 106
L %+ L=32 periodic, QMC N | : e
& . v L=80 open, DMRG . 16 0.0380 1.X10 .
ol = L=160 open, DMRG % 32 0.0644 6.%10
¢-—=-< L=320 open, DMRG ‘&
- T
PR S N RS E While the high energy part of the spectral weight function

0.0 0.2 04 06 0.8 1.0 is not accessible with the Lanczos vector method, the posi-
on tion of the first peak is only weakly dependent on the number

FIG. 7. The single magnon line of the spin-1 Heisenberg anti-Cf La&nczos vector target statd . Table IV shows the po-
ferromagnet. DMRG results witm=128 states per block, and Sition of the first peakw, in a L=160 site chain af=m=
three Lanczos vectors as target states. Quantum Monte (Refo  calculated withm=256 states kept. The dependence of the
8) (QMC) and exact diagonalizatiofRef. 9 (ED) data are from the  position of the first peak on the number of Lanczos vector
work of Takahashi. target states is small. The reason why it is shifted to higher

- . . values if more target states are used are the increasing trun-
In a finite chain there can be no continuous energy band

; . C%tion errors arising from targeting more states with fixed
Instead, we expect separate peaks in the same region, apd ocg

that the number of peaks increases as the system size is in- Keepingm= 256 states in the DMRG basis, and targeting

creased. .
This poses a problem to the Lanczos vector method. Fi four Lanczos vectors, we have determined the lower edge of

. . he energy band for differerd. Figure 9 shows the disper-
ure 3 ShOW‘.C’ that the_ weight of the Lanczos vectors in thesion relation. For the longer systems it compares increasingly
spectral weight function decreases only very slowly. Th|sWeII with the analytic resulfEq. (20)]
means that a lot of Lanczos vectors are needed to describe ’ '
the correlation function well. Figure 8 shows the spectral
weight atqg= 7 determined with different numbers of Lanc-
zos vectors. For reference we also show results using the V1. CORRECTION VECTORS

much more accurate correction vector method, discussed in | the previous section we found that the Lanczos vector

the next section. The spectral weight function strongly demethod works very well if only low-energy properties of the
pends on the number of Lanczos target states, and even fqafynamical correlation function are of interest, but that it is
16 and 32 Lanczos vector target states there is no sign Qfnaple to reproduce higher energy properties like the shape
convergence. Bigger numbers of target stddeswould re-  of the excitation band in the spin-1/2 model. Instead of using
sult in very long calculation times, and would also requirethe anczos vector method, the spectrum can be calculated

that we keep substantially more states per block. directly for a givenz=w+i7 by using a correction vector.
25 ———— 11— To do this, the following states must be included as target
: R N states:
L = _
20 v N.=8
O . -——- N=16 7
| \ .. B NL=32 i 0.6 T T T T T T T
I " | *----% 2 COIT. Vec.
%: 1.5 e ; | | 0/1\‘3‘ i |
E o N
©w 1.0 04 [ N _
3 \©
e
05 3 i analytic Ny |
| o L=28,periodic \
0.2 - * L=80,0pen N
0.0 ) v L=160,0pen \o
~0.0 0.5 1.0 15 i /a/ =-—= L=320,0pen \\ )
/T % \\
\
. . . . . 1 | 1 | 1 | 1 | L
FIG. 8. The spectral weight fuqctlon gemina 160 site spin- 0-00‘0 0.2 0.4 0.6 08 o
1/2 chain with »=0.1 for calculations with different numbers of gin

Lanczos target statd, and with the correction vector method. In

all calculationsm=256 states were kept in the DMRG basis. The FIG. 9. The lower bound of the excitation band in the spin-1/2
correction vector method works well, while the Lanczos method isHeisenberg model. The results for the 28 site periodic system are
far from convergence. from Hallberg(Ref. 3.
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|0) the ground state, 020 ——T—— T T T —T—TT—
|Ag)=Aql0) the first Lanczos vector, L _
1 . ®=2.9
= the correction vector. 0.15 — =30 —
X(2)=5= /A9 S
= L ——- @=32 .
Since a finite broadening factay is used, the correction 3 040 L |
vector becomes complex. To avoid the use of complex hum- &
bers, we split the correction vector into real and imaginary i - N .
part, both used as target states: \\'L
0.05 ey ]
X(2))=[x"(2)) +i[|x'(2)). (23) L 1
~ The equation for the correction vector is split into real and 000 s 25 30 31 32 33 o4
imaginary part$x’(z)) and|x'(z)), and the imaginary part is o

found by solvin
y g FIG. 10. The spectral weight in an 80 site spin-1/2 chaii at

(H= )2+ )X (2)) = — Ay (24) = 7 with one correction vector as a target state and 128 states in the
DMRG basis andp=0.1. The crosses show the results calculated

