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Effects of biquadratic exchange on the spectrum of elementary excitations in spin ladders
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We investigate the influence of biquadratic exchange interactions on the low-lying excitatiorﬁzo% a
ladder using perturbation theory, numerical diagonalization of finite systems, and exact results for ladders with
matrix product ground states. We consider in particular the combination of biquadratic exchange interactions
corresponding to ring exchange on the basic ladder plaquette. We find that a moderate amount of ring exchange
reduces the spin gap substantially and makes equal bilinear exchange on legs and rungs consistent with
experimentally observed spectf&0163-1829)05425-9

[. INTRODUCTION has been pointed out: Honda, Kuramoto, and Watghabe
have argued for finite ring exchan@eorresponding to a par-
Two-legged spin ladders with spigshave attracted con- ticular combination of biquadratic termen the basic Cu®

siderable interest over the past years, both as ideal modefdaquette. The relevance of ring exchange for magnetization
for quasi-one-dimensional materials and as a theoreticgllateaus has been discussed for the spin ladder by Sakai and
model for a spin liquid characterized by an excitation gapHasegawa and for solid Hé films by Momoi, Sakamoto,
From the geometric structure of the two-legged spin laddeand Kub@ In this paper we study the effect of the biqua-
as shown in Fig. () it is clear that the main exchange in- dratic terms in the Hamiltoniafl) on the low-lying excita-
teractions are expected along the legs and across the rungstidns of this “generalized spin ladder” by both analytical
the most general interaction for a plagquette formed by fouand numerical approaches. The motivation for this work is
spins S=% on two neighboring rungs is considered, ex-twofold: First, we want to extend the knowledge obtained
change along the two diagonalsorresponding to next- analytically in Ref. 2 to a wider range of strengths of the
nearest-neighbor interactionand biquadratic exchange in- biquadratic interactions.

teractions appear in addition. Second, we want to investigate the relevance of ring ex-
This general plaquette Hamiltonian f@&=3 is formu-  change of finite strength,4 as introduced by Honda, Kura-
lated as moto, and WatanaBen the determination of coupling con-

stants from ladder spectra. The standard analysis of

B experimental data on quasi-one-dimensional ladder systems
H_En: {JrungSta-S2nt Jieg(Stn- St 1t S2n Sonva) starts from Eq(1) with Jyi4 and all biquadratic couplings
set equal to 0 and results iheg~2J,,nq from inelastic
+Jdiag(S1n Son+1F Son Sin+1) T VRr(S1n Son) neutron-scattering experiments on, 8,404, (Ref. 7) and
LagCaCuy,0,;,2 as well as from NMR experiments on
X(Stn+1S2ne 1) TVLL(SLnSine 1) (Son Sane) these substancés™ This large value for the ratidieq/Jyyng
+Voo(Sin Soni1)(Son- Sins 1)} (1) is not understood at present: It is not expected from the geo-

metric structure of the ladder, from electronic structure
For simplicity we have assumed equal exchange interacealculationd? a value somewnhat larger than unity is obtained
tions Jj¢q ON the two legs andg;,q on the two diagonals, a

natural assumption for the symmetric structure of Fig. 1 Syni Son Sy i1 Synia
which we will consider in the following. Recently, theoreti- ~  ~===~~%®———¢®— ¢ ¥~~~
cal studies have demonstrated that this generalized Hamil(a)

tonian (i) allows us to formulate models interpolating

smoothly between the dimer and Haldane limits for the ~  ----- 4 4 4 ®-----
ground statkand(ii) has a parameter space sufficiently large St-1 St St S1nt2

to allow us to study quantum phase transitiérige typical
Hamiltonian for both applications has some nonvanishing
biguadratic terms. In the past, only little attention has been (t,
paid to biquadratic exchange terms, although finite strength Jrung Jring
of these terms was, e.g., found in the spectra of small clusters
of magnetic ions.

Recently, the possible importance of biquadratic ex- FIG. 1. (a) Structure of the two-leg laddetp) possible ring
change for some properties of low-dimensional spin systemsxchange around the basic plaquette.
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and interladder interactiort$ which have recently been con- pe applied. Innth order nonvanishing values Heg.Jring

sidered, do not resolve the discrepancy. lead to intermediate states withexcited dimers which are
In the following we show that even a moderate amount ofcoupled to total spirs= 1. Including terms of third order in

ring exchangelying is relevant for the determination of the J,, .. J,,, the following spectrum is obtained for the lowest

coupling constants in the two-leg ladder from the energies ofriplet excitation:

