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Effects of biquadratic exchange on the spectrum of elementary excitations in spin ladders
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We investigate the influence of biquadratic exchange interactions on the low-lying excitations of aS5
1
2

ladder using perturbation theory, numerical diagonalization of finite systems, and exact results for ladders with
matrix product ground states. We consider in particular the combination of biquadratic exchange interactions
corresponding to ring exchange on the basic ladder plaquette. We find that a moderate amount of ring exchange
reduces the spin gap substantially and makes equal bilinear exchange on legs and rungs consistent with
experimentally observed spectra.@S0163-1829~99!05425-9#
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I. INTRODUCTION

Two-legged spin ladders with spins1
2 have attracted con

siderable interest over the past years, both as ideal mo
for quasi-one-dimensional materials and as a theore
model for a spin liquid characterized by an excitation g
From the geometric structure of the two-legged spin lad
as shown in Fig. 1~a! it is clear that the main exchange in
teractions are expected along the legs and across the run
the most general interaction for a plaquette formed by f
spins S5 1

2 on two neighboring rungs is considered, e
change along the two diagonals~corresponding to next
nearest-neighbor interactions! and biquadratic exchange in
teractions appear in addition.

This general plaquette Hamiltonian forS5 1
2 is formu-

lated as

H5(
n

$JrungS1,n•S2,n1Jleg~S1,n•S1,n111S2,n•S2,n11!

1Jdiag~S1,n•S2,n111S2,n•S1,n11!1VRR~S1,n•S2,n!

3~S1,n11•S2,n11!1VLL~S1,n•S1,n11!~S2,n•S2,n11!

1VDD~S1,n•S2,n11!~S2,n•S1,n11!%. ~1!

For simplicity we have assumed equal exchange inte
tions Jleg on the two legs andJdiag on the two diagonals, a
natural assumption for the symmetric structure of Fig
which we will consider in the following. Recently, theoret
cal studies have demonstrated that this generalized Ha
tonian ~i! allows us to formulate models interpolatin
smoothly between the dimer and Haldane limits for t
ground state1 and~ii ! has a parameter space sufficiently lar
to allow us to study quantum phase transitions.2 The typical
Hamiltonian for both applications has some nonvanish
biquadratic terms. In the past, only little attention has be
paid to biquadratic exchange terms, although finite stren
of these terms was, e.g., found in the spectra of small clus
of magnetic ions.3

Recently, the possible importance of biquadratic e
change for some properties of low-dimensional spin syste
PRB 600163-1829/99/60~1!/329~6!/$15.00
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has been pointed out: Honda, Kuramoto, and Watana4

have argued for finite ring exchange~corresponding to a par
ticular combination of biquadratic terms! on the basic CuO2
plaquette. The relevance of ring exchange for magnetiza
plateaus has been discussed for the spin ladder by Saka
Hasegawa5 and for solid He3 films by Momoi, Sakamoto,
and Kubo6 In this paper we study the effect of the biqu
dratic terms in the Hamiltonian~1! on the low-lying excita-
tions of this ‘‘generalized spin ladder’’ by both analytic
and numerical approaches. The motivation for this work
twofold: First, we want to extend the knowledge obtain
analytically in Ref. 2 to a wider range of strengths of t
biquadratic interactions.

Second, we want to investigate the relevance of ring
change of finite strengthJring as introduced by Honda, Kura
moto, and Watanabe4 on the determination of coupling con
stants from ladder spectra. The standard analysis
experimental data on quasi-one-dimensional ladder syst
starts from Eq.~1! with Jdiag and all biquadratic couplings
set equal to 0 and results inJleg'2Jrung from inelastic
neutron-scattering experiments on Sr14Cu24O41 ~Ref. 7! and
La6Ca8Cu24O41,8 as well as from NMR experiments o
these substances.9–11 This large value for the ratioJleg /Jrung
is not understood at present: It is not expected from the g
metric structure of the ladder, from electronic structu
calculations12 a value somewhat larger than unity is obtain

FIG. 1. ~a! Structure of the two-leg ladder;~b! possible ring
exchange around the basic plaquette.
329 ©1999 The American Physical Society
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and interladder interactions,13 which have recently been con
sidered, do not resolve the discrepancy.