using the conjugate gradient method. Note that this equatiogirectly from the correction vectors, the lines show the parts calcu-
system gets more singular asgets closer to an eigenenergy lated with the Lanczos procedure in the basis optimized for the
of the Hamiltonian, and as the broadening factprgets correction vectors. For example, the dashed line frem2.8 to
smaller. For largey the Hamiltonian is close to a diagonal @=3.0 is calculated in the basis that is optimized for the correction
matrix, and the conjugate gradient method converges mucyector withw=2.9.
faster than for small. This means that a large results in

short calculation times, but it also limits the resolution of theyyhjje the spectrum is produced for @, it is only accurate
spectrum. The convergence is also slowed down because eRsar thew used to produce the correction vector.
ergy gaps it — are.squared in Eq24), and the conver- To determine the range @ in which the truncated basis

Ii?good enough to calculate the spectral function, we com-
pare calculations with different frequencies for the correction
vectors. Figure 10 shows the spectral weight function near
the upper edge of the excitation band in the antiferromag-
1 _ netic spin-1/2 chain. This is an especially difficult region,
IX(2))=—(H—0)|X'(2)). (25  because there are a lot of peaks at lower energies. We did
Y several calculations with correction vectors for differant
Using the correction vector, the Green’s function can becalculating the spectra! We_ight in the region around the tar-
calculated directly: geted frequencies. Withm=128 states kept, the over_all_
shape reproduces the edge of the band accurately. Deviations

G(q,z)=(Aq|x(z)). (26) betwee_n the pieces of the spectrum calculatgd with different

correction vectors can be seen. The small mismatch between
Taking these state§0), |A,), and|x(z))) as target states the very accurate values calculated directly from the correc-
and optimizing the DMRG basis to represent them allows foition vectors, and the corresponding part obtained with the
a very precise calculation of the Green’s function for a givenLanczos vector method are due to numerical errors in the
frequency w and broadening factor. Unfortunately, the Lanczos procedure. By keeping more states this result can be
correction vector has to be calculated separately for emwery improved. Figure 11 shows the same part of the spectrum
If the correction vector does not change very rapidly with ~ with m=256 states kept. Now the different parts match very
the DMRG basis that is optimized to represent the correctionvell. Further improvement would be possible by keeping
vector at a certainw, should also be able to represent cor-more states or reducing the distance between the frequencies
rection vectors for nearby frequencies. of the correction vectors.

Although the correction vectors are needed as target states This result can be improved even further. Instead of using
to determine the DMRG basis, it is more efficient to use thgust one correction vector as a target state, we try using two
Lanczos vector method to determine the complete spectreorrection vectors at the same time. The spectral weight can
within that basis. Using the correction vector, but no Lanczosghen be interpolated for frequencies between these two cor-
vectors except the first one, as a target state, DMRG sweeigction vectors. With a broadening factor §=0.1, a dis-
are performed until the basis is convergégpically two or  tance ofAw=0.2 between the two correction vectors seems
three sweeps The dynamical correlation function is then appropriate. In Figs. 12 and 13 the results from calculations
calculated in the same way as in the Lanczos vector methodvith different frequencies for the correction vectors are plot-
when the left and right block have the same size Lanczoted. With m=128 states the parts for 33Qv=<3.3 match
vectors are calculated until orthogonality is lost. Since thisperfectly, and for 2.& w<3.0 they still match better than
method is almost exact in the given basis, in principle itwith only one correction vector as a target stétdg. 10.
should yield the same result as using the correction vectoWith m=256 states(Fig. 13 all pieces of the spectrum
method in the same basis, and it is much faster. Of coursanatch up almost perfectly. This gives us a consistent method

gap between the lowest and the next lowest eigenvector.
The real part of the correction vector is calculated di-
rectly:
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FIG. 11. The spectral weight in an 80 site spin-1/2 chain at FIG. 13. The spectral weight function in an 80 site spin-1/2
= 7 with one correction vector as a target state and 256 states in thghain atq= 7, with 256 states in the DMRG basis anpd-0.1. Two
DMRG basis andy=0.1. correction vectors are used as target states, and the plot shows the
values calculated directly with these correction vectors, and the
connecting lines show the interpolated spectral weight calculated
with the Lanczos procedure in the basis optimized for the correction
ectors.

to verify how good our numerical results are, and we find
that it is possible to achieve very high accuracy.