elementary excitations. We define the strendth, on a

plaquette of four spins,j,k,| in terms of the permutation ws=1(K)=(to+1t; cosk+t,cos k+tzcos X), (4)

operatorPj;,; by the symmetric contribution

3
1 tOZ:I-_Z‘Jring""Z(\]Ieg_‘-]ring)2
Hringzz\]ring > (Pijii + Pii)

plaquettes
to the Hamiltonian. Since we deal with spiBs=3, Hying + g(Jleg—erg)z(ngJr 5Jring):
is identical to a special choice of constants in Hg, namely
. . . . 1
Vg??gzerllr_]gz _VrDl?Dgzz‘]riﬂg ! ‘]:Iunnggz‘]fing ! t1:\]Ieg"'Jring_Z(Jleg_‘]ring)2(~]|e(;1+Jring),
JNg=30n9 = ~ 3, 1 1
o g 27mne tr=— Z(Jleg_‘]ring)z_ Z(‘Jleg_‘]ring)z(‘]leg+Jring)u

A natural Hamiltonian for the geometric structure of the spin
ladder then is obtained by bilinear exchange terms and ring

exchange terms, leading to the Hamiltonian of Ek.with tszg(3|eg—~]ring)2(3|eg+ Jring)-
Jrung:JPl!lng+ Jring Jleg:‘]lbelg+ E‘]ring ’ Since this is an expansion in powers®fy,Jying , it will

be applicable for sufficiently small values of these exchange
constants as long as no phase boundary is crossed, i.e., as
long as the ground state is obtained by continuous deforma-

Jaiag=5 Jring tion from the rung dimer ground state. For a quantitative
comparison we refer to Fig.(@ (see below.
Vrr=ViL=—Vop=2Jing - 2 The leading coefficient for the dispersion tgxJieq

) ) ) +Jring In first order. This perturbative result shows that
In the following we will present results on the influence of whenJ;ng>0 is present, an analysis of the spectra in terms

Jring7 0 On the dispersion of low-lying excitations for anti- of pjlinear exchange only will lead to an effective value of
ferromagnetic ladders using perturbation the@gc. I), nu- 3, which is increased in comparison to the value found for
merical calculations covering the case of experimental intery "~ _q \we will see in the next section from numerical

. K . . ring

est(Sec. Il and discussing the relevance for the dispersiornyiagonalization that this result of perturbation theory contin-
of exactly known excitation branchém the case of special o5 to pe qualitatively true for larger valuesJy, .

choices for the strength of biquadratic exchange 9

Il. THE SYMMETRIC LADDER WITH BIQUADRATIC
Il. PERTURBATION THEORY EXCHANGE

We have calculated the dispersion of the lowest triplet potivated by the results of recent inelastic neutron-

excitation in an expansion in the neighborhood of the dimegcaitering experiments on the quasi-one-dimensional ladder
point for 2 chain of L rungs with periodic boundary material LaCa;Cuy,St,,,8 we have calculated numerically
conditions.” At the dimer point),yng is the only nonvanish-  eycitation spectra for spin ladders with the Hamiltonian of
ing exchange constant and the lowest excited states are opy (2) using periodic boundary conditions for a finite num-
tained by exciting any of the dimers from singlet to triplet  per of spins. We have used the Lanczos method for ladders
state, giving ar-fold degenerate state with ener@yng. In yith a total of 24 spins, i.e., 12 rungs. Because of space

the following we discuss the evolution of these basic triplet,ersion the number of wave vectdkswith different ener-
excitations for the Hamiltonian of experimental interest,  gies is 7, k=pn/6, p=0,1---6. In Figs. Za)—(c) we

present the results for the lowest negative parity excitation
H=>, {S1n Son+ Jieg(Sin Sint 1+ Son Sons 1)} + Hring » (parity with respect to interchange of the Igg$his is the
n lowest excitation with the ladder gap &t it is very
) likely a triplet excitation, since it is found with identical
with small values ofJieq,Jsing in perturbation theorywe  energies for botlS,=1 andS,;=0 (Si>1, however, is
will use Jyyng=1 as unit of energy Switching on these in- not formally excludeyl We show the variation of the disper-
teractions the basic triplet starts to propagate and_teeci- ~ sion with J,;,4 between the limits—0.3--- +0.3 for three
tations which are degenerate in the dimer limit are distinvalues ofJ;.4. For the smallest value],.,=0.5, we also
guished by wave vectdt, which is a good quantum number show the perturbative result, see E4). for comparisor(full
due to translational invariance. Therefore straightforwardines). The agreement is satisfying fdk;,q<<0.2, whereas
nondegenerate Rayleigh-Schiager perturbation theory can for larger values ofl;,y a phase transition to a different