In the following we show that even a moderate amoun
ring exchangeJring is relevant for the determination of th
coupling constants in the two-leg ladder from the energie
elementary excitations. We define the strengthJring on a
plaquette of four spinsi , j ,k,l in terms of the permutation
operatorPi jkl by the symmetric contribution

Hring5
1

2
Jring (

plaquettes
~Pi jkl 1Plk ji !

to the Hamiltonian. Since we deal with spinsS5 1
2 , Hring

is identical to a special choice of constants in Eq.~1!, namely

VRR
ring5VLL

ring52VDD
ring52Jring , Jrung

ring 5Jring ,

Jleg
ring5Jdiag

ring 5
1

2
Jring .

A natural Hamiltonian for the geometric structure of the sp
ladder then is obtained by bilinear exchange terms and
exchange terms, leading to the Hamiltonian of Eq.~1! with

Jrung5Jrung
bl 1Jring , Jleg5Jleg

bl 1
1

2
Jring ,

Jdiag5
1

2
Jring ,

VRR5VLL52VDD52Jring . ~2!

In the following we will present results on the influence
JringÞ0 on the dispersion of low-lying excitations for ant
ferromagnetic ladders using perturbation theory~Sec. II!, nu-
merical calculations covering the case of experimental in
est ~Sec. III! and discussing the relevance for the dispers
of exactly known excitation branches~in the case of specia
choices for the strength of biquadratic exchange!.

II. PERTURBATION THEORY

We have calculated the dispersion of the lowest trip
excitation in an expansion in the neighborhood of the dim
point for a chain of L rungs with periodic boundary
conditions.14 At the dimer pointJrung is the only nonvanish-
ing exchange constant and the lowest excited states are
tained by exciting any of theL dimers from singlet to triplet
state, giving anL-fold degenerate state with energyJrung . In
the following we discuss the evolution of these basic trip
excitations for the Hamiltonian of experimental interest,

H5(
n

$S1,n•S2,n1Jleg~S1,n•S1,n111S2,n•S2,n11!%1Hring ,

~3!

with small values ofJleg ,Jring in perturbation theory~we
will use Jrung51 as unit of energy!. Switching on these in-
teractions the basic triplet starts to propagate and theL exci-
tations which are degenerate in the dimer limit are dis
guished by wave vectork, which is a good quantum numbe
due to translational invariance. Therefore straightforw
nondegenerate Rayleigh-Schro¨dinger perturbation theory ca
f

f

g

r-
n

t
r

ob-

t

-

d

be applied. Innth order nonvanishing values ofJleg ,Jring
lead to intermediate states withn excited dimers which are
coupled to total spinS51. Including terms of third order in
Jleg ,Jring the following spectrum is obtained for the lowe
triplet excitation:

vS51~k!5~ t01t1 cosk1t2 cos 2k1t3 cos 3k!, ~4!

t05122Jring1
3

4
~Jleg2Jring!2

1
3

8
~Jleg2Jring!2~Jleg15Jring!,

t15Jleg1Jring2
1

4
~Jleg2Jring!2~Jleg1Jring!,

t252
1

4
~Jleg2Jring!22

1

4
~Jleg2Jring!2~Jleg1Jring!,

t35
1

8
~Jleg2Jring!2~Jleg1Jring!.

Since this is an expansion in powers ofJleg ,Jring , it will
be applicable for sufficiently small values of these exchan
constants as long as no phase boundary is crossed, i.e
long as the ground state is obtained by continuous defor
tion from the rung dimer ground state. For a quantitat
comparison we refer to Fig. 2~a! ~see below!.

The leading coefficient for the dispersion ist1}Jleg
1Jring in first order. This perturbative result shows th
whenJring.0 is present, an analysis of the spectra in ter
of bilinear exchange only will lead to an effective value
Jleg which is increased in comparison to the value found
Jring50. We will see in the next section from numeric
diagonalization that this result of perturbation theory cont
ues to be qualitatively true for larger values ofJleg .

III. THE SYMMETRIC LADDER WITH BIQUADRATIC
EXCHANGE

Motivated by the results of recent inelastic neutro
scattering experiments on the quasi-one-dimensional lad
material La6Ca8Cu24Sr41,8 we have calculated numericall
excitation spectra for spin ladders with the Hamiltonian
Eq. ~2! using periodic boundary conditions for a finite num
ber of spins. We have used the Lanczos method for ladd
with a total of 24 spins, i.e., 12 rungs. Because of sp
inversion the number of wave vectorsk with different ener-
gies is 7, k5pp/6, p50,1•••6. In Figs. 2~a!–~c! we
present the results for the lowest negative parity excitat
~parity with respect to interchange of the legs!. This is the
lowest excitation with the ladder gap atk5p; it is very
likely a triplet excitation, since it is found with identica
energies for bothStot

z 51 andStot
z 50 (Stot.1, however, is

not formally excluded!. We show the variation of the disper
sion with Jring between the limits20.3•••10.3 for three
values ofJleg . For the smallest value,Jleg50.5, we also
show the perturbative result, see Eq.~4! for comparison~full
lines!. The agreement is satisfying forJring,0.2, whereas
for larger values ofJring a phase transition to a differen
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FIG. 2. Calculated ladder spectra~lowest negative parity triplet! for Jring520.3•••0.3 andJleg50.5 ~a!; 1.0 ~b!; 2.0 ~c!. For Jleg