Now we use this method to obtain the complete spectral
weight in a 160 site chain. Keepimg= 256 states and using ) )
two correction vectors as target states, we start with corred€n9ths. Figure 14 shows that the spectral weight decays
tion vectors fore=0 andw=0.2. After two sweeps through [aster than 1b in all system, and the decays do not become
the system the DMRG basis is converged, and the spectr |owgr for Ionger chains. The only hl!’]t at f|n|tg—5|ze effects is
weight function is calculated for€w=0.2 using the Lanc- the different size of the spectral weight for different system

zos procedure. Then we target=0.2 andw=0.4, perform SIZ_?_?]. I ilati in the 40 site chai d h
two sweeps through the system, and calculate the spectrFtI i g smab OSCfI aﬂo;s_lnt;] € | tsltel ¢ aln”are ; ue tt%t €
weight for 0.2< w=<0.4. Continuing this procedure, we ob- imited humber of peaks In the relatively small system, those

tain the function shown in Fig. 8. In contrast to the results™ e 160 site chain are due to the large distance\ of

from the Lanczos vector method, the spectral weight func- 0.4 between the correction vectors. They do not affect our

tion calculated using two correction vectors shows no finite€Sult. and could be removed by using pairs of correction
size peaks and reflects the shape expected in the infinite sy<ECtors with closer frequencies or by increasing the size of
tem. Equation(22) predicts 1b decay fromw=0 to o=, the DMRG basis. L

where the spectral weight drops to zero. The band presented In Fig. 13 the upper edge_ of the eXC""’?“F’” bqnd can be
in Fig. 8 shows the correct upper and lower bound, but the€€n: but due to the broadening facter 0.1 it is difficult to
spectral weight in the band decays faster than Tio verify determine the position of the edge. Since the spectral weight

if this is a finite-size effect, we look at chains with different function is plotted bY taking the_peaks f(_)und in the Lanczos
procedure and plotting them with the given they can as

well be plotted with smaller broadening factors. Figure 15

R I B L L shows plots with»=0.1, for which the DMRG basis was
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FIG. 12. The spectral weight function in an 80 site spin-1/2
chain atg= 7, with 128 states in the DMRG basis apg=0.1. Two
correction vectors are used as target states, and the plot shows the
values calculated directly with these correction vectors, and the FIG. 14. The spectral weight function gt 7, with different
connecting lines show the interpolated spectral weight calculatedystem sizes. The spectra were calculated with two correction vec-
with the Lanczos procedure in the basis optimized for the correctioror target states with distances &ftv=0.4, a broadening facton
vectors. =0.2, andm=256 states.
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0.20 - . | - ] of interest, or if the bulk of the weight is in one single peak.
0.15 . We demonstrated this for the case of the antiferromagnetic
0.10 - spin-1 and spin-1/2 chains, where we could reproduce the
0.05 ] dispersion relation of the lower edge of the spectral weight
0.00 ] functions correctly.

5 015 ] If there is an excitation band, the Lanczos vector method
§ 010 ] is unable to describe the higher energy part c_)f the correlatign
£ 05 E functions. These parts can be determined using the correction

w - - vector method. This method gives very precise results for
0.00 i frequencies at which the correction vectors are used as target
0.60 ] states. The Lanczos procedure can be used in the basis opti-
0.40 ] mized for the correction vectors to determine the spectrum
0.20 7 fast and efficiently not only at the frequency of the correction
0.0, 34 vector, but also in the region around that. By comparing the

® ' plots from calculations with different frequencies for the cor-
) o . . rection vectors it is possible to estimate the range over which
FIG. 15. The spectral weight function in an 80 site chaimat the spectral function is determined correctly. We find that
=m. These are the same data as in Fig. 13, with two correctiopemgarkably good spectra can be determined if two correction
vectors with a distance alw=0.2 between them, ang=0.1. I \000r5 are used as target states, and the spectral function is
the spectral weight function is plotted with a smallgr the parts oo 1ated for the frequencies between them. In the case of

calculated with different frequencies for the correction vectors N%he excitation band in the spectral weight function of the

longer match perfectly, but the peaks become easily dIsnngu'Shabl%intiferromagnetic spin-1/2 chain, we used this method and

_ B _ were able to study a system long enough and with sufficient
gﬁftg?gn?d’ ;Tg”o_f Otr?eS gnggtr_acl)'(\?vléi Fr?[r ;Sﬁ;gﬁ”gg tlrc])(ri eraccuracy that no finite-size peaks were visible and excellent
match buFt) now the olesp are easil ?dentifiable The osi%ior‘]i greement with theoretical expectations was obtained.

' P y : b Our results show that using these techniques, obtaining

of the peaks can also be determined by directly taking th%wcurate dynamical spectral functions from DMRG is fea-

position of the peaks from the Lanczos procedure. Doings. . .
; . . ible and can be considered a standard DMRG technique.
this, the last peak in the band is found at=3.128, com- The calculation time is longer than for ground state proper-

pared tow= given in[Eq. (21)). To verify if the small .0 oy manageable for single chain systems and prob-

difference is a finite-size effect or a numerical error, Iongerably for ladders with a few chains.

chains can be studied, or correction vectors closer to the

desir(_ad region could be used. Using smaleand reducing_ ACKNOWLEDGMENTS
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