PRB 60 EFFECTS OF BIQUADRATIC EXCHANGE ON THE ... 331

Jieg=0.5, parity=-1 Jigg=1.0, both parities
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FIG. 2. Calculated ladder specttwest negative parity triplgtfor Jij,g=—0.3--0.3 andJ;q=0.5 (a); 1.0 (b); 2.0 (). For Jjeq
=0.5 the result from perturbation theoftq. (4)] is given for comparisorgfull lines). For Ji.,=1.0 the lowest positive parity excitation
(singled is also showr(dashed lines Full lines forJ,.q=1.0,2.0(negative parity excitationsare guides to the eye.

ground state has probably taken place and the perturbatiche numerical data fod;eg=0.5 for J,,q<<0.1; for larger
theory of Sec. Il is no more applicable. It should be notedring exchange a transition to a new phase oc¢ses belowy
that the unit of energy is the bilinear rung exchanljgg such that perturbation theory no longer applies.

(without the effective contributiod;y9, resulting from the The main physics behind the importanceJaf,q for the
ring exchangg J,,, should be fixed by the magnitude of
the gap. Parity=—1
For a simple quantitative presentation of the effect of ring
exchange on the spectra we have considered the ratio 8.0
(277
ol —
3 8.0 |
w(m) &
&
. . . . g
This quantity may conveniently serve for comparison 2
with experimental data since the most accurate spectra areg 401
obtained fork>7r/2 and it is here where (k) varies most. S
The curves in Fig. 3 show the dependence of the hatan o
Jring for Jieg/Jrung=0.5,1.0,1.5,2.0. The analysis of the ex- 20 |
periments givedR~5, which may be realized for different
combinations ofJieq and Jyjng: Two examples arelqq
~1.8,J1ing~0 andJj¢4~1.0,J;i,g~0.14. Thus we conclude
from the data shown in Fig. 2 the tendency that a finite 0.9 7= 020 0.00 020 0.40
Jiing™0 tends to simulate the effect of an increased bilinear Jing

exchangel;gq on the legs. This is in agreement with pertur-
bation theory as discussed in Sec. Il. We have checked that FIG. 3. Ratio R[see Eq(5)] characterizing the steepness of the
the perturbative result of E@3) is a good approximation to dispersion near wave vectér= .
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determination of bilinear exchange constants is the follow- Jieg=0.15, parity=-1

ing: the influence 08,4 on the gaatk= 7/2) is relatively

much stronger than on the dispersion at intermediate wave '° o0 00
vectors. Actually, ford;4<1, the gap appears to vanish for a Od=0.15
critical magnitude ofl,y, indicating a phase transition. A ous

This phase transition may also be responsible for the irregu- q —— 0,15, oxact
lar behavior of the dispersion curves fdfeg=0.5,J;ing
=0.3; this system may actually be in a different phase. Itis 199
the neighborhood of this phase transition also for values
Jieg*O(1) which explains the strong influence of the biqua- %
dratic exchange terms. We expect this phase transition to be®
of the same type as discussed before for generalized spir
ladders>>1® leading to a spontaneously dimerized ground 05|
state.

The energy of the spin gap is the basic input for the de-
termination of the energy scale in ladder systems. Owing to
the large effect of finitel;,q on the spin gap the values of
the exchange constants in Cuflanes will have to be renor- 00 - - .
malized considerably. Faling~0.14), g, Jieg™=Jrung the k
spin gap isA~0.28),,,4 (compared taA ~0.51J, 4 in the
casel;ing=0). This implies an energy scale which is larger
by a factor close to 2 owing to the ring exchange terms. Thus_
the basic exchange energy,,q between two Cu ions
changes from=800 to~1400 K, comparable to the magni-
tude of the main exchange constant in the two-dimensional
(2D) material LaCuQ,.

If the k-dependent dispersion is considered in more detail,
the situation is of course more complex: In particular the 1
presence or absence of a maximum betwkerD and k
= is affected by the value af,j,q. At present, however,
this is a point of little relevance for experimental results. In : T
Fig. 2(b) we have also included results for the lowest exci- We |Ilustr§1te th|§ S|tuat'|on. n .F|g. 4 where we plot the
tation energy with positive parity fod;,y=0,%0.3: these Iobwest negative-parity excitation in the subsp&g=1 for
data illustrate our general observation that the effect of biJieg=0-15 and increasing values df;, . We find that for
quadratic exchange on the positive parity excitation energiesring=Jisg=0.15 the exact excitation is indeed the lowest

FIG. 4. Basic negative parity triplet foj|eg—0.15 andJ;ing
0---0.45. ForJ;,g=0.15 the numerical results reproduce the
exactly known dispersion curve.