50.5 the result from perturbation theory@Eq. ~4!# is given for comparison~full lines!. For Jleg51.0 the lowest positive parity excitation
~singlet! is also shown~dashed lines!. Full lines forJleg51.0,2.0~negative parity excitations! are guides to the eye.
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ground state has probably taken place and the perturba
theory of Sec. II is no more applicable. It should be no
that the unit of energy is the bilinear rung exchangeJrung

bl

~without the effective contributionJrung
ring resulting from the

ring exchange!. Jrung
bl should be fixed by the magnitude o

the gap.
For a simple quantitative presentation of the effect of r

exchange on the spectra we have considered the ratio

R5

vS 2p

3 D
v~p!

. ~5!

This quantity may conveniently serve for comparis
with experimental data since the most accurate spectra
obtained fork.p/2 and it is here wherev(k) varies most.
The curves in Fig. 3 show the dependence of the ratioR on
Jring for Jleg /Jrung50.5,1.0,1.5,2.0. The analysis of the e
periments givesR'5, which may be realized for differen
combinations ofJleg and Jring : Two examples areJleg
'1.8,Jring'0 andJleg'1.0,Jring'0.14. Thus we conclude
from the data shown in Fig. 2 the tendency that a fin
Jring.0 tends to simulate the effect of an increased bilin
exchangeJleg on the legs. This is in agreement with pertu
bation theory as discussed in Sec. II. We have checked
the perturbative result of Eq.~3! is a good approximation to
on
d

re

e
r

at

the numerical data forJleg50.5 for Jring,0.1; for larger
ring exchange a transition to a new phase occurs~see below!
such that perturbation theory no longer applies.

The main physics behind the importance ofJring for the

FIG. 3. Ratio R@see Eq.~5!# characterizing the steepness of th
dispersion near wave vectork5p.
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determination of bilinear exchange constants is the follo
ing: the influence ofJring on the gap~at k5p/2) is relatively
much stronger than on the dispersion at intermediate w
vectors. Actually, forJleg,1, the gap appears to vanish for
critical magnitude ofJring , indicating a phase transition
This phase transition may also be responsible for the irre
lar behavior of the dispersion curves forJleg50.5,Jring
50.3; this system may actually be in a different phase. I
the neighborhood of this phase transition also for val
Jleg}O(1) which explains the strong influence of the biqu
dratic exchange terms. We expect this phase transition t
of the same type as discussed before for generalized
ladders,2,15,16 leading to a spontaneously dimerized grou
state.

The energy of the spin gap is the basic input for the
termination of the energy scale in ladder systems. Owing
the large effect of finiteJring on the spin gap the values o
the exchange constants in CuO2 planes will have to be renor
malized considerably. ForJring'0.14Jrung , Jleg'Jrung the
spin gap isD'0.28Jrung ~compared toD'0.51Jrung in the
caseJring50). This implies an energy scale which is larg
by a factor close to 2 owing to the ring exchange terms. T
the basic exchange energyJrung between two Cu ions
changes from'800 to'1400 K, comparable to the magn
tude of the main exchange constant in the two-dimensio
~2D! material La2CuO4.

If the k-dependent dispersion is considered in more de
the situation is of course more complex: In particular t
presence or absence of a maximum betweenk50 and k
5p is affected by the value ofJring . At present, however
this is a point of little relevance for experimental results.
Fig. 2~b! we have also included results for the lowest ex
tation energy with positive parity forJring50,60.3: these
data illustrate our general observation that the effect of
quadratic exchange on the positive parity excitation ener
is less spectacular.

IV. EXACT DISPERSION RELATIONS FOR SPIN
LADDERS WITH SPECIAL VALUES
OF THE EXCHANGE CONSTANTS

It was observed in Ref. 2 that the general plaque
Hamiltonian for the ladder structure allows some combi
tions of parameters which result in either a rung dimer~sin-
glet! ground state with exactly known triplet excitations or
Haldane-liquid-like ground state with exactly known sing
excitations, both with negative parity. In both cases the d
persion is a pure cosine dispersion. The physical picture
these exact excited states is simple: An excited rung tri
~singlet! propagates to the neighboring rungs both on its ri
and left side without exciting states containing two or thr
quanta. The interesting and natural question, howe
whether these exact excitations are of interest, in partic
whether they are the lowest excitations in the correspond
ladder, can only be answered by numerical methods.

The condition for an exact dimer ground state with ex
triplet excitations for the Hamiltonian of Eq.~1! according to
Ref. 2 reads

Jleg2Jdiag5
1

4
~VLL2VDD!. ~6!
-
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It has to be supplemented2 by the inequalities which guar
antee the stability of the dimer ground state. For the Ham
tonian of Eqs.~1! and ~2! the conditions reads

Jleg
bl 5Jring<

1

5
.

We illustrate this situation in Fig. 4 where we plot th
lowest negative-parity excitation in the subspaceStot

z 51 for
Jleg

bl 50.15 and increasing values ofJring . We find that for
Jring5Jleg

bl 50.15 the exact excitation is indeed the lowe
excited state forStot

z 50 as well as for61. The numerical
spectra reproduce perfectly the exact dispersion law. Bey
the stability limit the exact excitation energy is between tw
highly excited states~since the rung dimer state then has
energy above the new ground state proportional to the n
ber of rungs! and is therefore of no more interest.

It is interesting to note that an exact dimer ground st
with an exact triplet excitation is also realized in 2D and 3
structures. The condition is that Eq.~6! is fulfilled separately
for the exchange interactions in each spatial direction.

A second example where the exact ground state and e
excitation spectra can be explicitly given is the generaliz
Bose-Gayen model as introduced in Sec. V of Ref. 2. T
model is defined by the following choice of constants in t
Hamiltonian of Eq.~1!:

Jrung5y1 , Jleg51, Jdiag5y2 ,

VRR50, VLL5
4

5
~322y2!, VDD5

4

5
~3y222!. ~7!

Varying the two parametersy1 ,y2 a number of phases
distinguished by different ground states, are realized, am
them the rung dimer and the valence bond~AKLT, see Ref.
2! phases. In Ref. 2 exact triplet~singlet! excitations in the
rung dimer ~AKLT ! phase with negative parity have bee

FIG. 4. Basic negative parity triplet forJleg
bl 50.15 andJring

50•••0.45. For Jring50.15 the numerical results reproduce th
exactly known dispersion curve.
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given. We have investigated by exact diagonalization of l
ders with 24 spins to what extent these exact excitations
the lowest ones for representative points in they12y2 phase
diagram as indicated in Fig. 5. Typical results of these c
culations are shown in Fig. 6. We find that close to the ph

FIG. 5. Phase diagram of the generalized Bose-Gayen m
~see Ref. 2!. The points specify the parameters used for the ca
lations of the spectra shown in Fig. 6.
-
re

l-
e

boundary of both the rung dimer phase@Fig. 6~a!# and of the
AKLT phase@Fig. 6~b!# the exact excitation is the lowest on
for wavevectors in some neighborhood ofk5p ~wave vector
of the gap!. This implies that they are exactly known critica
modes as strongly suggested by physical intuition. Su
ciently far away in phase space from the transition line, ho
ever, a crossover occurs and there may exist lower mode
both negative and positive parity: this is the situation close
the line y251, where the exact excitations are dispersio
less. Dispersionless behavior is reproduced for all wave v
tors for the point (y154, y251) in the rung dimer phase
whereas a deviation from the exact solution for small wa
vectors only is shown to occur in Fig. 6~c! for a point in the
AKLT phase.

V. CONCLUSIONS

We have investigated biquadratic exchange interaction
their influence on the low-lying excitations ofS5 1

2 ladders
with various coupling constants. From both analytical a
numerical calculations we conclude that a quantum ph
transition~which is likely to lead to a spontaneously dime
ized ground state! occurs for small values of the ring ex
changeJring.0. At this phase transition the spin gap va
ishes, therefore even small values ofJring imply large
variations of the spin gap and have a strong influence on

el
-

FIG. 6. Numerical and exact excitations in the generalized Bose-Gayen model: The exactly known triplet dispersions~full lines! are
numerically reproduced as lowest negative parity excitations fork.kmin . ~a! kmin>2p/3; ~b! kmin>2p/3; ~c! kmin>p/2.



e
in

th
bo
o-

ith
he
an
o.

334 PRB 60BREHMER, MIKESKA, MÜLLER, NAGAOSA, AND UCHIDA
determination of exchange parameters in the ladder in g
eral. Quantitatively, the presence of a small amount of r
exchange is shown to be consistent withJrung'Jleg as sug-
gested by the geometrical structure of the ladder and wi
value of this basic exchange constant between two neigh
ing Cu ions which is close to the one found in the tw
dimensional material La2CuO4.
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