It has to be supplementeby the inequalities which guar-

antee the stability of the dimer ground state. For the Hamil-
tonian of Egs(1) and(2) the conditions reads

Jleg_‘]ringg g

is less spectacular. excited state foiS/,,=0 as well as for+1. The numerical
spectra reproduce perfectly the exact dispersion law. Beyond
IV. EXACT DISPERSION RELATIONS FOR SPIN Lhehsltablllty Ildmlt the exact t:]xcnatlorzj_energy is bﬁtweﬁn two
LADDERS WITH SPECIAL VALUES ighly exgte s;ate(;smce t edrung imer state tI en has an
OF THE EXCHANGE CONSTANTS energy above the new ground state proportional to the num-

ber of rung$ and is therefore of no more interest.

It was observed in Ref. 2 that the general plaquette It is interesting to note that an exact dimer ground state
Hamiltonian for the ladder structure allows some combinawith an exact triplet excitation is also realized in 2D and 3D
tions of parameters which result in either a rung difen-  structures. The condition is that E@®) is fulfilled separately
glet) ground state with exactly known triplet excitations or afor the exchange interactions in each spatial direction.
Haldane-liquid-like ground state with exactly known singlet A second example where the exact ground state and exact
excitations, both with negative parity. In both cases the disexcitation spectra can be explicitly given is the generalized
persion is a pure cosine dispersion. The physical picture oBose-Gayen model as introduced in Sec. V of Ref. 2. This
these exact excited states is simple: An excited rung tripleinodel is defined by the following choice of constants in the
(singled propagates to the neighboring rungs both on its rightHamiltonian of Eq.(1):
and left side without exciting states containing two or three
guanta. The interesting and natural question, however, Jrung=Y1r  Jieg=L,  Jdiag= Y2,
whether these exact excitations are of interest, in particular

whether they are the lowest excitations in the corresponding 4 4
ladder, can only be answered by numerical methods. Ver=0, Vi =g(32y2), Vop=g(3y2=2). (V)
The condition for an exact dimer ground state with exact
triplet excitations for the Hamiltonian of E¢l) according to Varying the two parameterg,,y, a number of phases,
Ref. 2 reads distinguished by different ground states, are realized, among
them the rung dimer and the valence bdAKLT, see Ref.
I — 3. —E(V Vo) 6) 2) phases. In Ref. 2 exact triplésingle) excitations in the
leg “diagT 4t TLL TDD rung dimer (AKLT) phase with negative parity have been
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boundary of both the rung dimer phdsdg. 6(a)] and of the
AKLT phase[Fig. 6(b)] the exact excitation is the lowest one
for wavevectors in some neighborhoodkef 7 (wave vector

of the gap. This implies that they are exactly known critical
modes as strongly suggested by physical intuition. Suffi-
ciently far away in phase space from the transition line, how-
ever, a crossover occurs and there may exist lower modes of
both negative and positive parity: this is the situation close to
the liney,=1, where the exact excitations are dispersion-
less. Dispersionless behavior is reproduced for all wave vec-
tors for the point y,=4,y,=1) in the rung dimer phase,
whereas a deviation from the exact solution for small wave
vectors only is shown to occur in Fig(d for a point in the
AKLT phase.

V. CONCLUSIONS

FIG. 5. Phase diagram of the generalized Bose-Gayen model \We have investigated biquadratic exchange interactions in

(see Ref. 2 The points specify the parameters used for the calcutheir influence on the low-lying excitations &= 3 ladders
lations of the spectra shown in Fig. 6.

with various coupling constants. From both analytical and
numerical calculations we conclude that a quantum phase

given. We have investigated by exact diagonalization of lad{ransition(which is likely to lead to a spontaneously dimer-
ders with 24 spins to what extent these exact excitations arneged ground stajeoccurs for small values of the ring ex-

the lowest ones for representative points inyhe y, phase

changeJ,j,4>0. At this phase transition the spin gap van-

diagram as indicated in Fig. 5. Typical results of these calishes, therefore even small values &f,q imply large
culations are shown in Fig. 6. We find that close to the phaseariations of the spin gap and have a strong influence on the

y,=3.0y,=-0.25 y,=0.0 y,=0.27
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FIG. 6. Numerical and exact excitations in the generalized Bose-Gayen model: The exactly known triplet dispredbiimss) are
numerically reproduced as lowest negative parity excitation&fek,i,. (@) Kyin=27/3; (b) kpin=27/3; () Kyin= /2.
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